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Abstract Power consumption reduction is the primary

problem for the design and implementation of heteroge-

neous parallel systems. As it is difficult to make progress

in the low-power optimization in the hardware layer

to meet the increasing need for power optimization,

more attention has been paid to low-power optimiza-

tion in the hardware layer. The relationship between

the execution time and dynamic power consumption of

programs divided between homogeneous and heteroge-

neous computing sections is analysed. In addition, the

communication power consumption for data transmis-

sion and dynamic multi-task allocation are described.

Afterwards, this study establishes a power model for the

whole procedure of heterogeneous parallel systems. By

using this model, a selection algorithm is designed for

the optimal frequency of processors with optimal power

consumption under time constraints, optimal descent-

based time allocation algorithms in multiple computing

sections, and profiling dynamic analysis-based integral
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linear programming at algorithm-level, separately. Fi-

nally, the validity of the power optimization algorithm

is ascertained using typical applications.
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1 Introduction

Heterogeneous parallel systems which integrate general-

purpose processors with dedicated processors have be-

come an important development for high-performance

computing systems. Although this kind of system is

characterised by a high peak velocity and a high peak

efficiency, they still suffer from high power consump-

tion. For existing supercomputer systems, TianHe-1A

and K Computer systems have power consumptions of

4.04 MW and 12.66 MW, separately, while the newly

developed TianHe-2A system even reaches a power con-

sumption of up to 17.808 MW. Excessive power con-

sumption gives rise to difficulty in the packaging, power

supply, and heat dissipation of such systems. Therefore,

reducing power consumption has become an important

target for the optimization of heterogeneous parallel

systems.

Existing studies on the low-power optimization of

heterogeneous parallel systems mainly focus on under-

lying hardware and upper-level software [1][2]. Low-

power optimization in hardware layers has been rel-

atively well-researched and it is therefore difficult to

achieve further developments therewith that may sat-

isfy the increasing requirement for power optimization.

As a consequence, the optimization of power consump-

tion in the software layer has attracted widespread at-

tention[3][4]. In the software layer, since different pro-

cessors show dissimilar computation speeds and power
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consumption overloads, low-power optimization for het-

erogeneous parallel systems is different from that for ho-

mogeneous systems. To make the most of the efficiency

advantage of heterogeneous parallel systems, the follow-

ing new problems need to be solved in the low-power

optimization of these systems.

The modelling objects for the power consumption of

heterogeneous parallel systems are complex. At present,

there are few studies of the power models of heteroge-

neous parallel systems, most of which are constructed

on the basis of some modification of the power mod-

els used for homogeneous systems. However, the pro-

cessors in heterogeneous parallel systems have differ-

ent architectures. Moreover, as most main processors

are connected with accelerated processing units (APUs)

through system buses, additional communication oper-

ations are bound to be introduced in the accelerated

computation through scheduling APUs. Therefore, the

modelling objects for the power consumption of hetero-

geneous parallel systems are more complex in compar-

ison with those used for homogeneous systems. Tradi-

tional modelling objects concerning power consumption

are mainly aimed at the dynamic power consumption

generated by processors. The model merely considers

the programs in a single computing section or maps

them to the calculation resources of a specific type of

processor(s). Nevertheless, practical scientific and engi-

neering applications are generally composed of several

serial and parallel computing sections. Under such con-

ditions, users generally concern themselves with the re-

lationship between power consumption and execution

time of the whole application rather than a single com-

puting section.

Energy saving effects are related to the algorithm

selected for low-power optimization. With the gradual

deepening of relevant investigations, low-power opti-

mization has gradually changed from architecture-level

and compiling-level to algorithm-level protocols[5][6].

The algorithm-level is a higher power optimization level

compared with that of the compiling-, and architecture-

levels. In terms of the low-power optimisation effect, the

selection and optimisation of algorithms exert the most

significant influence on the power consumption, which

can reach up to 90% at maximum[7][8]. Low-power opti-

misation at algorithm-level can help designers to select

an algorithm with low energy consumption and guide

the optimisation design of software or hardware in later

stages. Meanwhile, on the basis of grasping the appli-

cation background and the execution characteristics of

programs, more targeted and efficient optimising strate-

gies can be formulated.

To solve the aforementioned problems, this research

studies low-power optimisation at the algorithm-level

for the whole procedure of heterogeneous parallel sys-

tems. Meanwhile, from the perspective of the executive

characteristics of parallel programs, a power consump-

tion model is established for the whole procedure of

heterogeneous parallel systems. By using this model,

efficient low-power optimisation methods are designed

at algorithm-level. The rest of this study is organised

as follows: Section 2 demonstrates the research status

and progress of system-level power models and low-

power optimisation for software; the contributions of

this work are introduced in Section 3; Section 4 anal-

yses, and establishes, the power model for the whole

procedure of heterogeneous parallel systems (aiming at

dynamic power consumption and communication power

consumption); Sections 5 to 7 cover the design of the

selection algorithm for the frequency of optimal proces-

sors, optimal descent-based time allocation algorithm

in multiple computing sections, and profiling dynamic

analysis-based integral linear programming; the exper-

imental results are analysed in Section 8, and key con-

clusions are drawn in Section 9.

2 Related work

2.1 System-level power models

At present, the most commonly seen power models for

heterogeneous parallel systems are simulation-based system-

level power models. These models reveal the execution

of units in an object system by simulating the execu-

tion of the system and then adding up the correspond-

ing power consumptions. In comparison with command-

level [9]and sampling-based power models [10], system-
level power models show higher measuring accuracy and

are generally built based on performance simulation.

These models measure power consumption based on

functional blocks, for example, summator, multiplier,

controller, register file, cache, etc [11]. Currently, there

are a large number of system-level power models dis-

cussed in academic circles [12][13]. These models are

established on the basis of simple technological param-

eters and compute the power consumption of modules

using analysis models or obtain empirical data through

the use of a bottom-extraction test. The modelling ob-

jects are basically single processor units, or the whole

processor, and the system power consumption consid-

ered is nothing to do with the execution of the applica-

tions and merely depends on the processors. However,

in heterogeneous parallel systems, owing to the limi-

tations of programming models or architectures, most

parallel programs accomplish an application by execut-

ing different computing sections in succession using uni-

versal microprocessors and APUs. In addition, with the
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constant improvement of parallel processing techniques

and their support environment, more parallel programs

are supposed to use parallel combined heterogeneous

multi-processors to deal with single parallel computing

sections [14][15]. In this way, the advantages of system

parallel processing can be sufficiently exploited. There-

fore, adopting existing system-level power models fails

to result in the performance of more effective modelling

for the overall power consumption [16][17]. Meanwhile,

most main processors and APUs in heterogeneous par-

allel systems are connected using peripheral component

interconnect (PCI) interfaces to transmit data with the

single peak bandwidth of only 8 GB/s. In particular,

the capacity of the video memory of accelerated pro-

cessors represented by graphic processing units (GPUs)

has failed to satisfy the requirements of modern scien-

tific computations, thus further increasing the pressure

on bandwidth for data communication [17]. For data-

intensive applications, the data communication over-

head among processors exerts a significant influence on

the high power consumption of heterogeneous systems.

2.2 Low-power optimisation in the software layer

Low-power optimisation technologies in the software

layer can be divided into three levels, namely the,

architecture-, compiling- and algorithm-levels. There-

into, dynamic voltage and frequency scaling (DVFS)

and core processor unit shut-down are two key tech-

nologies used for architecture-level low-power optimisa-

tion [18][19][20][21]. Compiling-level low-power optimi-

sation in the software layer mainly focuses on the low-

power compiling optimisation of programs. Many schol-

ars have investigated the influence of traditional com-

piling optimisation, such as, command adjustment, reg-

ister allocation, cyclic transformation, and data conver-

sion, on power consumption [22][23]. At present, stud-

ies of the algorithm-level low-power optimisation for

heterogeneous parallel systems remain in their infancy.

Korithikanti et al. [24] analysed the expandability of

power consumption of parallel algorithms and found,

through modelling, that different algorithms have dif-

ferent expandabilities with regards their power con-

sumption. In addition, they pointed out that the num-

ber of processors with optimal power consumption un-

der performance constraints needs to be determined

at algorithm-level to minimise overall power consump-

tion. Meanwhile, the potential for power optimisation

at algorithm-level was revealed. Therefore, carrying out

an investigation into low-power optimisation at algorithm-

level in the software layer is of great practical signifi-

cance.

A task scheduling algorithm, based on heterogeneous

sensing, is an important means of low-power optimi-

sation in heterogeneous parallel systems at algorithm-

level. Several parallel sections in one program can be

mapped in a multi-core processor or/and an APU. Since

parallel sections show different program characteristics

or execution units, the multiple parallel sections in one

program always entail different power consumptions [25][26][27][28].

Meanwhile, most existing low-power optimisation meth-

ods aim at dynamic power consumption, while few stud-

ies have been carried out on the optimisation of commu-

nication power consumption. Multiple computing sec-

tions in one program are generally characterised by

data dependence, while in several computing sections

with data dependence, different methods of the divi-

sion of tasks possibly lead to different communication

overheads[29][30].

3 Contributions of this work

This study is conducted on the basis of established GPU

power models at architecture-level. It not only consid-

ers the power consumption of processors in APUs, but

also analyses the overall power consumption of hetero-

geneous parallel systems based on different executive

modes of parallel programs on the systems. By adding

the communication overheads arising from communi-

cation tasks in main processors and APUs, the power

model for the whole procedure of heterogeneous paral-

lel systems is built. On this basis, dynamic power con-

sumption and communication power consumption are

optimised at algorithm-level. The specific contributions

of this work are as follows:

(1) This study proposes a power model for the whole

procedure of heterogeneous parallel systems. In the system-

level power modelling, considering the complexity of

modelling objects for the power consumption of het-

erogeneous parallel systems, the power model is estab-

lished from the perspective of the whole procedure so

as to improve the accuracy of the power model. This is

realised by analysing the relationship between the ex-

ecution time and the dynamic power consumption of

programs divided into multiple computing sections of

its multi-processors. Besides, the common power con-

sumption of data transmission and dynamic multi-task

allocation is formally described.

(2) This research proposes algorithms for selecting

the optimal frequency of processors and optimal descent-

based time allocation algorithms in multiple computing

sections. In dynamic low-power optimisation, aiming

at the programs in heterogeneous parallel sections, the

conditions for realising optimal power consumption are

analysed using heterogeneous parallel processing under
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the constraints of execution time. Based on this, the

relation between power consumption in each comput-

ing section and the execution time is established. As

a result, the power consumption problem is depicted

as a problem for solving general multivariate extremes.

In this way, the selection algorithm for the optimal fre-

quency of processors and optimal descent-based time al-

location algorithms in multiple computing sections are

proposed.

(3) Profiling static analysis-based integral linear pro-

gramming is proposed in this study. In the optimisation

of communication power consumption, the optimisation

problem is converted to an integral linear programming

problem based on the method of division of tasks, op-

eration level of processors, and static scheduling strate-

gies of tasks. On this basis, this research develops pro-

filing static analysis-based integral linear programming.

4 Energy consumption models for the whole

procedure of heterogeneous parallel systems

The execution of parallel programs on heterogeneous

parallel systems can be represented, in abstract terms,

as shown in Fig.1. Thereinto, S, C, and P indicate

the serial computing section, communication section,

and parallel computing section, separately. The parallel

computing sections independently finished using main

processors or APUs are called homogeneous computing

section programs; while those jointly realised through

main processors and APUs are named heterogeneous

computing section programs. The execution character-

istics of parallel programs are defined using the notation
summarised in Table 1.

Complementary metal-oxide-semiconductors (CMOSs)

are basic computer devices, and their power demand

consists of two parts: dynamic and static. Dynamic

power is generated by CMOS state changes during use,

while static power is mainly generated by leakage cur-

rent when it is idle. In addition to the dynamic and

static power, as the main processor and the accelera-

tion components are mostly connected by system bus

in heterogeneous system, accelerate execution will in-

troduce additional communication operations to speed

up the calculation process. Communication power has

gradually become an important part of the heteroge-

neous system power. Therefore, the total power of het-

erogeneous systems (P ) can be expressed as the sum of

dynamic power (Pd), static power (Ps) and communi-

cation power (Pm).

P = Pd + Ps + Pm (1)

E = P × t (2)

According to the law of physics, energy consumption

is an integration of power into time, usually written

as the product of average power and time. Although

power and energy are two concepts, they are often used

indiscriminately in different research fields: many re-

searchers take energy as the actual optimization objec-

tive while designating their quest as low-power opti-

mization. Hence, this research makes no strict distinc-

tion between power and energy, except the in those

cases for which the optimization objective of power and

energy are not in mutual agreement.

4.1 Dynamic energy consumption model

(1) Dynamic energy consumption modelling of homo-

geneous computing section

In homogeneous computing sections, if Si is a serial

section, the program is finished using a single ri proces-

sor; while if Si is a parallel section, the program is re-

alised using all ri processors. The relationship between

the dynamic voltage and the frequency of processors

can be approximately described by f = KV γ−1,where

K and γ are parameters related to the technology. It is

recorded as α = γ+1
γ−1 and therefore it can be regarded

that the dynamic power consumption Pd is positively

related to the αth power of the frequency f , that is,

Pd = Kfα. Let the execution time of the ith computing

section be denoted as ti,while Ni and fi show the num-
ber and operating frequency of ri processors in the ith

computing section, separately. Then, the total power

consumption in homogeneous computing sections can

be expressed as:

Ed =

n−1∑
i=0

NiKif
α
i ti (3)

The study aims to minimise the total power consump-

tion for the whole procedure in a given execution time T

for the program model composed of multiple comput-

ing sections. Thereinto, the time constraint ti in any

computing section Si is analysed as follows: if the ith

computing section Si is a serial section, it is finished

using only a processor under which condition the exe-

cution time satisfies the condition of ti ≥ Si
vi

; while if

the ith computing section Si is a parallel one, it is re-

alised using all parallel ri processors. In this case, the

execution time satisfies ti ≥ Si
Nivi

.
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Table 1 Execution characteristics of parallel programs

Notations Definition

S = {s0 · · · sn−1} The program is divided into n sections based on the parallelism of com-
puting sections where si denotes the task load in the ith computing sec-
tion.

R = {r0 · · · rm−1} The heterogeneous parallel system is composed of m kinds of processors.
Nj The number of jth (0 ≤ j ≤ m− 1) kind of processor rj .
vj Speed at the highest frequency (task load finished by the processor per

unit time).

PS C P C C

CCC P P

S

Time

Main processors

APUS

Homogeneous 

computing section

Heterogeneous

 computing section

Homogeneous 

computing section

Power 
consumption

 

Fig. 1 Classifications of heterogeneous parallel programs

Therefore, the dynamic energy consumption mod-

elling for the whole procedure of homogeneous comput-

ing sections can be formally described thus:

minEd =
n−1∑
i=0

Nikif
α
i ti

s.t.
n−1∑
i=0

ti ≤ T

ti ≥ Si
vi
, if Si is serial section

ti ≥ Si
Nivi

, if Si is parallel section

(4)

(2)Dynamic energy consumption modelling of het-

erogeneous computing sections

This research mainly studies CPU-GPU heteroge-

neous parallel systems. Therefore, the processors in-

volved contain only CPUs and GPUs (suppose all CPUs

are of the same type, as are the GPUs). The execution

time of the ith computing section is recorded as ti, while

NC and NG indicate the numbers of CPUs and GPUs

used in this section, separately;kC and kG represent the

relevant constants of CPUs and GPUs, respectively. In

addition, fC and fG denote the operating frequencies

of CPUs and GPUs in this section, separately; vji shows

the task load finished by the jth kind of processor per

unit time in the ith computing section. Therefore, the

total power consumption for programs in heterogeneous

sections can be expressed as:

Ed =

n−1∑
i=0

(NCkCf
α
C +NGkGf

α
G) · ti (5)

The low-power optimisation for the programs in hetero-

geneous computing sections can be studied by dividing

it into two sub-problems in theory, that is, local-power

optimisation in computing sections and overall power

optimisation in the whole procedure. For the first sub-

problem, it is crucial to establish the relationship be-

tween the optimal power consumption of processors and

the execution time in computing sections. The second

sub-problem is to distribute execution time in differ-

ent computing sections on the basis of optimal power

consumption. Therefore, the low-power optimisation for

programs in heterogeneous computing sections can gen-

erally be concluded as a multivariate extreme value

problem.The dynamic energy consumption modelling

for the whole procedure of heterogeneous computing
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sections can be formally described thus:

minEd =
n−1∑
i=0

(NCkCf
α
C +NGkGf

α
G) · ti

s.t.
n−1∑
i=0

ti ≤ T

ti ≥ Si∑
rj∈Ri

vji
, if Si is serial section

ti ≥ Si∑
rj∈Ri

Njv
j
i

, if Si is parallel section

(6)

4.2 Communication energy consumption model

(1)Communication energy consumption modeling of ho-

mogeneous computing sections

In heterogeneous parallel systems, CPUs and GPUs

are connected through a PCI-E bus which cannot be

used to adjust the dynamic voltage and frequency. That

is, the speed of execution of data communication and

power consumption are fixed. Suppose that the PCI-E

bus is a special functional unit and its power consumes

Pm,0 and Pm,1 in operating, and idle, states, separately.

Meanwhile, it is assumed that the communication can-

not be interrupted, that is, multiple data communica-

tion operations need to be executed sequentially. Since

the system bus is occupied separately by single com-

munication operations, the communication overhead is

positively related to data scale, whereas the data scale

depends on the division strategy of two parallel tasks

which show data dependency. In the programs of the

homogeneous computing sections, the communication

power consumption is mainly that communication over-

head arising from the transmission of input data from

CPUs to GPU storage space and restoring output data

from GPUs to CPU storage space. The execution time

of communication operations is recorded as tGC , show-

ing the overhead of data communication between CPUs

and GPUs. While tm,0 denotes the time overhead of

the PCI-E bus in idle state. Then, the communication

power consumption of homogeneous programs is repre-

sented by:

Em = Pm,1t
G
C + Pm,0tm,0 (7)

(2) Communication energy modelling of heterogeneous

computing secitons

in the programs of heterogeneous computing sec-

tions, communication power consumption mainly refers

to the communication overheads arising from the divi-

sion of multiple parallel tasks with data dependency in a

single computing section. Since the practical efficiency

of heterogeneous processors is directly related to the

characteristics of the tasks, different division strategies

are easily formulated among multiple tasks, thus intro-

ducing large communication overheads.tx,zx′,z′ is recorded

to represent the communication overhead of task x in

the division mode z and that of the task x′ in division

mode z′. Then, the communication power consumption

of heterogeneous programs can be expressed as:

Em =
∑

Pm,1t
x,z
x′,z′ + Pm,0tm,0 (8)

4.3 Static energy consumption model

With the integrated circuit using nanometre technol-

ogy, the shrinking transistor size makes the chip power

density increase exponentially. The chip temperature

also increases dramatically with power consumption,

which affects the performance and reliability of sys-

tem and reduces system lifetime. At the same time,

the leakage current increases with chip temperature,

so that the static energy consumption exceeds the dy-

namic energy consumption and has become a major

source of chip energy consumption. With 65 nm tech-

nology, when the temperature is increased from 60 C

to 80 C, the static energy consumption will increase

by about 21%. Therefore in this study, we took the

chip temperature into account in the power consump-

tion model of the whole program in heterogeneous sys-

tems to increase the static energy consumption due to

the leakage current. At first, the thermal analysis model

of real-time systems was built based on the equivalent

RC circuit approach to solve the working temperature

of chips according to the thermal conductivity of the

processor core. By analysing the relationship between

the leakage current and the static energy consumption

of the chip, we simulated HISPICE to fit curves and

built the function of the leakage current in relation to

chip temperature and voltage. Two working reference

temperatures were introduced to build the quadratic

function of the leakage current and the temperature, so

the function of the static energy consumption and the

chip temperature was obtained. The specific steps are

as follows:

To study the thermal conductivity of the proces-

sor core, the equivalent RC circuit approach was em-

ployed to establish thermal analysis models in previous

research [1]. The following formula is adopted to find

the working temperature:

dTtem
dt

=
P

Cth
− Ttem − Tamb

RthCth
= αP − β(Ttem − Tamb)

(9)

Where Ttem and Tamb represent the chip temperature

and ambient environment temperature, respectively, while
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P denotes the chip energy consumption at time t;Rth
and Cth refer to the equivalent thermal resistance and

equivalent heat capacity, respectively. The systemic modes

of the processor can be divided into the working state

and dormant state. The processor only executes tasks in

the working state, or it will return to its dormant state

to reduce energy consumption and its temperature. The

static energy consumption in the working state can be

expressed by:

Pstatic = NgateIleakageVdd (10)

By using HSPICE to fit curves, the leakage current,

as a function of the temperature and voltage, can be

expressed as:

Ileakage = I(V0, T0)(AT 2e
αVdd+β

Ttem +BeγVdd+ζ) (11)

where A,B,α,β,γ,and ζ,indicate the empirical parame-

ters as decided by the production process. When the

working temperature Ttem changes within the normal

range of 300 K to 380 K, e 1
Ttem

fluctuates slightly. Af-

ter setting Vdd,ference [2] further simplified the leakage

current to the quadratic function of the temperature

by introducing two reference temperatures TH and TL.

The given execution time is T, so the static energy con-

sumption related to the leakage current is calculated

thus:

Estatic = Ngate(ÂT
2
tem + B̂)Vdd · T (12)

where

Â =
Ileakage(TH, Vdd)− Ileakage(TL, Vdd)

TH2 − TL2
(13)

B̂ = Ileakage(TL, Vdd)− Â× TL2 (14)

Therefore, the power model for the whole procedure,

in homogeneous computing sections canbe formally de-

scribed as follows:

minE =
N−1∑
i=0

Nikif
α
i ti + Pm,1t

G
C + Pm,0tm,0

+Ngate(ÂT
2
tem + B̂)VddT

Â =
Ileakage(TH,Vdd)−Ileakage(TL,Vdd)

TH2−TL2

B̂ = Ileakage(TL, Vdd)− Â× TL2

s.t.
N−1∑
i=0

ti + tGC + tm,0 ≤ T

ti ≥ Si
vi
, if Si is serial section

ti ≥ Si
Nivi

, if Si is parallel section

(15)

For the ith computing section, the execution time of

tasks depends on the processors working for the longest

time. Tasks are divided only in parallel computing sec-

tions rather than in serial computing sections. There-

fore, tv,z is the execution time for task v in division

mode z. Then, the power model for the whole proce-

dure, in heterogeneous computing sections, after con-

sidering the communication,dynamic, and static energy

consumption can be formally described as follows:

minE =
n−1∑
i=0

(NCKC(fCz )α +NGKG(fGz )α) · tx,z

+Pm,1t
x,z
x′,z′ + Pm,0tm,0 +Ngate(ÂT

2
tem + B̂)VddT

Â =
Ileakage(TH,Vdd)−Ileakage(TL,Vdd)

TH2−TL2

B̂ = Ileakage(TL, Vdd)− Â× TL2

s.t.
n−1∑
i=0

tx,z + tx,zx′,z′ + tm,0 ≤ T

tx,z ≥ Si∑
ri∈Ri

vji
, if Si is serial section

tx,z ≥ Si∑
ri∈Ri

Njv
j
i

, if Si is parallel section

(16)

5 The selection algorithm for the optimal

frequency of processors

To optimise the dynamic power consumption in homo-

geneous computing sections, it is necessary to analyse

the relationship to be satisfied among processors when

the total power consumption of programs is optimal at

first. Based on this, the relationship between the opti-

mal frequency in computing sections and the time con-

straints can be obtained. Then, according to the power

consumption in each computing section, the optimal op-

erating frequency of processors in each computing sec-

tion can be calculated under the given time constraints.

In this way, the selection of the best algorithm for the

optimal frequency of processors is acquired.

5.1 Balance theorems of power consumption in

homogenous computing sections

Theorem 1: According to the total execution time T,

when the power consumption of the system becomes op-

timal, the processors satisfy the following requirements:

(1)If T ≥ ς

π
1
α

the total power consumptions of proces-

sors in different computing sections are equal. That is,

if ∀Si, Sj ∈ S is satisfied, Nipi = Njpj is always tenable.

Under such conditions, the operating frequency of pro-

cessors in the ith computing section is fi = ωiς
NiViT

. (2)If
n−1∑
i=0

Si
NiVi

≤ T ≤ ς
π 1
α

, processors in some computing sec-

tions certainly work at the highest frequency, and those
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in other computing sections show the same total power

consumption. Proof: In heterogeneous parallel systems,

the maximum operating frequencies of different proces-

sors are possibly different. Therefore, this study adopts

the relative operating frequency as a substitute for the

actual value. That is, the actual power consumption

of processors is p = Pfα where P denotes the maxi-

mum power consumption of processors in a computing

section and f denotes the relative operating frequency

of the processors (the ratio of the actual operating fre-

quency of processors to their maximum frequency), sep-

arately. Li. K [30] proposed that in homogeneous multi-

processor systems, when the total energy consumption

becomes optimal, all processors are bound to work at

the same frequency. That is, they have the same power

consumption. Therefore,pi and Pi are used to denote

the actual power consumption and the maximum power

consumption of homogenous processors in the ith com-

puting section, respectively. It may be found that:

Pi = Pif
α
i = Pi(

Si
NiViti

)α (17)

Let βi = ( PiV αi
)

1
α−1 , then the total dynamic power con-

sumption for programs is expressed as:

Ed =

n−1∑
i=0

NiKif
α
i ti =

n−1∑
i=0

Ni
Sαi β

α−1
i

tαi N
α
i

ti =

n−1∑
i=0

Ni
Sαi β

α−1
i

tα−1i Nα−1
i

(18)

The computing time of the computing sections is de-

scribed as F :
n−1∑
i=0

ti − T = 0. This study solves for

the optimal energy consumption using the Lagrangian

multiplier method. Let ∂Ed
∂ti

= h∂F∂ti where h is the La-

grange multiplier, then we obtain
Sαi β

α−1
i

tαi N
α−1
i

= h
1−α . The

total energy consumption for all processors in the ith

computing section is represented by:

Nipi =
Sαi β

α−1
i

tαi N
α−1
i

=
h

1− α
(19)

According to Formula (9), under the condition of opti-

mal power consumption, Nipi = Njpj is always tenable

for all ∀Si, Sj ∈ S. That is, the total dynamic power

consumptions of processors in different computing sec-

tions are equal. Formula holds true under the condi-

tion that the operating frequency of all processors is

smaller than their maximum frequency. By using the

Lagrangian multiplier method, it is found that:

ti = (
1− α
λ

)
1
α

Si

(Niβi )
α−1
α

(20)

Let ω = (Niβi )
α−1
α ,then ti = ( 1−α

λ )
1
α
Si
ωi

. Let ς =
n−1∑
i=0

Si
ωi

,

then ti = Si
ςωi
T .Therefore, the operating frequency fi of

processors in the ith computing section is:

fi =
Si

tiNiVi
=

ωiς

NiViT
(21)

If the operating frequency of processors in any comput-

ing section requires to be not larger than 1, it needs

to satisfy T ≥ ωiς
NiVi

= τ

(NiPi)
1
α

. Suppose that π =

min{PiNi|0 ≤ i ≤ n − 1}, then the execution time T

needs to satisfy T ≥ ς
π 1
α

. The lower bound of the execu-

tion time T is
n−1∑
i=0

si
NiVi

. When
n−1∑
i=0

si
NiVi

≺ T ≤ ς

π
1
α

, the

sets of computing sections with total power consump-

tions π are recorded as S′ = {si|PiNi = π, si ∈ S}, and

ς ′ = ς−
∑
si∈S′

si
ωi

and π′ = min{PiNi|si ∈ S−S′}. In the

subset S′ of computing sections, the relative operating

frequency of all processors is greater than 1. Since dy-

namic energy consumption Ed s a convex function of ti
, it can be verified that processors in the system work

at the highest frequency when their power consumption

is optimal.

5.2 The selection of an algorithm for the optimal

frequency of processors

With regard to the selection of the algorithm for the

optimal frequency of processors, it is crucial to exclude

the allocation results which violate the frequency con-

straint under the first constraint in the balance the-

orems of power consumption in homogenous comput-

ing sections. This exclusion is conducted according to

the increasing order of the total power consumption of

processors in each computing section. Meanwhile, the

processors which work at the highest frequency are re-

moved until the execution time of the rest of the com-

puting section sets satisfies the time constraint π ≥ ς
π 1
α

.

In this way, the optimal operating frequency can be

calculated. Fig.2 shows the selection algorithm for the

optimal frequency of processors.

In practical scenariosFrequent DVFS can result in

extra hardware overhead, especially when the number

of the processors increases. In the research, we reduced

system energy consumption by scaling the operating

frequency of the processors, and parallel task partition-

ing. Actual processors only can be operated at finite

frequencies; however, parallel task partitioning, as a

finer scaling method, can decrease system energy con-

sumption by effectively applying the performance dis-

crepancy of heterogeneous multi-core processors. The
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authors found that, when the frequency of the pro-

cessors is as low as the lowest operating frequency in

the experiment, the power consumption cannot be re-

duced through the DVFS method when the relaxing

factor increases further. In such conditions, the only

choice is to transfer the tasks to high-efficiency pro-

cessors through the scaling of task partitioning. There-

fore, to avoid frequent application of DVFS, we should

try to combine the frequency scaling and parallel task

partitioning to reduce energy consumption. In addi-

tion, The fined-grained power management mechanism

of Thread Motion (TM) can be used[]. To avoid the fre-

quent scaling of the voltage and frequency of the proces-

sors, the TM method meets the computational demands

of different applications through rapid TM among the

cores of multiple processors with different computa-

tion speeds. The experimental results indicate that the

method can improve the execution performance of pro-

cessors when each core frequency is independently scaled

through the scaling of two levels of voltage and fre-

quency.

6 Optimal descent-based time allocation

algorithm

For the dynamic low-power optimization of programs

in heterogeneous computing sections, it is necessary to

analyse the relationship to be satisfied among proces-

sors when the total power consumption of programs

becomes optimal at first. Then, according to the exe-

cution time T, the dynamic low-power optimization of

programs in heterogeneous computing sections can be

regarded as a process with which to solve the time al-

location problem of each computing section under the

time constraint of the whole procedure. Differing from

the programs in homogeneous computing sections, the

optimal power consumption for the programs in het-

erogeneous computing sections is a piecewise function

concerning the execution time. Therefore, it is difficult

to obtain the optimal solution of the problem based on

such an analysis. As a consequence, an optimal descent-

based time allocation algorithm in multiple computing

sections is proposed.

6.1 Balance theorems of power consumption in

heterogeneous computing sections

Theorem 2: Suppose that the parallel section s s con-

stituted by a heterogeneous multiprocessor set R in a

parallel manner. According to the total execution time

T ,when the power consumption of the system reaches

the optimal, the processors satisfy:

(1)If t ≥ s
ρψ

1
α−1 , all processors show equal efficiency,

that is,
Vj
Pj

= Vk
Pk

,∀rj , rk ∈ R. In this case, the operating

frequency of the jth type of processors is fj = s
ρtβjVj

.

(2)If s∑
rj∈R

NjVj
≤ t ≤ s

ρψ
1

α−1 , there are certainly

some processors working at the highest frequency and

the processors in the rest processor sets have identical

efficiencies.

Proof: In the programs of heterogeneous computing

sections, the overall task loads accomplished by the jth

type of processors rj are sj(0 < sj < s). Thus it is

known that the dynamic power consumption of these

processors is:

pj = Pj(fj)
α = Pj(

sj
VjNjt

)α (22)

Let βj = (
Pj
V αj

)
1

α−1

pj =
βα−1j Sαj
Nα
j t
α

(23)

The total power consumption of the programs is given

by:

Ed =
∑
rj∈R

pjNjt =
∑
rj∈R

βα−1j Sαj
Nα
j t
α−1 =

1

tα−1

∑
rj∈R

βα−1j Sαj

Nα−1
j

(24)

Considering that the total task constraint in comput-

ing sections is F =
∑
rj∈R

Sj−S = 0,it is known that the

expression of power consumption and the constraints

are functions of Sj . Therefore, the extreme values can

be solved through the use of the Lagrangian multiplier

method. Let ∂Ed
∂Si

= h ∂F∂Si where h is a Lagrangian mul-

tiplier, Sα−1j =
htα−1
i Nα−1

j

αβα−1
j

is obtained. By substituting

Sα−1j into the expression for the power consumption, it

may be seen that: pj =
βα−1
j Sαj
Nαj t

α =
hSj
αtNj

,

Sj
Njtpj

=
vj
pj

=
α

h
(25)

Where, vj(vj =
Sj
rjt

) is the actual operating speed of

processors rj in the parallel section s. Based on Formula

(15), the efficiencies of all processors are equal when the

total energy consumption reaches the optimal value:

vj
pj

=
vk
pk
,∀rj , rk ∈ R (26)

The task load of Sj =
Njβ

−1
j

ρ S is allocated to the jth

type of processors which work at a frequency of fj =
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Algorithm 1 The selection algorithm for the optimal frequency of processors in 

homogeneous computing sections 

It is known that there is a computing section set S  under time constraint T and computing 

sections show a mapping relationship with processors as : , , , ,i i i i i i iF s r r P V N r R   . 

To solve for the operating frequency if  
of processors in each computing section: 

1: = min{ S}i i iPN s    

2: /
i

i i

s S

s 


  where 
( 1)/

( / )i i iN
   

  and 
1/ 1

(P / )
i i i

V
  

 . 

3: 
1/

  while T do





  

4: The computing section subset satisfying { }sub i i iS s PN  
 
is then selected. 

5: For all computing sections: i subs S , let 1,
i sub

i
i

s S i i

s
f T T

V N

    . 

6: The subset of computing sections is removed, that is, subS S S  . Then,   and   are 

recalculated. 

7:  end while  

8: For is S , let i
i

i i

f
N VT


 . 

 

Fig. 2 The selection algorithm for the optimal frequency of processors in homogeneous computing sections

Sj
vjNjt

=
Njβ

−1
j∑

rk∈R
Nkβ

−1
k

S
vjNj

= S
ρtβjvj

≤ 1 where ρ =
∑
rk∈R

Nkβ
−1
k .

Let ψ = max{Vj/Pj |rj ∈ R} , that is, the execution

time of parallel sections must satisfy the following in-

equality:

t ≥ s

ρβjVj
=
s

ρ
(
Vj
Pj

)
1

α−1 =
s

ρ
ψ

1
α−1 (27)

The lower bound to t is s∑
rj∈R

NjVj
. When s∑

rj∈R
NjVj

≤

t ≤ s
ρψ

1
α−1 , there is at least one type of processors rj

whose operating frequency fi is greater than 1. That is,

the task load assigned to the jth processor exceeds the

maximum amount of computations that can be finished

within the time constraint. Since the dynamic energy

consumption Ed is a convex function of sj , the total

energy consumption reaches its optimum value when

sj = VjNjt. Afterwards, the remaining tasks s− sj are

allocated to other processors. Under such conditions, if

t ≥ s
ρψ

1
α−1 , the efficiency of the processors has to be

balanced; otherwise, the above process is repeated until

t ≥ s
ρψ

1
α−1 .

6.2 Optimal descent-based time allocation algorithm

in multiple computing sections

Based on the balance theorems of power consumption

in heterogeneous computing sections, the relationship

between the optimal power consumption and the execu-

tion time in each computing section can be established.

On this basis, the time allocated in each section for the

whole procedure under time constraints can be solved.

The descent in this algorithm means the power con-

sumption reduced per unit time. The difference between

the relaxed time constraint and the shortest execution

time of programs is recorded as ∆T and this is called as

the time to be allocated. This algorithm firstly divides
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the time to be allocated into N sections. In each itera-

tion of the algorithm, the time slice ∆T
N is distributed

to the computing section with the largest power con-

sumption reduction in current computing sections. The

above iteration is repeated until no time can be allo-

cated. Fig.3 illustrates the optimal descent-based time

allocation algorithm in multiple computing sections.

7 Profiling static analysis-based integral linear

programming

The low-power optimization for the whole procedure

of heterogeneous parallel systems considering commu-

nication energy cost aims to minimise the total power

consumption of the systems by determining the method

of division of each task and the operating frequency

of processors. This needs to satisfy the given perfor-

mance constraints of programs simultaneously, and the

total power consumption of the systems includes that

for computing and communication. The low-power op-

timization based on integral linear programming (ILP)

refers to the solution of the optimal solutions of prob-

lems using integral linear programming on the basis of

obtaining all execution information about the required

tasks. The information includes the method of division

of tasks, run-levels of processors, and the static schedul-

ing strategies of tasks. Therefore, the whole optimiza-

tion process is mainly divided into two stages, namely,

profiling-based static analysis, and the stage for solv-

ing optimal solutions through integral programming. In

the static analysis stage, the task graphs of applications

are established to describe the dependency of multiple
computing tasks in the applications so as to guide the

profiling process.

7.1 Profiling-based static analysis stage

(1)In the processor set P , the processor p(p ∈ P ) has

np run-levels. The power consumption of task v at the

kth run-level of processor p is pv,p,k(0 ≤ k ≤ np − 1).

(2)Under mode of division z,task v is executed for

tv,z,p,k by processor p at run-level k,For parallel com-

puting sections, the execution time of tasks relies on

the processor which works for the longest time. That

is, the execution time of task v under mode of division

z is tv,z = max{tv,z,p,k|p ∈ P, k ∈ [0, np−1].

(3)The execution time of the communication oper-

ation ev
′

v is tv,zv′,z′ , which shows the data communication

overhead of task v under mode of division way z, and

that of task v
′

under mode of division way v
′
.

7.2 ILP variables

For tasks v ∈ V , they are performed by processors

p ∈ P at run-level k ∈ [0, np − 1] under the division

strategy z ∈ Zv , then: (1)The binary variable D is

set to demonstrate the relationship between tasks and

division strategies. If Dv,z = 1 , task v is conducted

under division strategy z.

(2)The binary variable M represents the mapping

relationship between tasks and processors. WhenMv,p =

1 , task v is performed on processor p.

(3)The relationship between tasks and the run-levels

of the processors is represented by the binary variable

L. If Lv,p,k = 1,, task v is executed on processor p at

run-level.

(4)The binary variable Uv,z,p,k shows that task v is

accomplished on processor p at run-level k in mode of

division z, then Uv,z,p,k = 1 . That is, it is supposed to

meet Dv,z = 1 and Lv,p,k = 1 simultaneously.

7.3 ILP constraints

(1)System constraints: tasks can only be executed un-

der one division strategy and at a certain run-level of a

single processor.

(2)For the execution time and communication time

of tasks, the relationship of the binary variable Uv,z,p,k
with Dv,z and Lv,p,k can be represented using the lin-

earisation technique for non-linear constraints.

(3)Constraints concerning the assigning time and

terminal time of tasks: for source nodes, their start time

of execution is supposed to be longer than, or equal to,

the assigning time; while for end nodes, the end time is

expected to be no longer than the terminal time.

(4)Dependency constraints among tasks: data com-

munication operations have to be performed after tasks

are finished.

(5)As multiple computing tasks are assigned on one

type of processor cannot be executed concurrently, it

is necessary to sort these tasks. For any tasks with de-

pendency distributed on the same kind of processors,

their sequence is determined based on the dependency.

For two tasks without dependency, they are executed

merely under two conditions: task 2 is carried out af-

ter task 1 is finished, or task 1 is performed after the

execution of task 2.

7.4 Optimal solutions based on integral programming

Considering variable constraints, minimising the total

power consumption needed by heterogeneous parallel

systems for accomplishing applications under given time
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Algorithm 2: Optimal descent-based time allocation algorithm in multiple computing 

sections 

It is known that the computing sections are initially conducted for { }it  under time constraint 

T , and there is a computing section set s. In addition, { }ie  represents the function of the 

optimal power consumption of each computing section with the execution time. Besides, the 

iteration is performed N  times. 

To solve the time allocation it  required for each computing section: 

1: 
1

0

n

ii
T T t




    

2: Time slices are set as /t T N . 

3:  i=1:N dofor   

4: The current computing section ks  with optimal descent is selected, that is, 

( ) max{ ( ),0 1}k k i ie t e t i n     where ( ) ( ) ( )i i i i i ie t e t e t t   . 

5: Time slices are assigned. Let k kt t t  . 

6:  forend  

 

Fig. 3 Optimal descent-based time allocation algorithm in multiple computing sections

constraints is taken as the objective here. According to

the power model established based on communication-

aware multi-task division for the whole procedure sys-

tem, the optimal solutions with regard to power con-
sumption can be computed through integral linear pro-

gramming.

8 Profiling static analysis-based integral linear

programming

8.1 Test platform and test cases

The test platform in this study is a heterogeneous sys-

tem composed of an Intel Core I7 920 Quad-Core CPU

and two AMD 4870 GPUs. To examine the efficiency of

the algorithms proposed on this system, the frequency

of the storage of one GPU kernel is adjusted from 900

MHZ to 700 MHz so as to obtain two different GPU

kernels with different performances. Thereinto, the ker-

nel with the higher performance is recorded as GPU-H,

while that with the lower performance is designated

GPU-L. The specific parameters for this test platform

are listed in Table 2.

Eight typical scientific applications are adopted (Ta-

ble 3): the first six are selected from AMD APP SDK2.2

and realised using the OpenCL language. As the OpenCL

language is applicable to both CPU and GPU plat-

forms, the execution efficiency of the two platforms can

thus be compared. At present, the applications in AMD

APP SDK generally contain a kernel program. To test

the effect of the optimization algorithms proposed in

this study on multi-kernel programs, other test pro-

grams C SWIM and MGRID C are selected. The SWIM

program is a solver for the equations of two-dimensional

diving waves and is composed of three kernel comput-

ing processes and a parallel reduction process. There-

fore, the three kernel computing processes can be per-

formed through mapping them on GPUs, while the re-

duction process is finished using the CPU. The MGRID

program is used to solve the three-dimensional Poisson

equations using multiple grids and consists of four ker-

nel computing processes. Therefore, the computing sec-

tions with the largest amount of computations can be

accomplished by mapping them on GPUs, while those

at smaller scales are completed by the CPU.
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Table 2 Test platform parameters

Notations Definition

Processors Intel Core I7 920 cpu AMD 4870 GPU-H/GPU-L
Frequencies of processors(GHZ) 2.67,2.4,2.0,1.6 0.75,0.65,0.55
Storage frequency(GHZ) 1.33(DDR3) 0.9/0.7(GDDR5)
Cache L1 I32 kB, D32 kB,

L2 256 kB, L3 8 MB
-

Memory 8GB 1GB

Table 3 Test cases

Test program Description Problem size

Binomial option [BO] Binomial option pricing model 262,144
Black-Scholes [BS] Black-Scholes model for Euro-

pean options
1048,567

DCT Discrete cosine transform 4096× 4096
Matrix multiplication [MM] Matrix multiplication 4096× 4096
N-body[NB] Particle simulation 40960
Monte Carlo Asian[MCA] Monte Carlo analysis 40960
SWIM Shallow water equation solver 2048× 2048
MGRID[MG] 3-d Poisson equation solver 256× 256× 256

8.2 Experimental results and analysis

(1)Evaluation of lower-power optimization for programs

in homogeneous computing sections

As MGRID and SWIM are composed of multiple

kernel programs, they are mapped to the CPU and the

GPU-H according to the characteristics of each kernel

program to be executed sequentially. Taking MGRID

for an example, it solves the Poisson equation using a

multigrid method by executing the large-scale computa-

tion of fine grids on the GPUs while mapping the small-

scale calculation onto the CPU for execution. As for
SWIM, the sub-procedures including CALC1, CALC2,

and CALC3, which have the highest power consump-

tion are executed after being mapped onto the GPUs,

while the reduction process with its more complex con-

trol structure is executed on the CPU.

Fig.4 show the variations of the optimal power con-

sumption of MGIRD and SWIM programs with the

time constraint, respectively. Table 4 and Table 5

demonstrate the operating frequencies of processors in

all computing sections when the programs are under

the constraint of different relaxation factors. As the

processors have a minimum frequency, increasing the

relaxation factor after the frequency of the processors

is minimised cannot save any more power. For this rea-

son, the figures only show the variation of power con-

sumption with time constraint as far as the minimum

frequency. In MGRID, the CPU accomplishes the com-

puting process for small computational demand opera-

tions, so that less time and power are consumed; while

the GPUs consume more power in executing large gran-

ular computations. As shown in Table 4, when the time

constraint is applied, the operating frequency of kernel

computations accomplished by the GPUs is reduced in

priority. In SWIM, the CALC1, CALC2, and CALC3

computing processes realised by the GPUs are memory-

intensive programs, and especially CALC3, which has

the least dynamic power consumption compared with

these other two programs. Therefore, the operating fre-

quency for the computation of CALC3 is reduced last.

As shown in Figures 4(a) and (b), when processors have

fewer frequency series, the power consumption of pro-

cessors can be optimised in a relatively small space.

When the execution time is extended by 30% and 15%,

the operating frequency of processors in each comput-

ing section reaches its minimum. Under such conditions,

the energy cost arising from dynamic power consump-

tion cannot be further reduced by the DVFS method.

(2) Assessment of low-power optimization for pro-

grams in heterogeneous computing sections The exist-

ing applications based on heterogeneous parallel sys-

tems are mainly composed of a single kernel program,

as shown Table 3: except for MGRID and SWIM, the

other six test programs are individually constituted by

a kernel program. Therefore, these six kernel programs

are combined to form a multi-kernel program to assess

the low-power optimization of programs in heteroge-

neous computing sections.

Before evaluating the optimization method, the pro-

grams are compared with regard to their performance

and power consumption on heterogeneous processors.

Fig.5 shows the comparison of the execution time and
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Table 4 Variation of the run-level of processors with the time constraint (MGRID)

GPU CPU

Relaxation factor RESID RPRJ3 INTERP PSINV OTHER
0% 0 0 0 0 0
10% 1 1 1 1 0
20% 2 1 1 2 0
30% 2 2 2 2 3

Table 5 Variation of the run-level of processors with the time constraint (SWIM)

GPU CPU

Relaxation factor CALC1 CALC2 CALC3 REDUC
0% 0 0 0 0
5% 1 1 0 0
10% 2 1 1 1
15% 2 2 2 3

(a)Variation of power consumption with 

time constraint (MGRID)
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Fig. 4 Variation of power consumption with time constraint (MGRIDSWIM)

power consumption of these programs which are com-

pletely mapped onto the GPU-H and the GPU-L: all of

the results are the normalised values with those mapped

onto the CPU used as benchmarks. Therefore, the larger

the values, the higher the performance or power gain.

As can be seen from the figure, the performance of all

programs can be improved greatly on GPUs, partic-

ularly for computation-intensive applications such as

BO, BS, DCT, and MM. Compared to the significant

improvement in performance, power consumption is less

obviously optimised on GPUs and the optimised power

consumption is 57% of the original. This indicates that,

considering the large difference between the performances

of GPUs and CPUs, the performance is slightly im-

proved while allocating a kernel program on the CPU

or GPUs. Therefore, the GPU-H and GPU-L (obtained

by adjusting the frequency of memory of GPUs) are re-

garded as two heterogeneous processers to allocate and

map parallel computing tasks onto these two GPUs for

parallel execution.

The shortest time T taken for the parallel execution

of the two GPUs is applied as the benchmark to assess

the variation of the optimal power consumpiton of pro-

grams in heterogeneous computing sections under the

time constraint , where is the relaxation factor. Fig-

ure 5 shows the changes in the power consumption of

each kernel program with changing relaxation factor.

According to the parallel program division with opti-

mal power consumption and the selection algorithm for

the optimal frequency of processors, under a certain

time constraint, the power consumption of the system

can be reudced by adjusting the operating frequency

of the processors or the method of division of paral-

lel tasks. Therefore, although processors can only be

operated at finite dispersed frequencies, the division

of parallel tasks, as a fine-grid adjustment method, is

able to decrease the power consumption by exploit-

ing the performance differences between heterogeneous

multi-processors. At the same time, the curve show-

ing the relationship between the total power consump-
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Fig. 5 Energy consumption variations of single kernel program with relaxation factor

tion and the execution time becomes smoother. The

figure also shows that the system power consumption

can be reduced by effectively applying the performance

constraint of relaxation through adjusting the paral-

lel processing of heterogeneous multi-processors. Mean-

while, those programs with different execution char-

acteristics have dissimilar power consumptionCexecu-

tion time curves. Compared with computation-intensive

programs (including: BO, BS, DCT, and MM), the memory-

intensive programs (NB and MCA) have a power con-

sumption which is less sensitive to the operating fre-

quency of the core units, so their power consumption is

less optimised, whereas the power consumption and ex-

ecution time of MM are most sensitive to the operating

frequency. When the relaxation factor reaches 25%, the

power consumption is reduced by 30%. However, the

processors then minimise their frequency so that the

power consumption cannot be further decreased when

using the DVFS method with an increasing relaxation

factor, while, by allocating the tasks intelligently to pro-

cessors with higher efficiencies, the optimization ratio

of the power consumption can be gradually reduced.

After constructing the relationship between the power

consumption and execution time of each kernel pro-

gram, all independent kernel programs are integrated

to a multi-kernel program to evaluate the low-power

optimization of the optimal descent based time allo-

cation algorithm in multiple computing sections. Fig.6

shows the variation of the total power consumption of

the multi-kernel program with the applied time con-
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Fig. 6 Low-power optimization results of programs in multiple computing sections

straints. By using the algorithm, the total time con-

straint is divided into multiple time slices and gradient

kernel programs are selected in priority order within

the iteration to be allocated to the current time slice.

In the test case, the number of time slices is set to match

that of the kernels. As can be seen from the figure, low-

power optimization in multiple computing sections can

be realised by using the algorithm. With a relaxation

factor of 30%,power consumption is reduced by 25%.

Similar to Figure 5, as the relaxation factor increases

beyond 30%, the power consumption cannot be further

decreased using the relaxed time constraint due to the

minimum processor frequency constraint.

(3) Influences of communication-aware multi-task

division on the optimization of system power consump-

tion

Sub-procedure RESID in program MGRID is tested:

consisting of nested parallel loops, the sub-procedure

is able to perform parallel execution at the data-level.

With an iteration space of 256256256,program RESID

is divided to sub-iteration spaces measuring 32256256

and mapped to the CPU and GPUs for parallel execu-

tion. The comparison of the execution time and power

consumption with different modes of division is shown

in Fig.7 where the abscissa represents the mode of di-

vision and the figures on the two sides of the oblique

lines refer to the ratio of tasks allocated to the CPU to

those allocated to the GPUs. Division into CPU-only

(or GPU-only) mode means that all of the tasks are

allocated to the CPU (or the GPUs). The figure makes

a comparison under conditions with, and without, con-

sidering communication overheads. Not considering the

communication overheads is to suppose that the input

data of the GPUs are in the GPU storage space already,

and the output data need not to be restored to CPU

storage space. The experimental results indicate that

optimal execution performance is obtained in division

mode 25/75 without considering communication over-

heads. While, when communication overheads are taken

into account, division mode 62.5/37.5 is found to bring

about an optimal performance in which the execution

time is twice that when applying division mode 25/75

without considering communication overheads. It can

be seen that, as the performance can be significantly im-

proved by using GPUs, without considering communi-

cation overheads, the power consumption reduces with

the increasing ratio of tasks allocated to GPUs. While

considering the communication overhead, communica-

tion inevitably consumes power which increasing with

increasing ratio of tasks allocated to GPUs, thus offset-

ting the efficiency advantage bestowed by the GPUs.

Therefore, in the communication perception-based task

division and the adjustment of processor frequency, as

two effective methods for the low-power optimization

of heterogeneous systems, comprehensively determining

the optimization spaces of the two methods can achieve

an optimal optimization effect. On the basis of obtain-

ing the execution information of all tasks, the low-power

optimization method based on integral linear program-

ming can find the optimal solution to problems while

providing a benchmark for evaluating dynamic adaptive

methods.
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Fig. 7 Influences of energy consumption of communication and task division mode on the system power consumption

9 Conclusions

Low-power optimization of heterogeneous parallel sys-

tems is one of the key concepts necessary to make full

use of the advantages of this kind of system. Aiming

at the general procedure model composed of serial and

parallel computing sections, the research considers the

influences of communication overheads and task divi-

sion on system power consumption. On this basis, the

authors establish a power model for the whole proce-

dure of heterogeneous parallel systems. By using this

model, the selection algorithm for the optimal frequency

of processors, optimal descent-based time allocation al-

gorithm in multiple computing sections, and profiling

dynamic analysis-based integral linear programming were

designed at algorithm-level for programs in homoge-

neous and heterogeneous computing sections. The ex-

perimental results indicate that the proposed algorithms

can reduce the power consumption of systems and there-

fore more efficiently exploit the performance advantage

of heterogeneous systems.
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