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Abstract

This study introduce a new postprocessing methodology for constructing prob-
abilistic forecasts based on climatology and deterministic forecasts. The Cli-
matology Cumulative Probability Regression (CCPR) methodology is based on
transforming the climatology cumulative distribution function (cdf) to a new
probabilistic forecast, where the transformation procedure is determined by the
deterministic forecasts. We base the transformation on fitting a beta cdf on the
scale of climatology cumulative probabilities (CCP-scale). The mean of the beta
pdf is modelled by a logit link where the linear predictor have different forecasts
as covariates. This methodology is flexible to include different forecasts and lead
times. The methodology was tested for streamflow data at the catchment Osali
in south western Norway for four different lead times in the period 01.09.2005-
31.07.2009. In the case study, we applied the methodology where we successively
added more deterministic forecasts into the model, starting with the hydrological
forecast, adding the persistence forecast and finally adding the sliding window
climatology forecast. When evaluating predictive performance using cross val-
idation, the case study found that the inclusion of the persistence forecast is
important for short lead times. When both the hydrological and the persistence
forecast was included, the sliding window climatology forecast only added little
extra predictive information.
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Sammendrag

I dette studiet introduserer vi en ny postprosesserings metodologi for å konstruere
probabilistiske varsel, basert p̊a klimatologi og deterministiske varsel. Metodolo-
gien Climatology Cumulative Probability Regression (CCPR) er basert p̊a en
transformasjon av den klimatologiske kumulative fordelingsfunksjonen til et nytt
probabilistisk varsel, der transformasjonen er bestemt av ulike deterministiske
varsel. Transformasjonen baserer seg p̊a å tilpasse en beta kumulativ fordel-
ingsfunksjon p̊a skalaen av klimatologiske kumulative sannsynligheter. Forvent-
ningsverdien i beta fordelingen er modellert gjennom en logit link, der den lineære
prediktoren best̊ar av deterministiske varsel som kovariater. Metodologien er
fleksibel til å inkludere b̊ade ulike varsel og ledetider. Vi testet metodologien for
tilsigsdata ved nedslagsfeltet Osali i sør-vest Norge for fire ledetider i perioden
01.09.2005-31.07.2009. I case-studiet ble metodologien anvendt, der vi suksessivt
la til flere deterministiske varsel i modellen. Først begynte vi med et hydrologisk
varsel, deretter la vi til et persistensvarsel før vi til slutt la til et determinis-
tisk varsel basert p̊a klimatologien. Modellenes prediktive ytelse ble evaluert ved
hjelp av kryssvalidering og case-studiet viste at det var viktig å inkludere per-
sistensvarselet for korte ledetider. N̊ar b̊ade det hydrologiske varselet og persis-
tensvarselet var inkludert i modellen, viste det seg at det deterministiske varselet
basert p̊a klimatologi kun gav sm̊a forbedringer med hensyn p̊a prediktiv ytelse.
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1. Introduction

Water resources are a vital resource for society, but can also be viewed as a threat.
Hydropower production gives rise to about 19% of all the electricity production
in the world and is the largest renewable energy source contributing to electricity
production. Norway has the highest yearly hydropower production in Europe,
with Statkraft as a leading power company [Senter for fornybar energi, 2011].
Thus hydropower production is valuable to Norway in terms of wealth creation.
However, handling of water resources also require a great responsibility in pre-
venting environmental damages due to changes in the natural streamflow. Both
to assess the risk of flooding and to optimize hydropower production, streamflow
forecasts is an important tool. Statkraft use streamflow forecasts to make de-
cisions concerning how much electricity they will produce and trade, both from
day to day and when planning long-term. Their choices of actions are influenced
by the weather conditions including temperature, precipitation and streamflow.
These choices depend on many other variables as well, such as the energy price,
the magazine state and production capacity [Engeland and Steinsland, 2014].
However, to be able to make beneficial decisions, good forecasts are needed.

Forecasts are often based on physical models, such as meteorological models
for meteorological forecasts and hydrological models for hydrological forecasts.
A forecast will always be associated with uncertainty due to e.g errors in input
data, errors in the model parameters and imperfectness of the models [Engeland
and Steinsland, 2014; Lewis, 2005]. Until the early 1990s deterministic forecasts,
based on numerical weather prediction models, was the most common type of
forecast [Gneiting and Raftery, 2005]. To be able to represent the uncertainty in
a forecast, probabilistic forecasts are often preferred over deterministic forecasts.
A probabilistic forecast is a forecast that takes the form of a predictive probability
distribution function (pdf) or a predictive cumulative distribution function (cdf)
[Gneiting et al., 2007]. The value of a probabilistic forecast lies in the ability
of evaluating different actions according to the probabilities of different events.
For this reason probabilistic forecasts has gained an increasing influence in many
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applications such as economics, finance and meteorology [Ranjan and Gneiting,
2013].

To assess probabilistic forecasts, two types of qualities are often evaluated; cali-
bration and sharpness. Calibration refers to the statistical consistency between
the probabilistic forecast and the observation [Gneiting et al., 2007]. A forecast
is calibrated if an event forecasted with probability p actually occur an amount
of p on average [Gneiting et al., 2005]. PIT-histograms are often used to assess
calibration of a probabilistic forecast. Sharpness refers to the concentration of
the probabilistic forecast, with more concentrated as sharper. Hence sharpness
is only a property of the forecast [Gneiting et al., 2007]. According to Gneiting
et al. [2005] the aim of probabilistic forecasting is to maximize the sharpness of
the predictive density subject to calibration. Put in other words; among cali-
brated forecasts, the best forecast is the sharpest, leading to shorter prediction
intervals. Sharpness can be assessed by considering the average length of predic-
tion intervals. In addition, to evaluate calibration and sharpness simultaneously,
the continuous ranked probability score (CRPS) is often used. The CRPS is a
proper scoring rule, which means that a forecaster achieves the best score by
forecasting his true beliefs [Gneiting et al., 2005].

Followed by the position of probabilistic forecasts in many fields, different meth-
ods for creating probabilistic forecasts has been developed. Bayesian Model Aver-
aging is a widely used postprocessing method that creates a predictive Gaussian
density based on ensemble forecasts [Raftery et al., 2005]. An ensemble forecast
is generated by several runs of a numerical weather prediction model, where the
initial conditions and/or the numerical representation of the atmosphere differ
[Gneiting and Raftery, 2005]. When different probabilistic forecasts are available,
many methods has been developed to combine them and create a new and better
forecast. Linear pooling is such a method that combines different probabilistic
forecasts into a single combined forecast, where the idea is to weight each fore-
cast based on their respective performance over a training period [Ranjan and
Gneiting, 2013]. The concept behind linear pooling is easy to understand and
sounds appealing, however Hora [2004] and Ranjan and Gneiting [2013] showed
that if each of the individual predictive densities are calibrated, every nontrivial
linear pool is uncalibrated. These results suggest that linear pools may be sub-
optimal, and it has been shown empirically that non-linear combination formulas
can outperform linear methods [Ranjan and Gneiting, 2010; Allard et al., 2012;
Ranjan and Gneiting, 2013]. One of the non-linear combination formulas is the
beta-transformed linear pool (BLP). This method weights different predictive cu-
mulative distribution functions and transforms the resulting cdf using a beta cdf
[Ranjan and Gneiting, 2013].
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In this Master’s thesis we develop a, as far as we are aware of, new postprocessing
methodology that captures the situation where you have historical observations,
i.e the climatology, and different deterministic forecasts available and the aim is
to create a probabilistic forecast. This postprocessing methodology can be useful
in many different settings, as long as the situation described above holds. The
climatology cdf is included in the methodology as a special case, namely if the
deterministic forecasts do not contain any predictive information. The methodol-
ogy is inspired by the BLP methodology, but use only one predictive cdf, namely
the climatology and instead models the beta cdf based on the value of the differ-
ent deterministic forecasts. The estimation of the parameters, used to model the
beta cdf is done by minimum CRPS estimation. Minimum CPRS estimation is a
procedure fitting the parameters of the model that yields the lowest CRPS-value
over the training period [Gneiting et al., 2005].

To evaluate the postprocessing methodology we use streamflow data from the
catchment Osali in south-western Norway, which is part of the Ulla-Førre hy-
dropower complex. The entire complex was studied extensively by Engeland and
Steinsland [2014], while this study can be viewed as an extension of their work.
We apply the postprocessing methodology on daily forecasts provided up to 10
days before the validating observation. In our case study we consider the fore-
casts given 1, 2, 5 and 10 days ahead of the validating observation. The main
focus of this thesis is to develop a new postprocessing methodology to generate
probabilistic forecasts and to evaluate the methodology.

The thesis is organized as follows: The next chapter introduce the data used in
the case study including a brief exploratory analysis. Chapter 3 gives an overview
of the background theory needed to develop the postprocessing methodology in-
troduced in Chapter 4, and in addition present assessment methods to evaluate
probabilistic forecasts. In Chapter 5 we present three models used in the case
study based on the postprocessing methodology in Chapter 4. The results of the
case study is given in Chapter 6, where we apply the postprocessing methodology
to the data described in Chapter 2. We conclude the thesis with a discussion in
Chapter 7, where we summarize the results and suggest possibilities for further
work.
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2. Data and case: Probabilis-
tic forecast of streamflow
at Osali

This chapter gives an overview of the data used in the case study performed in
Chapter 6. Section 2.1 provides an introduction to the study area Osali. Section
2.2 introduce the observations and forecasts and provides a brief exploratory
analysis of how the forecasts relates to the observed streamflow.

Figure 2.1: The case study region Osali, located in south-western Norway.
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Figure 2.2: Daily observed streamflow at Osali in the period 01.09.2005-
31.07.2009. The red line represents the mean observed streamflow which is 2.26
m3/s.

2.1 The study area

In this study we consider the catchment Osali (23 km2), which is part of the
Ulla-Førre hydropower complex in south-western Norway (Figure 2.1) [Engeland
and Steinsland, 2014]. This area has one of the largest hydropower reservoirs in
Norway, Bl̊asjø (3.1 km3). The complex consists of a system of several hydropower
plants with an annual average production of 4.5 GWh. The average elevation of
Osali is 890 meters above sea level, which is based on a digital elevation model
with resolution 1 × 1 km2 [Engeland and Steinsland, 2014]. For the period we
consider in the case study (01.09.2005 - 31.07.2009), the mean temperature at
Osali was 3.17 ◦C and the mean amount of precipitation per day was 9.15 mm.

2.2 Hydrological data and forecasts

Streamflow data for Osali was obtained from The Norwegian Water Resources
and Energy Directorate for the period 01.01.1982-31.12.2012. Figure 2.2 shows
the observed streamflow in the period 01.09.2005-31.07.2009, which is the pe-
riod we make forecasts for in the case study. We denote the observations yt,
where t = 1, . . . , 1430 is the number of the day in the forecast period 01.09.3005-
31.07.2009. The observed values yt seems to be seasonally stationary in that the
mean is the same each year. Temperature and precipitation observations were
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provided by the Norwegian Meteorological institute and Statkraft. Deterministic
forecasts for 2 m temperature and precipitation were obtained from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) [Engeland and
Steinsland, 2014]. Through the next sections we present three different types of
forecasts; the hydrological forecast, the persistence forecast and the sliding win-
dow climatology forecast. These forecasts are identical to the forecasts used by
Engeland and Steinsland [2014], and further details can by found in their paper.

Figure 2.3: Daily observed streamflow yt (blue dots) at Osali in the period
01.01.2007-31.12.2007. The red dots represent the hydrological forecast for lead
time 1, xht,1.

2.2.1 Hydrological forecast

The hydrological forecasts denoted xht,l for lead times l = 0, 1, . . . , 10 days for each
day t are available in the period 01.09.2005-31.07.2009. The forecast valid time
is given by t and the issue time is t− l. Hence, the forecast xt,l is issued at time
t− l, and the validating observation is yt. The forecast for lead time 0 is obtained
by running the hydrological model with observed temperature and precipitation
as input data. In this study we only report results for lead time 1, 2, 5 and 10.
Figure 2.3 displays the observed streamflow yt and the hydrological forecast for
lead time 1, xht,1, in 2007. We observe that the hydrological forecast follows the
observations quite well, but especially the high streamflows are not captured by
the hydrological forecast.
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Figure 2.4 contains four boxplots of the difference between the observed stream-
flow and the hydrological forecast, for the lead times l = 1, 2, 5 and 10. We
observe that the spread is larger for longer lead times, as expected. We also note
that the median is a bit below zero for all lead times, hence more errors are neg-
ative than positive. However there are more large positive errors than negative
errors for all lead times. Since streamflow is a strictly positive quantity, these
results indicate that the hydrological forecast, in some cases, is unable to forecast
the large streamflows at the right time.
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Figure 2.4: A boxplot of the error εht,l = yt − xht,l, showing the variation of
errors between observed streamflow and the hydrological forecast in the period
01.09.2005 − 31.07.2009 for the lead times l = 1, 2, 5 and 10. The blue box
represents the 1st to 3rd quartile, the red line is the median and the red crosses
represents the outliers.

2.2.2 Persistence forecast

A persistence forecast is to simply use the last available observation as your
forecast, assuming that the streamflow remains constant. The persistence forecast
denoted xpt,l with issue time t − l and valid time t is given by the last observed

value at the issue time, namely xpt,l = yt−l. As an example, if you want to make
a persistence forecast of ym at the time t = m − 5, the persistence forecast will
be the observed streamflow at time t = m− 5, namely xpm,5 = ym−5.
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Figure 2.5: A boxplot of the error εpt,l = yt − xpt,l, showing the variation of
errors between observed streamflow and the persistence forecast in the period
01.09.2005 − 31.07.2009 for the lead times l = 1, 2, 5 and 10. The blue box
represents the 1st to 3rd quartile, the red line is the median and the red crosses
represents the outliers.

Figure 2.5, displays a boxplot of the difference between observed streamflow
and persistence forecast for lead time l = 1, 2, 5 and 10. We observe that the
spread increases with lead time, as it did for the hydrological forecast. For lead
time 1 and 2, the boxes including the central 50% errors are shorter than for
the hydrological forecast given in Figure 2.4 . This indicates that for shorter
lead times, the persistence forecast can be more precise than the hydrological
forecast. However the outliers for lead time 1 and 2 covers a wider interval for
the persistence forecast than the hydrological forecast, which indicates that larger
errors occur for the persistence forecast. We also note that the median is close to
zero and centred in the boxes, with outliers fairly equally distributed above and
below zero, hence the persistence forecast is unbiased.

2.2.3 Sliding window climatology forecast

The sliding window climatology forecast is constructed using the same approach
as Engeland and Steinsland [2014], but we have a longer period of historical ob-
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servations available. The sliding window climatology forecast xct , with validating
observation yt, was constructed assigning each day of the year the median value
of a 15-day window centred at the day of interest, based on the period 1982-2004.
As an example, the sliding window climatology for January 13 is the median of
the streamflow observations from January 6 to January 20 in the period 1982-
2004. This deterministic forecast reflects the usual streamflow at the given day.
Figure 2.7 shows the observed streamflow in 2007 and the sliding window clima-
tology. As expected, the sliding window climatology has less variance than the
observed values, because it is based on the median value over several years. We
also observe that the period from May to July has the highest streamflows, which
coincides with the major snow melting period at Osali [Engeland and Steinsland,
2014]. Figure 2.6 displays a boxplot of the error between the observed streamflow
and the sliding window climatology forecast. The median is close to zero, but
there is a positive skewness, as is also observed in Figure 2.7 where the sliding
window climatology is more often below than above the observations.
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Figure 2.6: A boxplot of the error εct = yt − xct , showing the variation of errors
between observed streamflow and hydrological forecast in the period 01.09.2005−
31.07.2009. The blue box represents the 1st to 3rd quartile, the red line is the
median and the red crosses represents the outliers.
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Figure 2.7: Observed streamflow and sliding window climatology in the period
01.01.2007-31.01.2007.

2.3 Lead times and vector of forecasts

The notation with lead times can be a bit cumbersome to keep track of for the
different types of forecast. To clarify the notation used so far, which will also be
used in Chapter 4 and 5, we introduce a vector of forecasts for a given valid time
t and lead time l, which will be used to make a probabilistic forecast for yt. We
denote the vector including all forecasts by xh,p,c

t,l = (xht,l, x
p
t,l, x

c
t), where t is the

forecast valid time, l is the lead time and the superscript h, p, c denotes that the
hydrological forecast, persistence forecast and sliding window climatology fore-
cast are included. Note that the hydrological forecast and the persistence forecast
will depend on lead time. The sliding window climatology forecast however, will
always forecast the median of the sliding window period centred at the day of
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interest, yt. As an example, consider the forecast given 1 September 2005, to
predict the streamflow 6 September 2005. The forecast vector used to create a
probabilistic forecast for y6 is then xh,p,c

6,5 = (xh6,5, x
p
6,5, x

c
6). The hydrological fore-

cast is then the forecast issued 1 September 2005 to predict the streamflow at 6
September 2005. The persistence forecast is the observed streamflow at Septem-
ber 1. The sliding window climatology forecast is the median of the streamflow
observations from August 30 to September 13 in the period 1982-2004, hence
centred at 6 September.



3. Background

This chapter present relevant background theory that we use in Chapter 4 to de-
velop our post-processing methodology, or in Chapter 6 to evaluate the method-
ology. In section 3.1 we describe some quality measures of probabilistic forecasts
and how to assess these measures. Section 3.2 provides a brief summary of the
beta distribution and some of its properties. In this section we also consider
a re-parametrization of the beta distribution in terms of its mean and a vari-
ance parameter. Section 3.3 describes the BLP-method, a method for producing
calibrated probabilistic forecasts based on a beta transformation of predictive cu-
mulative distribution functions. This method defines a framework that inspired
the development of the CCPR-methodology presented in Chapter 4. The last sec-
tion describes the logit link which is used to model a response that is restricted
on the interval (0, 1), which we in turn apply to develop our post-processing
methodology for probabilistic forecasts.

3.1 Assessment methods

To evaluate different probabilistic forecasts it is necessary to have some crite-
ria for goodness. Calibration and sharpness are often used as criteria describing
goodness of the forecast. Calibration refers to the statistical consistency between
the probabilistic forecasts and the observations and is thus a joint property of
the observations and the forecast [Gneiting et al., 2007]. A forecast is calibrated
if an event forecasted with probability p actually occur with a relative frequency
of p [Gneiting et al., 2005]. For a probabilistic forecast, calibration is achieved if
a p-percent prediction interval, in the long run, include p percent of the observa-
tions. One way of assessing calibration is by the probability integral transform
(PIT) histogram, given in section 3.1.1 [Gneiting et al., 2007]. Sharpness refers
to the spread of the probabilistic forecast, and is only a property of the fore-
cast. Gneiting et al. [2005] states that the aim of probabilistic forecasting is
to maximize the sharpness of the probabilistic forecast subject to calibration.
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Hence, when selecting the best probabilistic forecast among calibrated forecasts,
one would choose the probabilistic forecast with the lowest spread. Sharpness
can be evaluated by comparing the length of prediction intervals [Gneiting et al.,
2007]. In section 3.1.3 we introduce a scoring rule that assess both calibration
and sharpness, namely the continuous ranked probability score (CRPS).

3.1.1 Assessing calibration

The probability integral transform (PIT) histogram is a method for assessing
calibration [Gneiting et al., 2007; Ranjan and Gneiting, 2013]. Let F (·) denote a
continuous predictive cumulative distribution function and y the observed value.
The probability integral transform of y is defined as

z = F (y) (3.1)

If Y is distributed according to F , then Z ∼ U(0, 1), where U(0, 1) denotes
the uniform distribution on the interval (0, 1) [Ranjan, 2009]. Thus to assess
calibration, one can check the uniformity of a histogram of the z values, called a
PIT histogram. The PIT histogram will be hump shaped, U-shaped, triangular
shaped and resembling a U(0, 1) distribution for respectively an overdispersed,
underdispersed, biased or calibrated forecast [Ranjan, 2009].

Figure 3.1 a) shows a simulation example, where the true generating process
is N (10, 1) illustrated by the black pdf. The overdispersed forecast, N (10, 2),
has a larger variance than the true generating process, which can be seen when
comparing the green and the black pdf. An underdispersed forecast has a lower
spread than the observed process, which is illustrated in the simulation example
by a N (10, 0.5) (purple) pdf. A biased forecast has a mean that differs from the
mean of the process in interest, in this example given by a N (11, 1) distribu-
tion (blue pdf). Figure 3.1 b) shows the PIT histograms for the four different
cases. When F (·) from equation (3.1) is the cdf of the N (10, 1) distribution,
the PIT-histogram is close to uniform as given in the upper left corner. For the
overdispersed forecast, the PIT-histogram is hump shaped, because the predic-
tion intervals are too wide, resulting in an overweight of z-values centred around
0.5 The underdispersed forecast has a too low variance compared to the obser-
vation generating process. This leads to a U-shaped PIT-histogram, since many
observations are too extreme compared to the cdf based on the N (10, 0.5) distri-
bution. The last example is the biased forecast, where the mean is switched from
10 to 11. From the PIT-histogram in Figure 3.1 b), we observe that there is a
trend towards lower values of F (y), since F (·) based on the N (11, 1) distribution
is shifted higher than the true observation generating process.
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Figure 3.1: a) The predictive distributions used to illustrate PIT histograms. b)
PIT histograms for a calibrated N (10, 1), an overdispersed N (10, 2), an under-
dispersed N (10, 0.5), and a biased N (11, 1) predictive distribution.
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3.1.2 Assessing sharpness

Even though calibration is an important property for a good forecast, calibrated
forecasts can be useless if they are not sharp. An example of this is the clima-
tology, the forecast based on historical observations, which is calibrated but lack
sharpness. Sharpness refers to the spread of the probabilistic forecast and is eas-
ily evaluated by comparing the average length of prediction intervals or boxplots
of prediction intervals [Gneiting et al., 2007]. Short prediction intervals imply
sharp forecasts.

3.1.3 Continous ranked probability score

In addition to the separate evaluation of calibration and sharpness, proper scoring
rules are often used to assess both qualities simultaneously. A scoring rule is
proper if the forecaster get the best score by predicting his true beliefs, although
it is possible to achieve the same score by using another forecast [Gneiting and
Raftery, 2007]. The continuous ranked probability score (CRPS) is a proper
scoring rule that assess both calibration and sharpness in one measure [Gneiting
et al., 2005]. It is negatively oriented, in that a smaller CRPS score indicates a
better forecast. A perfect forecast results in a CRPS of 0. Let F be the cumulative
distribution function of the probabilistic forecast and yt the observation, in our
case the observed streamflow at time t. The CRPS for each time point is defined
as

CRPSt(F, yt) =

∞∫
−∞

[F (ε)−H(ε− yt)]2dε (3.2)

where t is the issue time and H is the Heaviside function defined as

H(ε− yt) =

{
0, ε < yt

1, ε ≥ yt
(3.3)

Figure 3.2 illustrates the CRPSt for a probabilistic forecast that is N (0, 1) when
the verifying observation yt = 1. Note that the CRPS does not equal the grey
area, but the grey area visualize the value of |F (ε)−H(ε− yt)| for all yt. Hence
the CRPSt is the value of F (ε)−H(ε− yt) (indicated by the grey area) squared,
integrated from −∞ to ∞.
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Figure 3.2: Illustration of CRPSt for a predictive cdf that is N (0, 1) and the
verifying observation of yt = 1. The grey area represent the expression |F (ε) −
H(ε− yt)|, which squared and integrated from −∞ to ∞ gives the CRPS.

To assess a probabilistic forecast, we average CRPSt over M forecasts, where
M is the total number of observation-forecast pairs.

CRPS =
1

M

M∑
t=1

CRPSt (3.4)

The mean absolute error (MAE)

MAE =
1

M

M∑
t=1

|yt − xt,l| (3.5)
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is a scoring function commonly used to evaluate deterministic forecasts [Gneit-
ing, 2011]. It measures the average difference between observations and forecasts.
For deterministic forecasts, the CRPS reduces to the MAE, hence CRPS can be
interpreted as a probabilistic generalization of the MAE [Jolliffe and Stephenson,
2012]. Both the CRPS and the MAE has the same unit as the forecasts and
observations.

3.2 Beta distribution

A random variable Y ∈ (0, 1) is beta distributed if its probability density function
f(y, α, β) is

f(y;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1 (3.6)

where Γ(·) represents the gamma function and α, β > 0 [Casella and Berger,
2002]. The expected value, µ and variance, σ2 of the beta distribution are

µ = E[Y ] =
α

α+ β
and σ2 = Var[Y ] =

αβ

(α+ β)2(α+ β + 1)
(3.7)

In our post processing methodology it is convenient to re-parametrize the beta
distribution by its mean µ and a variance parameter ν = 1

α+β [Kass and Raftery,

1995]. This leads to

α =
µ

ν
β =

1− µ
ν

(3.8)

E[Y ] = µ Var[Y ] =
µ(1− µ)

1 + 1
ν

(3.9)

Figure 3.3 shows the beta distribution (pdf and cdf) with mean µ = 0.3, for
different values of the variance parameter ν. We observe that the variance in-
creases with an increase in ν, as can also be seen from equation (3.9). Also it is
clear that the shape can be quite different for small changes in ν, as we observe
in the change from ν = 0.15 to ν = 0.3.

In Figure 3.4 we can observe how the beta distribution varies for different
means µ, when the variance parameter ν = 0.5. As a special case we observe
that when µ = ν = 0.5 the beta distribution is the uniform distribution on the
interval (0,1). For a given variance parameter ν, this choise of µ results in the
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largest variance, as can be verified in Equation (3.9), where the variance increases
symmetrically around µ = 0.5.

(a) (b)

Figure 3.3: (a) Beta pdf and (b) Beta cdf for varying variance parameter ν when
µ = 0.3.

(a) (b)

Figure 3.4: (a)Beta pdf and (b)Beta cdf for varying mean µ when the variance
parameter ν = 0.5.
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3.3 Beta-transformed linear pool

Our methodology for creating probabilistic forecasts, described in Chapter 4, is
inspired by the work of Ranjan and Gneiting [2013], concerning beta-transformed
linear pools. Linear pooling is a method that combines different probabilistic fore-
casts into a single combined forecast. The idea is to weight each forecast based
on their respective performance over a training period. From now on we denote
each of the c predictive densities by fi(y), i = 1, . . . , c, and the corresponding
predictive cumulative distribution functions Fi(y).

The linear pool is defined as

f(y) =

c∑
i=1

ωifi(y) (3.10)

where ωi are weights that sum up to one and are determined based on the pre-
dictive performance of the forecast during a training period [Ranjan and Gneiting,
2013].

As mentioned in section 3.1, the purpose of aggregating probabilistic forecasts is
to generate a probabilistic forecast that is as sharp as possible and calibrated.
However Hora [2004] and Ranjan and Gneiting [2013] showed that if each of
the individual probabilistic forecasts is calibrated, every nontrivial linear pool
is uncalibrated. A trivial linear pool is the case where all weights are zero ex-
cept one, which is 1, resulting in one of the original forecasts. These results
suggest that linear pools may be suboptimal, and it has been shown empirically
that non-linear combination formulas can outperform linear methods [Ranjan
and Gneiting, 2010; Allard et al., 2012; Ranjan and Gneiting, 2013]. One of the
non-linear combination formulas is the beta-transformed linear pool (BLP).

The BLP cumulative distribution function Fα,β(y) is defined as

Fα,β(y) = Bα,β

(
c∑
i=1

ωiFi(y)

)
(3.11)

where Bα,β(·) denotes the cumulative distribution function of the beta distri-
bution with parameters α > 0, β > 0, ωi are non-negative weights summing to
one and Fi(y) for i = 1, . . . , c are the cumulative distribution functions for the
different probabilistic forecasts [Ranjan and Gneiting, 2013].
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3.4 Logit link

In the generalized linear model setting one aim is to fit the expected value of a
random variable based on explanatory variables or covariates. Let the random
variable be denoted Yi and the actual outcome yi for i = 1, . . . , n. For a given
set of p covariates xij the linear predictor ηi is defined as

ηi =

p∑
j=1

xijβj i = 1, . . . , n (3.12)

A link function relates the linear predictor ηi to the expected value µi of Yi
[McCullagh and Nelder, 1989]. When 0 < µ < 1, as is the case for the beta
distribution, a convenient link function is the logit given by

ηi = logit(µi) = log(
µi

1− µi
) (3.13)

The advantage with the logit link is that it maps the interval (0, 1) onto the whole
real line [McCullagh and Nelder, 1989]. Since ηi can attain any value on the real
line depending on xij and βj while µi is constrained to the interval (0, 1), it is
essential to link ηi to the mean µi by the logit link. Solving equation (3.13) with
respect to µi yields

µi =
1

1 + e−ηi
(3.14)

From equation (3.14) we observe that µi is constrained on (0, 1). Figure 3.5 illus-
trates the logit transformation between η and µ. We observe that as η increases,
µ goes towards 1 and as η decreases µ goes towards 0.
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Figure 3.5: Plot of the logit link between η and µ.



4. Climatology cumulative prob-
ability regression

In this chapter we present our postprocessing methodology, which we refer to as
the Climatology Cumulative Probability Regression (CCPR). As mentioned in
the introduction, we are in the setting where we have available a climatology and
different deterministic forecasts. Our aim is to use all the available information
to obtain a probabilistic forecast. In Section 4.1, we introduce the ideas behind
the CCPR. Section 4.2 defines the CCPR mathematically, and provides an illus-
tration of the postprocessing methodology where we transform the climatology
cdf, through a beta cdf, into a new probabilistic forecast. The construction of
the climatology cdf, which is part of the method, is presented in Section 4.3. The
last section describe how to model the mean and variance of the beta cdf used in
the CCPR.

4.1 Overview of idea behind the CCPR method

The main objective of the CCPR methodology is to exploit the information
present in the climatology combined with different deterministic forecasts. This
section provides an overview of the ideas used to develop the CCPR methodol-
ogy. We illustrate the ideas with a synthetic example, where we consider only
the climatology and a hydrological forecast.

Let Yt be the random variable that we want to make a probabilistic forecast
for. The left plot in Figure 4.1 displays the probability distribution function
(pdf) of Yt based on the climatology, denoted fclim(yt). We observe that most
observations are close to zero, and that the probability of observing larger values
than 10 is small. The right plot in Figure 4.1 shows the climatology cumula-
tive distribution function (cdf) of Yt, Fclim(yt). Recall that the cdf of a random
variable Yt describes the probability that Yt is less than or equal to yt. Hence
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the range of a cdf is [0, 1]. We now introduce a scale of cumulative probabilities
linked to the climatology cdf, which we denote the climatology cumulative prob-
ability scale (CCP-scale). The CCP-scale is a scale of cumulative probabilities,
and hence it is ranging between 0 and 1. For each cumulative probability p on
the CCP-scale, the associated value yt is given by the inverse climatology cdf of
p, namely F−1clim(p) = yt. The y-axis in the plot of the climatology cdf in Figure
4.1, is the CCP-axis.

Figure 4.1: Pdf based on the climatology to the right and the corresponding cdf
to the left.

Our approach for producing probabilistic forecasts is to fit a pdf on the CCP-
scale based on different deterministic forecasts, and then transform the pdf back
to the original scale. When considering pdf’s on the CCP-scale, the interpre-
tation is as follows: the pdf gives the probability that the observed value yt
falls in different intervals of the climatology cumulative distribution function,
namely it is a pdf for Fclim(yt). As an example, imagine that we fit a uniform
distribution (U(0, 1)), on the CCP-scale (Figure 4.2). This pdf implies that all
cumulative probabilities in the climatology are mapped to their original values,
i.e. P (Fclim(yt) ≤ p) = p ∀ p ∈ (0, 1). Hence, the result of fitting a uniform
distribution on the CCP-scale, is that the postprocessed probabilistic forecast is
the climatology.
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Figure 4.2: The climatology corresponds to the uniform distribution on the CCP-
scale.

We proceed by introducing a hydrological forecast, xht = 5. Figure 4.3 shows
the pdf of the hydrological forecast on the CCP-scale. To be able to visualize
the hydrological forecast, we choose a uniform density on the CCP-scale between
Fclim(4.7) and Fclim(5.3). In the original scale this would result in a pdf with
all density placed on the interval yt ∈ (4.7, 5.3), but not uniformly distributed
because the climatology cdf is not linear.

To create a new probabilistic forecast, our idea is to fit a probability distri-
bution function on the CCP-scale based on the hydrological forecasts, and then
transform the resulting pdf back to the original scale. The left plot of Figure 4.4
shows an example of a pdf (purple pdf) on the CCP-scale based on the clima-
tology (blue pdf) and the hydrological forecast pdf (red pdf). This pdf has less
weight on the low values of Fclim(y), indicating that the event of observing yt
where Fclim(yt) is small, has a low probability. The result of this is shown in the
new pdf in original scale (purple pdf) in the right panel of Figure 4.4 where the
probability for small values are much reduced compared to the climatology pdf
(blue dotted pdf). Simultaneously, the density for larger values have increased
compared to the climatology pdf, with a peak near the hydrological forecast. To
summarize, the CCPR procedure begin with forecasts in the original scale, go
through fitting a density on the CCP-scale and then transform the result back
to the original scale.
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Figure 4.3: Pdf based on the hydrological forecast, xht = 5, on the CCP-scale.

Figure 4.4: The left plot displays the fitted pdf (purple pdf) based on the hydro-
logical pdf (dotted red) and the climatology pdf (dotted blue) on the CCP-scale.
The right plot shows the postprocessed probabilistic forecast in the original scale
(purple pdf), while the dashed blue pdf denotes the climatology pdf.
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4.2 Climatology cumulative probability regres-
sion

As mentioned before, the CCPR method can be used in a setting where we have
available the climatology and k different deterministic forecasts. We use the name
climatology cumulative probability regression for our postprocessing methodol-
ogy to emphasize that we use covariates (the deterministic forecasts) to fit a
probability distribution function on the CCP-scale. Following the notation intro-
duced in Section 2.3, we represent the forecasts with valid time t by a forecast
vector xt. For simplicity, we suppress lead time from the notation. In this thesis
we use a superscript with the abbreviations h, p and c respectively representing
the hydrological, persistence and sliding window climatology forecast, to clarify
which forecasts are present in the forecast vector. As an example xh,p

t denotes the

vector of hydrological and persistence forecast with valid time t, xh,p
t = (xht , x

p
t ).

Further, we denote the climatology cdf by Fclim(yt). Section 4.3 present the
construction of the climatology cdf based on the historical observations. As
described in Section 4.1, the idea behind the CCPR-methodology is to fit a prob-
ability distribution on the CCP-scale, and transform the pdf back to the original
scale. Since the CCP-scale has the range (0, 1), we choose to fit a beta distri-
bution on the CCP-scale, because it has the right range and, as we observed in
Section 3.2, it can attain many different shapes including the uniform distribu-
tion. Hence our methodology include the climatology as a special case. This is
an appealing property of the methodology, because if the forecasts are without
predictive performance, the best forecast is the climatology since it at least is
calibrated. Section 4.4 describe how to model the beta pdf based on the deter-
ministic forecasts.

At a given time point t, the postprocessed probabilistic forecast for the vali-
dating observation yt, given as a cdf, is denoted F (yt; xt), emphasizing that the
deterministic forecasts xt determines the probabilistic forecast. We follow the
notation used in the BLP-method described in Section 3.3, and defined in equa-
tion (3.11). In our framework we set c = 1 and let F1(y) = Fclim(y).

The CCPR postprocessing methodology can then be expressed as

F (yt; xt) = Bxt(Fclim(yt)) (4.1)

where xt denotes the vector of the explanatory variables with valid time t and
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Bxt(·) denotes the beta cumulative distribution function determined by the vec-
tor of explanatory variables. From Equation (4.1) we note that the predictive
cdf is obtained by transforming the empirical cdf Fclim(yt) by a beta cdf which
is modelled by the deterministic forecasts xt. Notation wise it is easier working
with cdf’s in our methodology. However, the basic concept of the transformation
procedure is based on fitting a pdf on the CCP-scale and then transforming the
pdf back to the original scale.

An illustration of the procedure of transformation is given in Figure 4.5, which
shows the transformation from the climatology cdf (pink cdf) to the postpro-
cessed cdf forecast F (yt; xt) (green cdf). The figure shows the transformation in
detail for one point (4, Fclim(4)), while the procedure is the same for all points
(yt, Fclim(yt)). The specific value of xt at the given time point generates a beta
cdf, Bxt(·) (grey cdf). Note that the beta cdf is a cdf on the CCP-scale, so the
y-axis of the beta cdf is the left x-axis in Figure 4.5. To find the postprocessed
cdf (green cdf), each point yt is assigned the cdf value of Bxt(Fclim(yt)). From
Figure 4.5, we observe that before the transformation, the cdf value based on
the climatology for y = 4 is approximately 0.8, indicating that the probability of
observing a streamflow of 4m/s3 or lower is close to 0.8. After the transformation
however, the probability of observing a streamflow of at most 4m/s3 is reduced
to 0.2, F (4; xk

t ) = 0.2. The reduction is due to the fact that the beta cdf has
low values for cumulative probabilities up to around 0.8 on the CCP-scale. Note
that this example is very extreme with a huge change between the climatology
cdf and the postprocessed cdf, with large probabilities for observing high values
of yt.

Figure 4.5: Illustration of the transformation procedure from the climatology
cdf (pink cdf), through the beta cdf (grey cdf), resulting in the postprocessed
probabilistic forecast F (y;xt) (green cdf).
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4.3 Construction of climatology

The climatology cdf can be constructed in different ways. It is possible to fit a
suitable distribution to the data, or extend our approach to make the climatol-
ogy cdf a smooth curve. We have chose the climatology empirical cdf, Fclim(yt),
to be a step function based on the historical observations, which jumps i

m at
observation values, where i is the number of observations at that value and m is
the total number of historical observations. Figure 4.6 express the relationship
between the historical observations and the climatology cdf. From the histogram
of observations in Figure 4.6 a), we note that most of the observed streamflow
is below 5m3/s. This trend is represented in the empirical cdf in Figure 4.6 b)
which has a steep slope for low stream flows.

4.4 Modelling the mean parameter µ and the
variance parameter ν of the beta cdf

To parametrize the beta distribution used in the transformation procedure, we
use the re-parametrization by µ and ν as described in section 3.2. The advantage
of using µ and ν is that these parameters has an easier interpretation than α and
β which in turn ease the modelling. Because µ ∈ (0, 1), we model the mean by
a logit link, given in section 3.4. The general method for modelling the mean is
given by

ηt = h(xt) (4.2)

where h(·) is a function of the forecast vector xt, and hence depend on the
value of the forecasts included. Equation (4.3) defines the logit link between ηt
and µt.

µt =
1

1 + e−ηt
(4.3)

The variance parameter νt can also be modelled as a function of the determin-
istic forecasts, Equation (4.4). Since νt > 0 it is important that g(xt) > 0 ∀ xt.
This restriction can be complied by different choices of g(·). In Chapter 5, we
present the choices of h(·) and g(·) made in our case study.
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νt = g(xt) (4.4)

(a)

(b)

Figure 4.6: a) Histogram of historical observations b) Climatology cdf based on
historical observations.



5. Case study: Models and
evaluation scheme

In this chapter we present our choice of h(·) and g(·), from Equation (4.2) and
(4.4) for the case study. Equation (5.1) define our choice of g(·) for all models.
This imply that the variance parameter does not vary based on the value of the
forecast at a given time point t, hence we suppress valid time from the notation.
However, we allow for the variance parameter ν to vary with lead time. For every
model we fit the variance parameter ν for lead time l = 1, 2, 5 and 10, resulting
in four different γν for each model. Since γν is squared, ν is always positive.

νt = ν = g(xt) = γ2ν (5.1)

We now introduce three different choices for modelling the mean, resulting in
three models; Model 1, Model 2 and Model 3. For each model, we only present
the choice of linear predictor ηt, since the mean µt is obtained by the logit link
as given in Equation (4.3).

5.1 Model 1 - Hydrological forecast in beta-mean

The first model use the information contained in the hydrological forecast to
model the mean of the beta cdf in Equation (4.1). To model ηt we use Fclim(xht )
as a covariate, as seen in Equation (5.2). We choose this approach to distinguish
the transformation done according to the differences in Fclim(xht ) rather than in
xht . In this setting, the difference in the mean of the beta cdf between two days
with hydrological forecast xh1 and xh2 will depend on how far apart the values are
on the CCP-scale. As an example, consider the empirical cdf in Figure 4.6. A
difference in 10m3/s yields quite different values on the CCP-scale, depending on
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what the forecasts are. If xh1 = 20 and xh2 = 30, the mean in Equation (4.3) will
be more similar than if xh1 = 1 and xh2 = 11. Note that the mean model also
distinguish between lead times, which means we fit 2 parameters to model the
mean for each lead time in Model 1.

ηt = h(xht ) = γ0 + γhFclim(xht ) (5.2)

The interpretation of the influence of the parameters in Equation (5.2) on
the mean µt (Equation 4.3) can be a bit cumbersome, since the logit link is
involved. First we note that γ0 determines the mean µt when Fclim(xht ) = 0,
namely µt = 1

1+e−γ0
. Figure 5.1 illustrates this point in that the intersection

with the y-axis is determined by γ0. When comparing the graphs with identical
values of γh but different values for γ0, e.g the blue and orange graph, we observe
that γ0 also has an effect on the range of µt. In addition γh has a clear impact
on the shape of the function of µt, as seen when comparing the orange and blue
graph (γh = 3) or the black, purple and green graph (γh = 1). A poor forecast
would lead to a small value of γh indicating that the beta distribution is quite
similar for all forecasts xht and resulting in similar probabilistic forecasts, i.e the
climatology as forecast. If the hydrological forecast xht has a good performance,
one would expect a negative γ0 and a large value of γh, leading to a vast variety
in µt for different values of Fclim(xht )

5.2 Model 2 - Persistence and hydrological fore-
cast in beta-mean

Model 2 is an extension of Model 1, where the persistence forecast xpt is included
in modelling the mean (Equation 5.3). As for Model 1, we observe that ηt and
hence also µt varies with the value of the forecasts at time t. For each lead time,
three parameters are fitted; γ0, γh and γp. The interpretation of the parameters
γ0, γh and γp is the same as for Model 1. However it is worth noting that the
effect of γh in Model 1 will be represented by both γh and γp in Model 2. The
magnitude of γh and γp indicate predictive performance of the forecasts, with
larger values for better performance.

ηt = h(xh,p
t ) = γ0 + γhFclim(xht ) + γpFclim(xpt ) (5.3)
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Figure 5.1: Mean parameter µt of the beta distribution as a function of Fclim(xht )
for different values of γ0 and γh
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5.3 Model 3 - Sliding window climatology, persis-
tence and hydrological forecast in beta-mean

Model 3 is a further extension of Model 2, where the sliding window climatology
forecast is included in modelling the mean. The linear predictor ηt is modelled
by

ηt = h(xh,p,c
t ) = γ0 + γhFclim(xht ) + γpFclim(xpt ) + γcFclim(xct) (5.4)

where xct is the sliding window climatology given in Section 2.2.3, with vali-
dating observation yt.

5.4 Model evaluation scheme

To evaluate the predictive performance of our models we use cross validation and
divide the data into four periods as given in Table 5.1. When estimating the
coefficients γk, we successively omit periods one by one and use the resulting
parameters to make predictions for the period omitted. This results in a fourfold
cross-validation scheme. The parameters are fitted using minimum CRPS estima-
tion, which is fitting the parameters that yields the lowest CRPS [Gneiting et al.,
2005]. This is done by using a optimizing routine in R. The procedure demands
initial values to find an optimum. To validate stability of the optimization, we
performed the analysis with different initial conditions, and the results were very
similar in all cases. For each period in the cross validation scheme, we found the
predictive CRPS based on the cross validation scheme and the CRPS reported in
Chapter 6 is the average of the four predictive CRPS values. The same method
is used to find average prediction intervals.

Period number Date
Period 1 01.09.2005 - 31.08.2006
Period 2 01.09.2006 - 31.08.2007
Period 3 01.09.2007 - 31.08.2008
Period 4 01.09.2008 - 31.07.2009

Table 5.1: Periods used in the cross validation



6. Results from the Osali case
study

This chapter present the results from the case study, described in Chapter 2 where
we fitted the models given in Chapter 5. We first present the coefficients in the
different models and consider the effects on the predictive densities in Section
6.1. Section 6.2 and 6.3 evaluate calibration and sharpness for the three models.
All results are obtained by using the programme R.

6.1 Coefficients and probabilistic forecasts

This section present the coefficients that determines the beta transformation for
the different models and consider some of the resulting probabilistic forecasts.
First we present the coefficients present in all models, namely γ0 and γν . Then
we proceed by exploring the results of the three models separately.

6.1.1 The constant parameter γ0 and the variance param-
eter ν

Table 6.1 displays the estimated value of γ0 for lead time l = 1, 2, 5 and 10 for
Model 1, 2 and 3. All models have increasing values of γ0 by increasing lead
time l. This both indicate that the mean µt of the beta distribution has a higher
starting point as a function of Fclim(xt) and that the size of the interval of possible
values of µt decrease with increasing lead time (Figure 5.1). However the other
coefficients of the models also contributes to the resulting model of µt.
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γ0 l = 1 l = 2 l = 5 l = 10
Model 1 −3.06 −2.91 −2.57 −1.50
Model 2 −2.98 −2.89 −2.63 −1.70
Model 3 −3.15 −3.12 −2.73 −1.87

Table 6.1: γ0 for the different models and lead time l = 1, 2, 5, 10.

To investigate how the variance parameter varied for different lead times and
between the models, a plot of ν for lead times l = 1, 2, 5, 10 for Model 1,2 and 3
was made (Figure 6.1). First we note that the variance parameter ν increases with
increasing lead time in all models. This indicates that the probabilistic forecasts
have a larger variance for longer lead times, as expected. Secondly we see that ν
is always lowest for Model 3, indicating that for equal values of µt Model 3 yields
the sharpest forecast. However, the difference in ν is small between Model 2 and
3 for all lead times, and between all models except for lead time 1 where Model
1 has a much higher value of ν than Model 2 and 3.

Figure 6.1: Estimated variance parameter ν in Model 1, 2 and 3, for the lead
times l = 1, 2, 5 and 10.

Figure 6.2 illustrates the effect of the variance parameter on the beta pdf on
the CCP-scale. The plot shows that for lead time 1 (black pdf’s), there are clear
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differences in the beta pdf for Model 1 (solid line) compared to Model 2 and
3 (dotted and dashed lines), with Model 2 and 3 as sharper. We also observe
that the beta pdf’s have an increasing variance with increasing lead time. Lead
time 10 represents the most prominent difference in the shape of the beta pdf
compared to the other lead times cf. the large difference in ν for lead time 10
compared to ν for the other lead times (Figure 6.1). For lead time 5 (red pdf’s)
and 10 (blue pdf’s), there are almost indistinguishable differences in the beta
pdf’s between the different models, while for lead time 2 (purple pdf’s), Model 1
(solid line) differs from Model 2 and 3 (dotted and dashed lines). An important
aspect of this finding is that it is not only the absolute value of the differences in
ν that has an influence on the resulting beta pdf’s. In Figure 6.1, we observe that
the difference between ν for lead time 2 and ν for lead time 10 for Model 1 and
Model 3 are quite similar. However, the resulting beta pdf’s differ more for lead
time 2 than for lead time 10. This indicates that it is the relative difference in ν
that results in varying beta pdf’s, which in turn results in different probabilistic
forecasts.

Figure 6.2: The effect of the variance parameters on the beta pdf on the CCP-
scale, where the mean parameter µt = 0.3. Note that the pdf for Model 2 (red
dotted pdf) for lead time 5 follows the pdf for Model 1 (red, solid pdf), and hence
is difficult to observe.
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6.1.2 Model 1 - hydrological forecast

Figure 6.3 displays the estimated coefficient γh in Model 1 for lead time l = 1, 2, 5
and 10. We observe that γh decrease for longer lead times, indicating a decaying
predictive ability of the hydrological forecast.

The effect of γh on the mean parameter µt of the beta distribution, is given
in Figure 6.4 where µt is given as a function of Fclim(xht ) for lead time l = 1, 2, 5
and 10. First we note that there are only minor differences between lead time
1, 2 and 5, which all model the mean µt in the range from about 0.1 to 0.9. This
indicates that the hydrological forecast has a high predictive ability for these lead
times. For lead time 10 however, µt does not change as much as for the other lead
times, indicating a poorer predictive performance of the hydrological forecast for
lead time 10 compared to the other lead times.

Figure 6.3: Estimated γh in Model 1 for the lead times l = 1, 2, 5, 10.
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Figure 6.4: Mean of beta distribution, µt as a function of the cumulative distri-
bution function of the hydrological forecast, Fclim(xht ).

Figure 6.6 displays beta pdf’s on the CCP-scale for Model 1 for different hy-
drological forecasts. In all cases the beta pdf for lead time 10 stands out among
the others. It is worth noting that this effect does not only come from the dif-
ference in the mean value, but also from the large difference in the variance
parameter ν for lead time 10 compared to the other lead times (Figure 6.2). In
Figure 6.6 b), we observe that the spread is quite high. A reason for this is that
the mean parameter contributes to the variance, as seen in Equation (3.9). For a
given value of the variance parameter ν, the variance grows symmetrically with
µt = 0.5 as the maximum. Hence when µt is close to 0.5 the variance of the beta
pdf is larger than when µt is close to zero or one.

Examples of the resulting probabilistic forecasts are given in Figure 6.7 and
6.8, for respectively lead time 1 and lead time 10. The probabilistic forecasts
are illustrated by histograms, where we sample n = 10000 observations from the
predictive cdf, F (yt; x

h
t ). Since the climatology cdf is a step function, so is the

predictive cdf and this is also reflected in the histograms. As an example, in
figure 6.8 for xht = 5.1 there are three small bins for y ∈ (30, 45), while the weight
ideally should be placed more uniformly on the interval. However, the histograms
work well for illustrative purposes.



40 6 Results from the Osali case study

For both lead times, we observe that a lower forecast yields a sharper predic-
tive density. At first glance this may seem contradictory to the results presented
in the previous section, where the forecast of xht = 1.2 produced the least sharp
beta pdf on the CCP-scale. However, the probabilistic forecast is also largely
based on the shape of the climatology cdf (Figure 4.6b). To illustrate the con-
cept, we plot the central 95% prediction intervals on CCP-scale and original scale
(Figure 6.5). On the CCP-scale, the prediction interval for the forecast xht = 1.2
(purple points) is wider than for xht = 5.1 (red points). However, when trans-
formed to the original scale, the prediction interval for the low forecast (purple
points) is notably shorter than for the high forecast (red points). The reason for
this is the transformation procedure through the climatology cdf, which is much
steeper for low CCP-values. Hence the pdf’s on the CCP-scale only provide some
information concerning the final probabilistic forecast.

When comparing the probabilistic forecast for lead time 1 (Figure 6.7) with lead
time 10 (Figure 6.8) we see that the forecast for lead time 1 is much sharper
(Note that the axis differs in all figures). This is due to the differences in beta
pdf’s on the CCP-scale (Figure 6.6) where lead time 10 always have the largest
variance.

Figure 6.5: Central 95% prediction interval on the CCP-scale and in the original
scale for a forecast of xht = 1.2 (purple points) and xht = 5.1 (red points), for lead
time 1. The dashed lines demonstrates the transformation from the CCP-scale,
through the climatology cdf, to the original scale.
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(a)

(b)

(c)

Figure 6.6: Beta pdf’s on the CCP-scale for a) A hydrological forecast of xht =
0.17 (Fclim(xht ) = 0.1), b) A hydrological forecast of xht = 1.2 (Fclim(xht ) = 0.5)
and c) A hydrological forecast of xht = 5.1 (Fclim(xht ) = 0.9)
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Figure 6.7: Post processed probabilistic forecast of yt in Model 1 (Lead time 1)
illustrated by histograms, for different hydrological forecasts xht = 0.1, xht = 1.2
and xht = 5.1.

Figure 6.8: Post processed probabilistic forecast of yt in Model 1 (Lead time 10)
illustrated by histograms, for different hydrological forecasts xht = 0.1, xht = 1.2
and xht = 5.1.
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6.1.3 Model 2 - hydrological and persistence forecast

Figure 6.9 present the estimated coefficients for Model 2, where both the hydro-
logical and persistence forecast are included in modelling the mean. First we note
that γh is larger than γp for all lead times except l = 1. For lead time l = 2, 5, 10
the hydrological forecast dominates the mean of the beta pdf compared to the
persistence forecast, while the opposite is true for lead time 1. Next we note
that γp decrease with increasing lead time, except for a small increase between
lead time 5 and 10, indicating that the value of the persistence forecast decrease
with increasing lead time. This result is consistent with the results obtained by
Engeland and Steinsland [2014], who showed that the persistence forecast con-
tained much predictive information for shorter lead times. Figure 6.10 illustrate
these trends exemplified by lead time 1 and 2, where the mean of the beta pdf
µt is plotted as a function of Fclim(xpt ) for different values of the hydrological
forecast. Comparing lead time 1 and 2, respectively solid and dotted lines, we
observe that the mean varies considerably more with changing persistence fore-
cast for lead time 1 than 2. However the value of γh puts restrictions on the
range of µt also for lead time 1. This can be seen e.g when comparing the solid
black and blue curve, where the maximum value of µt are respectively around
0.8 (Fclim(xht ) = 0.9) and 0.6 (Fclim(xht ) = 0.1).

Figure 6.9: Estimated γh and γp in Model 2 for the lead times l = 1, 2, 5, 10.
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Figure 6.10: Mean of beta distribution, µt as a function of the cumulative distri-
bution function of the persistence forecast, Fclim(xpt ), for different values of the
hydrological forecast Fclim(xht ). The solid lines represent lead time 1, while the
dashed lines represent lead time 2.

In order to illustrate the parameters influence on the beta pdf, Figure 6.11
shows beta pdf’s on the CCP-scale for lead time 1, 2, 5 and 10 for different com-
binations of hydrological and persistence forecasts. The plot is organized as a
matrix, where the row number determines the value of Fclim(xht ) and the col-
umn number determines the value of Fclim(xpt ). As an example, the plot in the
bottom-right corner displays the beta pdf’s on the CCP scale for the given lead
times when Fclim(xht ) = 0.9 and Fclim(xpt ) = 0.9.

First we consider lead time 1, displayed as the black pdf. We observe that the
pdf’s differ more through each row than through each column. Hence the per-
sistence forecast has a larger impact on the mean than the hydrological forecast
for lead time 1. As an example, we compare column 1 where Fclim(xpt ) = 0.1
with row 1 where Fclim(xht ) = 0.1. In column 1 the mean is always below 0.4
even though Fclim(xht ) varies from 0.1 to 0.9. In the first row however, the mean
increases more with an increase in Fclim(xpt ).

For lead time 2 (purple pdf), we observe an opposite trend of that for lead time
1. Now the pdf’s in a given row are more equal, while the pdf’s in each column
differs more. This illustrate the effect of the change in γh and γp from lead time
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1 to 2, where γh increases and γp decreases (Figure 6.9).

The trend where the hydrological forecast has the strongest effect on the mean
of the beta pdf is enhanced from lead time 2 (purple pdf) to lead time 5 (red
pdf). For lead time 5, the persistence forecast has almost no effect on the mean
of the beta pdf, illustrated by very similar pdf’s in each row. The beta pdf’s in
each column however, are very different with mean close to Fclim(xht ).

The beta pdf’s of lead time 10 (blue pdf) has a larger variance than the pdf’s for
the shorter lead times. We observe that also here, the hydrological forecast has
a slight impact on the mean of the beta pdf’s in that within a row the pdf’s are
very similar, while within a column the pdf’s change more. However, the large
variance causes all pdf’s to be quite similar.

Figure 6.12 displays the post processed probabilistic forecast based on the beta
pdf’s in the bottom-left corner of Figure 6.11. It illustrates the relationship be-
tween the beta pdf’s and the post processed probabilistic forecast for the lead
times l = 1, 2, 5 and 10, when the hydrological forecast xht = 0.1 (Fclim(xht ) = 0.1)
and the persistence forecast xpt = 5.1 (Fclim(xht ) = 0.9). First we observe that
for lead time 1, the probabilistic forecast has the lowest mean, and the mean
seems to be closer to the persistence forecast than to the hydrological forecast.
Hence the information obtained by the beta pdf in Figure 6.11, is transferred to
the post processed probabilistic forecast. Next we observe that the probabilistic
forecast for lead time 5 and 10 are quite similar, apart from the heavier right tail
for lead time 10. This is also apparent in the difference between the beta pdf’s
in Figure 6.11, where the beta pdf for lead time 10 (blue pdf) has a heavier right
tail than the beta pdf for lead time 5 (red pdf).
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Figure 6.11: Beta pdf’s on the CCP-scale for different combinations of the hy-
drological forecast xht and the persistence forecast xpt and for different lead times
l = 1 (black pdf), l = 2 (purple pdf), l = 5 (red pdf) and l = 10 (blue pdf).
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Figure 6.12: Post processed probabilistic forecast of yt in Model 2 illustrated
by histograms, for different lead times when the hydrological forecast xht = 0.17
(Fclim(xht ) = 0.1) and the persistence forecast xpt = 5.1 (Fclim(xpt ) = 0.9).

6.1.4 Model 3 - hydrological, persistence and sliding win-
dow climatology forecast

Figure 6.13 displays the coefficients for Model 3, where the sliding window cli-
matology forecast is added when modelling the mean compared to Model 2. The
value of γh and γp are similar to the values of the coefficients in Model 2 (Figure
6.9). We observe that the sliding window climatology, represented by γc is larger
than γp for lead time 5 and 10. This indicates that the sliding window climatology
forecast is more important in modelling the mean for higher lead times, while the
persistence forecast has a higher impact when modelling the mean for the shorter
lead times. However we observe that both coefficients are much smaller than
γh for all lead times, except γp for lead time 1, suggesting that the hydrological
forecast has the largest impact in modelling the mean of the beta pdf for lead
time 2, 5 and 10. For lead time 1 however, the persistence forecast has the largest
impact in modelling the mean.

Since the coefficients are quite similar for Model 2 and 3, and because the slid-
ing window climatology forecast has such a small impact in modelling the mean,
we do not interpret the parameters of this model as thoroughly as we did for
Model 1 and 2. However, to understand the results concerning average width of
prediction intervals presented in Section 6.3 for lead time 10, we provide a plot
of the mean µt for Model 3 in Figure 6.14. The figure displays µt as a function
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of the climatology cumulative probability of the persistence forecast, when the
hydrological forecast Fclim(xht ) = 0.9, for different values of the sliding window
climatology forecast for lead time 10. The mean for Model 2 as a function of the
persistence forecast Fclim(xpt ) is also given (green graph). We observe that the
mean for Model 2, which does not include the sliding window climatology, varies
less than the mean in Model 3 has ability to do, due to changes in the sliding
window climatology forecast. This can be seen in Figure 6.14, where the mean
for Model 2, lie almost in the middle of the mean for different values of the sliding
window climatology in Model 3. This causes Model 3 to be more flexible to get
different values of the mean according to the combination of persistence forecast
and sliding window climatology forecast. For low values of both the persistence
and the sliding window climatology forecast, the mean in Model 3 will be less
than the mean in Model 2. The opposite is true for large values of the persistence
and sliding window climatology forecast.

Figure 6.13: Estimated γh, γp and γc in Model 3 for the lead times l = 1, 2, 5, 10.

6.2 Assessing calibration

PIT-histograms provides a tool for assessing calibration [Gneiting et al., 2007].
Figure 6.15 displays PIT-histograms for lead time 1, 2, 5 and 10 for Model 1, 2
and 3. In Figure 6.15 a) we observe that the PIT-histograms are close to uniform
indicating a well calibrated predictive density for Model 1. Figure 6.15 b) and



6.2 Assessing calibration 49

c) are very similar and we observe a slightly hump-shaped PIT-histogram for
lead times l = 1 and l = 2, indicating that these predictive densities are a bit
overdispersed.

To investigate the calibration further, we divided the hydrological forecast into
three categories; the 20% lowest forecasts (low flow), the 10% highest forecasts
(high flow) and the remaining forecasts (medium flow) for each lead time. We
then found the percentage of observations in different p% prediction intervals.
Figure 6.16 displays the percentage of observations in different prediction inter-
vals for all models and for lead time l = 1, 2, 5, 10, when the hydrological forecast
is low. We observe that all models shows similar results within each lead time.
Lead time 10 is close to perfectly calibrated for all models. For lead time 1, 2 and
5 we observe that all models have a higher percentage of observation than the
25% to 75% prediction intervals. This indicates that these prediction intervals
could be shorter.

Figure 6.14: The mean of the beta distribution µt in Model 3 for lead time 10 as
a function of the climatology cumulative probability of the persistence forecast
Fclim(xpt ) when the hydrological forecast Fclim(xht ) = 0.9, for different values of
the sliding window climatology Fclim(xct) and for Model 2.
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(a)

(b)

(c)

Figure 6.15: PIT histograms for lead times l = 1, 2, 5, 10 for a) Model 1, b) Model
2 and c) Model 3.



6.2 Assessing calibration 51

Figure 6.16: Percentage of observations for different prediction intervals when the
hydrological forecast is low. The dashed line indicate where the values should lie
for perfectly calibrated forecasts.
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Figure 6.17: Percentage of observations for different prediction intervals when
the hydrological forecast is medium. The dashed line indicate where the values
should lie for perfectly calibrated forecasts.

The percent of observation in different prediction intervals for the medium
hydrological forecasts of streamflow are presented in Figure 6.17. For lead time
2, 5 and 10, we observe that all models yields similar results, and that all forecasts
are close to calibrated. That the results are so similar for lead time 5 and 10 is
due to the fact that both γp and γc are very small and ν is similar for for these
lead times, yielding similar probabilistic forecasts for all models. For lead time 1,
there is a difference between Model 1 and Model 2 and Model 3. Model 1 is close
to calibrated, while Model 2 and Model 3 are overdispersed in that all points lie
above the calibration line.



6.3 Assessing sharpness 53

Figure 6.18: Percentage of observations for different prediction intervals when the
hydrological forecast is high. The dashed line indicate where the values should
lie for perfectly calibrated forecasts.

In Figure 6.18, we observe that for high hydrological forecasts for lead time
1, Model 2 and Model 3 seems to better calibrated than Model 1. For longer
lead times the results are quite similar, and all models are close to calibrated.
This indicates that the prediction intervals when the hydrological forecast is high
seems to be of the right size.

6.3 Assessing sharpness

To evaluate the sharpness of the predictive densities based on the three models, we
plot the average 95% prediction intervals for lead time l = 1, 2, 5 and 10 (Figure
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6.19). We observe that all prediction intervals increase with increasing lead time.
The prediction intervals for Model 2 and 3 are very similar for all lead times,
except for lead time l = 10, where the model with the sliding window climatology
included (Model 3) has a bit shorter average prediction interval width. When
comparing the model without the persistence forecast included (Model 1) we see
that the difference in average prediction interval width is largest for the two first
lead times. This indicates that the persistence forecast is important to include
for the shorter lead times.

Figure 6.19: Average width of the 95% prediction intervals for lead time l =
1, 2, 5, 10 for Model 1,2 and 3.

To get a further impression of how the prediction intervals varied for different
streamflows, we use the same division of hydrological forecasts as for the per-
centage of observations in different prediction intervals (low, medium and high
flows). A boxplot of the prediction interval width for the different forecasts and
models are given in Figure 6.20. First we note that the median width of predic-
tion intervals increase with increasing forecasts for all models. This is due to the
concept explained for Model 1 in Figure 6.5, in that larger forecasts results in a
beta pdf with higher mean, which in turn results in larger prediction intervals
because of the shape of the climatology cdf. Next, we observe that in general the
median also increase with increasing lead time, indicating that the probabilistic
forecasts are sharper for shorter lead times. When comparing the models, we
observe that Model 2 and 3 yield similar results for all lead times. The major
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difference between Model 1 and the two other models is for lead time 1 and 2.
For lead time 1, there seems to be a reduction in 95% prediction interval width
for medium and high flows between Model 1 and Model 2 and 3. For lead time 2,
the main reduction in prediction intervals between Model 1 and Model 2 and 3 is
for the high flows. The results indicate that the persistence forecast need to be
included for lead time 1 and 2, but the sliding window climatology forecast adds
little information. The boxplots in Figure 6.20, for lead time 5 and 10 are quite
similar for all flows, except for high flows for lead time 10. This can be explained
by the coefficients impact on the mean of the beta distribution. As we saw in
Figure 6.14, the mean for Model 3 could be both lower and higher than the mean
for Model 2, when the hydrological forecast was high (Fclim(xht ) = 0.9). A lower
mean results in shorter prediction intervals because of the shape of the clima-
tology cdf, as explained in Figure 6.5. A higher mean of the beta pdf, however
results in larger prediction intervals. Hence, the larger spread in the prediction
intervals for high flows for lead time 10 for Model 3 compared to Model 2 is caused
by the sliding window climatology forecasts impact when modelling the mean of
the beta distribution. For low values of the sliding window climatology forecast,
the mean of the beta distribution is less than the mean for Model 2, resulting
in shorter prediction intervals. Large values of the sliding window climatology
results in a larger mean of the beta distribution in Model 3 compared to Model
2, yielding larger prediction intervals.
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Figure 6.20: Boxplot of prediction intervals (m3/s) for all models, divided into
the 20% lowest (Low flow), the 10% highest (High flow) and the remaining hy-
drological forecasts (Medium flow) for lead time l = 1, 2, 5, 10. The blue box
represents the 1st to 3rd quartile, the red line is the median and the red crosses
represents the outliers.

CRPS-values was obtained by using the cross-validation scheme given in sec-
tion 5.4. The CRPS for all models, including pure deterministic forecasts (i.e
the mean absolute error) and the best model from the case study performed by
Engeland and Steinsland [2014], refered here to as Model E&S (2014) for lead
time l = 1, 2, 5, 10 are given in Table 6.2. First we note that the CRPS for Model
2 and 3 are very similar for all lead times. For lead time 5 and 10, all models has
similar CRPS values. For the first two lead times, Model 1 has a higher CRPS
value than Model 2 and 3, indicating that Model 2 and 3 has better predictive
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abilities than Model 1 for these lead times. Next we note that our models out-
perform the deterministic forecasts for all lead times. Compared to the results of
Engeland and Steinsland [2014], our postprocessing models yields similar CRPS-
values. The main difference is for lead time 1, where Model E&S (2014) has the
smallest CRPS, and for lead time 5 where Model 1 has the smallest CRPS. Model
2 and 3 have essentially the same CRPS for lead time 5 as Model 1.

CRPS l = 1 l = 2 l = 5 l = 10
Hydrological forecast 0.94 0.99 1.09 1.44
Persistence forecast 0.73 1.23 1.79 2.10
Sliding window climatology 1.52 1.52 1.52 1.52
Model 1 0.67 0.70 0.77 1.03
Model 2 0.52 0.67 0.78 1.03
Model 3 0.52 0.66 0.78 1.03
Model E&S (2014) 0.45 0.67 0.84 1.01

Table 6.2: CRPS for streamflow forecasts for lead time l = 1, 2, 5 and 10. The
bold number in each column denotes the lowest CRPS-value for the given lead
time.
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7. Discussion and conclusion

In this master thesis we have developed a, as far as we are aware of, new post
processing methodology for the situation where the climatology and different
deterministic forecasts are available. The CCPR-methodology is based on fit-
ting a probabilistic forecast on the CCP-scale, and then transform the resulting
probabilistic forecast back to the original scale. Since the methodology is new,
the major focus of this thesis was to present the methodology and explore the
methodology for a given case.

We have applied the CCPR-methodology to construct probabilistic forecasts for
the streamflow at Osali for four lead times; l = 1, 2, 5 and 10. To investigate
the impact of the different deterministic forecasts, we considered three models;
Model 1 which included only the hydrological forecast, Model 2 with both hy-
drological and persistence forecast and Model 3 which in addition included the
sliding window climatology forecast. The parameters were fitted by minimum
CPRS estimation for the entire period.

In order to investigate the interpretation of the parameters, we performed an
analysis with focus on the parameters impact in modelling the beta pdf on the
CCP-scale. Through the analysis we experienced the difficulties in a straight
forward interpretation of the parameters. This was both due to the use of a logit
link when modelling the mean and that the beta distribution is parametrized by
two parameters; µ and ν which interacts in determining the shape of the beta
distribution. For instance, the variance of the beta distribution both vary with
the variance parameter ν, but also with the mean parameter µ. In addition the
post processed probabilistic forecast is also largely affected by the shape of the
climatology cdf. Hence we found that these aspects of the model complicates a
straight forward interpretation of the estimated parameters.

However, we discovered some useful strategies to obtain information from the
parameters. First we note that smaller values of the variance parameter ν yield
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sharper forecasts. Next we found that the constant γ0, present in all models
for modelling the mean µt of the beta pdf, determines the value of µt when
Fclim(xt) = 0. A negative value, which we obtained in all models, indicates that
when the climatology cdf value of the forecast Fclim(xt) is low, the mean of the
beta distribution is also low. Hence, when a low streamflow is forecasted the post-
processed probabilistic forecast also has high probabilities for low streamflows.
To obtain a probabilistic forecast that clearly distinguishes between different val-
ues of the deterministic forecasts, the range of µt should be as large as possible.
This is achieved by a combination of a low value for γ0 and large values of γk,
where the magnitude of γk corresponds to the predictive performance of forecast
k. In the case study we observed that the magnitude of γk varied with lead time,
indicating that the predictive performance varies with lead time. For Model 1, γh
decreased with increasing lead time, leading to less influence of the hydrological
forecast with increasing lead time. For models with more than one deterministic
forecast included, the interpretation is a bit more cumbersome, but for each lead
time the magnitude of γk indicates predictive performance. In the case study for
both Model 2 and 3, we observed that for lead time 1, the persistence forecast
had more impact in modelling the mean of the beta distribution than the hydro-
logical forecast. For lead time 2, 5 and 10 the results were opposite, in that the
hydrological forecast influenced the mean more with increasing lead time com-
pared to the persistence forecast. This is due to the fact that the hydrological
forecast has more predictive information compared to the persistence forecast for
longer lead times.

To evaluate the predictive performance of the models, we used a cross-validation
scheme where we successively omitted one year of data when estimating the pa-
rameters and then used these parameters to evaluate the omitted year. Calibra-
tion was assessed through PIT-histograms. The evaluation showed that Model
1 was best calibrated, while Model 2 and 3 gave similar results and seemed to
be a bit overdispersed for lead time 1 and 2. Further evaluation of percentage of
observations in different prediction intervals showed that the overdispersion was
due to too wide prediction intervals for low and medium hydrological forecasts
of streamflow . To assess sharpness, average width of 95% prediction intervals in
the three models was compared. Model 2 and 3 yield similar results for all lead
times, while model 1 had, compared to Model 2 and 3, larger average width of
prediction intervals for lead time 1 and to some extent for lead time 2 and 10.
Further inspection of the prediction intervals, divided according to the magnitude
of the hydrological forecast, showed that the main difference between Model 1
compared to Model 2 and 3 was for medium and high flows for lead time 1, and
high flows for lead time 2. Since the results for Model 2 and 3 are very sim-
ilar, the sliding window climatology does not seem to provide much additional
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information to the model. Hence, based on the overall analysis we conclude that
Model 2 is the best out of the three models, in that it is better than Model 1 for
lead time 1 and 2, and Model 3 does not provide much predictive performance
compared to the increase in parameters.

Our post processing methodology has only been tested on streamflow data from
Osali. However, we believe that the framework can be used in other settings as
well, where the climatology and deterministic forecasts are available. An advan-
tage of the model is that we do not need to make assumptions for the underlying
distribution of the data since we base the post processed probabilistic forecast on
the climatology and the deterministic forecasts through the transformation pro-
cedure. The CCPR-methodology has the climatology as a special case, namely
if the forecasts have no predictive information. This is an appealing property of
the method, because the climatology is the best we can do in absence of other
forecasts. On the other hand, the CCPR-methodology does not include the per-
fect forecast as a special case. However, we do not consider this to be a major
disadvantage, since the need of a probabilistic forecast diminish in the situation of
a perfect forecast. As mentioned already, a disadvantage of the model lies in the
challenges faced when interpreting the parameters. However the main purpose of
the CCPR-methodology is to create calibrated and sharp probabilistic forecasts,
not to evaluate how the deterministic forecasts affects the final probabilistic fore-
cast. Hence, if good results are achieved by using the CCPR-methodology, our
main goal is reached.

There are several directions where the CCPR-methodology can be further de-
veloped. First we acknowledge that we have only explored a small amount of the
possible ways to model the mean and the variance parameter of the beta distri-
bution. An interesting extension of the models used in this case study is to also
model the variance parameter ν, in a way that allows the variance of the beta
distribution to vary. One suggestion is to use the spread of the sliding window cli-
matology to model the variance parameter. Based on the analysis of calibration
where the degree of calibration varied with the magnitude of the hydrological
forecasts, it is seems to be a potential gain to model the variance parameter
according to the hydrological forecasts. From the analysis of the parameters in-
fluence on the mean of the beta distribution, we observed that both very high and
low means was never obtained. This could be the result of using the logit link,
and hence further research could focus on different possibilities for modelling the
mean. It could also be of interest to develop the climatology cdf to be continuous
in stead of the step function we chose. Different smoothing techniques could be
applied to generate the climatology cdf. We would also recommend to develop
the climatology cdf to have a flattened probability distribution on the tails. In
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our case study all forecasts and observations was larger than the smallest obser-
vation and smaller than the highest observation in the climatology, hence we did
not need to focus on the tail distributions. To extend the model further, other
probability distributions than the beta distribution could possibly be better when
fitting a pdf on the CCP-scale. In addition, it could be interesting to investigate
if the CCPR-methodology can be applied when a probabilistic forecast is already
available. In this setting the climatology cdf could possibly be replaced by the
probabilistic forecast, and the transformation procedure can be carried out in the
same way as given in this thesis, based on some deterministic forecasts.

As a conclusion, we have introduced a new framework for creating probabilis-
tic forecasts based on climatology and deterministic forecasts. The procedure
have been applied on a set of streamflow data, yielding good results. However,
the methodology should both be tested, and possibly further developed, in other
situations as well to see if the procedure in general is a useful approach for mak-
ing calibrated and sharp probabilistic forecasts.
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