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Concepts and results from quantum harmonic analysis, such as the convolution
between functions and operators or between two operators, are identified as the appro-
priate setting for Berezin quantization and Berezin-Lieb inequalities. Based on this
insight, we provide a rigorous approach to the generalized phase-space representation
introduced by Klauder-Skagerstam and their variants of Berezin-Lieb inequalities in
this setting. Hence our presentation of the results of Klauder-Skagerstam gives a more
conceptual framework, which yields as a byproduct an interesting perspective on the
connection between the Berezin quantization and Weyl quantization. Published by
AIP Publishing. https://doi.org/10.1063/1.5023241

I. INTRODUCTION

Phase-space representations are of interest for problems in quantum mechanics but also in
time-frequency analysis and mathematics. The Wigner distribution is the most-studied phase space
representation

W (ψ,ψ)(x,ω)=
∫
Rd
ψ(x + t

2 )ψ(x − t
2 )e−2πiωtdt.

There are many other representations of this type, e.g., the short-time Fourier transform, the Born-
Jordan distribution, Cohen’s class, the Husimi representation, and the Glauber-Sudarshan representa-
tion. There are various names for the Husimi representation and the Glauber-Sudarshan representation.
We collected some of them in Table I. The starting point of Klauder and Skagerstam15 is the identifi-
cation of the Husimi and Glauber-Sudarshan representations as objects built out of rank-one operators
given by Gaussians. Then the main idea is to replace these rank-one operators by some density matrix
or more generally a trace class operator σ. The associated phase space representations Sσ and S

�σ

are the aforementioned generalized phase-space representations.
The main goal of this paper is to develop the theory of these phase-space representations rig-

orously. The theory of Werner21 seems to be a convenient setting for the results of Ref. 15 since
the convolution between a function and an operator, and between two operators, is precisely how
Klauder-Skagerstam define their generalized phase-space representation. In their definition, they
assume that the Fourier-Wigner transform is non-zero on phase space. We link this condition to
Werner’s Tauberian theorems and show that it is equivalent to a desirable property: Any bounded
operator on L2(Rd) is uniquely determined by its generalized Husimi representation. In addition, we
note that one may define the phase space representations of Klauder-Skagerstam even in the case
where the Fourier-Wigner transform has some zeros. Finally, we show that any trace class operator
may be expressed in terms of a generalized phase-space representation which is a consequence of
Cohen-Hewitt’s theorem for Banach modules.18

All these results are based on the interplay between the Berezin quantization and the Weyl
quantization, which is not so much stressed in the existing literature, except for Ref. 17. In Ref. 16,

a)Electronic addresses: franz.luef@math.ntnu.no and eirikskr@stud.ntnu.no

0022-2488/2018/59(2)/023502/11/$30.00 59, 023502-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5023241
https://doi.org/10.1063/1.5023241
https://doi.org/10.1063/1.5023241
mailto:franz.luef@math.ntnu.no
mailto:eirikskr@stud.ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5023241&domain=pdf&date_stamp=2018-02-07


023502-2 F. Luef and E. Skrettingland J. Math. Phys. 59, 023502 (2018)

TABLE I. A dictionary relating the terminology in this paper to other common terminologies in mathematical physics.

This paper Mathematical physics

Time-frequency shift π(z) Weyl operator e2π iωQ�ixP14,15

Integrated Schrödinger representation Weyl quantization15

Twisted Weyl symbol, Fourier-Wigner transform Weyl representation15

Glauber-Sudarshan representation Anti-Wick symbol,5 contravariant Berezin symbol, upper symbol,20

symbol for localization operator1

Husimi representation Berezin transform,1 covariant Berezin symbol, lower symbol20

generalizations of the Berezin-Lieb inequalities are established in terms of the generalized phase
space representations. We state a more general version of these inequalities and point out that these
have been first proved by Werner in Ref. 21.

The proofs of the properties of the generalized phase space representations are done in the
framework of Ref. 21, and they are expressed in terms of convolutions. Consequently, we are in
the position to use the Fourier-Wigner transform and other facts from Refs. 18 and 21 in the proofs
of the main results of Ref. 16. The presentation of Ref. 21 in terms of time-frequency analysis of
Ref. 18 sheds some light on a remark of Ref. 15 on a potential link in this setting. Ref. 21 builds
on the work of Holevo,9 and the later results have later been extended in the context of covariant
observables, which are a special class of positive operator valued measures, by Refs. 2, 4, 12, and 13
and the monograph.3 We indicate in Sec. VI how to adapt the definitions of Klauder-Skagerstam to
the setting of (unimodular) locally compact groups using the results from Ref. 13.

We close this introduction with a brief discussion of results related to generalized phase space
representations in the setting of operational quantum physics. The simultaneous measurement of
non-commuting observables using some measurement device necessarily leads to the introduction
of some noise, by Heisenberg’s uncertainty principle. Wódkiewicz22 has observed that general-
ized Husimi representations incorporate this noise due to the measuring device and considered
a version of the Husimi representation in an attempt to define a phase-space representation of
states that may realistically be recorded by experiments. Wünsche and Buzek23 followed this
line of research and discussed if the generalized Husimi function contains complete informa-
tion about the measurement of a state and propose a formal reconstruction procedure that asks
about the “inversion” of the generalized Husimi symbol. A consequence of our results shows that
this procedure will not always work. This connection and result has also been noted in Refs. 3
and 14.

II. PREREQUISITES

A. Notation and conventions

Elements of R2d will often be written in the form z = (x, ω) for x,ω ∈Rd , and [z, z′] is the
standard symplectic form [z, z′] = ω1·x2 � ω2·x1 of z = (x1, ω1) and z′ = (x2, ω2). For two elements
ξ, η in some Hilbert space H, we define the operator ξ ⊗ η on H by ξ ⊗ η(ζ) = 〈ζ , η〉ξ, where ζ ∈H
and 〈·, ·〉 is the inner product on H. We introduce the parity operator P by ψ̌(x)=Pψ(x)=ψ(−x), for
any x ∈Rd and ψ :Rd→C, and define ψ∗ by ψ∗(x)=ψ(x). For p < ∞, T p will denote the Schatten
p-class of operators on the Hilbert space L2(Rd) with singular values in `p. Furthermore, we define
T ∞ to be B(L2(Rd)), all the bounded, linear operators on L2(Rd).

B. Time-frequency shifts or Weyl operators

If ψ :Rd→C and z= (x,ω) ∈R2d , we define the translation operator T x by T xψ(t) = ψ(t �
x), the modulation operator Mω by Mωψ(t) = e2π iω ·tψ(t), and the time-frequency shifts π(z) by
π(z) = MωT x. The time-frequency shifts are fundamental in time-frequency analysis, but they also
play an important role in quantum mechanics as π(x,ω) = e2π iωQ�ixP where Q and P are the canonical
operators satisfying the uncertainty relation [Q, P]= i (we let ~ = 1).8 In physics, these operators are
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sometimes called the Weyl operators U(x, ω) in Refs. 14 and 15. For ψ, φ ∈ L2(Rd), the short-time
Fourier transform (STFT) Vφψ of ψ with window φ is the function on R2d defined by

Vφψ(z)= 〈ψ, π(z)φ〉

for z ∈R2d .

C. The integrated Schrödinger representation and twisted convolution

The integrated Schrödinger representation is the map ρ : L1(R2d)→B(L2(Rd)) given by

ρ(f )=
∫∫

R2d
f (z)e−πix ·ωπ(z) dz,

where the integral is defined in the weak sense by requiring that

〈η, ρ(f )ψ〉=
∫∫

R2d
f (z)e−πix ·ω〈η, π(z)ψ〉 dz

for anyψ, η ∈ L2(Rd) (we refer to Ref. 18 for a detailed exposition of weak integration in this context).
We say that f is the twisted Weyl symbol of ρ(f ). In the physics literature, this is sometimes referred to
as the Weyl representation of an operator,15 and the map f 7→ ρ(f ) is a version of the Weyl quantization.

We will use the important product formula ρ(f )ρ(g) = ρ(f\g), where the product \ is the twisted
convolution, defined by f \g(z)= ∫∫R2d f (z − z′)g(z′)eπi[z,z′] dz′ for f , g ∈ L1(R2d).5,7

For this paper, it is essential that ρ may be extended to a unitary operator from L2(R2d) to T 2

and that the twisted convolution f\g may be defined for f , g ∈ L2(R2d) with norm estimate ‖f \g‖L2 ≤

‖f ‖L2 ‖g‖L2 ; see Ref. 5.

D. Berezin quantization: Husimi and Glauber-Sudarshan representations

Let φ be the Gaussian φ(x) = 2d /4e�πx ·x. If A ∈ B(L2(Rd)) can be represented using a vector-valued
integral as

Aψ =
∫∫

R2d
AG−S(z) · Vφψ(z)π(z)φ dz (1)

for some function AG-S on R2d , we call AG-S the Glauber-Sudarshan representation of A.15 On the
other hand, the mapping AG-S 7→ A, with A defined by Eq. (1), defines a quantization procedure known
as Berezin quantization.17 In this sense, A 7→AG-S is the inverse of Berezin quantization. Furthermore,
the Husimi representation of A ∈ B(L2(Rd)) is the function AH given by

AH (z)= 〈Aπ(z)φ, π(z)φ〉

for z ∈R2d ,15 also known as the Berezin transform of A.1

E. Convolutions of operators and functions

The main tools of this paper will be provided by the theory of convolutions of operators and
functions due to Werner.21 In order to introduce these convolution operations, we will first need to
define a shift for operators. For z ∈R2d and A ∈ B(L2(Rd)), we define the operator αz(A) by

αz(A)= π(z)Aπ(z)∗.

It is easily confirmed that αzαz′ = αz+z′ , and we will informally think of α as a shift or translation of
operators.

Similarly we define the analogue of the involution f 7→ f̌ of a function for an operator A ∈
B(L2(Rd)) by

Ǎ=PAP,

where P is the parity operator.
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Using α, Werner defined a convolution operation between functions and operators.21 If f ∈
L1(R2d) and S ∈ T 1, we define the operator f ∗ S by

f ∗ SB S ∗ f =
∫∫

R2d
f (y)αy(S) dy, (2)

where the integral is interpreted in the weak sense. Then f ∗ S ∈ T 1 and ‖f ∗ S‖T 1 ≤ ‖f ‖L1 ‖S‖T 1

(Ref. 18, Proposition 2.5).
For two operators S, T ∈ T 1, Werner defined the function S ∗T by

S ∗ T (z)= tr(Sαz(Ť )) (3)

for z ∈R2d . The following result shows that S ∗ T ∈ L1(R2d) and provides an important formula for
its integral (Ref. 21, Lemma 3.1).

Lemma 2.1. Let S, T ∈ T 1. The function z 7→ tr(SαzT ) for z ∈R2d is integrable and
‖tr(SαzT )‖L1 ≤ ‖S‖T 1 ‖T ‖T 1 .

Furthermore, ∫∫
R2d

tr(SαzT ) dz= tr(S)tr(T ).

The convolutions can be defined on different Lp-spaces and Schatten p-classes.18,21

Proposition 2.2. Let 1≤ p, q, r ≤∞ be such that 1
p + 1

q = 1+ 1
r . If f ∈ Lp(R2d), g ∈ Lq(R2d), S ∈ T p,

and T ∈ T q, then the following convolutions may be defined and satisfy the norm estimates:

‖f ∗ T ‖T r ≤ ‖f ‖Lp ‖T ‖T q ,

‖g ∗ S‖T r ≤ ‖g‖Lq ‖S‖T p ,

‖S ∗ T ‖Lr ≤ ‖S‖T p ‖T ‖T q .

Since the convolutions between operators and functions can produce both operators and functions
as output, the associativity of the convolutions is not trivial.18,21

Proposition 2.3. The convolution operations in Proposition 2.2 are commutative and associative.
As was recently pointed out in Ref. 18, the convolutions make the Schatten classes T p into

Banach modules over L1(R2d) if the module multiplication is defined by (f, S) 7→ f ∗ S for f ∈ L1(R2d)
and S ∈ T p. By using the Cohen-Hewitt theorem for Banach modules,6 one obtains that any operator
in T p for p < ∞ can be written as a convolution (Ref. 18, Proposition 7.4).

Proposition 2.4. Given T ∈ T p for p < ∞, there exist f ∈ L1(R2d) and S ∈ T p such that
T = f ∗ S.

F. Fourier transforms for functions and operators

For functions f ∈ L1(R2d), we will use the symplectic Fourier transform Ff given by

Ff (z)=
∫∫

R2d
f (z′)e−2πi[z,z′] dz′

for z ∈R2d , where [., .] is the standard symplectic form [(x1, ω1), (x2, ω2)] = ω1 · x2 � ω2 · x1.
For operators S ∈ T 1, the Fourier-Wigner transform FW S of S is the function given by

FW S(z)= e−πix ·ωtr(π(−z)S)

for z ∈R2d . In the terminology of Werner,11,14,21 this is the Fourier-Weyl transform, but we follow
Folland5 and call it the Fourier-Wigner transform.
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The relationship between the Fourier-Wigner transform and the integrated Schrödinger repre-
sentation will play an important part in our considerations.

Proposition 2.5. The Fourier-Wigner transform extends to a unitary operator FW : T 2→

L2(R2d). This extension is the inverse operator of the integrated Schrödinger representation ρ,
and

FW (ST )=FW (S)\FW (T ) (4)

for S, T ∈ T 2.
The Fourier-Wigner transform shares many properties with the regular Fourier transform,18,21

and in particular, it interacts with the convolutions defined by Werner in the expected way.

Proposition 2.6. Let f ∈ L1(R2d) and S, T ∈ T 1.

(1) F(S ∗ T )=FW (S)FW (T ).
(2) FW (f ∗ S)=F(f )FW (S).

This proposition is not merely aesthetically pleasing, but it expresses the connection between
the Weyl quantization and Berezin quantization, as we will see in Example 3.2.

III. GENERALIZED HUSIMI AND GLAUBER-SUDARSHAN REPRESENTATIONS
AS CONVOLUTIONS

In Ref. 15, Klauder and Skagerstam proposed extensions of the Husimi and Glauber-Sudarshan
representations of operators. Given a fixed operator σ ∈ T 1 such that FW (σ) has no zeros, they
obtained for S ∈ T 1 a generalized Husimi representation Sσ and a generalized Glauber-Sudarshan
representation S

�σ . The representations Sσ and S
�σ generalize the Husimi and Glauber-Sudarshan

representations in the sense that Sσ = SH and S
�σ = SG-S when σ = φ ⊗ φ for φ(x) = 2d /4e�πx ·x.

The main result of this paper is that the generalized phase space representations may be described
using Werner’s convolutions. The next theorem makes this precise, and part (3) uses the associativity
of convolutions to reprove a relation between Sσ and S

�σ due to Klauder and Skagerstam.15 In the
proof, we sketch the formal calculations used by Klauder and Skagerstam15 to obtain the generalized
phase space representations.

Theorem 3.1. Fix σ ∈ T 1 and let S ∈ T 1.

(1) Sσ = S ∗ σ̌.
(2) If S = f ∗σ∗ for some f ∈ L1(R2d), then S

�σ = f.
(3) If S−σ ∈ L1(R2d) exists, then by parts (1) and (2),

Sσ = (S−σ ∗ σ
∗) ∗ σ̌ = S−σ ∗ (σ∗ ∗ σ̌)= S−σ ∗ tr(σ∗αzσ).

Furthermore, if σ = φ ⊗ φ where φ(x) = 2d /4e�πx ·x for x ∈Rd , then Sσ = SH and S
�σ = SG-S .

Proof. To obtain the generalized representations, Klauder and Skagerstam started from the
known relations

tr(S∗T )=
∫∫

R2d
FW (S)(z′)FW (T )(z′) dz′ =

∫∫
R2d

F(SG−S)(z′)F(TH )(z′) dz′ (5)

for S, T ∈ T 1, which we will prove for the sake of completeness using Werner’s convolutions in
Example 3.1. They then fixed a σ ∈ T 1 such that FW (σ) vanishes nowhere, in order to generalize
SG-S to a representation S

�σ and TH to a representation Tσ . They required that S
�σ and Tσ should

satisfy the obvious generalization of (5) and observed that this would hold if S
�σ and Tσ were
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introduced by the following formal calculation based on Eq. (5):

tr(S∗T )=
∫∫

R2d

[
FW (S)(z′)

tr(π(z′)∗σ∗)

]∗
tr(π(z′)σ)FW (T )(z′) dz′

B

∫∫
R2d

F(S−σ)(z′)F(Tσ)(z′) dz′

=

∫∫
R2d

S−σ(z′)Tσ(z′) dz′,

where we used Plancherel’s theorem in the last step. One may then derive explicit expressions for
S
�σ and Tσ .15 The generalized Husimi representation Tσ is given by Tσ(z) = tr(Tαz(σ)), which

clearly equals T ∗ σ̌ from the definition of the convolution of operators. The most relevant expression
for the generalized Glauber-Sudarshan representation, S

�σ , is that when S =
!

R2d f (z)αzσ
∗ dz for

some f ∈ L1(R2d), then f = S
�σ . In other words, if S = f ∗σ∗, then f = S

�σ . This proves the first two
parts of the theorem. Part (3) is a simple consequence of the first two parts and the associativity of
Werner’s convolutions. Finally, one may easily check that Tσ = TH and S

�σ = SG�-S for σ = φ ⊗ φ,
where φ(x) = 2d /4e�πx ·x. □

Remark. As a simple calculation shows, Sσ = SG-S when σ = φ ⊗ φ for φ(x) = 2d /4e�πx ·x.
Berezin quantization is given by the mapping SG-S 7→ S, and by Theorem 3.1, this mapping could
equivalently be written as f 7→ f ∗ (φ ⊗ φ)∗. By replacing φ ⊗ φ with any σ ∈ T 1, we may for each
σ ∈ T 1 define a version of Berezin quantization by f 7→ f ∗σ∗.

Since Theorem 3.1 relates the generalized phase space representations to Werner’s convolutions,
the theory from Secs. II E and II F may be applied to these representations. From Proposition 2.2, we
get precise conditions under which the generalized Husimi and Glauber-Sudarshan representations
of an operator S belong to various Lp-spaces, depending on which Schatten p-classes S and σ belong
to.

Theorem 3.1 also shows that Sσ and S
�σ may be defined using Werner’s convolutions even when

FW (σ) has zeros. Furthermore, it implies that even if FW (σ) has no zeros, not every operator S ∈ T 1

has a generalized Glauber-Sudarshan representation with respect to σ.

Proposition 3.2. Assume that σ ∈ T 1 and FW (σ) has no zeros. Then not every operator S ∈ T 1

has a generalized Glauber-Sudarshan representation S
�σ in L1(R2d).

Proof. The operator σ∗ has no generalized Glauber-Sudarshan representation. If we assume that
there is a σ∗−σ ∈ L1(R2d) such that σ∗ =σ∗−σ ∗ σ

∗, then applying the Fourier-Wigner transform to
both sides gives that FW (σ∗)=F(σ∗−σ)FW (σ∗), hence F(σ∗−σ)= 1, which contradicts the Riemann-
Lebesgue lemma. □

On the other hand, the theory of Banach modules (Cohen-Hewitt’s theorem) allows us to conclude
that any S ∈ T 1 has an integrable generalized Glauber-Sudarshan representation with respect to some
σ ∈ T 1.

Proposition 3.3. If S ∈ T 1, there exists some σ ∈ T 1 such that S has a generalized Glauber-
Sudarshan representation S−σ ∈ L1(R2d).

Proof. By Proposition 2.4, there exists some f ∈ L1(R2d) such that f ∗σ∗, and by Theorem 3.1,
we get that f = S

�σ . □

Remark. An example of a generalized Husimi-representation has recently been considered by
Keller in Ref. 10, where σ is taken to be a finite-rank operator.

As mentioned in the Introduction, the generalized Glauber-Sudarshan representation in Ref. 15
has appeared in the literature before the publication of Ref. 15, see, for instance, chap. VI of Ref. 2
or Eq. (2.12) of Ref. 23. Hence one could similarly rephrase the phase-space representations dis-
cussed in those papers using Werner’s convolutions, and in fact, the connection between Werner’s
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theory from Refs. 21 and 23 has already been pointed out in Ref. 14, which we will return to in
Sec. V.

A. An operational approach to the generalized Husimi representation

Wódkiewicz22 considered a version of the Husimi representation in an attempt to define a phase-
space representation of states that may realistically be recorded by experiments, and this approach
also leads naturally to the introduction of the generalized Husimi functions; see Ref. 23. In particular,
this allows us to interpret the generalized Husimi representation from an operational point of view,
different from the perspective adopted in Ref. 15. The simultaneous measurement of non-commuting
observables using some measurement device necessarily leads to the introduction of some noise, by
Heisenberg’s uncertainty principle. In Wódkiewicz’ interpretation, the generalized Husimi represen-
tation incorporates this noise due to the measuring device: namely, if the system is in the state S ∈ T 1

and the measurement device is in the state σ, then we assign to S the phase-space representation
Sσ = S ∗ σ̌. In particular, the regular Husimi representation SH corresponds to a measurement device
in the ground state of the harmonic oscillator.

B. Using convolutions to reprove relations between Weyl and Berezin quantization

By Theorem 3.1, we may now use the theory of Werner’s convolutions to shed light on the relations
between the Weyl, Husimi, and Glauber-Sudarshan representations. Known relations between these
representations can now be expressed neatly as the relations FW (f ∗ T )=F(f )FW (T ) and F(S ∗ T )=
FW (S)FW (T ) or as the associativity of convolutions as in part (3) of Theorem 3.1.

Example 3.1. We will use this approach to prove Eq. (5). By Proposition 2.5, FW (S∗T )(z)=
FW (S∗)\FW (T )(z), and if we evaluate this equation at z = 0, we get the first part of Eq. (5). The
second part follows from Theorem 3.1, which states that S = S

�σ ∗σ
∗ if S−σ ∈ L1(R2d) exists. Using

FW (S)=FW (S−σ ∗ σ∗)=F(S−σ)FW (σ∗), we can write the first part of Eq. (5) as

tr(S∗T )=
∫∫

R2d
FW (S)(z′)FW (T )(z′) dz′

=

∫∫
R2d

F(S−σ)(z′)FW (σ∗)(z′)FW (T )(z′) dz′

=

∫∫
R2d

F(S−σ)(z′)FW (σ̌)(z′)FW (T )(z′) dz′

=

∫∫
R2d

FS−σ(z′)F(Tσ)(z′) dz′,

where the last equality uses FW (σ̌)FW (T )=F(T ∗ σ̌)=FTσ by Theorem 3.1. By picking σ = φ ⊗
φ with φ(x) = 2d /4e�πx ·x, we recover the second part of Eq. (5).

Example 3.2. FW (f ∗ T )=F(f )FW (T ) provides a known link between Weyl quantization and
Berezin quantization. Assume that S ∈ T 1 may be represented by S = S

�σ ∗σ
∗, where S−σ ∈ L1(R2d)

and σ ∈ T 1. By Proposition 2.5, FW (S) is the twisted Weyl symbol of S, and by Proposition 2.6,

FW (S)=F(S−σ)FW (σ∗).

If σ = φ ⊗ φ with φ(x) = 2d /4e�πx ·x, one may calculate that FW (σ∗)= e2πix ·ωe
π
2 (z ·z). In this case S

�σ

= SG-S , and we obtain the relation

F(SG−S)=FW (S)e−2πix ·ωe−
π
2 (z ·z),

which relates the symbol of S in the Weyl quantization, FW (S), to the symbol of S in the Berezin
quantization, SG-S . Similar expressions for the Husimi representation are obtained in the same way.
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IV. BEREZIN-LIEB INEQUALITIES

In Ref. 16, Klauder and Skagerstam proved and applied a Berezin-Lieb type inequality for
their extended Husimi and Glauber-Sudarshan representations S

�σ and Sσ . Let σ,σ′ ∈ T 1 be pos-
itive operators with tr(σ) = tr(σ′) = 1. For an operator A ∈ T 1 and β ∈R, Klauder and Skagerstam
established that ∫∫

R2d
e−βAσ′ (z) dz ≤ tr(e−βA) ≤

∫∫
R2d

e−βA−σ (z) dz. (6)

By Theorem 3.1, one might expect that this result can be formulated using Werner’s convolutions.
In fact, Werner proved this result already in Ref. 21 in a more general form. Werner’s proof uses the
following three properties of the convolutions.

Lemma 4.1. Let S be a positive trace class operator with tr(S) = 1 and consider f ∈ L∞(R2d) and
T ∈ B(L2(Rd)) with f ≥ 0 and T ≥ 0. Then we have the following:

(1) f ∗ S ≥ 0 and T ∗ S ≥ 0.
(2) tr(f ∗ S)=

!
R2d f (z) dz and

!
R2d T ∗ S(z) dz= tr(T ).

(3) If 1 denotes the function 1(z) = 1 on R2d and I is the identity operator on L2(Rd), then 1∗S = I
and I ∗ S = 1.

Proof. (1) The straightforward proof is left to the reader.
(2) Consider first tr(f ∗ S). When f ∈ L1(R2d), we can use that FW (f ∗ S)(z)=F(f )(z)FW (S)(z).

Applying this at z = 0 gives the result. To prove the result when
∫
R2d

f (z) dz=∞, one can approximate

f from below by functions in L1(R2d).
The second part is Lemma 2.1 when T ∈ T 1, and when tr(T ) = ∞, one can approximate T by

trace class operators to prove the result.
(3) The convolution of f ∈ L∞(R2d) with S ∈ T 1 is defined by duality, using the condition 〈f ∗S, T〉

= 〈f, T ∗Š∗〉 for any T ∈ T 1.18 One easily checks using the definitions and Lemma 2.1 that 〈1, T ∗ Š∗〉=!
z∈R2d tr(TαzS∗) dz= tr(T )= 〈I, T〉, and hence 1 ∗ S = I. That I ∗ S = 1 is proved similarly. □

In words, convolution with a fixed operator S as in Lemma 4.1 preserves the trace/integral,
positivity, and identity. This is the key to Werner’s proof of the Berezin-Lieb inequality, which now
follows in an elaborated version.

Proposition 4.2. Fix a positive trace class operator S with tr(S) = 1, and let T =T ∗ ∈ B(L2(Rd))
and f = f ∗ ∈ L∞(R2d). If Φ is a positive, convex, and continuous function on a domain containing the
spectrums of T and S ∗T, then ∫∫

R2d
Φ ◦ (S ∗ T )(z) dz ≤ tr(Φ(T )). (7)

Similarly, if Φ is a positive, convex, and continuous function on a domain containing the spectrums
of f and f ∗ S, then

tr(Φ(f ∗ S)) ≤
∫∫

R2d
Φ ◦ f (z) dz. (8)

Proof. First we will explain how the proof may be reduced to the case Φ(t) = t+, i.e., the
function that returns the positive part of t. The reader may confirm that the set of functions Φ where
Eqs. (7) and (8) hold is a convex cone and closed undertaking the supremum. It is also closed
under reflection Φ 7→ Φ̌ and translations Φ 7→ T xΦ for x ∈R—these facts follow from the spectral
calculus and that convolutions with S preserve identity. SinceΦ is assumed to be positive, convex, and
continuous on a compact set, it can be approximated uniformly by positive piecewise linear convex
functions (Ref. 19, p. 35). As is shown in Ref. 19, Theorem 1.5.7, any positive piecewise linear convex
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function can be written as a linear combination of translates and reflections of the function t+—hence
Φ can be approximated by such functions. By linearity, it is therefore enough to prove the result
for t+.

We will restrict the rest of the proof to inequality (7), and inequality (8) follows from a similar
argument. Observe that by the spectral calculus,

tr(T+)= inf {tr(A) : A ≥ 0, A ≥ T },

since 0 ≤ T ≤ A implies tr(T ) ≤ tr(A). Now consider the following calculation:

inf {tr(A) : A ≥ 0, A ≥ T } = inf

{∫∫
R2d

A ∗ S(z) dz : A ≥ 0, A ≥ T

}
≥ inf

{∫∫
R2d

A ∗ S(z) dz : A ∗ S ≥ 0, A ∗ S ≥ T ∗ S

}
≥ inf

{∫∫
R2d

g(z) dz : g ≥ 0, g ≥ T ∗ S

}
=

∫∫
R2d

(T ∗ S)+ dz.

The first equality is simply part (2) of Lemma 4.1. The two inequalities follow since we take the
infimum of larger sets: in the first case, this is true by part (1) of Lemma 4.1, and in the second case,
it is trivially true. The final equality follows by simple integration theory. □

To obtain the result of Klauber and Skagerstam in Eq. (6), we set Φ(t) = e�βx, S = σ̌ in (7), and
S = σ∗, f = T

�σ in (8).

V. QUANTUM HARMONIC ANALYSIS ON PHASE SPACE

When introducing the generalized Husimi and Glauber-Sudarshan representations, Klauder and
Skagerstam assumed that the set of zeros of FW (σ) was empty. In Werner’s theory of convolutions,
there is no reason to assume this in general. In fact, since we claim that FW is a kind of Fourier
transform, one might hope that imposing conditions on the zero set of FW (σ) would lead to results
analogous to Wiener’s Tauberian theorem for functions. Such theorems have in fact been proved in
Refs. 21 and 14, from which we take the following results. A proof and similar statements may be
found in Refs. 14, 18, and 21.

Theorem 5.1. Let σ ∈ T 1.

(a) The following are equivalent.

(a1) The set {z ∈R2d :FW (σ)(z)= 0} is empty.
(a2) If f ∈ L∞(R2d) and f ∗σ = 0, then f = 0.
(a3) If T ∈ B(L2(Rd)) and T ∗σ = 0, then T = 0.
(a4) L1(R2d) ∗ σ is dense in T 1.

(b) The following are equivalent.

(b1) The set {z ∈R2d :FW (σ)(z)= 0} has dense complement.
(b2) If f ∈ L1(R2d) and f ∗σ = 0, then f = 0.
(b3) If T ∈ T 1 and σ ∗T = 0, then T = 0.
(b4) L∞(R2d) ∗ σ is weak∗ dense in B(L2(Rd)).

Using Theorem 3.1, we can formulate this result using the generalized Husimi and Glauber-
Sudarshan representations.
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Corollary 5.1.1. Let σ ∈ T 1.

(a) The following are equivalent.

(a1) The set {z ∈R2d :FW (σ)(z)= 0} is empty.
(a2) If T ∈ B(L2(Rd)) has a generalized Glauber-Sudarshan symbol T−σ ∈ L∞(R2d), then

T−σ ∈ L∞(R2d) is unique.
(a3) Any T ∈ B(L2(Rd)) is uniquely determined by its generalized Husimi representation.

Hence, if we have T ∈ B(L2(Rd)) with Tσ = 0, then T = 0.
(a4) The set of T ∈ T 1, where T−σ ∈ L1(R2d) exists, is dense in T 1.

(b) The following are equivalent.

(b1) The set {z ∈R2d :FW (σ)(z)= 0} has dense complement.
(b2) If T ∈ T 1 has a generalized Glauber-Sudarshan symbol T−σ ∈ L1(R2d), then T−σ ∈

L1(R2d) is unique.
(b3) Any T ∈ T 1 is uniquely determined by its generalized Husimi representation. Hence, if

we have T ∈ T 1 with Tσ = 0, then T = 0.
(b4) The set of T ∈ B(L2(Rd)), where T−σ ∈ L∞(R2d) exists, is weak∗ dense in B(L2(Rd)).

Proof. Using Theorem 3.1, we see that each part of this corollary is the same part of Theorem
5.1, written in the terminology of generalized Husimi and Glauber-Sudarshan representations. We
also use that parts (a1) and (b1) are satisfied for σ if and only if they are satisfied for σ̌ or σ∗ since
a simple calculation shows that FW (σ̌)(z)=FW (σ)(−z) and FW (σ∗)(z)=FW (σ)(−z). □

Remark. Klauder and Skagerstam also discuss the case where FW (σ) has zeros15 and arrive at
the results similar to Corollary 5.1.1. They do not, however, consider which Lp-space the generalized
Glauber-Sudarshan symbol T

�σ belongs to.

In the interpretation of Wódkiewicz discussed in Sec. III A, the generalized Husimi function Sσ
of S ∈ T 1 takes into account the effect of the measurement device, which is assumed to be in the
state σ ∈ T 1. In this interpretation, the equivalence of (b1) and (b3) in the corollary means that if
{z ∈R2d :FW (σ)(z)= 0} has a dense complement, then one may in theory recover the state S from
the distribution Sσ . This connection and result has been noted in Refs. 3 and 14, who also noted that
since there exist operators σ such that {z ∈R2d :FW (σ)(z)= 0} does not have dense complement,
Corollary 5.1.1 contradicts the claim in Ref. 23 that the generalized Husimi function Sσ always
“contains complete information about the measured state” (Ref. 23, p. 636), and hence it also shows
that a formal reconstruction in Ref. 23 procedure to get S from Sσ will not always work.

Finally, we mention that the spectrum of an operator σ, defined as the closure of {z ∈R2d :
FW (σ)(z), 0}, may be identified with the Arveson spectrum of σ for the automorphism α, see
Ref. 18.

VI. BEREZIN QUANTIZATION ON OTHER PHASE SPACES

Theorem 3.1 shows that the generalized Glauber-Sudarshan and Husimi representations may be
expressed using the convolutions of operators and functions. Hence, we see that if we can define these
convolutions on more general phase spaces, we would also obtain generalized Glauber-Sudarshan and
Husimi representations on these phase spaces. Kiukas et al.13 have shown that the integral defining
f ∗σ∗ in Eq. (2) exists in the more general context where G is a locally compact, unimodular (see Ref.
12 for the non-unimodular case), second countable connected Hausdorff group with Haar measure
µG. Let U : G→B(H) be a projective unitary representation of G on some separable Hilbert space H.

In this case, for any positive σ ∈ T 1(H) with tr(σ) = 1 and f ∈ L∞(G), the vector-valued integral∫∫
G

f (g)U(g)σ∗U(g)∗ dµG(g) (9)

defines a bounded operator onH in the ultraweak sense (Ref. 13, Theorem 1), i.e., the weak∗ topology
on B(H) induced by B(H) being the dual space of T 1(H). Since the generalized Glauber-Sudarshan
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symbol S
�σ on R2d is given by S = S

�σ ∗σ
∗ by Theorem 3.1, we see that on a group G as above we

may consider f to be a Glauber-Sudarshan symbol of ∫∫ Gf (g)U(g)σ∗U(g)∗ dµG(g).
Since the Berezin quantization on R2d may also be expressed as the convolution operation f 7→

f ∗σ∗ with σ = φ ⊗ φ where φ(x) = 2d /4e�πx ·x, we see that each σ ∈ T 1(H) defines a version of the
Berezin quantization on G by

f 7→
∫∫

G
f (g)U(g)σ∗U(g)∗ dµG(g) for f ∈ L∞(G).

Similarly we may define a generalized Husimi representation Sσ of S ∈ T 1(H) on G by Sσ(g) =
tr(SU(g)σU(g)∗), simply by replacing π(z) with U(g) in Eq. (3) which defines the convolution of
the two operators. This Husimi representation will then satisfy an integrability condition similar to
Lemma 2.1 (Ref. 13, Lemma 2), provided that G is unimodular.12

These considerations may also be formulated in terms of covariant observables,3,4,9,12,13,21 a
special class of positive operator valued measures. In this setting, Holevo9 and later others4,12,13,21

proved a “converse” of Eq. (9) that amounts to a characterization of covariant observables; namely, that
any map Γ : L∞(G)→B(H) satisfying certain properties must be given by f 7→ ∫∫ Gf (g)U(g)σ∗U(g)∗

dµG(g) for some positive σ ∈ T 1(H) with tr(σ) = 1. A reference for these topics is the book3 and
references therein.
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