
 
 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 
 

98 
 

Volume 5(3), 98–119. http://dx.doi.org/10.18608/jla.2018.53.7 

Gaze-Driven Design Insights to Amplify Debugging 
Skills: A Learner-Centred Analysis Approach 
Katerina Mangaroska1, Kshitij Sharma2, Michail Giannakos3, Hallvard Træteberga4, Pierre 
Dillenbourg5 

Abstract 
This study investigates how multimodal user-generated data can be used to reinforce learner reflection, improve 
teaching practices, and close the learning analytics loop. In particular, the aim of the study is to utilize user gaze 
and action-based data to examine the role of a mirroring tool (i.e., Exercise View in Eclipse) in orchestrating basic 
behavioural regulation during debugging. The results demonstrated that students who processed the information 
presented in the Exercise View and acted upon it, improved their performance and achieved a higher level of 
success than those who failed to do so. The findings shed light on what constitutes relevant data within a particular 
learning context in programming using gaze patterns. Moreover, these findings could guide the collection of essential 
learner-centred analytics for designing usable, modular learning environments based on data-driven approaches. 
 

Notes for Practice 

• Mirroring tools could regulate learner behaviour depending on the contextual set up of the 
programming environment. 

• This study demonstrated that students who improved their performance and achieved a higher level of 
debugging success have gaze patterns that corresponded with attention shifts with the mirroring tool 
and other areas of interest (AOIs). 

• Visual attention strategies among novices are not as well developed as they are among experts. This 
is shown in the successful and unsuccessful debugging behaviour patterns calculated from two- and 
three-way transition probabilities that we observed. 

• IDE-based (integrated development environment) learning analytics combined with gaze data could 
aid researchers and educators in designing and delivering interventions to enhance student progress 
by guiding them to attend to the right information at the right time so as to maximize student 
understanding of relevant concepts. 
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1. Introduction 
To gain greater understanding of user needs and behaviours, researchers should utilize the available multifaceted user-
generated data, which will empower them to design technology that amplifies human learning. More specifically, they should 
employ various modalities of user-centred analytics to improve learning, predict behaviour, and advise users and educators by 
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converting educational data into meaningful information. However, most educational systems still have concerns about what 
constitutes relevant data (Verbert et al., 2014), and fail to consider user perspectives or actively involve users in the design 
and development of learning experiences. Moreover, the majority of past studies (Mangaroska & Giannakos, 2017) focus on 
data extraction based on convenience and availability (e.g., click-stream data from learning management systems), rather than 
on the richness and objectivity of data that sometimes cannot be captured verbally, with logging actions, or by simple 
observation. Thus, extensive research in psychophysiology, linking psychological and cognitive states and processes to various 
measures, already exists (Kramer, 1990; Rowe, Sibert, & Irwin, 1998), but is less focused on programming. However, more 
insights have been generated into perceptions of task difficulty using psychophysiology measures (Fritz, Begel, Müller, Yigit-
Elliott, & Züger, 2014), working memory and language processing in program comprehension (Siegmund et al., 2014), finding 
defects in source code (Sharif, Falcone, & Maletic, 2012), and comprehending different representations of code (Sharif & 
Maletic, 2010; Bednarik, 2012).  

Hence, this study aims to use eye-tracking to gain insights into user debugging behaviour (e.g., how users process 
information or interact with visual information) utilizing a mirroring tool. The mirroring tool is a special plug-in (i.e., Exercise 
View in Eclipse) that captures user programming actions and visualizes them to the user. The idea behind the mirroring tool is 
to raise awareness of the user’s own actions and reinforce reflective learning. Thus, this paper contributes to the knowledge 
base of learning-centred analysis by providing evidence about how mirroring tools can orchestrate behaviour regulation skills 
(e.g., visual attention, working memory) within the academic context. Although gaze data has already proven its potential and 
value in understanding how students learn to program and debug (Sharma, Jermann, Nüssli, & Dillenbourg, 2012), little 
consideration has been given to how gaze data can be combined with other forms of more conventional learning analytics (e.g., 
click-stream) to inform user-centred design. Taking this into consideration, the aim of the study is to examine the role of 
Exercise View in the user’s debugging behaviour and to empower multimodal user-centred analysis to design relevant learning 
strategies for programming/debugging. As a result, this study addresses the following research questions: 

 
RQ1: What is the level of student visual attention to the mirroring tool (i.e., Exercise View)? 
RQ2: How are student expertise, success, and gaze patterns related? 
RQ3: How does time spent on the mirroring tool relate to performance (i.e., code produced to solve a task)? 
RQ4: What gaze patterns relate to high debugging success and what is the role of mirroring capabilities (i.e., Exercise 

view)? 
 

The rest of paper is structured as follows: Section 2 outlines the related research; Section 3 presents our research objectives; 
Section 4 presents our methodology; Section 5 presents the empirical results. Section 6 discusses the results derived, while 
Section 7 summarizes the contribution of this paper. 

2. Related Work 
2.1. User-Centred Design and Learning Analytics 
Digital technology is rapidly changing the way students learn and engage in learning activities. At the same time, huge amounts 
of user-generated data are becoming available. In order to utilize the produced data-streams to support the design of user-
centred learning systems, new tools and practises are required. To accomplish this and design user-centred learning 
environments that are usable and underpin a robust learning experience, there is an ongoing challenge to converge techniques 
and methods from interdisciplinary fields such as software engineering, cognitive sciences, and technology enhanced learning 
(TEL; Balacheff & Lund, 2013). To tackle this goal, researchers need to utilize learning analytics to inform learning designs, 
and develop data-driven tools and learning strategies that will enhance teaching practices and student learning experiences 
(Lockyer & Dawson, 2011; Mangaroska & Giannakos, 2017; Siemens, 2012). 

Most of the current educational systems focus on the educators’ view and rarely involve students in the design and 
development processes. For instance, a literature study (de Quincey, Turner, Williams, & Kyriacou, 2016) documented that 
from 22 learning analytics related systems, only five are designed to be used entirely by students, and only few are available 
for general use. Martinez-Maldonado et al. (2015) employed a five-stage LATUX workflow to design, deploy, and validate 
awareness tools in TEL — utilizing user-centred analysis. The study underlined the importance of user-centred design as a 
process of refining and designing visual awareness tools for specific contexts. Moreover, Wise (2014) proposed a pedagogical 
intervention design concept that emphasizes the importance of enhancing existing learning analytics practices in the design of 
user-centred teaching and learning activities considering new technologies. Dawkins (2016) working at the intersection of 
learning analytics and user-centred design, depicted the significance of “content strategy” as a valuable and missing component 
of learning analytics for improving learning design. This aspect has been neglected in many studies as data extraction is based 
on availability rather than user needs. Thus, selecting and deciding how to employ different learning analytics to support user-
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centred design is a challenging task that requires contextual information for interpretation. Consequently, one of the aims in 
this study is to examine the contextual set up of a programming environment for observing what constitutes relevant data when 
learners engage in problem-solving tasks (i.e., debugging), as this information could provide valuable input in designing user-
centred learning experiences for teaching and learning programming using gaze data. 

2.2. IDE-Based Learning Analytics 
In computing education, students spend most of their time working on programming assignments in integrated development 
environments (IDEs). Thus, it is logical for educators and researchers to use IDEs to collect continuous streams of data in 
order to make sense of learner actions and behaviours, and thereby improve teaching and learning (Altadmri & Brown, 2015). 
A legacy of research depicts early attempts to study learners’ programming progress by using think-aloud protocols (Ericsson 
& Simon, 1980; Kessler & Anderson, 1986), code snapshots (Bonar & Soloway, 1983), keystroke-level data (Guzdial, 1994), 
and log data (Goldenson & Wang, 1991; Jadud, 2006). Nowadays, the functionality of many IDEs can be extended with plug-
ins to collect data with additional features, lifting the previous technological restrictions. Examples include student–IDE 
interactions (Brown, Kolling, McCall, & Utting, 2014; Hundhausen, Olivares, & Carter, 2017), asynchronous discussion posts 
(Carter & Hundhausen, 2015), automatic testing against test cases (Edwards & Perez-Quinones, 2008), survey/quiz data to 
gain insights into learner attitudes and conceptual understanding of tasks (Ihantola, Sorva, & Vihavainen, 2014), studies 
collecting data from eye-trackers (Busjahn et al., 2014; Kevic et al., 2015; Mangaroska, Sharma, Giannakos, Trætteberg, & 
Dillenbourg, 2018), mouse and keyboard pressure (Arapakis, Lalmas, & Valkansas, 2014; Begel, 2016), heart rate (Ahonen 
et al., 2016), and electro-dermal activity (Müller, 2015). Although data with additional features can help explain how students 
learn to program, to our knowledge, none of the hardware devices used to collect data from learners engaged in programming 
tasks is directly integrated with the IDE, which again imposes limitations on the range of data that can be collected. However, 
researchers have collected and analyzed various analytics from IDEs, ranging from very low level (e.g., click-stream 
interactions, including mouse movements and keystrokes) to higher level (e.g., line-edits to source code and IDE actions). 
Furthermore, different statistical predictors were used to predict learner performance, such as Error Quotient (Jadud, 2006) 
and Watwin Score (Watson, Li, & Godwin, 2013), focusing on compilation errors; Normalized Programming State Model 
(NPSM) focusing on editing, compilation, and debugging behaviours (Carter, Hundhausen, & Adesope, 2015); and learner 
programming behaviours using a series of programming states (Blikstein et al., 2014). 

Considering the state-of-the-art with respect to IDE plug-ins and data collection tools, Hundhausen et al. (2017) presented 
a 4-step cyclical process model for IDE-based learning analytics — 1) collect data, 2) analyze data, 3) design intervention, and 
4) deliver intervention — that can be followed to explore the additional sources of data that have not yet been investigated. 
Thus, for the data collection for this study, the authors considered the taxonomy of standard programming data that can be 
automatically collected from Eclipse IDE, and the taxonomy of data augmented with additional features and functionality (i.e., 
gaze data). Regarding the data analysis, this study used two of the six different techniques proposed by Hundhausen et al. 
(2017; i.e., counting raw data points and visualization of data from IDE-based analytics). Furthermore, in this study Eclipse 
IDE was also used to raise awareness of the user’s own actions and reinforce reflective learning by utilizing the Eclipse plug-
in (i.e., Exercise View) that visualizes learner actions while they work on programming tasks. The authors consider this as a 
step towards the last two stages in the cyclical process model for IDE-based learning analytics, design, and delivery of 
intervention to enhance student progress. 

2.3. Tools Usage within Computer-Based Learning Environments 
Past studies show that students are not passive recipients of instructional design decisions because they control their choices, 
considering their preferences and preconceptions (Winne, 1982, 2006; Lust, Elen, & Clarebout, 2013a). Doyle (1977) and 
Winne (1982) introduced the cognitive mediation paradigm and demonstrated that students respond differently to instructional 
design decisions (e.g., tools). Furthermore, Lust et al. (2013a) showed that students are responsible for shaping their learning 
path while regulating tools usage throughout the course. In general, computer-based learning environments introduced 
different tools that support and shape student learning. For example, information tools outline the learning resources and 
compensate for students’ lack of domain knowledge; scaffolding tools guide students to reach their learning goals and 
compensate for their lack of cognitive and metacognitive strategies; mirroring tools reflect user actions to aid them in 
maintaining representation of their progress and encourage them to enhance their metacognitive activities; and cognitive tools 
induce higher order thinking skills (Lust, Elen, & Clarebout, 2013b). Tools are important for developing knowledge and skills, 
regulating behaviour (e.g., visual attention, following instructions, working memory), and enriching and self-regulating 
learning practices (Hoskins & van Hoof, 2005). However, tool usage is influenced by students’ task perceptions, their skill in 
using the tool, and their motivation (Perkins, 1985). Consequently, this study tries to orchestrate the behavioural regulation 
(e.g., visual attention, following instructions, working memory) of participants engaged in a debugging task using a mirroring 
tool. In addition, visual attention strategies have not been sufficiently explored regarding their contribution to learning 
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programming. Therefore, this study utilizes a mirroring tool to explore this issue in a lab experiment with students who already 
have domain knowledge and basic-to-intermediate cognitive and metacognitive skills in programming. 

2.4. Eye-Tracking and Learning Technologies 
In computer-based learning environments, the text is still the core component (Rayner, 2009). However, visualizations such 
as drawings, images, diagrams, and videos are usually associated with the text, imposing attentional demands on learners that 
are not always helpful during the learning process (e.g., increasing the cognitive load without any learning gain). For written 
textual information in computer-based learning environments, a hierarchical structure is especially helpful for learners with 
low prior knowledge (Amadieu, Van Gog, Paas, Tricot, & Mariné, 2009), as is the case with novices in programming for 
whom attention can be guided to the main concepts on which they need to focus. Moreover, if the textual information is 
complemented by visualizations such as images or diagrams, learners are exposed to the split-attention effect or spatial 
contiguity effect (Ayres & Sweller, 2005). In these learning scenarios, eye-tracking data can aid researchers and educators in 
studying attention and shifts in attention underlying the split-attention effect. Past research has shown that under experimental 
conditions, learners focus on text; under naturalistic conditions, they focus on images, and when the information is 
appropriately integrated, then learners process it all (Jarodzka, Janssen, Kirschner, & Erkens, 2015). Moreover, eye-tracking 
data has shown that as learners increase their knowledge and expertise they tend to fixate faster on more relevant information 
(Charness, Reingold, Pomplun, & Stampe, 2001; Jarodzka, Scheiter, Gerjets, & Van Gog, 2010). This can aid researchers and 
educators in creating models of learning that will guide learners to attend to the right information at the right time in order to 
maximize their comprehension of relevant concepts. The aforementioned research complements the cognitive theory of 
multimedia learning, which builds on the philosophy of designing e-learning environments focusing on cognitive theories of 
how people learn and on scientifically valid research in multimedia learning and human–computer interaction (Mayer, 2005). 
Eye-tracking can be used to enhance this philosophy, by utilizing information coming from our neurological processes, 
unveiling the way we process information, and allowing us to improve the learning environment design to amplify our learning 
and capacities. 

2.5. Eye-Tracking and User-Centred Design 
Eye-tracking helps researchers gain insights into user behaviour (e.g., how users process information or interact with visual 
information) that cannot be captured verbally, via other more ordinal user-data (e.g., click-streams), or by observation (Cooke, 
2005). Moreover, in educational technology, developers and researchers must design intuitive systems with high user 
experience and learnability (i.e., learning experience; Garreta Domingo & Mor Pera, 2007). In order to accomplish this, the 
systems need to follow user-centred design guidelines, maintain minimal errors, and avoid user-frustration (Bojko, 2013). 
In eye-tracking studies, saccades and fixations are the main indicators of user behaviour for interacting and processing 
information. Previous studies (Ali-Hasan, Harrington, & Richman, 2008; Garrard, 2014; Granka, Joachims, & Gay, 2004; 
Tzafilkou & Protogeros, 2017) used eye-tracking data to evaluate and improve the design and the user experience in different 
development stages. In one study, Garrard (2014) reported that a high number of saccades indicates a long time to search for 
information, while a high number of fixations represents a high degree of user uncertainty. In a different study (Ramakrisnan, 
Jaafar, Razak, & Ramba, 2012), researchers evaluated the design of a learning management system (LMS) interface and 
highlighted the user’s need for simplicity, memorability (e.g., how easy is it for the returning user to perform effectively), and 
control over the interaction with the LMS. The findings from these studies support Mele and Federici’s (2012) idea that eye-
tracking is a “psychotechnology” because it emphasizes the intra-systemic perspective of the relationship between the user 
and the technology. These studies show that eye-tracking provides unique access to user behaviour (in educational contexts, 
learners), hence one can use learner gaze data to extract information and feed the data back to the learners while efficiently 
closing the learning analytics (LA) loop (Clow, 2012). The key step in closing the LA loop is to feed back the generated data 
by or about learners (output) to the same group of learners through interventions that alter the learning process (input). Thus, 
as eye-tracking is considered an objective technique that can provide insights into many aspects of human cognitive abilities, 
such as problem solving, reasoning, and mental strategies (Ball, Lucas, Miles, & Gale, 2003; Just & Carpenter 1976; Yoon & 
Narayanan, 2004), gaze data can be utilized to inform the design of learning technologies by effectively covering a wide range 
of user needs and behaviours. 

As can be seen from past studies (Duchowski, 2002; Mele & Federici, 2012), eye-tracking is a promising methodology for 
collecting data, measuring user behaviour, and calculating the amount of processing (e.g., ease of use, perceived playfulness, 
cognitive load) when users interact with computer systems. This relevant way of observing the dynamic trace of where user 
attention is directed in relation to the visual information presented means that designers can embrace and practice user-centred 
design. 
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2.6. Eye-Tracking and Problem Solving 
Most results show that eye-tracking allows researchers to gather attentional data for users while they perform tasks. Likewise, 
previous studies (Harbluk, Noy, Trbovich, & Eizenman, 2007; Jones, 2003; Kaller, Rahm, Bolkenius, & Unterrainer, 2009; 
Reingold, Charness, Pomplun, & Stampe, 2001) had shown that eye-tracking can explain various constructs like contextual 
expertise, task dependency, and task complexity. 

Reingold et al. (2001) conducted a study to understand how the expertise of chess players (novices, intermediate, and 
experts) and their way of encoding a given chessboard state are related. Using two different chess configurations (random and 
original), the researches tried to calculate the area of visual span while participants were asked to detect a modified piece. The 
results showed that experts had a larger area of visual span and were faster at detecting modifications in the original game 
configurations than in the random ones, while there were no differences found between novices and intermediate players. 
Moreover, the researchers reported that experts do encode larger chunks of the configuration than the rest of the players due 
to their use of the foveal and parafoveal regions of the eye (Chase & Simon, 1973). 

Considering the relationship between task dependency and gaze patterns, Kaller et al. (2009) studied the time course of 
visuospatial problem solving. During the experiment, participants were randomly assigned to two groups, depending on where 
the start state and the goal state were presented. For the start-goal group, the start states were always presented on the left side 
and the goal states were presented on the right side. For the goal-start group, the arrangement was inverted. During the initial 
thinking time (i.e., time between the presentation of the problem and the onset of the first action), most subjects directed their 
fixations mainly to the left side irrespective of the state arrangement. As a result, the authors discovered a strong dependency 
between personal preference and gaze pattern. Moreover, the data from the experiment displayed task-dependent eye-
movement patterns with respect to the subsequent gaze alternations, supporting a sequential model of problem solving of 
internalization, planning, execution, and verification. Another relevant study was carried out to compare car drivers driving 
while performing (or not performing) arithmetic tasks (Harbluk et al., 2007). The results showed that drivers pay less attention 
to the mirrors, the instruments, and the peripherals while performing a task rather than when they have no additional cognitive 
task other than focusing on driving. Moreover, the subjective ratings regarding cognitive load, reduction of safety, and 
distraction increased from “no task” to “easy task” to “difficult task” conditions. Jones (2003) used a car park problem to find 
the relationship between problem solving processes and gaze data. The goal of the car park problem is to maneuver a car out 
of a parking space. The parking lot has other cars as well, which can be moved only in their initial orientation. The authors 
looked at the fixation time three moves prior to the car move and three moves after the car move. The fixation time on the 
problem was longer for the car move than for the prior or succeeding moves. Moreover, non-solvers spent significantly more 
time on the free area than the solvers. 

The aforementioned studies show that a relationship exists between gaze patterns and expertise (e.g., chess players), task 
complexity (e.g., driving), and task-based performance (e.g., car park problem). Hence, in the next subsection the authors give 
examples of a specific problem-solving task (i.e., debugging a code) that was considered while setting up the research task in 
this study. 

2.7. Eye-Tracking and Debugging 
Previous eye-tracking studies (Bednarik, 2012; Bednarik & Tukiainen, 2004a, 2004b; Bednarik & Tukiainen, 2008) show a 
clear relationship between gaze patterns and task-based performance in debugging. Bednarik and Tukiainen (2004b) conducted 
a study of restricted focus viewer (RFV) against a control condition (without RFV) in a debugging task. An RFV is a special 
tool that blurs parts of the screen to make participants focus on a specific area of interest (AOI). The results showed no 
significant difference between the two experimental conditions, but displayed a relationship between debugging success and 
expertise. In terms of gaze behaviour, the RFV condition induced more switches from the code area to the output area than the 
control condition (Bednarik & Tukiainen, 2004a). In a different study, Bednarik and Tukiainen (2004b) investigated the 
relationship between expertise, gaze for code visualization, and the debugging success of programmers. There was a 
relationship between expertise and success, but the results were non-conclusive regarding the use of visualization in the 
debugging task. Finally, in a recent study, Bednarik (2012) investigated whether programmers who did well (regardless of 
expertise) were also the ones who used and integrated different information sources more than the programmers who did not 
perform well. The author found that greater expertise allowed participants to spend more time integrating the information from 
multiple representations, but the difference was more significant during the last stages of the debugging task. Moreover, Sharif 
et al. (2012) compared the first scan time (i.e., the time taken by the participants to read the code for the first time) against the 
different levels of debugging success. The results showed that successful debuggers had a significantly lower first scan time 
than the less successful ones. In terms of gaze behaviour, this study showed that successful debuggers had a more vertical gaze 
than those who performed less successfully during the debugging task. 



 
 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 
 

103 
 

3. Research Objective 
The presented examples have shown that visual attention could be an important proxy for understanding the mechanisms 
underlying learning to program or debug. However, the current understanding of the role of visual attention in program 
comprehension or debugging and coordination of representations is still at an early stage. Previous studies (Bednarik, 2012; 
Bednarik & Tukiainen, 2004b; Bednarik & Tukiainen, 2008; Stein & Brennan, 2004) have used eye-tracking to capture 
programmers’ visual attention while debugging (i.e., finding and reporting errors/bugs) and construct interpretations of 
individual differences and expertise. Nonetheless, it has not been sufficiently explored whether and how visual attention 
strategies contribute to the process of learning programming and debugging, and how the strategies differ across various levels 
of expertise. Consequently, this study attempts to explore this issue further by adding novelty and uniqueness to the research 
design of the performed experiment. The following are the salient characteristics of the present study: 
 

1. We allowed participants to edit the code. This way we have a more complete task than the studies described 
in Section 2.4. Since the debugging process consists of three phases — program comprehension, finding the bug, 
and removing the bug — not allowing students to write the code fails to capture the last phase of the debugging 
process. Therefore, instead of just finding the bugs (as it was the case in Bednarik, 2012; Bednarik & Tukiainen, 
2004b; Bednarik & Tukiainen, 2008; Sharif et al., 2012), participants in the present study were also required to 
remove those bugs. 

 
2. We have a more systematic way of debugging in the form of unit tests. We designed the unit tests for the 

code and the participants were required to solve all of them in a designated period. This was not the case with 
the experiments reported in Section 2.4. Moreover, in most of the studies, participants were provided with a 
sample code and one instance of the output (Bednarik, 2012; Bednarik & Tukiainen, 2004b; Romero, Cox, du 
Boulay, & Lutz, 2002; Romero, Cox, du Boulay, & Lutz, & Bryant, 2007), and they could not edit the code. As 
we pointed out in the previous paragraph, not letting the participants debug the program hinders their 
understanding of the debugging process. 

 
3. We designed a mirroring tool (a plug-in to Eclipse) to reflect progress to the user, as well as success or failure 

during the debugging task. Success or failure was based on the number of unit tests passed by each participant. 
 

4. Previous studies (Bednarik & Tukiainen, 2004b; Romero et al., 2002) used an external graphical representation 
of the code (data flow, control flow, class-object diagrams) to aid in participant understanding. However, this 
representation might hinder the understanding of the code if the participant had no previous knowledge of using 
representations in learning programming, as it was evident from the reported gaze patterns; participants did not 
pay much attention to the visual representation. In this study, we used the “variable view” provided by Eclipse 
IDE to show the state of the different selected variables during debugging. Participants could choose when to 
enable this view and when to remove it from the screen if they found it redundant. 

 
5. In terms of eye-tracking analysis, the saliency comes from the previous four points. Since we allowed 

participants to edit the code and execute it as many times as they wanted, there were frequent switches in the 
code, errors, and output areas of the IDE. Moreover, frequent switches were observed between the code and the 
unit test panels. When participants enabled the “variable view” to get help from the IDE to debug the code, this 
action added an area of interest (AOI) on the screen. Another important difference was the number of used AOIs. 
In most of the reported studies, the authors used three AOIs (code, visualization, and output) and a few used a 
fourth one, called sequence. In our study, we decided to define seven main AOIs (i.e., code, exercise view, Junit 
test, problem, console, variable view, and debug view) to gain a better understanding of user cognitive skills. 
Additionally, for completion we added two more AOIs based on the IDE: toolbar and project explorer. Table 1 
presents a detailed description of the AOIs. Finally, during the analysis stage, we calculated two- and three-way 
transitions for greater understanding of user cognitive needs, as well as for higher validity and reliability of the 
study; previous studies reported in Section 2.4 analyzed only two-way transitions. 
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Table 1. Descriptions of the AOIs in Eclipse IDE 

Area of Interest (AOI) Description 
Toolbar The toolbar of the IDE 
Variable View  During a debug, allows changing the value of a variable to test how your program 

handles a particular value or to speed through a loop 
DebugView  Allows managing the debugging or running of a program in the workbench 
ProjectExplorer Provides a hierarchical view of the artefacts in the workbench 
Junit  Allows listing the unit tests to be passed by the main Java class 
Code Code panel where the code is written 
ExerciseView  Allows seeing the coding, saving, testing, and progress 
Problem  Shows the errors and/or warnings raised by the Java Compiler 
Console Shows the output of the code 

 
Consequently, the research objective of this paper is threefold. First, the authors wanted to gain more insight into how users 

process information in debugging tasks and how they interact with visual information utilizing a mirroring tool. For this 
purpose, the authors designed a debugging task in Eclipse IDE that was also extended with a plug-in (i.e., the mirroring tool 
Exercise View) that collects data with additional features while students program/debug. Second, the authors wanted to 
examine the role of Exercise View in debugging, and collect rich and objective multimodal data that can be used practically 
and effectively to better prepare future curricula and design learning strategies considering expertise and knowledge 
proficiency. Finally, the authors wanted to gain more understanding in behaviour regulation for developing efficient tools and 
methodologies for teaching problem-solving skills. 

4. Methodology 
4.1. Debugging Activity 
The authors designed a debugging activity in conjunction with their partners from École Polytechnique Fédérale de Lausanne. 
The main task assigned to participants was debugging a Java class named Person, which manages parent–child relationships. 
The provided code tried but failed to ensure consistent object relationships, such as a mother of a child is female and a father 
of a child has that child in his list of children, as shown in Figure 1. Participants could check the correctness of the code by 
running the provided unit tests. 

4.2. Participants 
During the spring of 2017, an experiment was performed at a contrived computer lab setting at École Polytechnique Fédérale 
de Lausanne with 40 computer science majors (12 females and 28 males) in their third semester. The mean age of the 
participants was 19.5 years (Std. Dev. = 1.65 years). In the previous semester, all of the participants had taken a Java course, 
where they were predominantly using Eclipse as their integrated development environment (IDE). Moreover, they were also 
familiar with the built-in debugging tool provided by Eclipse. The focus of this study is to examine how user-generated gaze 
data can be used to reinforce student reflective practices. Moreover, the study also considered whether students can practice 
problem-solving strategies (e.g., debugging a code) coupled with reflection (from a mirroring tool) rather than using trial and 
error. 

4.3. Procedure 
Upon arrival at the laboratory, participants signed an informed consent form. After this, and prior to the debugging task, each 
participant had to pass an automatic eye-tracking calibration routine to accommodate the eye tracker’s parameters for each 
participant’s eyes to ensure accuracy in tracking the gaze. Their gaze during the debugging task was recorded using an SMI 
RED 250 eye-tracker at 250Hz. Next, participants were asked to perform a pre-task, which required removing 90 errors from 
a skeleton code within 10 minutes. After this task, participants were given 40 minutes to solve five debugging tasks presented 
as part of the main method of the main class of 100 lines of Java code. The code for the main debugging task contained no 
syntactic errors, and the participants were notified about this fact. Throughout the experiment, the authors recorded and later 
analyzed participants’ fixations (i.e., the state when the eye remains still over a time) and saccades (i.e., the rapid motion of 
the eye from one fixation to another; Holmqvist et al., 2011). For their participation in the experiment, participants were 
rewarded with CHF 25 (25 Swiss Francs). 
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Figure 1. Consistencies absent from the original version of the code provided to participants in the present study. There were 
a few consistency checks implemented as unit tests. 1) Gender consistency: the mother should be female and the father should 
be male. 2) Child–parent consistency: if Jens is the child of Merit, Merit should be the mother of Jens, and vice-versa. 3) The 

removal of a child–parent relationship from either a parent or a child should also apply to the whole family. 4) Adoption 
consistency: the child–parent (addition and removal) and the gender consistencies should be maintained in the case of adoption. 

4.4. The Mirroring Tool 
For the purpose of the experiment, students used the Eclipse IDE to complete the exercise. The exercise had pre-written unit 
tests and five questions that led students to check the correctness of the code and debug it. Their Eclipse installation had been 
extended with an Exercise View (EV) plug-in that collected data from their use of Eclipse (see Figure 2). The data that this 
plug-in collected and mirrored back to the students included the following: lines of code, number of errors and warnings in 
the code, how many times the standard Java main method was launched, the unit test results (success, failure, or error), 
debugging events (e.g., stopping on break points or resuming execution), and execution of commands (e.g., stepping through 
code). The success, failure, or error of the tests give students some type of feedback about their progress that could support 
them to work incrementally towards the exercise’s learning goals. It is more than obvious that students could not learn to 
debug in 40 minutes, but researchers could observe the gaze transitions between the different elements in the IDE, as well as 
when and how often students attend to the information that the EV reflects. This information could later be used to implement 
a user-centred approach in designing learning strategies for programming and debugging. 
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Figure 2. The Exercise View configured for the experiment. The top panel shows the progress of the “Person” class. 
The first line shows the lines of code, the number of errors and warnings by the Java compiler, and the number of times the 
code has been compiled. The second line shows the number of times the code has been run (not as part of a unit test). The 

third line shows the counts of unit tests. Arrows show the change of the metric, the direction shows the increase/decrease of 
the metric, while the colour shows whether the change is considered an improvement (i.e., green) or not (i.e., red). The 

bottom panel shows statistics from using the Eclipse debugger. 

4.5. Variables 
Expertise: The expertise was decided by a pre-task test, where students were presented with a task of removing 90 errors 
from a skeleton code. The simple instruction was to write a minimal “stub” for a Java class so that the errors could be 
removed. The students were given 10 minutes to complete the pre-task. All but five students were able to finish the pre-task 
in the allotted amount of time. These five students were labelled as “novices.” The rest of the 35 students were labelled as 
“experts” (N = 25) or “novices” (N = 10) based on the minimalism in their code (the fewest lines of code written and 
compiled without error). 

Debugging success: For the debugging task, there were 10 unit tests prepared by the instructor (see subsection 
Procedure). To limit the debugging to one of the panels of the Eclipse IDE, the researchers introduced a few bugs in 
otherwise complete code that would make the code fail all ten unit tests. In order to pass all of the unit tests, the students 
were required to solve the debugging exercise in a particular order. Participants were given 40 minutes to complete the task. 
At the end of the 40 minutes, they were told to stop, and the number of unit tests passed at that point was taken as the 
measure of “debugging success.” 

Individual areas of interest (AOIs): Eclipse IDE was divided into nine AOIs (see Table 1). During the analysis, the 
researchers computed the proportion of time spent on each AOI as well as transitions between the different AOIs. The results 
for the AOIs were later compared to participant performance and expertise. 

Transitions between AOIs: For the purpose of data analysis, the researchers decided to compute the transition 
probability of moving from one AOI to another. This is called a two-way transition probability. This type of transition shows 
the attention shift from one part of the IDE to another, which might correspond to a specific behavioural pattern while 
students were debugging the code. For example, the transition from Code to Console might depict the behaviour of having a 
hypothesis about the functionality of the code after changing a few lines and checking the output in the console in order to 
verify the hypothesis. Moreover, the researchers also computed a three-way transition probability between different AOIs to 
capture a longer sequence of behaviour similar to the one captured by the two-way transition. For example, a three-way 
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transition “Code–Console–Variable View” could depict a behaviour of a non-verified hypothesis about the functionality of 
the code and a subsequent attempt to experiment with different values of the variable in question. 

Code reading patterns: Understanding the pre-written code is an essential part of a debugging task. Sharma et al. (2012) 
have shown in their experiment about program comprehension that a specific way of reading the code is important for 
successful programming. When a programmer follows the data flow of a code written in a procedural/object-oriented 
language, the eyes move mostly in a vertical direction. However, when the code is being read as an English text, the eyes 
move mostly in a horizontal manner. For the purpose of the experiment, the researchers computed the average “saccade 
horizontality” as a measure of different reading patterns. 

4.6. Data Analysis 
To address the research questions (RQs) presented in Section 1, the authors propose the following analysis to be conducted 
for each RQ: 
 

RQ1: Considering the level of user visual attention to the mirroring tool, a descriptive statistic will be used to compute 
the percentage of total time spent looking at the EV. 

RQ2: Regarding the relationship between expertise, gaze, and debugging success, the authors will use analysis of variance 
(ANOVA) for comparing variables across different categories. For example, a one-way ANOVA will be conducted 
to test any potential differences between the performance levels of experts and novices. In addition, the authors will 
check the assumptions for ANOVA, and if they find variables that do not satisfy the homoscedasticity condition, a 
version of ANOVA will be used where homoscedasticity will not be assumed. This version of ANOVA uses the 
Welch (1951) correction for F statistics (effect size). 

RQ3: To examine the relationship between gaze patterns on the EV and student performance, the authors decided to 
measure a Pearson’s correlation, which quantifies the strength of the relationship between variables, as both variables 
are continuous and not ranked. 

RQ4: To find out which gaze patterns relate to debugging success, the authors decided to use linear models, with 
debugging success as the dependent variable and gaze pattern (time on AOIs, 2-way and 3-way transitions) as the 
process variable. 

5. RESULTS 
In this section, the authors present the relationships between gaze pattern, expertise, and debugging success, considering the 
study’s research questions. 
First, to gain understanding of the selected variables, a descriptive statistic was performed; the results are presented in Table 
2. Next, the data was checked for normality. A Shapiro-Wilk test was performed due to the sample size (n=40). The results 
showed that the data has normal distribution: p values were not significant, the values for skewness are within the range of –
1 to 1, and the values for kurtosis are in the range of –2 to 2. Next, to investigate the relationship between the variables, the 
authors performed a pair-wise correlation analysis between the individual AOIs and the two- and three-way transitions. A 
Pearson’s rank correlation was used to compute the correlations of the variables. The results from the correlation analysis are 
presented in Tables 3, 4, and 5. 

RQ1. What is the level of student visual attention to the mirroring tool (i.e., Exercise View)? 
The results showed that participants pay attention to the Exercise View (EV). The mean proportion of the overall time that 
participants spent on the EV is 14.8% (Std. Dev. = 5.3%). Figure 3 shows the distribution of overall time spent on the EV by 
all participants. 

RQ2. How are student expertise, success, and gaze patterns related? 
In this study, 25 participants were categorized as experts, while 15 were categorized as novices. The authors observed a 
significant difference between the performance levels of experts and novices. A one-way ANOVA without assuming the equal 
variances revealed that experts performed significantly better than novices (F [1, 36.77] = 15.09, p = 0.0004; see Figure 4). 
Tables 6, 7, and 8 show the relationship between debugging success and gaze pattern. Table 9 shows the relationship between 
expertise and gaze pattern. Experts exhibit gaze patterns that correlate to high debugging performance more often than novices. 
For example, the two-way transition probability of “Junit to Code” is positively correlated with debugging success and experts 
exhibit this pattern significantly more often than novices. Other results confirmed that these two relationships (gaze and 
success; gaze and expertise) are similar, hence, in the rest of this section, the authors describe the interaction between 
participants’ debugging success and gaze pattern. 
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Figure 3. Proportion of gaze on the EV by different students during the debugging task. 

Table 2. Proportion of Time Spent in Each AOI and Relationship with Debugging Success 
 Variable Mean SD 
Individual AOI EV 0.14 0.05 

Junit 0.14 0.07 
Console 0.12 0.07 
Problem 0.11 0.06 
Variable 0.02 0.05 

2-way 
transitions 

EV.Junit 0.01 0.02 
code.console 0.11 0.10 
console.EV 0.01 0.03 
problem.EV 0.03 0.07 
Junit.code 0.11 0.12 
variable.code 0.02 0.04 
console.code 0.08 0.10 

3-way 
transitions  

ev.junit.code 0.12 0.08 
ev.junit.variable 0.15 0.13 
code.console.variable 0.07 0.05 
code.variable.code 0.06 0.10 
code.console.code 0.31 0.22 
variable.code.variable 0.01 0.01 
console.code.console 0.22 0.15 
junit.code.variable 0.14 0.11 
unit.variable.code 0.39 0.24 

Table 3. Correlation Matrix between Individual AOI 
AOI a1 a2 a3 a4 a5 

EV a1 – –
0.04 

0.12 –
0.42** 

–
0.33* 

Junit a2 – – 0.09 0.02 –0.07 
Console a3 – – – –0.06 0.44** 
Problem a4 – – – – 0.20 
Variable a5 – – – – – 

* p < 0.05; ** p < 0.01; *** p < 0.001 
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Table 4. Correlation Matrix between Two-Way Transitions 
Transitions 2t1 2t2 2t3 2t4 2t5 2t6 2t7 

EV.Junit 2t1 – –0.05 –0.16 –0.20 0.09 0.04 –0.02 
code.console 2t2 – – –0.01 –0.07 0.35* 0.31 0.46** 
console.EV 2t3 – – – 0.002 –0.23 –0.21 –0.27 
problem.EV 2t4 – – – – –0.40* –0.04 –0.33* 
Junit.code 2t5 – – – – – 0.41** 0.57*** 
variable.code 2t6 – – – – – – 0.23 
console.code 2t7 – – – – – – – 
* p < 0.05; ** p < 0.01; *** p < 0.001 

 

Table 5. Correlation Matrix between Three-Way Transitions 
Transitions 3t1 3t2 3t3 3t4 3t5 3t6 3t7 3t8 3t9 
ev.junit.code 3t1 – 0.29 0.62*** 0.15 0.45** 0.39** 0.17 0.52*** 0.52*** 
ev.junit.variable 3t2 – – 0.58*** 0.14 0.50*** 0.14 –0.06 0.57*** 0.58*** 
code.console.variable 3t3 – – – 0.12 0.08 0.04 0.22 0.09 0.09 
code.variable.code 3t4 – – – – 0.17 –0.29 0.09 0.12 0.12 
code.console.code 3t5 – – – – – 0.03 0.19 0.08 0.07 
variable.code.variable 3t6 – – – – – – 0.05 0.25 0.22 
console.code.console 3t7 – – – – – – – 0.10 0.40** 
junit.code.variable 3t8 – – – – – – – – 0.09 
unit.variable.code 3t9 – – – – – – – – – 

* p < 0.05; ** p < 0.01; *** p < 0.001 
 

 
Figure 4. Debugging success for different levels of expertise. The blue bar shows the 95% confidence intervals. 

Table 6. Testing the Effect of Time Spent in Each AOI with Debugging Success 
AOI Estimate Error t-value p (>|t|) 
Intercept 2.55 1.45 1.76 0.08 
EV –19.88 6.46 –3.07 0.004 
Junit 11.71 4.03 2.91 0.006 
Console 9.25 4.35 2.13 0.04 
Problem 13.32 4.60 2.89 0.006 
Variable View 19.64 6.40 3007 0.004 
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Table 7. Transition Probabilities (Two-Way Transitions) and Relationship to Debugging Success 
From AOI to AOI Estimate Error t-value p (>|t|) 
Intercept 1.51 0.42 3.64 0.0009 
EV to Junit 21.05 7.62 2.76 0.009 
Code to Console 12.02 2.12 5.62 0.00001 
Console to EV –11.58 5.64 –2.05 0.05 
Problem to EV –5.77 2.82 –2.05 0.05 
Junit to Code 6.50 2.02 3.22 0.003 
Variable View to Code 16.27 4.75 3.43 0.002 
Console to Code 6.25 2.61 2.39 0.02 

Table 8. Transition Probabilities (Three-Way Transitions) and Relationship with Debugging Success 
From AOI to AOI to AOI Estimate Error t-value p (>|t|) 
Intercept –0.91 0.19 –4.80 0.0000 
Exercise View to Junit to Code  2.73 1.21 2.26 0.03 
Code to Console to Variable View 16.34 4.92 3.32 0.002 
Code to Variable View to Code 1.55 0.74 2.08 0.05 

Variable View to Code to Variable View 15.53 6.44 2.41 0.02 
Code to Console to Code 1.85 0.63 2.94 0.006 
Console to Code to Console 1.74 0.52 3.37 0.002 
Exercise View to Junit to Variable View  1.74 0.69 2.51 0.02 
Junit to Code to Variable View 4.77 1.92 2.48 0.02 
Junit to Variable View to Code 3.90 0.84 4.66 0.00001 

Table 9. Relationship between Expertise and Different Gaze Patterns 
Gaze pattern df1 df2 F p 
Exercise View  1 32.43 3.04 0.09 
Junit 1 37.95 < 1 NS* 
Console 1 33.67 1.78 0.19 
Problem 1 23.14 2.45 0.13 
Exercise View to Junit  1 21.91 < 1 NS 
Code to Console  1 30.41 4.01 0.05 
Console to Exercise View 1 31.24 < 1 NS 
Problem to Exercise View 1 20.28 3.55 0.07 
Junit to Code 1 36.83 6.08 0.01 
Variable View to Code 1 26.18 6.45 0.01 
Console to Code 1 37.32 7.21 0.01 
Exercise View to Junit to Code 1 29.12 2.42 0.13 
Code to Console to Variable View 1 36.43 13.66 0.0007 
Code to Variable View to Code 1 29.76 < 1 NS 
Variable View to Code to Variable View 1 32.97 6.29 0.01 
Code to Console to Code 1 37.19 9.94 0.003 
Console to Code to Console 1 27.16 1.15 0.29 
Exercise View to Junit to Variable View 1 37.79 6.42 0.01 
Junit to Code to Variable View 1 32.67 15.94 0.0003 
Junit to Variable View to Code 1 37.137 14.31 0.0005 

Note: These results are obtained from one-way ANOVA, without assuming equal variance between the two groups. *NS = 
Not Significant 
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RQ3. How does time spent on the mirroring tool relate to performance (i.e., code produced to solve a task)? 
There is a significant negative correlation between time spent on the EV and debugging success (r (38) = −0.56 p = .0002). 
The fact that time spent on the EV and success are negatively correlated is not unexpected, since it is not important how many 
times participants looked at the EV, but how the information they perceived from the EV guided their further actions. This is 
why the authors aimed to observe two- and three-way transitions between the EV and the rest of the AOIs. 
RQ4. What gaze patterns relate to high debugging success and what is the role of mirroring capabilities (i.e., Exercise 
view)? 
In order to analyze the relationship between gaze and performance, the authors considered the time spent on individual AOIs, 
the proportion of transitions between two AOIs (hereafter referred to as “two-way transitions”), and the proportions of 
transitions between three AOIs (hereafter referred to as “three-way transitions”). 

 
Figure 5. Saccade horizontality for expertise. The blue bar shows the 95% confidence intervals. 

Furthermore, the authors computed the average horizontality of the saccades while the students were reading the pre-
existing code or what they had written. Table 6 shows the results from a linear model with debugging success as the 
independent variable and time spent on individual AOIs as the process variables. Pearson’s test verified that the time spent on 
the EV is negatively correlated with debugging success, while it also verified the relatively strong positive relationship between 
debugging success and time spent on Junit, Console, Problem, and Variable View. 

Since Pearson’s correlation test demonstrated that time spent on the EV is negatively correlated with success, the authors 
decided to analyze gaze patterns as two-way transitions to verify the hypothesis that it is not the time spent on the EV that 
contributes to performance, but the steps taken after processing the information from the EV. Moreover, the authors also 
examined which gaze patterns mostly contributed to debugging success. 

Table 7 shows the significant results from a linear model with debugging success as the independent variable and two-way 
transitions as the process variables. The results demonstrated that transitions involving the EV (e.g., EV–Junit, Console–EV, 
and Problem–EV) explain a significant proportion of variance of debugging success. To cross validate the results, the authors 
contrasted this model (Table 7) against a model without any EV related transitions and used ANOVA to compare the two 
models. The output from the ANOVA showed a significant increase (F [3, 28.54] = 6.80, p = 0.001) in the AIC value of the 
model without EV transitions (149.75) as compared to the AIC value of the model with EV transitions (136.03). Consequently, 
these findings support the role of the EV as a mirroring tool that could regulate basic behaviour skills and improve performance. 

Next, the authors decided to examine the relationship between three-way transitions and debugging success. The three-
way transitions capture longer sequences of user behaviour that could point to possible new perspectives for interpreting the 
relationship. Table 8 shows the significant results from a linear model with debugging success as the independent variable and 
three-way transitions as the process variables. The results demonstrated that transitions involving the EV (e.g., EV–Junit–
Code, EV–Junit–Variable View) explain a significant proportion of variance of debugging success. The authors contrasted this 
model (Table 8) against a model without any EV related transitions and used ANOVA to compare the two models. The output 
from the ANOVA shows a significant increase (F [2, 2.16] = 5.38, p = 0.01) in the AIC value of the model without EV 
transitions (68.02) as compared to the AIC value of the model with EV transitions (59.75). 



 
 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 
 

112 
 

 
Figure 6. Debugging success and saccade horizontality. The blue line shows the linear model and the grey area shows the 95% 

confidence intervals. 

Finally, the last part of the analysis aimed to examine the code reading patterns between experts and novices, and observe 
the level of understanding of pre-written code. Hence, the authors computed the average horizontality of code reading saccades 
(specifically when students were not editing the code). The findings showed that experts had significantly more vertical 
saccades than novices (F [1, 30.8] = 6.85, p = 0.01; see Figure 5) meaning that experts managed to demonstrate a better level 
of program comprehension. Moreover, saccade horizontality is also correlated with debugging success (r (38) = 0.67, p < 
0.0001; see Figure 6) confirming the fact that a specific way of reading code is important for successful debugging. 

6. Discussion 
The prime motivation for having a mirroring tool is to have basic behavioural regulation, as mirroring tools are known as 

awareness tools (Gutwin & Greenberg, 1999). Mirroring tools offer the most basic level of support as the system simply reflects 
user actions through graphical visualizations without processing the information. Increasing student awareness of their own 
actions without abstracting or evaluating these actions could help students to maintain representation of their progress and 
encourage them to enhance their metacognitive activities. Consequently, this study tried to orchestrate the behavioural 
regulation (e.g., visual attention, following instructions, working memory) of participants engaged in a debugging task. 
Behavioural regulation skills fall under the category of self-regulation, which is an essential feature of academic performance 
(Vohs & Baumeister, 2016). However, the question of how to enhance behavioural regulation skills within the academic 
context requires identification of mechanisms through which such interventions are most effective. 

One such mechanism categorized as a mirroring tool (i.e., Exercise View) is suggested and presented in this study. The 
results from the study demonstrated that mirroring tools could regulate behaviour depending on the contextual set up of the 
programming environment. The authors tried to reduce the extraneous cognitive load when designing the debugging activity 
by following three design principles, as suggest by Hundhausen et al. (2017). With this in mind, the authors created a systematic 
debugging task that requires students to solve the task in a particular order to pass all of the unit tests and finish with success. 
The students who processed the information presented in the Exercise View (EV) and acted upon it, improved their 
performance and achieved a higher level of debugging success than those who failed to process the information from the EV. 
Moreover, experts were significantly more successful than novices. This result is consistent with the results reported from the 
studies mentioned in Section 2.4. However, what is more important regarding this distinction between novices and experts is 
the transitions they both performed among the different elements in the IDE (e.g., AOIs), as these gaze patterns could be a 
potential input in developing relevant learning strategies based on expertise and knowledge level. In addition, researchers and 
educators could combine the continuous streams of data they collect from the IDE with gaze patterns, and utilize the insights 
into informing learning designs of programming environments based on knowledge and skills. Moreover, they could develop 
data-driven tools to enhance teaching and learning practices, as well as design and delivery of interventions to aid student 
progress. 

In this study, the authors started by investigating the correlation between the variables and found out that the EV has a 
moderate but significant positive relationship with the Variable View and Problem AOI. Regarding the two-way transitions, 
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there is a weak positive relationship between looking at the errors and/or warnings raised by the Java Compiler and the ones 
shown in the EV, and locating the problem in the code. While for three-way transitions, there is a moderate positive relationship 
between understanding that there is a bug, finding the problem statement, and locating the bug in the code with trying to 
remove the bug while looking for corresponding output and finding the variable causing the problem. Next, we considered the 
relationship between time spent on individual AOIs and debugging success (hereafter referred to as “success”). The results 
show that time spent on the EV was negatively correlated with success, while the gaze on JUnit, Console, Problem, and 
Variable View were positively correlated to success. This supports our claim that the time spent processing information from 
the EV and acting upon it is more important for success than simply the time that a student spends looking at the EV. In order 
to figure out what mistakes a student made, they had to check the unit test definition (Junit) and the variable concerned 
(Variable View). If the student did not look at this particular element in the IDE, their actions might suggest that the student is 
practicing trial and error instead of a problem-solving strategy. Moreover, the gaze towards Problem and Console might suggest 
a hypothesis verification process by the student. To confirm this, we considered two-way and three-way transitions to explore 
the visual attention strategies in the debugging process and how they differ across levels of expertise. 

Considering two-way transitions, we observed that EV to Junit, Code to Console, Console to Code, Variable View to Code, 
and Junit to Code transitions were positively correlated with success. On the other hand, Console to EV and Problem to EV 
transitions were negatively correlated with success. Thus, the positively correlated gaze transitions show a debugging 
behaviour that corresponds to the following: 

 
• Understanding that there is a bug and finding the problem statement (EV to Junit) 
• Locating the problem in the code (Junit to Code) 
• Trying to remove the bug while looking for corresponding output (Code to Console) 
• Going back to another part of the code to obtain the correct output (Console to Code) 
• Finding the variable causing the problem and locating it in the code (Variable View to Code) 

 
This sequence of actions captured using eye-tracking from students’ visual attention shifts is the desired debugging 

behaviour that educators should teach students. If educators know this sequence of actions, they can design learning tasks that 
will regulate and support desired student behaviour in learning and practicing problem-solving skills. On the other hand, the 
shifts from Console to EV and Problem to EV do not bring meaningful information to the debugging process. Hence, this could 
suggest that the student has a misconception regarding the role of the EV by considering it as a feedback mechanism (e.g., 
trying to find answers in the EV) rather than a reflection mechanism (e.g., processing the information from the EV and acting 
upon it). Another explanation might be that visual attention strategies among novices are not as well developed as they are 
among experts. 

Similarly, all significantly correlated three-way transitions also demonstrated a positive correlation to success. Their 
corresponding debugging behavioural depictions are as follows: 

 
• Understanding that there is a bug, finding the problem statement, and locating the problem in the code (EV to 

Junit to Code) 
• Understanding that there is a bug, finding the problem statement, and locating the variable causing the problem 

(EV to Junit to Variable View) 
• Trying to remove the bug while looking for corresponding output, and going back to another part of the code to 

obtain the correct output (Code to Console to Code; Console to Code to Console) 
• Finding the variable causing the problem, fixing it in the code, and repeating this for a few times before executing 

the code (Code to Variable View to Code; Variable View to Code to Variable View) 
• Finding the problem description, locating the variable causing the problem, and/or locating the problem in the 

code (Junit to Code to Variable View; Junit to Variable View to Code) 
 

In addition, the authors also calculated the distinction between novices and experts in the transitions they both performed 
among the different AOIs (i.e., elements in the IDE), as this distinction should be considered in developing 
programming/debugging strategies based on knowledge proficiency. Thus, when comparing the behaviour patterns of experts 
versus novices, two-way gaze transitions show a debugging behaviour that corresponds to the following: 

 
• Locating the problem in the code (Junit to Code) 
• Trying to remove the bug while looking for corresponding output (Code to Console) 
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• Going back to another part of the code to obtain the correct output (Console to Code) 
• Finding the variable causing the problem and locating it in the code (Variable View to Code) 

 
Likewise, when comparing the behaviour patterns of experts versus novices, the three-way gaze transitions show a 

debugging behaviour that corresponds to the following gaze transitions: 
 

• Understanding that there is a bug, finding the problem statement, and locating the variable causing the problem 
(EV to Junit to Variable View) 

• Locating the variable causing the problem, fixing the problem, looking at the change in the variable’s value at 
each step of iteration (Code to Console to Variable View) 

• Trying to remove the bug while looking for corresponding output, and going back to another part of the code to 
obtain the correct output (Code to Console to Code) 

• Finding the variable causing the problem, fixing it in the code, and repeating this for a few times before executing 
the code (Variable View to Code to Variable View) 

• Finding the problem description, locating the variable causing the problem, and/or locating the problem in the 
code (Junit to Code to Variable View; Junit to Variable View to Code) 
 

As can be observed from the results, EV-related transitions are not significantly different between experts and novices; 
they are only related to success. Moreover, all these patterns are exhibited by experts significantly more than novices. In 
addition, one interesting finding that needs to be underlined is that novices do not have transitions to/from variable view. This 
supports the assumption that visual attention strategies among novices are not as well developed as they are among experts, or 
novices do not feel confident to change the value of a variable to test how the program handles a particular value, so they 
practice trial and error instead. 

These findings communicate the importance of the EV as a mirroring tool in behaviour regulation and of eye-tracking as 
a promising technology for measuring user behaviour in computer-based environments. Moreover, the authors decided to 
strengthen this finding by comparing two models to show how the EV fits into the gaze patterns explaining success: one model 
with gaze patterns including the EV, and another model without gaze patterns including the EV. The results demonstrated that 
we lose a significant amount of information when we remove the gaze patterns including the EV. This indicates the fact that 
information presented in the EV, and how students use this information, is important for the level of success achieved. This is 
only one data-driven example that shows how multimodal user-centred analysis can empower researchers and educators to 
design learning models for programming/debugging to guide students about which relevant information to attend to when 
trying to increase student comprehension of important concepts and improve their learning progress. Moreover, the results 
from this dynamic observation of students’ visual attention strategies using eye-tracking is a practice that educators and 
designers can embrace to practice user-centred design of programming assignments that could stimulate active, deeper, self-
regulated learning. 

On the other side, the significant negative correlation between saccade horizontality and success shows that those who 
achieved higher success also had more vertical saccades. This is highlighted by the findings of Sharma et al. (2012), from a 
pair-program comprehension task. This finding supports the work of Amadieu et al. (2009) that hierarchical structure in 
computer-based learning environments is especially helpful for novices. 

All these findings fit with the aim of the study — to observe a particular contextual set up of a programming environment 
in which researchers could detect what constitutes relevant data when performing debugging. Knowing what is essential in 
order to teach problem-solving skills empowers teachers to create various learning strategies, taking into account expertise and 
knowledge level. Moreover, having more AOIs than other studies (see Section 2.4) allows researchers to gain deeper 
understanding of users’ cognitive needs and behaviour patterns. Hence, greater understanding empowers easier regulation of 
behavioural skills and development of efficient tools and methodologies for teaching problem-solving skills. 

7. Conclusions 
The present eye-tracking study investigated the relationship between a mirroring tool developed in Eclipse and users’ 

debugging success in a programming task. Thus, 40 computer science majors were given 40 minutes to solve five debugging 
tasks presented as part of the main method of the main class of 100 lines of Java code. The results demonstrate that the gaze 
patterns of successful debuggers corresponded with attention shifts between the EV and other AOIs (i.e., Console, Problem, 
and Junit). The fact that the time users spent on the EV was negatively correlated with their success proves that it is not 
important how long and how many times participants looked at the EV, but how the information they perceived from the EV 
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guided their further actions. This fact was further examined with two-way and three-way transitions between the EV and the 
rest of the AOIs. The results from the analysis confirmed that users who processed the information from the EV and displayed 
debugging behaviour, as presented in Tables 3 and 4, correlate to successful completion of the debugging task. 

Due to the encouraging results from this study, the authors plan to continue the research with the mirroring tool by 
including a more controlled study to investigate the availability of a mirroring tool and its relationship with debugging 
success, as well as the motivational aspects of the tool. Another interesting aspect to consider in future studies is the notion 
of mirroring tools as instruments that trigger deeper forms of interactive learning in terms of cognitive effort, where users 
can interact with the information presented in real-time. Finally, in general, human decision making is as much a part of 
successful analytics solutions as any other technical component (Wise, 2014). Therefore, it is very important to engage 
participants in designing and developing pedagogically sound, user-centred future learning environments. To achieve this 
goal, researchers and designers must follow and practice user-centred design approaches while utilizing user-centred 
analytics to support their actions. 
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