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Verena Bögelein and Qifan Li, Very weak solutions of degenerate parabolic systems with non-

standard p(x, t )-growth, Nonlinear Analysis: Theory, Methods Applications, 190-225, Volume
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In these papers we use Harmonic analysis technique to study the partial differential equa-

tions. In the first paper we use multilinear analysis to study the nonlinear term of KdV equa-
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functions to construct a proper test functions to prove the higher integrability of the very weak

solutions of degenerate parabolic systems with non-standard p(x, t )-growth.
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Summary and Conclusions

In the first paper, we study local well-posedness of the Cauchy problem for the generalized pe-

riodic Korteweg-deVries equation (GKdV)

⎧⎪⎨
⎪⎩
∂t u +∂3xxxu +uk∂xu = 0 u : T× [0,T ]→R

u(x,0)= u0(x) x ∈T

(1)

We prove that, in the case s ≥ 1 and k ≥ 1, for initial data u0(x) inGσ,s , σ> 0, there exists a small

positive time T , such that the initial-value problem (1) is well-posed in the spaceC ([0,T ],Gσ,s).

In the second paper, we consider the degenerate parabolic systems whose model is the

parabolic p(x, t ) -Laplacian system,

∂t u −div
(|Du|p(x,t )−2Du

)= div
(|F |p(x,t )−2F

)

in the degenerate range, i.e. p(x, t )≥ 2. We show that any very weak solution u :Ω× (0,T )→RN

with |Du|p(·)(1−ε) ∈ L1 belongs to the natural energy space, i.e. |Du|p(·) ∈ L1
loc, provided ε > 0 is

small enough.
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Abstract. Motivated by the work of Grujić and Kalisch, [Z. Gru-
jić and H. Kalisch, Local well-posedness of the generalized Korteweg-
de Vries equation in spaces of analytic functions, Differential and
Integral Equations 15 (2002) 1325–1334], we prove the local well-
posedness for the periodic KdV equation in spaces of periodic func-
tions analytic on a strip around the real axis without shrinking the
width of the strip in time.

1 Introduction
This paper studies the local well-posedness of the Cauchy problem

for the generalized periodic Korteweg-deVries equation (GKdV){
∂tu+ ∂3

xxxu+ uk∂xu = 0 u : T× [0, T ] → R

u(x, 0) = u0(x) x ∈ T
(1)

with initial data u0(x) in a class of periodic functions analytic in a
symmetric strip around the real axis. The number k is taken to be a
positive integer and T = R/Z is the torus. For σ > 0, s ∈ R, denote
Gevrey classes Gσ,s to be the subset of L2(T) such that

‖u0‖2Gσ,s =
∑
n∈Z

〈n〉2se2σ〈n〉|û0(n)|2 < ∞

where 〈n〉 := 1 + |n| and û0(n) denotes the Fourier transform of u0 on
torus.

2000 Mathematics Subject Classification. Primary: 35Q53; Secondary: 35A07.
Key words and phrases. Generalized Korteweg-deVries Equation, Real-analytic

Solutions, Local Well-posedness.
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2 PERIODIC KORTEWEG-DE VRIES EQUATION IN GEVREY CLASSES

In [18], Kato and Masuda introduced a method of obtaining spatial
analyticity of solution for a large class of semi-linear evolution equa-
tions, and the research on Gevrey regularity for the solution of the
semi-linear equations goes back to the work of Foias and Temam [10].
Further results concerning periodic solutions of Navier-Stokes equations
in Gevrey spaces have been obtained by Biswas [1]. We refer to [2, 12]
for the study of Kuramoto-Sivashinsky equation. For a treatment of a
more general case of nonlinear parabolic equations, we refer the reader
to [9]. Also, a number of authors have obtained solutions in Gevrey
spaces without strong regularizing effects. Here we mention the recent
work of Kukavica and Vicol on the three-dimensional Euler equations
[21], and a body of work concerning KdV-like equations (see, for exam-
ple, Hayashi [14, 15], Bouard et al. [5], Grujić and Kalisch [13], Bona et
al. [4]). As explained in [3, 16, 17], analyticity of solution of the KdV
equation plays an essential role in the numerical study of the equation.
The example constructed in [11] shows that the solution of GKdV

equation with an appropriate analytic data may not be analytic in
the time variable t. So, we must restrict our attention to the spatial
analyticity of the solution of GKdV. Grujić and Kalisch [13] proved local
well-posedness of non-periodic GKdV for a strip without shrinking the
width of the strip in time. It is of interest to know whether it is possible
to establish the same result for the periodic case.
Kato’s smoothing effect was shown to be useful in the proof of the

main theorem in [13]. However, this technique cannot be used in deal-
ing with GKdV with periodic boundary data. Our approach is in the
spirit of [8, Theorem 1] and the proof relies on the Bourgain’s bilinear
estimate [6], multilinear estimate in [22] and linear estimates in [7, 8].
In addition, the proof reveals some new aspects in the estimation of
the time-cutoff function which are essential in the proof of the main
nonlinear estimate which is given in Lemma 3.2.
Denote by C([0, T ], Gσ,s) the space of continuous functions from the

time interval [0, T ] into Gσ,s. We will prove the following theorem.

Theorem 1.1. Let s ≥ 1 and k ≥ 1. For initial data in Gσ,s, σ > 0,
there exists a small positive time T , such that the initial-value problem
(1) is well-posed in the space C([0, T ], Gσ,s).

The paper is organized as follows. In Section 2, we set up notations
and terminologies and deal with linear estimates. Section 3 is devoted
to the study of bilinear estimates, and Section 4 provides a proof of
the multilinear estimate. In Section 5, Theorem 1.1 is proved via a
contraction argument.
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2 Some Notations and Linear Estimates

Throughout this paper, A � B denotes the estimate A ≤ CB, where
the constant C > 0 possibly depending on s, k and independent of σ.
We say that A ≈ B, if A � B and B � A. We also denote by A 
 B
the estimate A � 1

K
B for a large constant K > 0. The Lebesgue classes

on the integer set and real line are denoted by lp and Lq respectively,
while the following notation is used to denote the lp − Lq space-time
norms: ‖f(n, λ)‖lpnLq

λ
= ‖‖f(n, λ)‖Lq

λ
‖lpn .

Let u(x, t) be a function defined on the cylinder T×R and s, b ∈ R.
The space-time Fourier transform of u(x, t) is defined by

û(n, λ) =

∫
R

∫
T

u(x, t)e−2πiλt−2πinxdxdt,

where n ∈ Z. We denote by Ft[u(x, t)] the partial Fourier transform
of u in variable t and by Fx[u(x, t)] the partial Fourier transform in

variable x. We define the Xs,b = Xs,b
τ=ξ3(T× R) norm of u(x, t) by

‖u‖Xs,b =
∥∥〈λ− n3〉b〈n〉sû(n, λ)∥∥

l2nL
2
λ

,

where 〈·〉 := 1 + | · |. This norm was introduced by Bourgain [6] and
the space-time symbol is adapted to the linear part of KdV equation.
The low-regularity study of (1) is usually considered in spaces Xs, 1

2

(see [6, 8, 22]). In order to overcome difficulty in persistence property
in this case, authors [8] and [22] introduced the function space Y s,b to
be the subset of Xs,b such that

‖u‖Y s,b = ‖u‖Xs,b + ‖〈n〉sû(n, λ)‖l2nL1
λ
< ∞.

It is indicated in [13] that we have to introduce another family of
function spaces which are adapted to the study of Gevrey regularity.
For σ ≥ 0, define Xσ,s,b norm of u(x, t) by

‖u‖Xσ,s,b =
∥∥〈λ− n3〉b〈n〉seσ〈n〉û(n, λ)∥∥

l2nL
2
λ

.

We shall use the space Y σ,s,b which equipped with the norm

‖u‖Y σ,s,b = ‖u‖Xσ,s,b +
∥∥eσ〈n〉〈n〉sû(n, λ)∥∥

l2nL
1
λ

.

By the Riemann-Lebesgue lemma, the Fourier transform of an L1 func-
tion is continuous and bounded, and we have the embedding property

Y σ,s,b ⊂ C([0, T ], Gσ,s) ⊂ L∞([0, T ], Gσ,s). (2)

We will also need the space Zσ,s,b with the norm defined by

‖u‖Zσ,s,b = ‖u‖Xσ,s,−b +

∥∥∥∥eσ〈n〉〈n〉s〈λ− n3〉 û(n, λ)
∥∥∥∥
l2nL

1
λ

.
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Consider initial value problem of the Airy equation on T:{
∂tw + ∂3

xxxw = 0

w(x, 0) = w0(x), x ∈ T.
(3)

The explicit solution of the initial value problem (3) can be expressed
in terms of the semigroup S(t) via Fourier transform,

w(x, t) = S(t)w0 = c
∑
n∈Z

e2πi(xn+tn3)ŵ0(n).

We shall establish linear estimates for the propagator S(t). Let ψ(t)
be a bump function supported in [−2, 2] and equal to one on [−1, 1].
Denote by 0 < δ < 1 a small constant which need to be determined
later.

Lemma 2.1. We have

‖ψ(t/δ)S(t)u0‖Y σ,s, 12
� ‖u0‖Gσ,s

for all s ∈ R and σ ≥ 0.

Proof. Let us first write ̂ψ(t/δ)S(t)u0(n, λ) = û0(n)δψ̂(δ(λ − n3)). By
the definition of Xσ,s,b,

‖ψ(t/δ)S(t)u0‖2
Xσ,s, 12

=
∑
n

e2σ〈n〉〈n〉2s|û0(n)|2
∫
R

〈λ〉δ2|ψ̂(δλ)|2dλ.

Since
∫
R
〈λ〉δ2|ψ̂(δλ)|2dλ � 1+δ, we get ‖ψ(t/δ)S(t)u0‖Xσ,s, 12

� ‖u0‖Gσ,s .

On the other hand, we see at once that
∥∥∥eσ〈n〉〈n〉s ̂ψ(t/δ)S(t)u0

∥∥∥2

l2nL
1
λ

�
‖u0‖2Gσ,s , which completes the proof.

Having established Lemma 2.1, we repeat the proof of [8, Lemma
3.1], and we get Lemma 2.2.

Lemma 2.2. We have∥∥∥∥ψ(t/δ) ∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥
Y σ,s, 12

� ‖F‖
Zσ,s, 12

for all s ∈ R, σ ≥ 0 and test functions F on T× R.

We also need to estimate the cutoff function ψ(t/δ)u in the space

Xσ,s, 1
2 . We present a proof in a spirit of [20, Lemma 3.2].

Lemma 2.3. Let σ ≥ 0. We have

‖ψ(t/δ)u‖
Xσ,s, 12

� ‖u‖
Y σ,s, 12

for all s ∈ R and σ ≥ 0.
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Proof. By the definition of Y σ,s, the proof is reduced to showing that,
if a = n3 then∫

R

|û∗λ(δψ̂(δλ))(l)|2〈l−a〉dl �
∫
R

|û(n, λ)|2〈λ−a〉dλ+‖û(n, λ)‖2L1
λ
(4)

where ∗λ is the convolution in variable λ.
According to the proof of [20, Lemma 3.2], we have∫

R

|û ∗λ (δψ̂(δλ))(l)|2〈l − a〉dl

�
∫
R

|e2πiatFx[u](n, t)∂
1
2
t ψ(δ

−1t)|2dt+
∫
R

|û(n, λ)|2|λ− a|dλ

and ∫
R

|û ∗λ (δψ̂(δλ))(l)|2dl �
∫
R

|û(n, λ)|2dλ.

By the Plancherel theorem and the Young inequality,∫
R

|e2πiatFx[u](n, t)∂
1
2
t ψ(δ

−1t)|2dt =
∥∥∥∥ ̂e2πin3tu(n, λ) ∗λ ∂̂

1
2
t ψ(δ

−1t)(λ)

∥∥∥∥2

L2
λ

≤ ∥∥û(n, λ− n3)
∥∥2

L1
λ

∥∥∥λ 1
2 δψ̂(δλ)

∥∥∥2

L2
λ

� ‖û(n, λ)‖2L1
λ
,

which shows (4), and the proof of Lemma 2.3 is completed.

3 Bilinear Estimates
The bilinear estimate is a standard technique in dealing with non-

linear term in the equation. This kind of technique has been used and
developed by many authors (See, for instance [6, 13, 19, 23]).

Lemma 3.1. Let s ≥ 0, σ ≥ 0, and suppose the functions u, v sat-
isfy

∫
T
udx = 0 and

∫
T
vdx = 0. Assume that ‖v‖

Y σ,s, 12
< ∞ and

‖ψ(t/δ)u‖
Xσ,s, 12

< ∞. Then∥∥ψ(t/δ)2∂x (uv)∥∥Xσ,s,− 1
2
� δ

1
12‖v‖

Y σ,s, 12
‖ψ(t/δ)u‖

Xσ,s, 12
.

Proof. The main idea of the proof is due to Bourgain [6, page 221].
Since

∫
T
u = 0 and

∫
T
v = 0, we write

f(n, λ) = 〈λ− n3〉 1
2 |n|seσ〈n〉|ψ̂(t/δ)u(n, λ)|,

g(n, λ) = 〈λ− n3〉 1
2 |n|seσ〈n〉|ψ̂(t/δ)v(n, λ)|.
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Let h(n, λ) ∈ l2nL
2
λ and ‖h‖l2nL2

λ
≤ 1, we introduce a trilinear form:

Λ(f, g, h) =
∑
n �=0

∑
n1 �=0,
n1 �=n

∫
R

∫
R

eσ〈n〉e−σ〈n−n1〉e−σ〈n1〉h(n, λ)f(n1, λ1)

〈λ− n3〉 1
2 〈λ1 − n3

1〉
1
2

× g(n− n1, λ− λ1)|n|s+1|n1|−s|n− n1|−s

〈λ− λ1 − (n− n1)3〉 1
2

dλdλ1.

Thus we need only to estimate Λ(f, g, h).
Since |n| � |n1||n− n1| and eσ|n|e−σ|n−n1|e−σ|n1| ≤ 1, we obtain

|Λ(f, g, h)| �
∑
n �=0

∑
n1 �=0,
n1 �=n

∫
R

∫
R

|f(n1, λ1)g(n− n1, λ− λ1)h(n, λ)||n|dλ1

〈λ− n3〉 1
2 〈λ1 − n3

1〉
1
2 〈λ− λ1 − (n− n1)3〉 1

2

.

From resonance identity n3 = (n− n1)
3 + n3

1 + 3nn1(n− n1), we get

max
{|λ− λ1 − (n− n1)

3|, |λ1 − n3
1|, |λ− n3|} ≥ |n||n1||n−n1|. (5)

As pointed out in [6, Theorem 7.41], we have

|Λ(f, g, h)| � ‖FG‖L2
xL

2
t
‖h‖l2nL2

λ
if |λ− n3| � n2,

|Λ(f, g, h)| � ‖G‖L4
xL

4
t
‖H‖L4

xL
4
t
‖f‖l2nL2

λ
if |λ1 − n3

1| � n2,

where F̂ (n, λ) = f(n, λ)〈λ − n3〉− 1
2 , Ĝ(n, λ) = g(n, λ)〈λ − n3〉− 1

2 and

Ĥ(n, λ) = h(n, λ)〈λ − n3〉− 1
2 . Let us focus on the first of the above

cases. Recalling that ‖h‖l2nL2
λ
≤ 1 by assumption, and using Cauchy-

Schwarz, it appears that we have to estimate the terms ‖F‖L4
xL

4
t
and

‖G‖L4
xL

4
t
. Recalling the Strichartz estimate [6, Proposition 7.15]

‖F‖L4
xL

4
t
� ‖F‖

X0, 13
(6)

it becomes plain that the terms ‖F‖
X0, 13

and ‖G‖
X0, 13

have to be con-

trolled. To this end, define a a square-integrable function

θ(x, t) = |∂x|seσ(I+|∂x|)u(x, t) = F−1
x

[|n|seσ〈n〉Fxu
]
(x, t)

where I denotes the identity operator. We also set

ϑ̂(n, λ) = |n|seσ〈n〉ψ̂(t/δ)u(n, λ) = Ft [ψ(t/δ)(Fxθ)(n, t)] (λ).

Using the Strichartz estimate (6) for the function ψ(t/δ)θ yields∑
n �=0

∫
R

|ϑ̂(n, λ)|2dλ =

∫
R

∫
T

χ[−3,3](t/δ) |ψ(t/δ)θ(x, t)|2 dxdt

� δ
1
2‖ψ(t/δ)θ‖2L4

xL
4
t
� δ

1
2‖ψ(t/δ)θ‖2

X0, 13

= δ
1
2‖ψ(t/δ)u‖2

Xσ,s, 13
.

(7)
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By Hölder’s inequality and (7), we get

‖F‖2
X0, 13

=
∑
n �=0

∫
R

〈λ− n3〉− 1
3f(n, λ)2dλ

=
∑
n �=0

∫
R

(
|ψ̂(t/δ)u(n, λ)|2|n|2se2σ〈n〉

) 1
3
f(n, λ)

4
3dλ

≤ δ
1
6 ‖ψ(t/δ)u‖2

Xσ,s, 12
.

(8)

Making use of the argument above, we deduce

‖G‖
X0, 13

� δ
1
12 ‖ψ(t/δ)v‖

Xσ,s, 12
� δ

1
12 ‖v‖

Y σ,s, 12

from Lemma 2.3. Thus the estimate in the case |λ− n3| � n2 may be
continued as follows.

‖FG‖L2
xL

2
t
≤ ‖F‖L4

xL
4
t
‖G‖L4

xL
4
t
� δ

1
12‖v‖

Y σ,s, 12
‖ψ(t/δ)u‖

Xσ,s, 12
. (9)

For the case when |λ1 − n3
1| � n2, we use the Strichartz estimate (6)

to find ‖H‖L4
xL

4
t
� ‖h‖l2nL2

λ
≤ 1. Recalling the definition of f(n, λ), a

similar argument yields as in the previous case yields

‖G‖L4
xL

4
t
‖f‖l2nL2

λ
� δ

1
12 ‖ψ(t/δ)u‖

Xσ,s, 12
‖v‖

Y σ,s, 12
(10)

Finally, interchanging f and g, we obtain

|Λ(f, g, h)| � δ
1
12 ‖ψ(t/δ)u‖

Xσ,s, 12
‖v‖

Y σ,s, 12
(11)

for the case |λ − λ1 − (n − n1)
3| � n2 by symmetry. Now based on

(9)-(11), we have∥∥∂x (ψ(t/δ)2uv)∥∥Xσ,s,− 1
2
= sup

‖h‖
l2nL2

λ
≤1

|Λ(f, g, h)|

� δ
1
12‖v‖

Y σ,s, 12
‖ψ(t/δ)u‖

Xσ,s, 12
.

Remark 1. Note we have actually proved that

‖∂x(uv)‖Xσ,s,− 1
2
� ‖u‖

Xσ,s, 12
‖v‖

Xσ,s, 12
(12)

for s ≥ 0 and σ ≥ 0.
The bilinear estimate for periodic KdV equation in Sobolev spaces

with negative indices has been studied by Kenig, Ponce and Vega [19].
As the counterexample shows in [19, Theorem 1.4], the boundedness of
the quadratic term fails for Sobolev indices below −1

2
.

Corollary 1. For functions u, v satisfying
∫
T
u = 0,

∫
T
v = 0, the

estimate (12) holds for s ≥ −1
2
.
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Proof. According to the above remark, we only need to consider the
case −1

2
≤ s ≤ 0. Let ρ = −s ≥ 0, we follow the definition of multiplier

bounds which was introduced by Tao [23]. It remains to show that

∥∥∥∥∥ eσ〈n〉e−σ〈n−n1〉e−σ〈n1〉|n|1−ρ|n1|ρ|n− n1|ρ
〈λ− n3〉 1

2 〈λ1 − n3
1〉

1
2 〈λ− λ1 − (n− n1)3〉 1

2

∥∥∥∥∥
[3,Z×R]

� 1.

Since eσ|n|e−σ|n−n1|e−σ|n1| ≤ 1, the comparison principle [23, Lemma
3.1] reduce this estimate to

∥∥∥∥∥ |n|1−ρ|n1|ρ|n− n1|ρ
〈λ− n3〉 1

2 〈λ1 − n3
1〉

1
2 〈λ− λ1 − (n− n1)3〉 1

2

∥∥∥∥∥
[3,Z×R]

� 1,

which has been proved by Kenig, Ponce and Vega [19, Theorem 1.2].

In order to estimate the bilinear term in space of Zσ,s, 1
2 , it will nec-

essary to analyze the proof of [8, Proposition 1 ]. We will prove the
following result in analogy with discussions in [8, Proposition 1 ].

Lemma 3.2. Let s ≥ 1
2
, σ ≥ 0,

∫
T
udx = 0,

∫
T
vdx = 0 and 0 ≤ κ 
 1.

Assume that
∫
T
uvdx = 0, ‖v‖

Y σ,s−1, 12
< ∞ and ‖ψ(t/δ)u‖

Xσ,s−1, 12
< ∞.

Then

∥∥∥∥∥〈n〉seσ〈n〉 ̂ψ(t/δ)2uv(n, λ)

〈λ− n3〉1−κ

∥∥∥∥∥
l2nL

1
λ

� δ
1

200 ‖ψ(t/δ)u‖
Xσ,s−1, 12

‖v‖Y σ,s−1, 1
2
.

Proof. Since
∫
T
uv = 0, the quantity 〈n〉s can be replaced with |n|s in

the left hand side of the estimate. Let square-integrable functions u1

and u2 be defined by

û1(n, λ) = 〈λ− n3〉 1
2 |n|s−1eσ〈n〉ψ̂(t/δ)v(n, λ)

û2(n, λ) = 〈λ− n3〉 1
2 |n|s−1eσ〈n〉ψ̂(t/δ)u(n, λ).
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Since eσ|n| ≤ eσ|n1|eσ|n−n1| and |n|s− 1
2 ≤ |n− n1|s− 1

2 |n1|s− 1
2 , we obtain

|n|seσ〈n〉| ̂ψ(t/δ)2uv(n, λ)|
〈λ− n3〉1−κ

≤
∑
n1 �=0,
n1 �=n

∫
R

|û1(n− n1, λ− λ1)û2(n1, λ1)|dλ1

〈λ− n3〉1−κ〈λ1 − n3
1〉

1
2 〈λ− λ1 − (n− n1)3〉 1

2

× eσ〈n〉|n|s
eσ〈n1〉eσ〈n−n1〉|n1|s−1|n− n1|s−1

≤
∑
n1 �=0,
n1 �=n

∫
R

|û1(n− n1, λ− λ1)û2(n1, λ1)|dλ1

〈λ− n3〉1−κ〈λ1 − n3
1〉

1
2 〈λ− λ1 − (n− n1)3〉 1

2

× |n| 12 |n1| 12 |n− n1| 12
:=S(n, λ).

To estimate ‖S(n, λ)‖l2nL1
λ
we note that the resonance relation (5) en-

ables us to distinguish three cases once again.
If |λ−λ1− (n−n1)

3| ≥ |n||n1||n−n1|, S(n, λ) can be dominated by

S(n, λ) ≤
∑
n1 �=0,
n1 �=n

∫
R

|û1(n− n1, λ− λ1)û2(n1, λ1)|dλ1

〈λ− n3〉 2
3
−κ〈λ− n3〉 1

3 〈λ1 − n3
1〉

1
2

.

Taking first the L1
λ-norm, using the Cauchy-Schwarz inequality, and

recognizing that
∫
R
|〈λ − n3〉− 2

3
+κ|2dλ is finite, it follows from duality

that

‖S(n, λ)‖l2nL1
λ
� sup

‖û3‖l2nL2
λ
≤1

∑
n,n1

∫
R2

û1(n− n1, λ− λ1)û2(n1, λ1)〈λ1 − n3
1〉−

1
2

× û3(n, λ)〈λ− n3〉− 1
3dλ1dλ.

(13)

Now define û′
2(n1, λ1) = û2(n1, λ1)〈λ1−n3

1〉−
1
2 and û′

3(n, λ) = û3(n, λ)〈λ− n3〉− 1
3 .

Note that from (6) and (8), we gain the estimates

‖u′
2‖L4

xL
4
t
� ‖u′

2‖X0, 13
� δ

1
12 ‖ψ(t/δ)u‖

Xσ,s−1, 12
(14)

and

‖u′
3‖L4

xL
4
t
� ‖u′

3‖X0, 13
= ‖û3‖l2nL2

λ
. (15)
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Thus, using Parseval’s relation, (14)-(15) and Lemma 2.3, the estimate
takes the form

‖S(n, λ)‖l2nL1
λ
� sup

‖û3‖l2nL2
λ
≤1

∫
T×R

u1u
′
2u

′
3dtdx

� sup
‖û3‖l2nL2

λ
≤1

‖u1‖L2
xL

2
t
‖u′

2‖L4
xL

4
t
‖u′

3‖L4
xL

4
t

� δ
1
12 ‖ψ(t/δ)u‖

Xσ,s−1, 12
‖v‖

Y σ,s−1, 12
.

(16)

By symmetry, we also have

‖S(n, λ)‖l2nL1
λ
� δ

1
12‖v‖

Y σ,s−1, 12
‖ψ(t/δ)u‖

Xσ,s−1, 12
(17)

for the case |λ1 − n3
1| ≥ |n||n1||n− n1|.

We now turn to the remaining case |λ − n3| ≥ |n||n1||n − n1|. This
will be split into three subcases. Suppose first that we also have

|λ− λ1 − (n− n1)
3| � (δ|n||n− n1||n1|)

1
100 .

Let û′
1(n− n1, λ− λ1) = û1(n− n1, λ− λ1)〈λ− λ1 − (n− n1)

3〉− 1
3 , and

let û′
2(n1, λ1) = û2(n1, λ1)〈λ1 − n3

1〉−
1
2 as before. Then we deduce that

S(n, λ) ≤
∑
n1 �=0,
n1 �=n

∫
R

|n| 12 |n1| 12 |n− n1| 12
〈λ− n3〉1−κ

û′
1(n− n1, λ− λ1)û′

2(n1, λ1)

〈λ− λ1 − (n− n1)3〉 1
6

dλ1

≤
∑
n1 �=0,
n1 �=n

∫
R

|n| 12 |n1| 12 |n− n1| 12
〈λ− n3〉1−κ

û′
1(n− n1, λ− λ1)û′

2(n1, λ1)

(δ|n| |n1| |n− n1|) 1
600

dλ1,

and the estimate continues as

‖S(n, λ)‖l2nL1
λ
�δ−

1
600

∥∥∥∥∥〈λ− n3〉− 1
2
− 1

600
+κ

∑
n1

∫
R

û′
1(n− n1, λ− λ1)û′

2(n1, λ1)dλ1

∥∥∥∥∥
l2nL

1
λ

�δ−
1

600‖u′
1u

′
2‖L2

xL
2
t
� δ−

1
600‖u′

1‖L4
xL

4
t
‖u′

2‖L4
xL

4
t

by using the Cauchy-Schwarz inequality, and the Plancherel theorem
in the same way as in the previous case. It follows from (14) and (15)
that

‖S(n, λ)‖l2nL1
λ
� δ

1
12

− 1
600‖v‖

Y σ,s−1, 12
‖ψ(t/δ)u‖

Xσ,s−1, 12
. (18)

Similarly, for the second subcase |λ1 − n3
1| � (δ|n||n− n1||n1|)

1
100 , the

argument above can be repeated, and (18) holds, as well.
We proceed to consider the third subcase where

max
{|λ− λ1 − (n− n1)

3|, |λ1 − n3
1|
} 
 (δ|n||n1||n− n1|)

1
100 .
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Since δ is taken to be a small number, we have |λ−n3| ≈ |n||n1||n−n1|.
Therefore, it is plain that ‖S(n, λ)‖L1

λ
can be majorized by∑

n1 �=0,
n1 �=n

∫
A2

∫
A1

(|n||n1||n− n1|)κ−
1
2 û1(n− n1, λ− λ1)û2(n1, λ1)dλ1dλ,

where the domain of integration is given by

A1(n, n1, λ) = {λ1 ∈ R : |λ− λ1 − (n− n1)
3| ≤ (δ|n||n1||n− n1|)

1
100}

and

A2(n, n1) = {λ1 ∈ R : |λ1 − n3
1| ≤ (δ|n||n1||n− n1|)

1
100}

Using the Cauchy-Schwarz inequality in each integral, the last expres-
sion is dominated by

δ
1

200
+ 1

200

∑
n1 �=0,
n1 �=n

(|n||n1||n− n1|)κ−
1
2
+ 1

200
+ 1

200‖û1(n− n1, λ)‖L2
λ
‖û2(n1, λ)‖L2

λ
.

Now since |n||n1||n − n1| takes only nonzero integer values, we may
write

‖S(n, λ)‖l2nL1
λ

�δ
1

100

∥∥∥∥∥∑
n1

〈nn1n− n1〉κ− 1
2
+ 1

100‖û1(n− n1, λ)‖L2
λ
‖û2(n1, λ)‖L2

λ

∥∥∥∥∥
l2n

�δ
1

100‖û1(n, λ)‖l2nL2
λ
‖û2(n, λ)‖l2nL2

λ
.

(19)

Now recalling the definition of û1 and û2, it becomes clear that the
estimated can be concluded in the same way as the previous cases.
For more details of the last step we refer the reader to [8, page 200].
Combining estimates (16)-(19), we finish the proof of the lemma.

4 A Multilinear Estimate

We shall use the multilinear estimate in a variant of [22, Lemma 4.2].

Lemma 4.1. If k ≥ 1, s ≥ 1 and σ ≥ 0, then∥∥∥∥∥ψ(t/δ)
k∏

i=1

ui

∥∥∥∥∥
Xσ,s−1, 12

�
k∏

i=1

‖ui‖Y σ,s, 12
.

Proof. Denote h(n, λ) ∈ l2nL
2
λ and ‖h‖l2nL2

λ
≤ 1. We let ε > 0 be a

sufficiently small number, it follows that∥∥∥λ 1
2
−εδψ̂(δλ)

∥∥∥
L2
λ

� δε � 1,
∥∥∥λ−εδψ̂(δλ)

∥∥∥
L1
λ

� δε � 1. (20)
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Since s ≥ 1 > 1
2
, by the Cauchy-Schwarz inequality,∥∥eσ〈n〉û(n, λ)∥∥

l1nL
1
λ

=
∑
n

〈n〉−s〈n〉seσ〈n〉
∫
R

|û(n, λ)|dλ

�
∥∥eσ〈n〉〈n〉sû(n, λ)∥∥

l2nL
1
λ

≤ ‖u‖
Y σ,s, 12

.

(21)

We will only prove the Lemma 4.1 for k ≥ 3, since the situation will
be simpler when we deal with the case k = 1 and k = 2. We let
v3 =

∏k
i=3 ui. Since eσ|n| ≤ eσ|n−n3|eσ|n3−n4| · · · eσ|nk−1|, it follows from

(21) and the Young inequality,∥∥eσ〈n〉v̂3∥∥l1nL
1
λ

=
∑

n,n3,...,nk−1

∫
R

∫
Rk−3

eσ〈n〉|û3(n− n3, λ− λ3)||û4(n3 − n4, λ3 − λ4)| × · · ·

× |ûk−1(nk−2 − nk−1, λk−2 − λk−1)||ûk(nk−1, λk−1)|dλ3 · · · dλk−1dλ

≤ ∥∥eσ〈n〉û3 ∗ · · · ∗ eσ〈n〉ûk

∥∥
l1nL

1
λ

≤
k∏

i=3

∥∥eσ〈n〉ûi

∥∥
l1nL

1
λ

≤
k∏

i=3

‖ui‖Y σ,s, 12
.

(22)

The multilinear form Λ(h, u1, u2, v3) is defined by

Λ(h, u1, u2, v3) =
∑

n,n1,n2

∫
R4

eσ〈n〉〈λ− n3〉 1
2
−ε〈n〉s−1+2ε|h(n, λ)|

× |û1(n− n1, λ− λ1)||û2(n1 − n2, λ1 − λ2)|
× |v̂3(n2, λ2 − λ3)||δψ̂(δλ3)|dλ1dλ2dλ3dλ

and, consequently,∥∥∥∥∥ψ(t/δ)
k∏

i=1

ui

∥∥∥∥∥
Xσ,s−1+2ε, 12−ε

= sup
‖h(n,λ)‖

l2nL2
λ
≤1

Λ(h, u1, u2, v3).

Let u′
1, u

′
2 and v′3 be square integrable functions such that

û′
1 = eσ〈n〉û1, û′

2 = eσ〈n〉û2, and v̂′3 = eσ〈n〉v̂3.

Since eσ|n| ≤ eσ|n−n1|eσ|n1−n2|eσ|n2|, we have

Λ(h, u1, u2, v3)

≤
∑

n,n1,n2

∫
R4

〈λ− n3〉 1
2
−ε〈n〉s−1+2ε|h(n, λ)||û′

1(n− n1, λ− λ1)|

× |û′
2(n1 − n2, λ1 − λ2)||v̂′3(n2, λ2 − λ3)||δψ̂(δλ3)|dλ1dλ2dλ3dλ

(23)
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We denote by Λ′(h, u′
1, u

′
2, v

′
3) the right hand side of (23). As in the

proof of [22, Lemma 4.2], estimate (20) gives

Λ′(h, u′
1, u

′
2, v

′
3) � ‖u′

1‖Y s, 12
‖u′

2‖Y s, 12
‖v′3‖l1nL1

λ
.

Combining this estimate with (22) and (23), we get∥∥∥∥∥ψ(t/δ)
k∏

i=1

ui

∥∥∥∥∥
Xσ,s−1, 12−ε

�
k∏

i=1

‖ui‖Y σ,s, 12
.

The Lemma 4.1 follows for k ≥ 3 by letting ε → 0 and the Fatou
lemma.

5 Proof of Theorem 1.1

It is indicated in [22] and [8] that up to a gauge transform, we can
rewrite (1) as follows:{

∂tu+ ∂3
xxxu+P(P(uk)∂xu) = 0

u(x, 0) = u0(x), x ∈ T,
(24)

where P is the projection operator defined by P(u) = u− ∫
T
u(x, t)dx.

The well-posedness problem of (1) is reduced to consider the initial
value problem (24).

Since we have the embedding property (2), it is necessary to use the

contraction principle on function space Y σ,s, 1
2 . Let r = ‖u0‖Gσ,s < ∞.

By Lemma 2.1, there exists a constant c1 > 0 such that

‖ψ(t/δ)S(t)u0‖Y σ,s, 12
≤ c1‖u0‖Gσ,s .

We aim to show that the integral operator

Γ(u) = ψ(t/δ)S(t)u0 − ψ(t/δ)

∫ t

0

S(t− t′)ψ2(t′/δ)P
(
P(uk)∂xu

)
dt′

is a contraction map on the set B = {‖u‖
Y σ,s, 12

≤ 2c1r}.
It is easy to check that ∂xu = P(∂xu), P∂x = ∂xP and ‖∂xv‖Y σ,s−1, 12

≈

‖v‖
Y σ,s, 12

for v ∈ Y σ,s, 1
2 and

∫
T
v(x, t)dx = 0. It follows from Lemma

3.1 and Lemma 4.1 that∥∥ψ(t/δ)2P [
P(uk)∂xu

]∥∥
Xσ,s,− 1

2
≈

∥∥ψ(t/δ)2∂x [P(uk)P(∂xu)
]∥∥

Xσ,s−1,− 1
2

� δ
1

200‖u‖
Y σ,s, 12

∥∥ψ(t/δ)uk
∥∥
Xσ,s−1, 12

� δ
1

200‖u‖k+1

Y σ,s, 12
.
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On the other hand, by Lemma 2.3, Lemma 3.2 with κ = 0, and Lemma
4.1,∥∥∥∥∥〈n〉seσ〈n〉 ̂P(ψ(t/δ)uk)P(ψ(t/δ)∂xu)(n, λ)

〈λ− n3〉

∥∥∥∥∥
l2nL

1
λ

� δ
1

200 ‖∂xu‖Y σ,s−1, 12

∥∥ψ(t/δ)uk
∥∥
Xσ,s−1, 12

� δ
1

200‖u‖k+1

Y σ,s, 12
.

Therefore, we have∥∥ψ(t/δ)2P (
P(uk)∂xu

)∥∥
Zσ,s, 12

� δ
1

200‖u‖k+1

Y σ,s, 12
.

Combining this estimate with Lemma 2.2, we deduce that there exists
a constant c2 > 0 such that

‖Γ(u)‖
Y σ,s, 12

≤ c1‖u0‖Gσ,s + c2δ
1

200‖u‖k+1

Y σ,s, 12
.

If we take

T < δ <

(
1

2k+1c2(c1r)k

)200

then Γ(B) ⊂ B.
We are now in a position to verify that Γ is a contraction. By a

similar argument as above, it is not hard to show that

‖Γ(u)− Γ(v)‖
Y σ,s, 12

� δ
1

200

∑
k−1≤l≤k

‖ψ(t/δ)Pl(u, v)‖Xσ,s−1, 12
‖u− v‖

Y σ,s, 12
,

where Pl(u, v) is a homogeneous polynomial of degree l. Since u, v ∈ B,
there exists a constant c3 > 0 by Lemma 4.1, such that

‖Γ(u)− Γ(v)‖
Y σ,s, 12

≤ c3δ
1

200 rk‖u− v‖
Y σ,s, 12

.

If we set

T < δ < min

{(
1

2k+1c2(c1r)k

)200

,

(
1

2rkc3

)200
}
,

then Γ is a contraction on B. It follows that Γ has a unique fixed point
u in B and u solves the initial value problem (1).
To prove continuous dependence on the initial data, suppose u and

ū are solutions corresponding to initial data u0 and ū0. Following the
argument above, we arrive at

‖u− ū‖
Y σ,s, 12

≤ c‖u0 − ū0‖Gσ,s +
1

2
‖u− ū‖

Y σ,s, 12
.

Combining this inequality with (2), continuous dependence in C([0, T ], Gσ,s)
of the solution on the initial data in Gσ,s is immediate, as shown by the
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estimate

‖u− ū‖L∞([0,T ],Gσ,s) ≤ c‖u− ū‖
Y σ,s, 12

≤ c‖u0 − ū0‖Gσ,s .

Remark 2. If we consider the integral operator

Φ(u) = ψ(t)S(t)u0 − ψ(t)

∫ t

0

S(t− t′)ψ2(t′)P
[
P(uk)∂xu

]
dt′,

from a similar contraction argument and Corollary 1, it is a simple
matter to establish the following corollary.

Corollary 2. Let s ≥ 1
2
when k = 1 and s ≥ 1 when k ≥ 2. The initial-

value problem (1) is well-posed in the space C([0, 1], Gσ,s) if initial data
in Gσ,s, σ > 0 is sufficiently small.

Remark 3. Similarly as in the proof of [13, Lemma 6], we can prove
the uniqueness of the solution (1) in C([0, T ], Gσ,s) when s > 3

2
.

In fact, if s > 3
2
, from Hölder inequality,

‖∂xu‖L∞x L∞t = sup
0≤t≤T

‖∂xu‖L∞x
≤ sup

0≤t≤T

∥∥neσ〈n〉Fxu(n, t)
∥∥
l1n
� sup

0≤t≤T
‖u(·, t)‖Gσ,s < ∞.

(25)

Suppose u and v are solutions to (1) in C([0, T ], Gσ,s) with u(x, 0) =
v(x, 0). Let e = u − v. Using the fact eexxx = ∂x(eexx) − 1

2
∂x(e

2
x), we

get the estimate

d

dt
‖e(·, t)‖2L2(T) ≤ cP (u, ux, v, vx)‖e(·, t)‖2L2(T)

where P (u, ux, v, vx) is a polynomial with respect to u, ux, v and vx.
From (25) and Gronwall’s inequality, we know that e ≡ 0.
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VERY WEAK SOLUTIONS OF DEGENERATE PARABOLIC
SYSTEMS WITH NON-STANDARD p(x, t)-GROWTH

VERENA BÖGELEIN AND QIFAN LI

Abstract. We study higher integrability of very weak solutions to cer-
tain degenerate parabolic systems whose model is the parabolic p(x, t)
-Laplacian system,

∂tu − div(|Du|p(x,t)−2Du
)
= div

(|F|p(x,t)−2F).
Under natural assumptions on the exponent function p : Ω × (0,T ) →
[2,∞), we prove that any very weak solution u : Ω × (0,T ) → RN with
|Du|p(·)(1−ε) ∈ L1 belongs to the natural energy space, i.e. |Du|p(·) ∈ L1loc,
provided ε > 0 is small enough.

Keywords: Higher integrability; Gehring’s lemma; parabolic p-
Laplacean; non-standard growth condition; degenerate parabolic
systems

1. Introduction

The reverse Hölder inequality for the solutions of elliptic systems was
first studied by Meyer [24]. In principle the argument of the proof is based
on Caccioppoli’s inequality and an application of Gehring’s lemma [15].
Furthermore, Lewis [22] and Iwaniec and Sbordone [18] independently in-
troduced a definition of very weak solutions for elliptic systems, that is so-
lutions which do not belong to the natural energy space. Actually, the very
weak solutions belong to a slightly larger Sobolev space than the natural
one. However, in [18, 22] it has been proved that this kind of solutions are
indeed the weak solutions, provided the deficit is now too large. This result
was extended in [23] to the degenerate elliptic systems with a Muckenhoupt
weight. The treatment of the higher integrability for weak and very weak
solutions to elliptic equations with non-standard p(x)-growth goes back to
Zhikov [25], Bögelein and Zatorska-Goldstein [3]. The treatment of the
time dependent parabolic case is much more difficult. The higher integra-
bility of weak solutions to parabolic p-Laplacian type systems has been es-
tablished by Kinnunen and Lewis [19]; see also [5, 4] for the case of higher
order systems. The treatment of very weak solutions is much more delicate,
because the solution itself cannot be used as a testing function. Using a sub-
tle and involved construction of a testing function by Whitney cylinders,
Kinnunen and Lewis [20] succeeded to prove the higher integrability of
very weak solutions to parabolic systems of p-Laplacian type. The case of
higher order systems was subsequently treated by Bögelein [6, 4]. Recently,
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Zhikov and Pastukhova [26] and independently Bögelein and Duzaar [7]
proved the higher integrability of weak solutions to parabolic systems with
non-standard p(x, t)-growth whose model is the parabolic p(x, t)-Laplacian
system

∂tu − div(|Du|p(x,t)−2Du
)
= div

(|F|p(x,t)−2F)
(see also [1] for the scalar case). Motivated by this work, we will study the
very weak solutions to this kind of parabolic systems in this paper. Our main
result states that any very weak solution is indeed a weak solution, provided
the deficit in integrability is not too large. This problem was suggested as an
open problem in the field of differential equations with non-standard growth
in the overview article [17].
Our proof is in the spirit of [20]. Since the solution multiplied by a cut-off

function cannot be used as a testing function in the weak formulation of the
system, we have to construct a suitable testing function. This is achieved by
a parabolic Lipschitz truncation argument. The major difficulty in our proof
stems from the fact that the usual Poincaré inequality cannot be used in the
case of variable exponent Lebesgue spaces. Instead, we have to use deli-
cate localization arguments in order to get control on the lower order terms.
More precisely, we first use a mixed type maximal function containing first
and zero order terms. Subsequently we prove suitable bounds for the lower
order terms on larger cylinders. We also remark that unlike to the elliptic
case in which the Hardy-Littlewood maximal function plays an important
role in the proof, (see [22]), the proof for the parabolic case should use
strong maximal functions instead (see [20, 4, 6]). Unfortunately, as pointed
out by Kopaliani [21], the strong maximal functions are not bounded in Lp(·)

unless p(·) ≡ constant. Furthermore, we have to work with a “non-standard
version” of the intrinsic geometry invented by DiBenedetto and Friedman
[11, 12]; see also the monograph [10]. As a consequence, we have to use the
modified parabolic distance dz(z1, z2) := max{ |x1−x2|,

√
λ(p(z)−2)/p(z)|t1 − t2| }

defined in [7]. Contrary to the case of standard p-growth, the distance dz

depends on the point z ∈ Rn+1 and cannot be considered as a metric space.
This paper is organized as follows. We state the main result in § 2. In

§ 3 we provide some preliminary material, while in § 4 we explain the
construction of the testing function. In particular, we prove the existence
of a Whitney type decomposition of the super level set of a certain strong
maximal function. Subsequently, in § 5 we provide certain Poincaré type
inequalities for constant integrability exponents. § 6 is devoted to the proof
of the Caccioppoli inequality. First, we prove suitable estimates for the
testing function constructed in § 4 and then we show the Lipschitz conti-
nuity of the testing function. Thereby, we use the integral characterization
of Hölder spaces (see [9]) instead of pointwise estimates. This idea has
been used in [8, 13] in a different context. The proof of the Caccioppoli in-
equality is given in § 6.4. Subsequently, § 7 is intended to prove estimates
for the lower order terms which play a crucial role in the next section. In
§ 8, we prove the reverse Hölder inequality under an additional assumption.
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Finally, in §9, we finish the proof of the higher integrability of very weak
solutions.

2. Statement of theMain Result

In the following, Ω will denote a bounded domain in Rn with n ≥ 2 and
ΩT := Ω × (0,T ) ⊂ Rn+1, T > 0 is the associated space-time cylinder.
We denote by Du the differentiation with respect to the space variables,
while ∂tu stands for the time derivative. Points in Rn+1 will be denoted by
z = (x, t), where x ∈ Rn and t ∈ R. We shall use parabolic cylinders of the
form Q�(z0) = B�(x0)×(t0−�2, t0+�2), where B�(x0) = {x ∈ Rn : |x−x0| ≤ �}
denotes the ball of radius � with center x0 in Rn. We consider degenerate
parabolic systems of the type

(2.1) ∂tu − div A(z,Du) = B(z,Du),

where the vector fields A, B : ΩT × RnN → RnN satisfy the following non-
standard p(z)-growth and ellipticity conditions:

|A(z, ξ)| ≤ L(1 + |ξ| + |F|)p(z)−1
|B(z, ξ)| ≤ L(1 + |ξ| + |F|)p(z)−1
〈A(z, ξ), ξ〉 ≥ ν|ξ|p(z) − |F|p(z)

(2.2)

for any z ∈ ΩT and ξ ∈ RnN . Here, F : ΩT → RnN with |F|p(·) ∈ L1(ΩT ) and
0 < ν < L are fixed structural parameters. For the exponent function p :
ΩT → [2,∞) we assume that it is continuous with a moduls of continuity
ω : ΩT → [0, 1]. More precisely, we assume that

(2.3) 2 ≤ p(z) ≤ γ2 < ∞ and |p(z1) − p(z2)| ≤ ω(dP(z1, z2)),

holds for any z, z1, z2 ∈ ΩT and some γ2 > 2. For a brief discussion on
the lower bound on p(·) we refer to Remark 9.1. Since our estimates are
of local nature, it is not restrictive to assume an upper bound for p(·). For
simplicity, we only consider the degenerate case where p(·) ≥ 2. As usual,
the parabolic distance dP is given by

dP(z1, z2) := max
{
|x1 − x2|,

√
|t1 − t2|

}
for z1 = (x1, t1) and z2 = (x2, t2) ∈ Rn+1.

The modulus of continuity ω is assumed to be a concave, non-decreasing
function satisfying the following weak logarithmic continuity condition:

(2.4) sup
0≤�≤1

ω(�) log
(
1
�

)
< L < ∞.

The spaces Lp(Ω,RN) and W1,p(Ω,RN) are the usual Lebesgue and Sobolev
spaces. Moreover, for a variable exponent p(·), we denote by Lp(·)(ΩT ,R

k),
k ∈ N, the variable exponent Lebesgue space

Lp(·)(ΩT ,R
k) :=

{
v ∈ L1(ΩT ,R

k) :
∫
ΩT

|v|p(·)dz < ∞
}
.
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For more details on variable exponent Lebesgue and Sobolev spaces we
refer the reader to [14]. We now can give the definition of a very weak
solution to (2.1).

Definition 2.1. Let ε ∈ (0, 1). We say that u ∈ L2(ΩT ,R
N) is a very weak

solution to the parabolic system (2.1) with deficit ε if and only if

u ∈ Lp(·)(1−ε)(ΩT ,R
N) and Du ∈ Lp(·)(1−ε)(ΩT ,R

Nn)

and

(2.5)
∫
ΩT

u · ∂tϕ − 〈A(z,Du),Dϕ〉 dz = −
∫
ΩT

B(z,Du) · ϕ dz

holds, whenever ϕ ∈ C∞
0 (ΩT ,R

N).

The following theorem is our main result.

Theorem 2.2. Let p : ΩT → [2, γ2] satisfy (2.3) and (2.4). Then there
exists a constant ε0 = ε0(n,N, L, γ2) > 0 such that the following holds:
Whenever u ∈ L2(ΩT ,R

N) ∩ Lp(·)(1−ε)(ΩT ,R
N) and |Du| ∈ Lp(·)(1−ε)(ΩT ) with

some ε ∈ (0, ε0] is a very weak solution to the parabolic system (2.1) under
the assumptions (2.2) and F ∈ Lp(·)(ΩT ,R

nN), then we have

|Du| ∈ Lp(·)
loc (ΩT ).

Moreover, for M ≥ 1 there exists a radius r0 = r0(n,N, L, γ2,M) such that
there holds: If

(2.6)
∫
ΩT

(|u| + |Du| + |F| + 1)p(·)(1−ε) dz ≤ M

such that for any parabolic cylinder Q2r(z0) ⊆ ΩT with r ∈ (0, r0] there
holds
(2.7)�

Qr(z0)
|Du|p(·)dz ≤ c

(�
Q2r(z0)

(|Du| + |F|)p(·)(1−ε)dz
)1+ εp0

2−εp0
+c
�

Q2r(z0)
(|F| + 1)p(·) dz,

where c = c(n,N, L, γ2) > 0 and p0 = p(z0).

3. Preliminary material and notation

For a point z0 = (x0, t0) ∈ Rn+1 and parameters � > 0, λ ≥ 1, we define
the scaled cylinder Q(λ)

� (z0) by

Q(λ)
� (z0) := B�(x0)×Λ(λ)� (z0), where Λ(λ)� (z0) :=

(
t0−λ(2−p0)/p0�2, t0+λ(2−p0)/p0�2

)
,

and p0 := p(z0). For α > 0, we write αQ(λ)
� (z0) for the scaled cylinder

Q(λ)
α� (z0). Moreover, for a function f ∈ L1(Rn+1,Rk), k ∈ N we define its

strong maximal function by

M( f )(z) := sup
{�

Q
| f |dz̃ : z ∈ Q, Q is parabolic cylinder

}
.
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Here, by parabolic cylinder we mean that Q is a cylinder of the form B ×Λ
where B is a ball in Rn and Λ ⊂ R is an interval. To simplify the notations,
we write fG instead of

�
G

f dz for any subset G ⊂ Rn+1. We will use the
following iteration lemma, which is a standard tool and can be found in
[16].
We can reformulate the parabolic system (2.5) in its Steklov form as fol-

lows:
(3.1)∫

Ω

∂t[u]h(·, t)ϕ + 〈[A(z,Du)]h,Dϕ〉(·, t)dx = −
∫
Ω

〈[B(z,Du)]h, ϕ〉(·, t)dx

for all ϕ ∈ C∞
0 (Ω,R

N) and a.e. t ∈ (0,T ). For the proof of (3.1) and the
definition of the Steklov averages [·]h, we refer the reader for instance to [4,
Chapter 8.2].
The following iteration lemma is a standard tool in order to reabsorb

certain terms from the right hand side into the left.

Lemma 3.1. Let θ ∈ (0, 1), C1,C2 ≥ 0 and β > 0. Then there exists
a constant c = c(θ, β) > 0 such that there holds: For any non-negative
bounded function φ : [r, �]→ R+ satisfying

φ(s) ≤ θφ(t) +C1(t − s)−β +C2 for all 0 < r ≤ s < t ≤ �,
we have

φ(r) ≤ c
[
C1(� − r)−β +C2

]
.

Next, we state Gagliardo-Nirenberg’s inequality in a form which shall be
convenient for our purposes later.

Lemma 3.2. Let B�(x0) ⊂ Rn with 0 < � ≤ 1, 1 ≤ σ, q, r < ∞ and θ ∈ (0, 1)
such that −n/σ ≤ θ(1 − n/q) − (1 − θ)n/r. Then there exists a constant
c = c(σ, n) such that for any u ∈ W1,q(B�(x0)) there holds:
�

B�(x0)

∣∣∣∣∣u�
∣∣∣∣∣σ dx ≤ c

(�
B�(x0)

∣∣∣∣∣u�
∣∣∣∣∣q + |Du|qdx

)θσ/q (�
B�(x0)

∣∣∣∣∣u�
∣∣∣∣∣r dx

)(1−θ)σ/r
.

4. Construction of the test function

In this section, we will construct a suitable testing function for the weak
form (2.5) of the parabolic system. To this aim we fix a cylinder Q(λ)

� (z0)
with 0 < � ≤ 1, λ ≥ 1 and Q(λ)

32�(z0) ⊂ ΩT . Letting �1 and �2 be two fixed
numbers such that � ≤ �1 < �2 ≤ 16�, we set

Q(0) := Q(λ)
� (z0), Q(1) := Q(λ)

�1
(z0), Q(2) := Q(λ)

�+1
(z0), Q(3) := Q(λ)

�−2
(z0),

Q(4) := Q(λ)
�2
(z0), Q(5) := Q(λ)

16�(z0), Q(6) := Q(λ)
32�(z0),

where �+1 = �1 +
1
3 (�2 − �1) and �−2 = �1 + 2

3 (�2 − �1). We note that Q(0) ⊂
Q(1) ⊂ Q(2) ⊂ Q(3) ⊂ Q(4) ⊂ Q(5) ⊂ Q(6). In the following, we will write B(k)

for the projection of Q(k) in x direction and Λ(k) for the projection of Q(k)
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in t direction for k ∈ {0, · · · , 6}. Denoting by p1 and p2 the minimum and
maximum of p(·) over the cylinder Q(6), i.e.

p1 = inf
Q(6)

p(·) and p2 = sup
Q(6)

p(·),

and taking into account that p(·) ≥ 2 and that ω is concave, we find that
(4.1) p2 − p1 ≤ ω

(
max

{
64�,

√
λ(2−p0)/p0(64�)2

})
≤ ω(64�) ≤ 64ω(�).

Therefore, by the concavity of ω and assumption (2.4), we have that

�−(p2−p1) ≤ �−64ω(�) = exp [64ω(�) log 1
�

] ≤ e64L(4.2)

Next, we fix constants q̃ and ε such that

1 < q̃ <
γ2
γ2 − 1 and 0 < ε < 1 − 1

q̃
≤ 1
γ2
.

Throughout this section, we shall assume that
(4.3)

λ1−ε ≤
�

Q(0)
(|Du| + |F| + 1)p(·)(1−ε) dz and

�
Q(5)
(|Du| + |F| + 1)p(·)(1−ε) dz ≤ λ1−ε.

holds true. Then, writing p0 = p(z0) as usual and using the fact that |Q(0)| =
c(n)�2+nλ(2−p0)/p0 and assumption (2.6), we find that

λ
2

p0
−ε ≤ 1

c(n)�n+2

∫
Q(0)
(|Du| + |F| + 1)p(·)(1−ε) dz ≤ c(n)M

�n+2 .

Since λ ≥ 1 and 2
p0
− ε ≥ 1

p0
, this leads to the following upper bound for λ:

(4.4) λ ≤
(
c(n)M
�n+2

)p0

.

This together with (4.1) implies that for � > 0 with � ≤ �0 ≤ 1
64M , there

holds

(4.5) λ(p2−p1)/p0 ≤ c(n) �−(n+2)(p2−p1)Mp2−p1 ≤ c(n) e64(n+3)L.

Moreover, we choose �0 so small that ω(4�0) ≤ 1 − γ2(1 − 1
q̃ ). Then, we

have for � ∈ (0, �0] that
(4.6) p2 − 1 ≤ p1 + ω(4�) − 1 ≤ p1 + ω(4�0) − 1 ≤ p1 − γ2(1 − 1

q̃ ) ≤ p1
q̃ .

For λ1 ≥ 1 we denote the lower level set of the maximal function
MQ(4) (z) := M

[(
1
�
|u − uQ(1) | + |Du| + |F| + 1

)p(·)/q̃
χQ(4)

]
(z)q̃(1−ε)

by
E(λ1) :=

{
z ∈ Q(4) : MQ(4) (z) ≤ λ1−ε1

}
.

If E(λ1) = ∅, we have by the boundedness of the strong maximal function
that

λ1−ε1 |Q(4)| ≤
∫

Q(4)
M
[(
1
�
|u − uQ(1) | + |Du| + |F| + 1

)p(·)/q̃
χQ(4)

]q̃(1−ε)
dz
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≤ c
∫

Q(4)

(
1
�
|u − uQ(1) | + |Du| + |F| + 1

)p(·)(1−ε)
dz

≤ c λ̃1−ε|Q(4)| =: c1−εE λ̃
1−ε|Q(4)|,

where cE = cE(n, γ2) and

(4.7) λ̃ := λ +
(�

Q(4)

(
1
�
|u − uQ(1) |

)p(·)(1−ε)
dz
) 1
1−ε
.

For λ1 ≤ cEλ̃, this leads to a contradiction. Therefore, we conclude that
E(λ1) is nonempty for λ1 > cEλ̃. We note that the set E(λ1) is bounded
and closed. Therefore, for any fixed point z ∈ Q(4) \ E(λ1), there exists a
neighbourhood Q̃ such that Q̃ ⊂ Q(4) \ E(λ1). This motivates us to establish
the following Lemma.

Lemma 4.1. Let λ ≥ 1, λ1 ≥ cEλ and α ≥ 1, z ∈ Q(4) \ E(λ1) and define

rz := dz(z, E(λ1)) where dz(z1, z2) := max
{
|x1−x2|,

√
λ
(p(z)−2)/p(z)
1 |t1 − t2|

}
.

Then for any z1, z2 ∈ Q(4) ∩ αQ(λ1)
rz (z) we have

|p(z1) − p(z2)| ≤ 32max{α, 1}ω(min{rz, �}) and λ
|p(z1)−p(z2)|
1 ≤ cα,

where the constant cα depends on n, L, γ2 and α.

Proof. We first observe that since p(·) ≥ 2 and λ, λ1 ≥ 1 we have
|p(z2) − p(z1)| ≤ ω(min{2αrz, 32�}) ≤ 32max{α, 1}ω(min{rz, �}),

where we also used the concavity of ω. This proves the first assertion of the
lemma. Since Q(4) ∩ Q(λ1)

rz (z) ⊂ Q(4)\E(λ1), we use Chebyshev inequality
and the boundedness of the strong maximal functions to obtain

|Q(4) ∩ Q(λ1)
rz
(z)| ≤ |Q(4)\E(λ1)| ≤ 1

λ1−ε1

∫
Q(4)

MQ(4) dz

≤ c
λ1−ε1

∫
Q(4)

(
1
�
|u − uQ(1) | + |Du| + |F| + 1

)p(·)(1−ε)
dz =:

cA
λ1−ε1
,

with the obvious meaning of A and a constant c = c(n, γ2). This implies
the following upper bound for λ1:

(4.8) λ1−ε1 ≤ cA
|Q(4) ∩ αQ(λ1)

rz (z)|
.

To estimate the lower bound for |Q(4) ∩ αQ(λ1)
rz (z)|, we recall that z ∈ Q(4) \

E(λ1) implies

|Q(4)∩αQ(λ1)
rz
(z)| ≥ c min{rn

z , �
n}min

{
λ
2−p(z)

p(z)

1 r2z , λ
2−p(z)

p(z) �2
}
≥ c λ

2
γ2
−1

1 min{rn+2
z , �

n+2}.
Together with (4.8) this shows that

(4.9) λ1 ≤
[
cA max

{
1

r2+n
z
,
1
�2+n

}] γ2
2−εγ2
,
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where c depends on n and α. Next, we estimateA as follows:

A ≤ c �−γ2(1−ε)
[∫

Q(4)
(|u| + |Du| + |F| + 1)p(·)(1−ε) dz + |Q(1)|(|uQ(1) | + 1)p2(1−ε)

]

≤ c �−γ2
[
M + |Q(1)|− p2−p1

p1 M
p2
p1 + |Q(1)|

]
≤ c(n, L, γ2) �−γ2M2,

where we have used that |Q(1)| ≤ c(n), p2
p1
≤ 2 which we can always assume

and |Q(1)|− p2−p1
p1 ≤ c(n, L) which follows from (4.2) and (4.5). Inserting the

bound for A into (4.9) and taking into account that �−(p2−p1) ≤ e4L and
Mp2−p1 ≤ eL (see (4.2) and (4.5)) we end up with

λ
|p(z1)−p(z2)|
1 ≤ c(n, γ2, L, α).

This finishes the proof of the lemma. �

To construct our test function, we need the following version of the Whit-
ney decomposition theorem for non-uniformly parabolic cylinders.

Lemma 4.2. There exist Whitney-type cylinders {Qi}∞i=1 with Qi ≡ Bi×Λi :=
Q(λ1)

ri (zi), having the following properties:
(i) Q(4)\E(λ1) = ⋃∞

i=1 Q(4) ∩ Qi,
(ii) In each point of Q(4)\E(λ1) intersect at most c(n, L, γ2) of the cylin-

ders 2Qi.
(iii) There exists a constant c = c(n, L, γ2) such that for any Whitney

cylinders Qi and Qj with 2Qi ∩ 2Qj � ∅, there holds

|Bi| ≤ c |Bj| ≤ c |Bi| and |Λi| ≤ c |Λ j| ≤ c |Λi|.
(iv) There exists a constant ĉ = ĉ(n, L, γ2) such that for all i ∈ N there

holds

ĉQi ⊂ Rn+1\E(λ1) and 2ĉQi ∩ E(λ1) � ∅,
(v) For the constant ĉ from (iv) there holds: 2Qi ∩ 2Qj � ∅ implies

2Qi ⊂ ĉQ j.

Proof. By χ = χ(n, L) ≥ 5 we denote the constant from [7, (7.1)]. We
fix a point z ∈ Q(4)\E(λ1) and let dz be the corresponding parabolic metric
which was defined in Lemma 4.1. We set rz =

δ
χ
dz(z, E(λ1)) where δ ∈

(0, 1/4) will be fixed at the end of the proof. Then, F = {Q(λ1)
rz (z)}z∈Q(4)\E(λ1)

is a covering of the set Q(4)\E(λ1). From [7, Lemma 7.1] applied with λ1
instead of λ (note that instead of verifying assumption [7, (7.1)] we can
use Lemma 4.1 with α = 1 in order to bound the terms coming from the
difference p(z1)−p(z2) in the proof of [7, Lemma 7.1]) we infer the existence
of a countable sub-collection G = {Q(λ1)

rzi
(zi)}∞i=1 ⊆ F of disjoint parabolic

cylinders such that

(4.10) Q(4)\E(λ1) ⊂
∞⋃

i=1

χQ(λ1)
rzi
(zi) ∩ Q(4).



DEGENERATE PARABOLIC SYSTEMS WITH NON-STANDARD GROWTH 9

For i ∈ N, we now set ri := χrzi = δdzi(zi, E(λ1)) and define the parabolic
cylinders

Qi ≡ Bi × Λi := Q(λ1)
ri
(zi)

In the following we will verify that statements (i)-(iv) are true for the para-
bolic cylinders {Qi}∞i=1.
Statement (i) directly follows from (4.10) and the fact that ri <

dzi(zi, E(λ1)), so that Qi ⊂ Rn+1\E(λ1) for any i ∈ N. Now, we come to
the proof of (iii). For any parabolic cylinder Qi, we set pi

0 = p(zi) and
pi
1 = min{p(z) : z ∈ Q(4) ∩ 2Qi} and pi

2 = max{p(z) : z ∈ Q(4) ∩ 2Qi}.
Since 2Qi ⊂ Rn+1\E(λ1) (note that 2ri < dzi(zi, E(λ1))), the application of
Lemma 4.1 with the choice α = 1 ensures that λpi

2−pi
1

1 ≤ c(n, L, γ2).We now
consider i, j ∈ N such that 2Qi ∩ 2Qj � ∅ and show that the two parabolic
distances dzi and dz j are equivalent. Since 2Qi∩2Qj � ∅, there exists a point
z̄ ∈ 2Qi ∩ 2Qj and therefore, we have

λ
p j
0−pi

0
1 = λ

p j
0−p(z̄)
1 λ

p(z̄)−pi
0

1 ≤ λp j
2−p j

1
1 λ

pi
2−pi

1
1 ≤ c(n, L, γ2).

This allows us to estimate the distance with respect to dzi of two arbitrary
points ẑ = (x̂, t̂) and z′ = (x′, t′) in Rn+1 by

dzi(ẑ, z
′) = max

{
|x̂ − x′|, λ(p

j
0−pi

0)/p
j
0pi
0

1

√
λ
(2−p j

0)/p
j
0

1 |t̂ − t′|
}
≤ c(n, L, γ2) dz j(ẑ, z

′).

We now let ẑ j be a point in E(λ1) such that dz j(z j, ẑ j) = dz j(z j, E(λ1)) and
z̄ ∈ 2Qi ∩ 2Qj as before. With these choices we see that

ri = δdzi(zi, E(λ1)) ≤ δdzi(zi, ẑ j) ≤ δ
(
dzi(zi, z̄) + dzi(z̄, ẑ j) + dzi(z̄, ẑ j)

)
≤ δ

(
2ri + cdz j(z̄, ẑ j) + cdz j(z̄, ẑ j)

)
≤ δ

(
2ri + 2cr j +

c
δ
r j

)
≤ 1

2ri + 2cr j,

which implies that ri ≤ c(n, L, γ2)r j. Since we can interchange i and j in
the preceding argument, this proves the first claim in (iii). Furthermore, we
find that

|Λi| = 2λ(2−pi
0)/p

i
0

1 r2i = λ
2(p j

0−pi
0)/p

j
0pi
0

1 λ
(2−p j

0)/p
j
0

1 r2i ≤ c λ
(2−p j

0)/p
j
0

1 r2j ≤ c(n, L, γ2) |Λ j|,
which proves the second claim in (iii). Next, we will show the statement
(v). We consider i, j ∈ N such that 2Qi ∩ 2Qj � ∅. Then, there exists
z̄ ∈ 2Qi ∩ 2Qj and hence for any z̃i ∈ 2Qi there holds

dz j(z j, z̃i) ≤ dz j(z j, z̄) + dz j(z̄, zi) + dz j(zi, z̃i)
≤ 2r j + cdzi(z̄, zi) + cdzi(zi, z̃i) ≤ 2r j + 4cri ≤ ĉ(n, L, γ2) r j,

where we have used dz j ≤ cdzi and ri ≤ cr j from the proof of (iii). Therefore,
we know that 2Qi ⊂ ĉQ j as claimed in (v). At this point, we perform the
choice of δ. Choosing δ = δ(n, L, γ2) = 1/ĉ, we have that ĉQi ⊂ Rn+1 ⊂
E(λ1). Now, we observe that αQi∩E(λ1) � ∅ if α > ĉ and αQi ⊂ Q(4)\E(λ1)
if α < ĉ. This proves (iv). Finally, we come to the proof of statement (ii).
Here, we consider z ∈ Q(4)\E(λ1) and denote Iz := {i ∈ N : z ∈ 2Qi}. Let
j ∈ Iz. Then, by (iii) we have for any k ∈ Iz that |Bk| ≥ c−1|Bi| and therefore
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infk∈Iz �k > 0. This ensures that Iz is finite and therefore there exists an
element i0 ∈ Iz such that mini∈Iz |Qi| = |Qi0 |. Moreover, by (v) we know that
Qi ⊂ ĉQi0 for any i ∈ Iz. Taking into account that the cylinders χ−1Qi are
disjoint, we have for the cardinality of the set Iz that #Iz |χ−1Qi0 | ≤ |c̄Qi0 | and
hence #Iz ≤ (c̄χ)n+2. This proves (ii) and therefore the proof of the Lemma
is complete. �

Subordinate to the cylinders Qi, we can construct a partition of unity as
stated in the following lemma.

Lemma 4.3. There exists a partition of unity {ψi}∞i=1 on Rn+1\E(λ1), i.e.∑∞
i=1 ψi ≡ 1 on Rn+1\E(λ1) having following properties,⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψi ∈ C∞
0 (2Qi), 0 ≤ ψi ≤ 1, and ψi ≥ c on Qi,

|∂tψi| ≤ cλ
(pi
0−2)/pi

0
1 r−2i , |Dψi| ≤ cr−1i ,

where c only depends on n, L, γ2. �

For i ∈ N, we define I(i) := { j ∈ N : suppψ j ∩ suppψi � ∅} and by #I(i)
we denote the number of elements in I(i). From Lemma 4.2 (ii), we know
that #I(i) ≤ c(n, L, γ2) for any i ∈ N. Furthermore, for i ∈ N we define the
enlarged cylinder

Q̂i := ĉQi ≡ Q(λ1)
r̂i
(zi),

where r̂i := ĉri and ĉ = ĉ(n, L, γ2) denotes the constant from Lemma 4.2
(v). Then, by Lemma 4.2 (v) we see that

⋃
j∈I(i) supp ψ j ⊂ ⋃

j∈I(i) 2Qj ⊂ Q̂i.
We now define the function v(z) ≡ v(x, t) := η(x)ζ(t)[u − uQ(1) ], where η ∈
C∞
0 (B

(3)), ζ ∈ C∞
0 (Λ

(3)) are cutoff functions satisfying⎧⎪⎪⎨⎪⎪⎩η ≡ 1 in B(2), 0 ≤ η ≤ 1, |Dη| ≤ c(�2 − �1)−1
ζ ≡ 1 in Λ(2), 0 ≤ ζ ≤ 1, |∂tζ | ≤ cλ(p0−2)/p0(�22 − �21)−1.

It follows that supp(ηζ) ⊂ Q(3). Then, for Qi and ψi as in Lemmas 4.2 and
4.3 we define the test function

(4.11) ṽ(z) ≡ ṽ(x, t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v(z), for z ∈ E(λ1),
∞∑

i=1

vQi∩Q(4)ψi(z), for z ∈ Rn+1 \ E(λ1).

Note that vQi∩Q(4) � 0 implies that Qi ∩ Q(3) � ∅ and consequently suppψi ∩
Q(3) � ∅. For this reason we are mainly interested in getting estimates on
such cylinders. Before, we have to introduce some more notation. We set

S 1 :=
{
t ∈ R1 : |t − t0| ≤ λ(2−p0)/p0

(
�1 +

1
9 (�2 − �1)

)2}
and

S 2 :=
{
t ∈ R1 : |t − t0| ≤ λ(2−p0)/p0

(
�1 +

2
9(�2 − �1)

)2}
.
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and note that Λ(1) ⊂ S 1 ⊂ S 2 ⊂ Λ(2). Furthermore, we need to consider the
set

Θ :=
{
i ∈ N : suppψi ∩ S 1 � ∅}

and we decompose the set Θ as follows:

Θ1 :=
{
i ∈ Θ : Q̂i ⊂ Rn × S 2

}
and Θ2 ≡ Θ\Θ1.

We find that if i ∈ Θ1 and 4ri ≤ �2 − �1 then Qi ⊂ Q(4). While if i ∈ Θ2 then
there holds λ

(2−pi
0)/p

i
0

1 r2i ≥ ĉ−2s, where s = λ(2−p0)/p0(�2 − �1)�.

5. Poincaré type inequalities

Since we have to derive estimates on intersections of parabolic cylinders,
we will formulate Poincaré type estimates for very general types of sets.
The first one can be deduced from [6, Lemma 4.1, Lemma 4.2] and [7,
Lemma 5.1].

Lemma 5.1. Let u be a very weak solution to (2.1) with (2.2) and deficit
ε > 0. Suppose that Ω̃ � Ω is a convex open set such that B�(y) ⊂ Ω̃ ⊂
Bα�(y) for some y ∈ Rn, 0 < � ≤ 1 and α > 1 and T1,T2 ⊂ (0,T ) are two
intervals. Then for 1 ≤ θ ≤ infz∈Ω̃×(T1∪T2) p(z)(1 − ε), there holds
�
Ω̃×T1

|u − (u)Ω̃×T2 |θdz ≤ c �θ
(�
Ω̃×T1

|Du|θdz +
�
Ω̃×T2

|Du|θdz
)

+ c �−θ
(∫

T1∪T2

�
Ω̃

(1 + |Du| + |F|)p(·)−1dz
)θ

where the constant c depends only on n,N, L, γ2 and α.

Corollary 5.2. Let M ≥ 1 and ≥ 1 be fixed. Then there exists �0 =
�0(n, γ1, L, ,M) such that the following holds: Assume that u is a very weak
solution to (2.1) with (2.2) and deficit 0 < ε < 1

2γ2
satisfying (2.6). Sup-

pose that on the parabolic cylinder Q�,s(z0) = B�(x0) × (t0 − s, t0 + s) with
0 < � ≤ �0, 0 < s ≤ λ(2−p0)/p0�2, λ1 ≥ cEλ and Q�,s(z0) � Q(6), there holds

(5.1)
�

Q�,s(z0)
(|Du| + |F| + 1)p(·)(1−ε) dz ≤ λ1−ε.

Then for any 1 ≤ θ ≤ infz∈Q�,s(z0) p(z)(1 − ε), we have

(5.2)
�

Q�,s(z0)
|u − (u)Q�,s(z0)|θdz ≤ c�θλθ/p0 ,

where the constant c depends only on n, N, L, γ2, and .

Proof. We apply Lemma 5.1, with T1 = T2 = (t0 − s, t0 + s) and Ω̃ = B�(x0)
to obtain�

Q�,s(z0)
|u − (u)Q�,s(z0)|θdz ≤ c �θ

�
Q�,s(z0)

|Du|θ dz
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+ c �θ
(
λ(2−p0)/p0

�
Q�,s(z0)

(|Du| + |F| + 1)p(·)−1 dz
)θ

:= I1 + I2.

We denote by p̃1 and p̃2 the infimum and supremum of p(·) over the intrin-
sic cylinder Q�,s(z0). As in (4.5), using (5.1), we deduce that λ(p̃2− p̃1)/p0 ≤
c(n)e2(n+3)L. We use Hölder’s inequality, (5.1) and (5.2) to obtain

I1 ≤ c �θ
(�

Q�,s(z0)
(|Du| + 1)p(·)(1−ε) dz

)θ/ p̃1(1−ε)
≤ c �θλ

θ
p̃1 ≤ c(n, , L) �θλ

θ
p0 .

To estimate I2, we impose a bound for � ≤ �0 such that ω(4�0) < 1
γ2
. Since

ε < 1
2γ2
by assumption, we conclude that

1
γ2
+ p̃1ε <

1
γ2
+
1
2
≤ 1, which implies p̃2− p̃1 ≤ ω(4�0) < 1

γ2
< 1−p1ε.

We use the estimate above and Hölder’s inequality to conclude that

I2 ≤ c �θ
(
λ
2−p0

p0

(�
Q�,s(z0)

(|Du| + |F| + 1)p(·) p̃2−1
p̃1 dz

))θ

≤ c �θ
⎛⎜⎜⎜⎜⎜⎜⎜⎝λ 2−p0

p0

(�
Q�,s(z0)

(|Du| + |F| + 1)p(·)(1−ε) dz
) p̃2−1

p̃1(1−ε)
⎞⎟⎟⎟⎟⎟⎟⎟⎠
θ

≤ c �θ
(
λ
2−p0

p0 λ
p̃2−1

p̃1

)θ
≤ c �θλ

θ
p0 λ

θ(p̃1−p0)
p0 p̃1

+
θ(p̃2−p̃1)

p̃1 ≤ c �θλ
θ

p0 ,

since λ ≥ 1, p0 > 1 and λ(p2− p̃1)/p0 ≤ c(n)e2(n+3)L. This proves the Corollary.
�

6. Caccioppoli type inequality

We now state the Caccioppoli inequality for very weak solutions to (2.1).
However, the proof of the Caccioppoli inequality will be one of the main
difficulties in proving the higher integrability for very weak solutions. Since
the solution itself is not an admissible testing function, we will use the func-
tion ṽ, constructed in (4.11) instead. However, it is quite delicate to prove
the necessary estimates for ṽ. This will be achieved in § 6.1. To simplify
the notation, we denote

μ ≡ μ(�, �1, �2) :=
(
�

�2 − �1
)β

for some constant β that only depends on n,N, , L. The precise value of β
may change from line to line. Now, we state our Caccioppoli type inequality
as follows:

Theorem 6.1. Let M ≥ 1. Then there exist ε = ε(n,N, L, γ2) and �0 =
�0(n,M, γ1, L) such that the following holds: Suppose that u is a very weak
solution to the parabolic system (2.5) and let the assumptions of Theorem
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2.2 be satisfied. Finally, assume that for some parabolic cylinder Q :=
Q(λ)
� (z0)with 32Q = Q(λ)

32�(z0) ⊂ ΩT with 0 < 32� ≤ �0 the following intrinsic
coupling holds:

(6.1) λ1−ε ≤
�

Q
(|Du| + |F| + 1)p(·)(1−ε) dz

and

(6.2)
�
16Q
(|Du| + |F| + 1)p(·)(1−ε) dz ≤ λ1−ε.

Then, specifically, for �1 = � and �2 = 16� we have∫
Q
|Du|p(z)(1−ε)dz + sup

t∈Λ

∫
B×{t}

|u − uQ|2m−ε
16Q dx

≤ c
∫
2Q

∣∣∣∣∣u − uQ

�

∣∣∣∣∣p(·)(1−ε) dz + cλ
p0−2

p0
−ε
∫
2Q

∣∣∣∣∣u − uQ

�

∣∣∣∣∣2 dz

+ c
∫
2Q
(1 + |F|)p(·)(1−ε)dz,

(6.3)

where m16Q(z) = max{(cEλ̃)1/(1−ε),M16Q(z)} and λ̃ is defined in (4.7). More-
over, for � ≤ �1 < �2 ≤ 16�, there holds

sup
t∈Λ(λ)�1 (t0)

∫
B�1 (x0)×{t}

|u − uQ(λ)�1 (z0)
|2m−ε

16Qdx ≤ cμ
∫

Q(λ)�2 (z0)

∣∣∣∣∣∣
u − uQ(λ)�1 (z0)

�

∣∣∣∣∣∣
p(·)(1−ε)

dz

+ cμλ
p0−2

p0
−ε
∫

Q(λ)�2 (z0)

∣∣∣∣∣∣
u − uQ(λ)�1 (z0)

�

∣∣∣∣∣∣
2

dz + cμλ1−ε|Q|.

(6.4)

In any case, the constants c depend only on n, ν, L and γ2.

We remark that the arbitrariness of the parameters �1 and �2 in (6.4) is
only needed in the proof of the estimates for the lower order terms in § 7.

6.1. Estimates for the test functions. To start with, we state a simple geo-
metric lemma without a proof.

Lemma 6.2. Let Q ⊂ Rn+1 be any parabolic cylinder and Q̃ ⊂ Rn+1 a
parabolic cylinder centered at some point z ∈ Q. Then, for any α > 1 there
holds

|Q ∩ αQ̃| ≤ c(n)αn+2|Q ∩ Q̃|.
We remark that from the proof of Lemma 4.2, each Whitney type par-

abolic cylinder Qi is centered in Q(4). This enables us to use Lemma 6.2
with (Q̃,Q) replaced by (Qi,Q(4)). Next, we wish to investigate uniform
estimates for the mean values of |Du| + 1

�
|u − uQ(1) | + |F| + 1 on the Whitney

cylinders. This is the result of the following lemma.
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Lemma 6.3. Let λ1 ≥ cEλ̃ and Qi ⊂ Rn+1 be a parabolic cylinder of Whitney
type. Then for 1 ≤ θ ≤ p1/q̃ we have�

Q(4)∩Qi

(
|Du| + 1

�
|u − uQ(1) | + |F| + 1

)θ
dz ≤ cλ

θ/pi
0

1

for some constant c depending only on n, N, L, θ, γ2, and q̃.

Proof. To simplify the notation, we write U := |Du| + 1
�
|u − uQ(1) | + |F| + 1.

It is easily seen that there exists ẑ ∈ E(λ1) and a parabolic cylinder Q′

with Q′ ∩ E(λ1) � ∅ and ẑ ∈ Q′ such that Q(4) ∩ 4Qi ⊂ Q′ and |Q′| ≤
c(n)|Q(4) ∩ 4Qi|. Therefore we conclude that�

Q(4)∩4Qi

Up(·)/q̃ dz ≤ c
�

Q′
Up(·)/q̃ dz ≤ cMQ(4) (ẑ)1/(q̃(1−ε)) ≤ cλ1/q̃1 .

Next, we use Lemma 6.2, Hölder’s inequality and the estimate above to
obtain �

Q(4)∩Qi

Uθ dz ≤ c
(�

Q(4)∩4Qi

Up(·)/q̃dz
)θq̃/pi

1

≤ cλ
θ/pi

1
1 ≤ cλ

θ/pi
0

1 ,

where we used Lemma 4.1 for the last estimate. This proves the Lemma.
�

Lemma 6.4. Let λ1 ≥ cEλ̃ and Qi ⊂ Rn+1 be a parabolic cylinder of Whitney
type. Then for 1 ≤ θ ≤ p1/q̃ there holds,�

Q(4)∩Qi

|v|θdz ≤ c�θλ
θ/pi

0
1 and

�
Q(4)∩Qi

|Dv|θdz ≤ c
(
�

�2−�1
)θ
λ
θ/pi

0
1 .

Proof. From the definition of v and Lemma 6.3 we immediately deduce the
first estimate. To get the estimate for Dv, we first compute

|Dv| ≤ ζη|Du| + ζ |u − uQ(1) ||Dη| ≤ |Du| + c
�2−�1 |u − uQ(1) |,

where we used that |Dη| ≤ c/(�2 − �1). At this point, Lemma 6.3 immedi-
ately yields the second estimate of the lemma. �

Lemma 6.5. Let λ1 ≥ cEλ̃ and Qi ⊂ Rn+1 be a parabolic cylinder of Whitney
type with Q(3) ∩ Qi � ∅ and i ∈ Θ1. Then for 1 ≤ θ ≤ p1/q̃ there holds,�

Q(4)∩Qi

|v − vQ(4)∩Qi |θdz ≤ cμmin{ri, �}θλθ/p
i
0

1 ,

where the constant c depends only on n,N, L, and γ2.

Proof. Initially, we observe that i ∈ Θ1 yields Λi ⊂ Λ(2) and there exists a
point y ∈ Bi ∩ B(4) such that Bc1 min{ri,�}(y) ⊂ Bi ∩ B(4) ⊂ Bc2 min{ri,�}(y) for
some constants 0 < c1 < c2. From the proof of [6, Lemma 5.11] we can
construct a weight function η̃ ∈ C∞

0 (Bi ∩ B(4)) satisfying η̃ ≥ 0, ∫
Rn η̃dx = 1

and |Dη̃| ≤ cmax{r−(1+n)
i , �−(1+n)}. As in [6, Lemma 5.11] we find that�

Q(4)∩Qi

|v − vQ(4)∩Qi |θdz ≤ c
�

Q(4)∩Qi

|v − vη̃|θdz + c max
t1,t2∈Λi

∣∣∣vη̃(t2) − vη̃(t1)
∣∣∣θ ,
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where vη̃(t) :=
∫

Rn(vη̃)(·, t) dx. We now apply Poincaré’s inequality slice-
wise to the function v(·, t) to obtain�

Q(4)∩Qi

|v−vQ(4)∩Qi |θdz ≤ cmin{ri, �}θ
�

Q(4)∩Qi

|Dv|θdz+c sup
t1,t2∈Λi

∣∣∣vη̃(t2) − vη̃(t1)
∣∣∣θ .

Observe that we have ζ(t) = 1 for any t ∈ Λi ⊂ Λ(2) and v(x, t) = [u(x, t) −
uQ(1) ]η(x). Then we use the Steklov form (3.1) of the parabolic system with
ϕ = ηη̃, and obtain for h > 0 the following estimate:

∣∣∣([u]h)ηη̃(t2) − ([u]h)ηη̃(t1)∣∣∣ =
∣∣∣∣∣∣
∫ t2

t1

∫
B(3)∩Bi

[u]hηη̃dxdt

∣∣∣∣∣∣
≤
∫ t2

t1

∫
B(3)∩Bi

|〈[A(z,Du)]h,D(ηη̃)〉| + |〈[B(z,Du)]h, ηη̃〉|dxdt.

Letting h ↓ 0 and using assumption (2.2) we find that∣∣∣vη̃(t2) − vη̃(t1)
∣∣∣ ≤ c(1 + ‖D(ηη̃)‖L∞)

∫
Q(3)∩Qi

(1 + |Du| + |F|)p(·)−1 dz.

To estimate the right hand side of the above estimate, we will distinguish
between the cases ri ≥ � and ri < �.
In the case ri ≥ �, we see that |D(ηη̃)| ≤ c|Dη| + c|Dη̃| ≤ cμ�−(1+n). Using

also Hölder’s inequality and (4.5) it follows that

∣∣∣vη̃(t2) − vη̃(t1)
∣∣∣ ≤ cμ�−(1+n)|Q(5)|

(�
Q(5)
(1 + |Du| + |F|)p(·)(1−ε) dz

) p2−1
p1(1−ε)

≤ cμ�−(1+n)�2+nλ(2−p0)/p0λ(p2−1)/p1 ≤ cμ�λ1/p0 ≤ cμ�λ1/p
i
0 .

In the case ri < � we have |D(ηη̃)| ≤ cμr−(1+n)
i . Using this information

and applying Lemma 6.3 with the choice θ = pi
2 − 1 we find that∣∣∣vη̃(t2) − vη̃(t1)

∣∣∣ ≤ cμr−(1+n)
i

∫
Q(3)∩Qi

(1 + |Du| + |F|)pi
2−1 dz

≤ c μr−(1+n)
i λ

(pi
2−1)/pi

0
1 |Qi| ≤ cμriλ

1/pi
0

1 λ
(pi
1−pi

0)/(p
i
0pi
1)

1 ≤ cμriλ
1/pi

0
1 ,

which proves the desired estimate. �

Remark 6.6. From Lemma 6.4 we conclude that

(6.5)
∣∣∣vQi∩Q(4)

∣∣∣ ≤ �
Qi∩Q(4)

|v|dz ≤ cμ�λ
1/pi

0
1

and furthermore for any i ∈ N, we have

‖ṽ‖L∞(2Qi) =

∥∥∥∥∥
∞∑

j∈I(i)

vQ j∩Q(4)ψ j

∥∥∥∥∥
L∞
≤ sup

j∈I(i)

∣∣∣vQ j∩Q(4)
∣∣∣ ≤ cμ sup

j∈I(i)
�λ

1/p j
0

1 ≤ cμ�λ
1/pi

0
1 ,

(6.6)
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where we have used Lemma 4.1 for the last estimate. For a fixed i ∈ N,
we know by Lemma 4.2 (v) that Qi ⊂ Q̂ j for any j ∈ I(i) and therefore
Q̂i = ĉQi ⊂ ĉQ̂ j = ĉ2Qj. From Lemma 6.2, we get

(6.7) |Q(4) ∩ Q̂i| ≤ |Q(4) ∩ ĉ2Qj| ≤ c(n)ĉ2n+4|Q(4) ∩ Qj|.
Let p̂i

1 and p̂i
2 be the infimum and supremum of p(·) over the intrinsic

cylinder Q̂i. We use Lemma 4.1 with (α, rz) replaced by (ĉ, ri) to obtain
λ

p̂i
2− p̂i

1
1 ≤ c(n, L, γ2). For i ∈ Θ1, we now apply the proof of Lemma 6.5
again with pi

1 and pi
2 replaced by p̂i

1 and p̂i
2, to obtain

(6.8)
�

Q(4)∩Q̂i

|v − vQ(4)∩Q̂i
|dz ≤ cμmin{ri, �}λ1/p

i
0

1 .

We now use (6.7) and (6.8) to deduce

|vQ(4)∩Q j − vQ(4)∩Qi | ≤ c
|Q(4) ∩ Q̂i|
|Q(4) ∩ Qj|

�
Q(4)∩Q̂i

|v − vQ(4)∩Q̂i
|dz ≤ cμmin{ri, �}λ1/p

i
0

1 .

(6.9)

Lemma 6.7. Let λ1 ≥ cEλ̃ and Qi ⊂ Rn+1 be a parabolic cylinder of Whitney
type with Q(3)∩Qi � ∅. Then for z ∈ Q(4)∩2Qi we can bound Dṽ as follows:
In the case i ∈ Θ1, or i ∈ Θ2 and � ≤ ri there holds

(6.10) �−1|ṽ(z)| + |Dṽ(z)| ≤ cμλ
1/pi

0
1 .

In the case i ∈ Θ1 we have for any δ ∈ (0, 1) that

(6.11) r−1i |ṽ(z)| + |Dṽ(z)| ≤ cμ
δ
λ
1/pi

0
1 + cδr−2i λ

−1/pi
0

1 |vQ(4)∩Qi |2.
In the case i ∈ Θ2 there holds with s = λ(2−p0)/p0(�2 − �1)� that

(6.12) r−1i |ṽ(z)| + |Dṽ(z)| ≤ cλ
1/pi

0
1 + cs−1λ

(1−pi
0)/p

i
0

1

�
Q(4)∩Q̂i

|v|2dz.

Moreover, we can bound the time-derivative ∂tṽ as follows: In the case
i ∈ Θ1 there holds

(6.13) |∂tṽ(z)| ≤ cμλ
(pi
0−1)/pi

0
1 r−2i min{ri, �}.

In the case i ∈ Θ2 we have

(6.14) |∂tṽ(z)| ≤ cμs−1�λ
1/pi

0
1 .

In any cases the constant c depends only on n, N, L, and γ2.

Proof. Let us first prove (6.10). For z ∈ Q(4)∩Qi, we note that
∑

j∈I(i) ψ j(z) ≡
1 and this implies

∑
j∈I(i) Dψ j(z) ≡ 0. In the case i ∈ Θ1, we apply (6.9) and

Lemma 4.2 (iii) to infer that

|Dṽ(z)| = ∣∣∣∑
j∈I(i)

[vQ j∩Q(4) − vQi∩Q(4) ]Dψ j(z)
∣∣∣ ≤ cμr−1i min{ri, �}λ1/p

i
1

1 ≤ cμλ
1/pi

0
1 .
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While in the case i ∈ Θ2 and � ≤ ri we use (6.5) to obtain

|Dṽ(z)| ≤
∑
j∈I(i)

|vQ j∩Q(4) ||Dψ j(z)| ≤ cμ�r−1i λ
1/pi

1
1 ≤ cμλ

1/pi
0

1 .

The estimates above together with (6.6) yield (6.10). To estimate (6.11) and
(6.13), we only need to consider the case i ∈ Θ1. We conclude from (6.9)
for δ ∈ (0, 1) that

|ṽ(z)| = ∣∣∣∑
j∈I(i)

[vQ j∩Q(4) − vQi∩Q(4) ]ψ j(z)
∣∣∣ + |vQi∩Q(4) |

≤ cμ
δ

riλ
1/pi

1
1 + cδλ

−1/pi
1

1 r−1i |vQi∩Q(4) |2,
where we have used Young’s inequality and the fact that μ ≥ c. The estimate
above and (6.10) imply (6.11). Since

∑
j∈I(i) ∂tψ j(z) ≡ 0, we now use Lemma

4.2 (iii), Lemma 4.3 and (6.9) again to find that

|∂tṽ(z)| =
∣∣∣∑
j∈I(i)

[vQ j∩Q(4) − vQi∩Q(4) ]∂tψ j(z)
∣∣∣ ≤ cμλ

(pi
0−1)/pi

0
1 r−2i min{ri, �},

which proves (6.13). We now turn our attention to the case when i ∈ Θ2.
From (6.7) and Young’s inequality, we infer that

|vQi∩Q(4) | ≤ |Q(4) ∩ Q̂i|
|Q(4) ∩ Qj|

�
Q̂i∩Q(4)

|v|dz ≤ c
�

Q̂i∩Q(4)
|v|dz ≤ criλ

1/pi
0

1 + r−1i λ
−1/pi

0
1

�
Q̂i∩Q(4)

|v|2dz.

Since i ∈ Θ2, we see that λ(2−pi
0)/p

i
0

1 r2i ≥ cs and |∂tψ j(z)| ≤ cλ
(pi
0−2)/pi

0
1 r−2i ≤

cs−1. From Lemma 4.1, we conclude that

r−1i |ṽ(z)| + |Dṽ(z)| ≤
∑
j∈I(i)

r−1j |vQ j∩Q(4) ||ψ j(z)| +
∑
j∈I(i)

|vQ j∩Q(4) ||Dψ j(z)|

≤ cλ
1/pi

0
1 + cs−1λ

(1−pi
0)/p

i
0

1

�
Q̂i∩Q(4)

|v|2dz,

which proves (6.12). Next, we use (6.5) to obtain

|∂tṽ(z)| ≤
∑
j∈I(i)

|vQ j∩Q(4) ||∂tψ j(z)| ≤ cμs−1�λ
1/pi

0
1 .

This proves (6.14) and the proof of Lemma 6.7 is complete. �

Lemma 6.8. Suppose that λ1 ≥ cEλ̃ and Qi ⊂ Rn+1 is a parabolic cylinder
of Whitney type with Q(3) ∩ Qi � ∅. Then, there holds:

(6.15)
∫

Q(4)\E(λ1)
|ṽ|2dz ≤ c

∫
Q(3)\E(λ1)

|v|2dz.

In the case i ∈ Θ1, we have

(6.16)
�

Q(4)∩Qi

|ṽ − v|dz ≤ cμmin{ri, �}λ1/p
i
0

1 .
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In the case i ∈ Θ, there holds

(6.17)
∫

B(4)×S 1
|∂tṽ · (ṽ − v)|dz ≤ cμλ1|Q(4)\E(λ1)| + c

s

∫
Q(4)

|v|2dz,

where s = λ(2−p0)/p0(�2 − �1)�. In any cases the constant c depends only on
n, N, L and γ2.

Proof. We begin with the proof of (6.15). Since Q(4)\E(λ1) = ⋃∞
i=1(Q

(4) ∩
Q̂i) and the collection {Q̂i}∞i=1 has a finite overlap, we infer that∫

Q(4)\E(λ1)
|ṽ|2dz ≤ c

∞∑
i=1

∑
j∈I(i)

|Q(4) ∩ Q̂i|
|Q(4) ∩ Qj|

∫
Q j∩Q(4)

|v|2dz

≤ c
∞∑

i=1

∫
Q̂i∩Q(4)

|v|2dz

≤ c
∫

Q(3)\E(λ1)
|v|2dz,

since supp v ⊂ Q(3) and this proves (6.15). Next, we turn our attention to
the case when i ∈ Θ1. From Lemma 6.5 and (6.9), we obtain�

Qi∩Q(4)
|ṽ − v|θdz ≤

�
Qi∩Q(4)

|v − vQi∩Q(4) |θdz +
∑
j∈I(i)

‖ψ j‖θL∞|vQ j∩Q(4) − vQi∩Q(4) |θ

≤ cμmin{ri, �}θλθ/p
i
1

1 ,

which proves (6.16). Finally we consider the proof of (6.17). We write the
left hand side of (6.17) as follows:∫

B(4)×S 1
|∂tṽ · (ṽ − v)|dz ≤

∑
i∈Θ1

∫
Q(4)∩Qi

|∂tṽ · (ṽ − v)|dz +
∑
i∈Θ2

∫
Q(4)∩Qi

|∂tṽ · (ṽ − v)|dz

:= L1 + L2.

We now apply (6.13) and (6.16) to get the estimate for L1:

L1 ≤ cμ
∑
i∈Θ1

|Q(4) ∩ Qi|riλ
1/pi

1
1 λ

(pi
0−1)/pi

0
1 r−1i ≤ cμλ1|Q(4)\E(λ1)|,

since λ
(pi
0−pi

1)/p
i
0pi
1

1 ≤ c. To estimate L2, we observe that∫
Q(4)∩Qi

|ṽ|dz ≤ c
∑
j∈I(i)

|Q(4) ∩ Q̂i|
|Qj ∩ Q(4)|

∫
Q̂i∩Q(4)

|v|dz ≤ c
∫

Q̂i∩Q(4)
|v|dz.

Since i ∈ Θ2, there holds

|∂tṽ| ≤ cλ
(pi
0−2)/pi

0
1 r−2i

�
Q(4)∩Q̂i

|v|dz ≤ cs−1
�

Q(4)∩Q̂i

|v|dz.
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Therefore, we can bound L2 from above as follows:

L2 ≤ cs−1
∑
i∈Θ2

(�
Q(4)∩Q̂i

|v|dz
) (∫

Q(4)∩Qi

|v|dz +
∫

Q(4)∩Qi

|ṽ|dz
)

≤ cs−1
∑
i∈Θ2

|Q(4) ∩ Q̂i|
(�

Q(4)∩Q̂i

|v|dz
)2

≤ cs−1
∫

Q(3)
|v|2dz,

which proves (6.17) and the proof of Lemma 6.8 is complete. �

6.2. Estimates on the super-level set Q(4)\E(λ1). Recalling that for i ∈ N
the enlarged cylinder Q̂i = ĉQi ≡ Q(λ1)

r̂i
(zi) has the radius r̂i = ĉri where

ĉ = ĉ(n, L, γ2) denotes the constant from Lemma 4.2 (v).

Lemma 6.9. Let λ1 ≥ cEλ̃ and Qi ⊂ Rn+1 be a parabolic cylinder of Whitney
type with Q(3) ∩ Qi � ∅ with i ∈ Θ. Then, with s = λ(2−p0)/p0(�2 − �1)�, there
holds:

∫
Q(3)∩2Qi

(|Du| + |F| + 1)p(z)−1[(�−1δ1(i) +max{�−1, r−1i }δ2(i))|ṽ| + |Dṽ|]dz

≤ cμλ1|Q(4) ∩ Qi| + cδ2(i)s−1
∫

Q(3)∩Q̂i

|v|2dz.

(6.18)

and in the case r̂i < (�2 − �1)/12 we have for any ε1 ∈ (0, 1) that

∫
Q(3)∩2Qi

(|Du| + |F| + 1)p(z)−1[r−1i |ṽ| + |Dṽ|]dz

≤ cμ
ε1
λ1|Q(4) ∩ Qi| + ε1δ1(i)|Bi||vQ(4)∩Qi |2 + cδ2(i)s−1

∫
Q(3)∩Q̂i

|v|2dz.

(6.19)

Here δ1(i) ≡ 1 if i ∈ Θ1 and δ1(i) ≡ 0 otherwise, and δ2(i) ≡ 1 if i ∈ Θ2 and
δ2(i) ≡ 0 otherwise.

Proof. We first note that Lemma 6.3 also holds with 2Qi instead of Qi with
a larger constant, i.e.�

Q(4)∩2Qi

(1 + |Du| + |F|)p(z)−1 dz ≤ cλ
(pi
2−1)/pi

0
1 ≤ cλ

(pi
0−1)/pi

0
1 .

In the case i ∈ Θ1 or i ∈ Θ2 and � ≤ ri, we use the last estimate, Lemma 6.2
and Lemma 6.7 (6.10) to obtain∫

Q(3)∩2Qi

(|Du| + |F| + 1)p(z)−1[�−1|ṽ| + |Dṽ|]dz ≤ cμλ1|Q(4) ∩ Qi|.
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In the case i ∈ Θ2 and � ≥ ri, we apply estimate (6.12) from Lemma 6.7 and
Lemma 6.2 to get �−1 ≤ r−1i and therefore∫

Q(3)∩2Qi

(|Du| + |F| + 1)p(z)−1[r−1i |ṽ| + |Dṽ|]dz

≤ cλ1λ

pi
1−pi

0
pi
0 pi
1

1 |Q(4) ∩ (2Qi)| + cs−1λ

pi
1−pi

0
pi
0 pi
1

1 |Q(4) ∩ (2Qi)|
�

Q̂i∩Q(4)
|v|2dz

≤ cμλ1|Q(4) ∩ Qi| + cs−1
∫

Q̂i∩Q(4)
|v|2dz,

since λ1 ≥ 1 and pi
1 ≤ pi

0. This proves (6.18) and (6.19) in the case i ∈ Θ2. It
now remains to consider the case r̂i < (�2−�1)/12 and i ∈ Θ1. We infer that
Q̂i ⊂ Q(4) in this case. From Lemma 6.2 and estimate (6.11) from Lemma
6.7 we find that∫

(2Qi)∩Q(3)
(|Du| + |F| + 1)p(z)−1[r−1i |ṽ| + |Dṽh|]dz

≤ cμ
ε1
λ1|Q(4) ∩ (2Qi)| + cε1r−2i λ

pi
0−2
pi
0

1 λ

pi
0−pi

1
pi
0 pi
1

1 |Qi||vQ j∩Q(4) |2
≤ cμ
ε1
λ1|Q(4) ∩ Qi| + cε1|Bi||vQ j∩Q(4) |2,

since |Qi| = |Bi| × r2i λ
(2−pi

0)/p
i
0

1 and the proof of Lemma 6.9 is complete. �

Remark 6.10. Under the assumptions in Lemma 6.9, we conclude that∫
Q(4)\E(λ1)

(|Du| + |F| + 1)p(z)−1[(�2 − �1)−1|ṽ| + |Dṽ|]dz

≤ μ
∞∑

i=1

∫
(2Qi)∩Q(3)

(|Du| + |F| + 1)p(z)−1[�−1|ṽ| + |Dṽ|]dz

≤ cμλ1|Q(4)\E(λ1)| + cs−1
∫

Q(4)\E(λ1)
|v|2dz.

Lemma 6.11. Let λ1 ≥ cEλ̃. Then for any i ∈ Θ1, ε1 ∈ (0, 1) and a.e. t ∈ S 1
there holds

(6.20)

∣∣∣∣∣∣
∫

B(4)×{t}
(v − vQi∩Q(4) )ṽψidx

∣∣∣∣∣∣ ≤ cμ
ε1
λ1|Q(4) ∩ Qi| + με1δ3(i)|Bi||vQi∩Q(4) |2

where δ3(i) ≡ 1 if r̂i < (�2 − �1)/12 and δ3(i) ≡ 0 otherwise. When i ∈ Θ2
then for a.e. t ∈ S 1 we have

(6.21)

∣∣∣∣∣∣
∫

B(4)×{t}
vṽψi dx

∣∣∣∣∣∣ ≤ cμλ1|Q(4) ∩ Qi| + cs−1
∫

Q(3)∩Q̂i

|u − uQ(1) |2dz.

Moreover, for a.e. t ∈ S 1 we have
(6.22)∫
(B(4)\Et(λ1))×{t}

(|v|2−|v− ṽ|2)dx ≥ −cμλ1|Q(4)\E(λ1)|−cμs−1
∫

Q(4)
|u−uQ(1) |2dz.
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Proof. From the definition of ṽ, we find that ṽ =
∑

j∈I(i)(v)Q(4)∩Q jψ j ∈
C∞(2Qi). This allows us to take the function ϕ ≡ ηζṽψi as a test function in
the Steklov formulation (3.1) of the parabolic system and we get∫ t

ti−λ
(2−pi

0)/p
i
0

1 r2i

∫
Rn

[
∂t[u]hηζṽψi+〈[A(z,Du)]h,D(ηζṽψi)〉+〈[B(z,Du)]h, ηζṽψi〉

]
dxdτ = 0

for any t ∈ S 1. Let a be a constant which will be chosen later. Noting that
ψi(·, ti − λ(2−pi

0)/p
i
0

1 r2i ) ≡ 0, we use integration by parts to obtain∫ t

ti−λ
(2−pi

0)/p
i
0

1 r2i

∫
Rn
∂t[u]hηζṽψidxdτ

=

∫
Rn×{t}

[u − a]hηζṽψidx −
∫ t

ti−λ
(2−pi

0)/p
i
0

1 r2i

∫
Rn
[u − a]hη∂t(ζṽψi)dxdτ.

We insert this in the previous equation and pass to the limit h → 0. Then
we apply the growth condition (2.2) and recall that supp(ηζ) ⊂ Q(3) to get

∣∣∣∣∣
∫

B(4)×{t}
(u − a)ηζṽψidx

∣∣∣∣∣ ≤ c
∫

Q(3)
(1 + |Du| + |F|)p(·)−1(|D(ηṽψi)| + |ηṽψi|)ζdz

+ c
∫

Q(3)
|u − a||∂t(ζṽψi)|ηdz =: I + II.

(6.23)

We begin with the estimate for I. Noting that |Dη| ≤ c(�2 − �1)−1 and
|Dψi| ≤ cr−1i we see that |D(ηṽψi)| ≤ c|Dṽ| + cmax{�−1, r−1i }|ṽ|. This implies
for I that

I ≤ c
∫

Q(3)∩(2Qi)
(1 + |Du| + |F|)p(z)−1(|Dṽ| +max{�−1, r−1i }|ṽ|) dz.(6.24)

We are now in a position to show (6.21), where we consider i ∈ Θ2. We use
estimate (6.18) of Lemma 6.9 to infer that

I ≤ cμλ1|Q(4) ∩ Qi| + cs−1
∫

Q(3)∩Q̂i

|vh|2dz.

To estimate II, we note that |∂tψi| ≤ cλ
(pi
0−2)/pi

0
1 r−2i ≤ cs−1 and

|∂t(ζṽψi)| ≤ c|∂tṽ| + c|ṽ|(|∂tζ | + |∂tψi|) ≤ c|∂tṽ| + cs−1|ṽ|
≤ cs−1

∑
j∈I(i)

�
Q j∩Q(4)

|v|dz ≤ cs−1
�

Q̂i∩Q(4)
|v|dz

≤ cs−1
�

Q̂i∩Q(4)
|u − uQ(1) |χQ(3)dz.

We now choose a = uQ(1) and subsequently use Höder’s inequality to obtain

II ≤ cs−1|Q̂i ∩ Q(3)|
(�

Q̂i∩Q(4)
|u − uQ(1) |χQ(3)dz

)2
≤ cs−1

�
Q̂i∩Q(3)

|u − uQ(1) |2dz.
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This proves (6.21). We now come to the proof of (6.20), where we consider
i ∈ Θ1. In the case r̂i ≥ (�2 − �1)/12, we infer from (6.24) and estimate
(6.18) from Lemma 6.9 that

I ≤ c
∫

Q(3)∩(2Qi)
(1 + |Du| + |F|)p(z)−1(|Dṽ| +max{�−1, (�2 − �1)−1}|ṽ|)dz

≤ cμ
∫

Q(3)∩(2Qi)
(1 + |Du| + |F|)p(z)−1(|Dṽ| + �−1|ṽ|)dz

≤ cμλ1|Q(4) ∩ Qi|.
In the case r̂i < (�2−�1)/12, we use (6.24) and estimate (6.19) from Lemma
6.9 to obtain for ε1 ∈ (0, 1) that
(6.25) I ≤ cμ

ε1
λ1|Q(4) ∩ Qi| + ε1δ3(i)|Bi||vQi∩Q(4) |2,

where δ3(i) ≡ 1 in the case r̂i < (�2 − �1)/12 and δ3(i) ≡ 0 otherwise. We
now turn our attention to the estimate of II and start with the case r̂i ≥
(�2 − �1)/12. In (6.23) we choose a = uQ(1) . Since i ∈ Θ1, we see that ζ ≡ 1
on suppψi and

II ≤ c
∫

Q(3)
|u − uQ(1) ||∂t(ψiṽ)|dz ≤ c

∫
Q(3)∩(2Qi)

|u − uQ(1) |
[
|∂tṽ| + λ(p

i
0−2)/pi

0
1 r−2i |ṽ|

]
dz.

We now apply estimate (6.13) from Lemma 6.7 to obtain

|∂tṽ| ≤ cμλ
(pi
0−1)/pi

0
1 r−1i ≤ cμλ

(pi
0−1)/pi

0
1 (�2 − �1)−1 ≤ cμλ

(pi
0−1)/pi

0
1 �−1.

Combining this with estimate (6.5) from Remark 6.6 we find that

II ≤ c
∫

Q(3)∩(2Qi)
|u − uQ(1) |

[
μλ

(pi
0−1)/pi

0
1 �−1 + μ�λ

(pi
0−pi

1)/p
i
1pi
0

1 λ
(pi
0−1)/pi

0
1 (�2 − �1)−2

]
dz

≤ cμλ
(pi
0−1)/pi

0
1 �−1|Q(4) ∩ (2Qi)|

�
Q(4)∩(2Qi)

|u − uQ(1) |χQ(3)dz

≤ cμλ1|Q(4) ∩ Qi|,
where we have used Lemma 6.2 and Lemma 6.4. This implies that for
i ∈ Θ1 and r̂i ≥ (�2 − �1)/12, we have∣∣∣∣∣
∫

B(4)
vṽψi(·, t)dx

∣∣∣∣∣ =
∣∣∣∣∣
∫

B(4)
(u − uQ(1) )ηζṽψi(·, t)dx

∣∣∣∣∣ ≤ I + II ≤ cμλ1|Q(4) ∩ Qi|.
Next, since i ∈ Θ1 we find that Q(4)∩2Qi = [B(4)∩(2Bi)]×2Λi and therefore

|B(4) ∩ (2Bi)| = 2|Λi|−1|Q(4) ∩ 2Qi|
≤ cλ

(pi
0−2)/pi

0
1 (�2 − �1)−2|Q(4) ∩ 2Qi| ≤ cμλ

(pi
0−2)/pi

0
1 �−2|Q(4) ∩ Qi|.

Joining the estimate above with estimate (6.5) from Remark 6.6 and (6.6),
we conclude∣∣∣∣∣
∫

B(4)
vQi∩Q(4) ṽψi(·, t)dx

∣∣∣∣∣ ≤ cμ�2λ
2/pi

1
1 |B(4) ∩ (2Bi)|

≤ cμλ1λ
2(pi

0−pi
1)/p

i
1pi
0

1 |Q(4) ∩ Qi| ≤ cμλ1|Q(4) ∩ Qi|,
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which proves (6.20) in the case i ∈ Θ1 and r̂i ≥ (�2 − �1)/12. We now turn
our attention to the case when i ∈ Θ1 and r̂i ≤ (�2−�1)/12. We first observe
that Q̂i ⊂ Q(4) and we choose a = uQ̂i

in this case. For z ∈ (2Qi) ∩ Q(4) we
infer from estimate (6.11) of Lemma 6.7 and (6.13) that ζ(z) ≡ 1 and
|∂t(ζψiṽ)(z)| ≤ c|∂tψi|

[
μ

ε1
λ
1/pi

1
1 ri + ε1λ

−1/pi
1

1 r−1i |vQi∩Q(4) |2
]
+ cμλ

(pi
0−1)/pi

0
1 r−1i

≤ cμ
ε1
λ
(pi
0−1)/pi

0
1 r−1i + c|Λi|−1ε1λ−1/p

i
0

1 r−1i |vQi∩Q(4) |2.
To proceed further, we use Lemma 5.1 with (Ω̃,T1,T2, θ) replaced by
(B̃i, T̃i, T̃i, 1), Lemma 4.1 and Hölder’s inequality to find that�

Q̂i

|u − uQ̂i
|dz ≤ cri

�
Q̂i

|Du|dz + cλ
(2−pi

0)/p
i
0

1 ri

�
Q̂i

(1 + |Du| + |F|)p(·)−1dz

≤ criλ
1/pi

0
1 λ

(pi
0− p̂i

1)/p
i
0 p̂i
1

1 + criλ
1/pi

0
1 λ

(p̂i
2− p̂i

1)/ p̂
i
1

1 λ
(p̂i
1−pi

0)/p
i
0 p̂i
1

1 ≤ criλ
1/pi

0
1 .

Combining the estimates above we infer that

II =
∫

Q(3)
|u − uQ̂i

||∂t(ζṽψi)|ηdz ≤ cμε−11 λ1|Q̂i| + cε1|Λi|−1|Q̂i||vQi∩Q(4) |2

≤ cμ
ε1
λ1|Q(4) ∩ Qi| + cε1|Bi||vQi∩Q(4) |2.

Together this estimate and (6.25) yield that∣∣∣∣∣∣
∫

B(4)×{t}
(u − uQ̂i

)ηζṽψidx

∣∣∣∣∣∣ ≤ cμε−11 λ1|Q(4) ∩ Qi| + ε1|Bi||vQi∩Q(4) |2.

Since i ∈ Θ1, we have ζ ≡ 1 and v = η(x)[u − uQ(1) ] on suppψi. In order to
prove (6.20), we note that

(v − vQi∩Q(4) )ṽψi = (u − uQ̂i
)ηṽψi + ((uQ̂i

− uQ(1) )η − vQi)ṽψi.

Letting U(x) := (uQ̂i
− uQ(1) )η(x) − vQi , we compute that for x ∈ 2Bi that

|U(x)| ≤ |U(x) − UBi | + |UBi | ≤ cri sup
2Bi

|∇U | + |UBi | := U1 + U2.

Since Q̂i ∩ E(λ1) � ∅ by Lemma 4.2 (iv), there exists z̃ ∈ 2Q̂i ∩ E(λ1) and
therefore, we have

U1 ≤ cri|Dη||uQ̂i
− uQ(1) | ≤ cri(�2 − �1)−1�

�
Q̂i

�−1|u − uQ(1) |dz

≤ cμri

[�
2Q̂i

(
�−1|u − uQ(1) | + 1

)p(·)/q̃
χQ(4)dz

]q̃/p̂i
1

≤ cμriMQ(4) (z̃)
1

p̂i
1(1−ε) ≤ cμriλ

(pi
0− p̂i

1)/p
i
0 p̂i
1

1 λ
1/pi

0
1 ≤ cμriλ

1/pi
0

1 .

To estimate U2, observe that uQ(1) (η)Bi =
�

Qi
uQ(1)ηdz and therefore

U2 =
∣∣∣[(uQ̂i

− uQ(1) )η − ((u − uQ(1) )η)Qi]Bi

∣∣∣ ≤ �
Q̂i

|u − uQ̂i
|ηdz ≤ criλ

1/pi
0

1 .



24 V. BÖGELEIN AND Q. LI

The estimates above together with estimate (6.11) from Lemma 6.7 yield
that∣∣∣∣∣∣
∫

B(4)×{t}
Uηṽψidx

∣∣∣∣∣∣ ≤ c(U1 + U2)|Bi| max
Q(4)∩(2Qi)

|ṽ|

≤ cμriλ
1/pi

0
1

[
riε

−1
1 λ

1/pi
0

1 λ
(pi
0−pi

1)/p
i
1pi
0

1 |Bi| + ε1λ−1/p
i
1

1 r−1i |Bi||vQi∩Q(4) |2
]

≤ cμε−11 λ1|Q(4) ∩ Qi| + με1|Bi||vQi∩Q(4) |2,

since Q̂i ⊂ Q(4) and |Q(4) ∩ Qi| = |Qi| = |Bi| × λ(2−pi
0)/p

i
0

1 r2i . This finishes the
proof of (6.20).
Finally we come to the proof of (6.22). Recall that

∑∞
j=0 ψ j(z) = 1 for any

z ∈ Q(4)\E(λ1). This motivates us to define the sets
Λ :=

{
i ∈ Θ : suppψi ∩ (B(4) × {t}) � ∅ and |v| + |ṽ| � 0 on supp ψi ∩ (B(4) × {t})

}
and Ξ1 := Λ∩Θ1 and Ξ2 := Λ∩Θ2. Then, we can decompose the left hand
side of (6.22) as follows:∫
(B(4)\Et(λ1))×{t}

(|v|2 − |v − ṽ|2)dx =
∑
i∈Ξ2

∫
B(4)×{t}

ψi(|v|2 − |v − ṽ|2)dx

+
∑
i∈Ξ1

∫
B(4)×{t}

ψi(|v|2 − |v − ṽ|2)dx := III + IV.

To estimate III, we write |v|2 − |v − ṽ|2 = 2vṽ − |ṽ|2. Since i ∈ Θ2 and
Qi∩Q(3) � ∅, there holds |Λ(4)∩(2Λi)| ≥ cs−1 for some constant c depending
only on n. From Remark 6.6 (6.7) and the definition of ṽ, we see that

∫
B(4)×{t}

ψi|ṽ|2dx ≤ c
∑
j∈I(i)

|vQ j∩Q(4) |2|B(4) ∩ (2Bi)| = c
∑
j∈I(i)

|vQ j∩Q(4) |2 |Q(4) ∩ Q̂i|
|Λ(4) ∩ (2Λi)|

≤ cs−1
∑
j∈I(i)

|Q(4) ∩ Q̂i|
|Q(4) ∩ Qj|

∫
Q j∩Q(4)

|v|2dz ≤ cs−1
∫

Q̂i∩Q(4)
|u − uQ(1) |2dz.

Therefore, we use (6.21) and the estimate from above to conclude that

III ≤ c
∑
i∈Ξ2

∫
B(4)×{t}

vṽψidx + cs−1
∑
i∈Ξ2

∫
Q̂i∩Q(4)

|u − uQ(1) |2dz

≤ cμλ1|Q(4)\E(λ1)| + cs−1
∫

Q(4)
|u − uQ(1) |2dz,

since {Qi}∞i=1 has a finite overlap. We now proceed to find the lower bound
of IV . Note that we can rewrite |v|2−|v−ṽ|2 = |vQi∩Q(4) |2+2(v−vQi∩Q(4) )ṽ−|ṽ−
vQi∩Q(4) |2 for any fixed i ∈ N. Since i ∈ Θ1, we infer that |Λ(4)∩(2Λi)| = 2|Λi|.
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From Remark 6.6 (6.9), we conclude that∫
B(4)×{t}

ψi|ṽ − vQi∩Q(4) |2dx ≤
∫

B(4)×{t}
ψi

∣∣∣∑
j∈I(i)

(vQ j∩Q(4) − vQi∩Q(4) )ψ j

∣∣∣2dx

≤ cμmin{ri, �}2λ2/p
i
0

1 λ
2(pi

0−pi
1)/p

i
0pi
1

1 |B(4) ∩ (2Bi)| ≤ cμλ1|Q(4) ∩ (2Qi)|.
This implies∑

i∈Ξ1

∫
B(4)×{t}

ψi|ṽ − vQi∩Q(4) |2dx ≤ cμλ1
∞∑

i=1

|Q(4) ∩ (2Qi)| ≤ cμλ1|Q(4)\E(λ1)|.

Next, we use (6.20) to get∑
i∈Ξ1

∫
B�2×{t}

ψi

[
|vQi∩Q(4) |2 + 2(v − vQi∩Q(4) )ṽ

]
dx

≥
∑
i∈Ξ1

∫
B(4)×{t}

ψi|vQi∩Q(4) |2dx −
∑
i∈Ξ1
ε1μδ3(i)|Bi||vQi∩Q(4) |2 − c

∑
i∈Ξ1
με−11 λ1|Q(4) ∩ Qi|

=: IV1 − IV2 − IV3.

We only have to consider the case i ∈ Ξ1 and r̂i < (�2 − �1)/12 where
δ3(i) ≡ 1. Observe that in this case Q̂i ⊂ Q(4) and we infer from Remark 6.6
(6.9) that

|vQi∩Q(4) | ≤ |vQi∩Q(4) − vQ j∩Q(4) | + |vQ j∩Q(4) | ≤ cμriλ
1/pi

0
1 + |vQ j∩Q(4) |

where j ∈ I(i). Let Ξ′1 := {i ∈ Ξ1 : j ∈ Ξ1 for any j ∈ I(i)}. We decompose
IV2 as follows:

IV2 =
∑
i∈Ξ′1
ε1μ|Bi||vQi∩Q(4) |2 +

∑
i∈Ξ1\Ξ′1

ε1μ|Bi||vQi∩Q(4) |2 =: IV2,1 + IV2,2.

We now obtain the estimate for IV2,1 as follows:

IV2,1 ≤
∑
i∈Ξ′1

(
ε1μ|Bi|r2i λ2/p

i
0

1 + ε1μ|Bi||vQ j∩Q(4) |2
)

≤ ε1μλ1
∑
i∈Ξ′1

|Qi| + cε1μ
∑
i∈Ξ1

∫
B(4)×{t}

ψi|vQi∩Q(4) |2dx ≤ cμλ1|Q(4)\E(λ1)| + IV1,

provided ε1 = 1
20cμ < 1. To estimate IV2,2, we note that for any i ∈ Ξ1\Ξ′1

there exists j(i) ∈ I(i) such that j(i) ∈ Ξ2. This implies that |Λi| =
2λ

(2−pi
0)/p

i
0

1 r2i ≥ cλ
(2−pi

0)/p
i
0

1 r2j(i) ≥ cs. Recalling that Q̂i ⊂ Q(4) we conclude
that

IV2,2 ≤
∑

i∈Ξ1\Ξ′1
μ|Bi|
�

Qi∩Q(4)
|v|2dz ≤ cμ

s

∫
Q(4)

|u − uQ(1) |2dz.

Finally, it is easily seen that IV3 ≤ cμλ1|Q(4)\E(λ1)|. From this, we get the
desired estimate (6.22) immediately. �
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6.3. Lipschitz continuity of ṽ on B(4) × S 1. In this Subsection we will
prove that ṽ is Lipschitz continuous with respect to the parabolic metric on
the set B(4)×S 1. This property will be essential in the proof of the Cacciop-
poli inequality, since it ensures that ṽ is an admissible testing function in the
weak formulation of the parabolic system. For simplicity of notation, we let
Q4
1 and Q5

2 stand for B(4) × S 1 and B(5) × S 2 respectively. First, we will show
that for any z ∈ Q(4) the two parabolic metrics dP and dz are equivalent.
Since p(·) ≥ 2 and λ1 ≥ 1, we have for any fixed z1, z1 ∈ Q(6) that

dP(z1, z2) ≤ max
{
|x1 − x2|,

√
λ
(p(z)−2)/p(z)
1 |t1 − t2|

}
= dz(z1, z2).(6.26)

On the other hand, since λ(p(z)−2)/p(z)1 ≤ λ(p2−2)/p21 , we get

(6.27) dz(z1, z2) ≤ λ(p2−2)/(2p2)
1 dP(z1, z2)

for any z1, z1 ∈ Q(6). Hence, dP and dz are equivalent for any z ∈ Q(4). In
this subsection, the constants will depend on λ, λ1, γ2, �1, �2 and ‖v‖L1(Q(4)).
Note that this is not a problem, since we will only use the qualitative result
that ṽ is Lipschitz continuous with respect to the parabolic metric.

Lemma 6.12. Let λ1 ≥ cEλ̃. Then there exists a constant K > 0 such that
for any z1, z2 ∈ B(4) × S 1 there holds

|ṽ(z1) − ṽ(z2)| ≤ KdP(z1, z2).

Proof. In order to prove this lemma, we use the metric version of the in-
tegral characterization of Lipschitz continuous functions by Da Prato [9,
Theorem 3.1]. For zw = (xw, tw) ∈ Q4

1 we define

Ir(zw) :=
1

|Q4
1 ∩ Qr(zw)|1+ 1

n+2

∫
Q41∩Qr(zw)

∣∣∣ṽ − ṽQ41∩Qr(zw)

∣∣∣dz,

where we recall that Qr(w) ≡ Br(xw) × (tw − r2, tw + r2). Our aim now is
to show that Ir(zw) is bounded independently of zw and r. To this aim we
distinguish between the following four cases:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2Qr(zw) ⊂ Q5
2\E(λ1),

2Qr(zw) ∩ E(λ1) � ∅, 2Qr(zw) ⊂ Q5
2 and r < 1

3λ
(2−p2)/(2p2)
1 (�2 − �1),

2Qr(zw) ∩ E(λ1) � ∅, 2Qr(zw) ⊂ Q5
2 and r ≥ 1

3λ
(2−p2)/2p2
1 (�2 − �1),

2Qr(zw)\Q5
2 � ∅.

In the first case, we observe that |Q4
1 ∩ Qr(zw)| ≥ cnrn+2 and this implies

Ir(zw) ≤ c
r

�
Q41∩Qr(zw)

�
Q41∩Qr(zw)

∣∣∣ṽ(z) − ṽ(z̃)
∣∣∣dzdz̃

≤ c sup
z∈Q41∩Qr(zw)

[|Dṽ(z)| + r|∂tṽ(z)|],(6.28)

since ṽ is smooth on Q5
2\E(λ1). Now, we consider z ∈ Q4

1 ∩ Qr(zw).
Then, we can find i ∈ Θ such that z ∈ Qi. Since 2Qr(zw) ⊂ Q5

2\E(λ1)
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we have dP(z, E(λ1)) ≥ r. Letting ẑi ∈ E(λ1) be a point such that
dzi(zi, ẑi) = dzi(zi, E(λ1)) ≤ 2ĉri holds (where ĉ > 1 denotes the constant
from Lemma 4.2), we can use (6.26) to infer that

r ≤ dP(z, ẑi) ≤ dP(z, zi) + dP(zi, ẑi) ≤ dzi(z, zi) + dzi(zi, E(λ1)) ≤ 3ĉri.

By the definition of ṽ, we therefore find that

|Dṽ(z)| + r|∂tṽ(z)| ≤
∑
j∈I(i)

|Dψ j||vQ j − vQi | + r
∑
j∈I(i)

|∂tψ j||vQ j − vQi |

≤
⎡⎢⎢⎢⎢⎢⎣ c
ri
+

crλ(p2−2)/p21

r2i

⎤⎥⎥⎥⎥⎥⎦
�

Q̂i∩Q(4)
|v − vQ̂i∩Q(4) |dz

≤ c
ri

�
Q̂i∩Q(4)

|v − vQ̂i∩Q(4) |dz,

where c now depends also on λ1. In the case i ∈ Θ2, we have |Q̂i ∩ Q(4)| ≥
cλ

(2−pi
0)/p

i
0

1 rn+2
i ≥ c(n, γ2, λ1, �1, �2) as well as ri ≥ c(n, γ2, λ1, �1, �2), so that

(6.29)
c
ri

�
Q̂i∩Q(4)

|v − vQ̂i∩Q(4) |dz ≤ 2

ri|Q̂i ∩ Q(4)|
∫

Q̂i∩Q(4)
|v|dz ≤ c ‖v‖L1(Q(4)) ≤ c.

Moreover, from (6.8) we conclude that (6.29) also holds in the case i ∈
Θ1. Therefore, in any case, we find that |Dṽ(z)| + r|∂tṽ(z)| ≤ c. Since
z ∈ Q4

1 ∩ Qr(zw) was arbitrary, we have thus shown that

(6.30) Ir(zw) ≤ c,

where c depends on n, L, γ2, λ1, �1, �2, ‖v‖L1(Q(4)), but is independent of zw

and r.
We now turn our attention to the second case. Since zw ∈ Q4

1, it is easy to
check that |Qr(zw) ∩ Q4

1| ≥ c(n)|Qr(zw)|. Therefore we obtain

Ir(zw) ≤ c(n)

|Qr(zw)|1+ 1
n+2

∫
Qr(zw)∩Q41

2|ṽ − v| + |v − vQr(zw)∩Q41
|dz =: c(n)(2I1 + I2),

with the obvious meaning of I1 and I2. To estimate I2, we apply the argu-
ments in the spirit of the proof of Lemma 6.5. In a similar way, we con-
struct a weight function η̂ ∈ C∞

0 (Br(xw) ∩ B(4)) satisfying η̂ ≥ 0, ∫
Rn η̂dx = 1

and |Dη̂| ≤ cmax{r−(1+n), �−(1+n)}. We let vη̂(t) :=
∫
Rn×{t}(vη̂) dx and use

Poincaré’s inequality to conclude that

I2 =
c
r

�
Qr(zw)∩Q41

|v − vQr(w)∩Q41
|dz

≤ c
r

�
Qr(zw)∩Q41

|v − vη̂|dz +
c
r

max
t1,t2∈S 1∩(tw−r2,tw+r2)

∣∣∣vη̂(t2) − vη̂(t1)
∣∣∣

≤ c
r
min{r, �}

�
Qr(zw)∩Q41

|Dv|dz +
c
r

sup
t1,t2∈S 1∩(tw−r2,tw+r2)

∣∣∣vη̂(t2) − vη̂(t1)
∣∣∣ =: I(1)2 + I(2)2 ,
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with the obvious meaning of I(1)2 and I(2)2 . In order to estimate I(1)2 , we fix a
point z̃ ∈ 2Qr(zw) ∩ E(λ1). Then we have

I(1)2 ≤ c
�
2Qr(zw)

(
|Du| + (�2 − �1)−1|u − uQ(1) | + 1

)p(·)/q̃
dz

≤ cμMQ(4) (z̃)1/(q̃(1−ε)) ≤ cμλ1/q̃1 .

We now consider the term I(2)2 . Since r < 1
3λ

(2−p2)/(2p2)
1 (�2 − �1), we have

S 1 ∩ (tw − r2, tw + r2) ⊂ S 2. Recalling that ζ ≡ 1 on S 2, this implies that
v(x, t) = [u(x, t) − uQ(1) ]η(x) whenever t ∈ S 1 ∩ (tw − r2, tw + r2). Therefore,
using the Steklov formulation (3.1) of the parabolic system with ϕ = ηη̂, we
obtain for h > 0 and t1, t2 ∈ S 1 ∩ (tw − r2, tw + r2) that∣∣∣([u]h)ηη̂(t2) − ([u]h)ηη̂(t1)∣∣∣ ≤ ∫ t2

t1

∫
B(3)∩Br(xw)

|〈[A(z,Du)]h,D(ηη̂)〉| + |〈[B(z,Du)]h, ηη̂〉|dxdt.

Letting h ↓ 0 and using assumption (2.2) we find that∣∣∣vη̂(t2) − vη̂(t1)
∣∣∣ ≤ c

(
1 + ‖D(ηη̂)‖L∞

) ∫
Q(3)∩Qr(zw)

(1 + |Du| + |F|)p(·)−1 dz.

To estimate the right hand side of the above inequality, we observe that
|D(ηη̂)| ≤ cμr−(1+n). Using this information we find that∣∣∣vη̂(t2) − vη̂(t1)

∣∣∣ ≤ cμ
r1+n

∫
Q(3)∩Qr(zw)

(1 + |Du| + |F|)p2−1 dz

≤ cμ|Qr(zw)|
r1+n MQ(4) (z̃)

p2−1
(1−ε)p1 ≤ cμrλ

p2−1
p1
1 ,

which ensures that I(2)2 ≤ cμλ(p2−1)/p11 . We now come to the estimate for I1.
Recalling that supp v ⊂ Q(3), then we use (6.29) to obtain

I1 ≤ c
rn+3

∫
Qr(zw)\E(λ1)

|ṽ − v|dz ≤ c
rn+3

∑
i∈Θ:2Qi∩Qr(zw)�∅

∫
Q̂i∩Q(4)

|v − vQ̂i∩Q(4) |dz

≤ c
rn+3

∑
i∈Θ:2Qi∩Qr(zw)�∅

ri|Q̂i ∩ Q(4)|.

We let w1 and w2 be two points in 2Qr(zw) satisfying w1 ∈ 2Qi ∩Qr(zw) and
w2 ∈ 2Qr(zw) ∩ E(λ1). Then, by (6.27), we have

ri ≤ 1
ĉ dzi(zi,w2) ≤ 1

ĉ

[
dzi(zi,w1) + dzi(w1,w2)

] ≤ 1
ĉ

[
2ri + λ

(p2−2)/(2p2)
1 dP(w1,w2)

]
.

Since ĉ ≥ 4 this proves that ri ≤ cλ(p2−2)/(2p2)
1 r ≤ cr. For i ∈ Θ with

2Qi∩Qr(w) � ∅ we therefore have that Q̂i ⊂ Q2ĉr(zw). Keeping in mind that
at each point at most c(n) of cylinders 2Qi intersect we can further estimate

I1 ≤ c
rn+2

∑
i∈Θ:2Qi∩Qr(zw)�∅

|Q̂i ∩ Q2ĉr(zw)| ≤ c
rn+2 |Q2ĉr(zw)| ≤ c.

Inserting the estimates for I1 and I2 above we have shown that the estimate
(6.30) continues to hold in the second case.
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Finally we come to the third and fourth case. We first observe that in both
cases we have |Q4

1 ∩ Qr(zw)| ≥ c(n, γ2, λ1, �1, �2). Therefore, we conclude
from estimate (6.15) in Lemma 6.8 that

Ir(zw) ≤ c
∫

Q41∩Qr(zw)
|ṽ|dz ≤ c‖v‖L1(Q(4)),

which proves (6.30) in the third and fourth case. At this point, the Lipschitz
continuity follows from (6.30) and the integral characterization of Hölder
continuous functions from [9, Theorem 3.1]. This finishes the proof of the
Lemma. �

We now have the prerequisites to prove the Caccioppoli inequality stated
in Theorem 6.1.

6.4. Proof of Theorem 6.1. From Lemma 6.12, we know that Dṽ(·, τ) ∈
L∞loc(R

n) for any τ ∈ S 1. Let t ∈ Λ(2) and t1 ∈ S 1\Λ(1) with t1 < t. In
the Steklov formulation (3.1) of the parabolic system we choose ϕ(x, τ) =
η(x)χδ(τ)[ṽ]h(x, τ) as a testing function, where h > 0, 0 < δ � 1 and

χδ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 on (−∞, t1 + h] ∪ [t − h, ∞)
1 + τ−t1−h−δ

δ
on [t1 + h, t1 + h + δ]

1 on [t1 + h + δ, t − h − δ]
1 − τ−t+h+δ

δ
on [t − h − δ, t − h]

to infer that ∫
B(4)×{τ}

∂τ[u]h · ηχδ[ṽ]h + 〈[A(z,Du)]h, χδD ([ṽ]hη)〉dx

= −
∫

B(4)×{τ}
[B(z,Du)]h · ηχδ[ṽ]hdx

(6.31)

for any τ ∈ S 1. For the first term on the left hand side we compute

∂τ[u]hχδ · [ṽ]h = ∂τ[v]hχδ · [ṽ]h
= 1

2∂τ|[v]h|2χδ + ∂τ[v]h · [ṽ − v]hχδ
= 1

2∂τ|[v]h|2χδ + ∂τ[ṽ]h · [ṽ − v]hχδ − ∂τ[ṽ − v]h · [ṽ − v]hχδ
= 1

2∂τ
(|[v]h|2 − |[ṽ − v]h|2)χδ + ∂τ[ṽ]h · [ṽ − v]hχδ.

Integrating over B(4) × (t1, t) and using the fact that
∫ t

t1
[ f ]h · g dτ =

∫ t

t1
f ·

[g]−hdτ whenever supp g ⊂ (t1 + h, t − h) (cf. [8, Lemma 2.10]) we find that∫ t

t1

∫
B(4)
∂τ[u]hηχδ · [ṽ]h dxdτ = 1

2

∫ t

t1

∫
B(4)
∂τ
(|[v]h|2 − |[ṽ − v]h|2)χδ dxdτ

+

∫ t

t1

∫
B(4)

[
∂τ[ṽ]hχδ

]
−h · (ṽ − v) dxdτ

= 1
2

∫ t

t1

∫
B(4)
∂τ
[(|[v]h|2 − |[ṽ − v]h|2)χδ] dxdτ
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− 1
2

∫ t

t1

∫
B(4)

(|[v]h|2 − |[ṽ − v]h|2)∂τχδ dxdτ

+

∫ t

t1

∫
B(4)\Eτ(λ1)

[
∂τ[ṽ]hχδ

]
−h · (ṽ − v) dxdτ

=: E1(δ, h) + E2(δ, h) + E3(δ, h).

Since χδ(t1) = 0 = χδ(t), we have E1(δ, h) = 0. For the term E2(δ, h) we use
the definition of χδ to infer that

E2(δ, h) = 1
2δ

∫ t−h

t−h−δ

∫
B(4)

(|[v]h|2 − |[ṽ − v]h|2) dxdτ

− 1
2δ

∫ t1+h+δ

t1+h

∫
B(4)

(|[v]h|2 − |[ṽ − v]h|2) dxdτ

→ 1
2

∫
B(4)×{t}

[(|v|2 − |ṽ − v|2)] dx − 1
2

∫
B(4)×{t1}

[(|v|2 − |ṽ − v|2)] dx =: I + II,

(6.32)

as δ, h ↓ 0, for a.e. t, t1 as above. We now turn our attention to the estimate
of E3(δ, h). We define Qt := B(4)× (t1, t) and observe that the set Qt\E(λ1) is
open. This implies that [∂τ[ṽ]hχδ]−h ·(ṽ−v)→ ∂tṽχδ ·(ṽ−v) pointwise a.e. on
Qt\E(λ1) as h ↓ 0. Furthermore, we will ensure that |[∂τ[ṽ]hχδ]−h · (ṽ− v)| ≤
cH, where H is defined by

H :=
∑
i∈Θ

|v − ṽ|χQi sup
2Qi∩Q(4)

|∂tṽ| +
∑
i∈Θ1

r−1i |v − ṽ|χQi .

To this aim we define Nh = {i ∈ N : h < λ
(2−pi

0)/p
i
0

1 r2i } and decompose the
term under consideration as follows∣∣∣[∂τ[ṽ]hχδ]−h · (ṽ − v)

∣∣∣ ≤ ∑
i∈Θ∩Nh:Qi∩Qt�∅

∣∣∣[∂τ[ṽ]hχδ]−h · (ṽ − v)
∣∣∣ χQi

+
∑

i∈Θ\Nh:Qi∩Qt�∅

∣∣∣[∂τ[ṽ]hχδ]−h · (ṽ − v)
∣∣∣ χQi =: H1 + H2,

with the obvious meaning of H1 and H2. In the case i ∈ Θ∩Nh, we find that

sup
Qi:Qi∩Qt�∅

∣∣∣[∂τ[ṽ]hχδ]−h

∣∣∣ ≤ sup
2Qi∩Q(4)

|∂tṽ|,

which implies that H1 ≤ H. Since we are interested in small values of h, we
may assume that h < 1

3λ
(2−p2)/p2
1 (�2 − �1)2. Then for any i ∈ Θ\Nh we have

i ∈ Θ1. Using the formula for the time derivative of Steklov averages and
Lemma 6.12, we find that for i ∈ Θ\Nh and z ∈ Qt ∩ Qi there holds

|∂τ[ṽ]h(z)| = |ṽ(x, t + h) − ṽ(x, t)|
h

≤ K√
h
≤ Kλ(p2−2)/(2p2)

1 r−1i ,
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which proves that H2 ≤ H. It remains to prove that H is an integrable
function on Q(4). A slight change in the proof of Lemma 6.7 shows that

sup
2Qi∩Q(4)

|∂tṽ| ≤ cμλ(p2−1)/p21 r−1i when i ∈ Θ1

and

sup
2Qi∩Q(4)

|∂tṽ| ≤ cμs−1�λ1/p11 when i ∈ Θ2.

We now use estimates (6.16), (6.15) from Lemma 6.8 and Tonelli’s theorem
to get∫

Q(4)
H dz ≤ c

∑
i∈Θ1

r−1i

∫
Qi∩Q(4)

|v(z) − ṽ(z)|dz + c
∑
i∈Θ2

∫
Qi∩Q(4)

|v(z) − ṽ(z)|dz

≤ c
∑
i∈Θ1

|Qi ∩ Q(4)| + c
[
‖v‖L1(Q(4)) + ‖ṽ‖L1(Q(4))

]
≤ c |Q(4)| + c ‖v‖L1(Q(4)) < ∞,

where c depends on n, L, γ2, λ1, �1, �2 and ‖v‖L1(Q(4)), but is independent of h.
This ensures that H is integrable on Q(4) and therefore, we are allowed to
apply Lebesgue’s dominated convergence theorem to obtain

lim
δ↓0
lim
h↓0

E3(δ, h) =
∫

Qt\E(λ1)
∂tṽ · (ṽ − v) dz =: III.

We now start with the estimate of II. Since 2−100s ≤ |S 1\Λ(1)| ≤ 2100s, we
can choose t1 ∈ S 1\Λ(1) and t1 < t such that

II ≤ 1
|S 1\Λ(1)|

∫
S 1\Λ(1)

∫
B(4)
(|v|2 − |ṽ − v|2) dxdt.

From estimate (6.15) of Lemma 6.8 and the fact that |v| ≤ c(u − uQ(1) ), we
obtain

II ≤ c
s

∫
Q(3)

|v|2dz +
c
s

∫
Q(3)\E(λ1)

(|v|2 + |ṽ|2)dz ≤ c
s

∫
Q(3)

|u − uQ(1) |2dz.

To deal with III, we apply estimate (6.17) of Lemma 6.8 to get

III ≤ cλ1|Q(4)\E(λ1)| + c
s

∫
Q(3)

|u − uQ(1) |2dz.

Next, we integrate the remaining terms of (6.31) with respect to the time
variable over (t1, t) and subsequently pass to the limit h ↓ 0 and δ ↓ 0.
Finally, we decompose the domain of integration into the sets Q(4)\E(λ1)
and E(λ1) to obtain∫ t

t1

∫
E(λ1)

〈A(z,Du),D(ṽη)〉dxdt +
∫ t

t1

∫
B(4)
〈B(z,Du), ṽη〉dxdt

=

∫
Qt∩E(λ1)

. . . dxdt +
∫

Qt\E(λ1)
. . . dxdt := IV + V.
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We now use the growth condition (2.2) and Remark 6.10 to conclude that

V ≤ c
∫

Q(4)\E(λ1)
(1 + |Du| + |F|)p(·)−1(�−1|ṽ| + |Dṽ|)dz

≤ cμλ1|Q(4)\E(λ1)| + cs−1
∫

Q(3)
|u − uQ(1) |2dz.

Joining the preceding estimates we find that

I + IV ≤ cμλ1|Q(4)\E(λ1)| + c
s

∫
Q(3)

|u − uQ(1) |2dz

holds true for a.e. t ∈ Λ(1). On the other hand we infer from estimate (6.22)
of Lemma 6.11 that

I ≥ −cμλ1|Q(4)\E(λ1)| − cμ
s

∫
Q(4)

|u − uQ(1) |2dz +
1
2

∫
Et(λ1)×{t}

|v|2dx

and therefore

1
2

∫
Et(λ1)×{t}

|v|2dx ≤ −IV + cμλ1|Q(4)\E(λ1)| + cμ
s

∫
Q(4)

|u − uQ(1) |2dz.

We multiply both sides by λ−1−ε1 and integrate over (cEλ̃,∞) with respect to
λ1. Setting mQ(4) := max{cEλ̃, M

1
1−ε
Q(4)
} and s1 := λ(2−p0)/p0�21 and multiplying

the result by ε, we get the following estimate,

1
2

∫
B(4)×{t}

|v|2m−ε
Q(4)dx

≤ −
∫

B(4)×(t1,t0+s1)

[
〈A(z,Du),D(vη)〉 + 〈B(z,Du), vη〉

]
m−ε

Q(4) dz

+ cεμ
∫ ∞

cE λ̃

λ−ε1
∣∣∣{z ∈ Q(4) : MQ(4) (z) > λ1−ε1

}∣∣∣dλ1 + cμ
sλ̃ε

∫
Q(4)

|u − uQ(1) |2dz

:= −VI + εVII + VIII,

Since λ̃ ≥ λ, it follows that VIII ≤ cμs−1λ−ε
∫

Q(4)
|u− uQ(1) |2dz. Next, we use

Fubini’s theorem and the boundedness of strong maximal function to infer
that

VII ≤ cμ
∫

Q(4)
MQ(4) dz ≤ cμ

∫
Q(4)

(∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣ + |Du| + |F| + 1
)p(·)(1−ε)

dz

≤ cμ
∫

Q(4)

∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣p(·)(1−ε) dz + cμλ1−ε|Q(4)|.

To estimate a lower bound for VI, we note that D(vη)(x, t) = η2(x)Du(x, t)+
v(x, t)Dη(x). Therefore, using the ellipticity and growth conditions (2.2) we
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obtain

VI ≥
∫

B(4)×(t1,t0+s1)

[
〈A(z,Du), η2Du〉 − |〈A(z,Du), vDη〉| − |〈B(z,Du), vη〉|

]
m−ε

Q(4) dz

≥ ν
∫

Q(1)
|Du|p(·)m−ε

Q(4) dz −
∫

B(4)×(t1,t0+s1)
|F|p(·)m−ε

Q(4) dz

− c
�2 − �1

∫
B(4)×(t1,t0+s1)

(1 + |F| + |Du|)p(·)−1|u − uQ(1) |m−ε
Q(4) dz

:= IV1 − IV2 − IV3.

It is easily seen that IV2 ≤
∫

Q(4)
|F|p(·)(1−ε)dz. In order to estimate IV1, we

introduce the set

E :=
{
z ∈ Q(1) : |Du(z)|p(z) ≥ ε1mQ(4) (z)

}
for some ε1 ∈ (0, 1) to be specified later. For the integral on E we have∫

E
|Du|p(·)(1−ε)dz ≤ ε−ε1

∫
E
|Du|p(·)m−ε

Q(4) dz ≤ cε−ε1 IV1.

On the other hand, for z ∈ Q(1)\E, we see that either |Du|p(z) ≤ ε1MQ(4) (z)
1
1−ε

or |Du|p(z) ≤ ε1cEλ̃. This implies that∫
Q(1)\E

|Du|p(·)(1−ε)dz ≤ cε1−ε1

∫
Q(1)

[
MQ(4) + λ̃

1−ε] dz

≤ cε1−ε1 λ
1−ε|Q(4)| + cε1−ε1

∫
Q(4)

∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣p(·)(1−ε) dz.

Summing the previous two estimates, we find that

εε1

∫
Q(1)

|Du|p(·)(1−ε)dz ≤ cIV1 + cε1λ1−ε|Q(4)| + cε1

∫
Q(4)

∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣p(·)(1−ε) dz.

Rewriting the last inequality and using assumption (6.1) we obtain

cIV1 ≥ [
εε1|Q(0)| − cε1|Q(4)|]λ1−ε1 − c

∫
Q(4)

(∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣ + |F| + 1
)p(·)(1−ε)

dz

≥ λ
1−ε
1 |Q(4)|

c
− c

∫
Q(4)

(∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣ + |F| + 1
)p(·)(1−ε)

dz,

where we have chosen ε1 small enough in the last line. Now we come to
the estimate of IV3. Using the definition of mQ(4) and Young inequality with
exponents p(z)(1 − ε) and p(z)(1−ε)

p(z)(1−ε)−1 and assumption (6.2), we find that

IV3 ≤ c
�2 − �1

∫
Q(4)
(1 + |F| + |Du|)p(·)(1−ε)−1|u − uQ(1) |dz

≤ ελ1−ε|Q(4)| + cεμ
∫

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣p(·)(1−ε) dz,
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where cε indicates that the constant depends on the structural data and ε.
From the estimates above we arrive at

λ1−ε|Q(4)| + sup
t∈Λ(1)

∫
B(1)×{t}

|u − uQ(1) |2m−ε
Q(4) dx

≤ cεμ
∫

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣p(·)(1−ε) dz + cμλ
p0−2

p0
−ε
∫

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣2 dz

+ c
∫

Q(4)
(1 + |F|)p(·)(1−ε)dz + cμελ1−ε|Q(4)|.

This proves (6.4). Moreover, choosing �1 = � and �2 = 2� we have μ ≡
constant. This allows us to choose ε small in dependence on n,N, L, γ2, to
obtain

λ1−ε|Q(4)| + sup
t∈Λ

∫
B×{t}

|u − uQ|2m−ε
Q+dx

≤ c
∫

Q(4)

∣∣∣∣∣u − uQ

�

∣∣∣∣∣p(·)(1−ε) dz + cλ
p0−2

p0
−ε
∫

Q(4)

∣∣∣∣∣u − uQ

�

∣∣∣∣∣2 dz + c
∫

Q(4)
(1 + |F|)p(·)(1−ε)dz.

Recalling assumption (6.2), this finishes the proof of the Caccioppoli in-
equality. �

7. Estimates for the lower order terms

In the final proof, it will be necessary to treat lower order terms, involving
the L2 and Lp2(1−ε)-norm of u. However, these exponents of integrability
could be too large, so that Lemma 5.1 is not applicable. This difficulty
comes from the fact that we consider a variable exponent of integrability.
Therefore, we need the following improvement of Lemma 5.1.

Proposition 7.1. Let M ≥ 1 be fixed. Then there exists �0 = �0(n, L,M) > 0
such that the following holds: Suppose that u is a very weak solution to
the parabolic system (2.5) and satisfies the assumptions of Theorem 2.2.
Assume that for some parabolic cylinder Q(λ)

32�(z0) ⊂ ΩT with 0 < 32� ≤ �0
the following intrinsic coupling holds:

λ1−ε ≤
�

Q(λ)� (z0)
(|Du| + |F| + 1)p(·)(1−ε)dz and

�
Q(λ)16�(z0)

(|Du| + |F| + 1)p(·)(1−ε) dz ≤ λ1−ε.

Then, for σ = max{2, p2(1 − ε)} there holds:
�

Q(λ)4� (z0)

∣∣∣∣∣∣
u − uQ(λ)4� (z0)

4�

∣∣∣∣∣∣
σ

dz ≤ cλ
σ
p0 ,

where c = c(n,N, γ2, ν, L).

Proof. In the following we abbreviate αQ ≡ αB×αΛ := Q(λ)
α� (z0) for α ≥ 1.

Without loss of generality, we may assume that p1 < p2. Otherwise, the
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result follows from Corollary 5.2. To begin with the proof, we define the
exponent

p̃1 :=
p1[2(1 − ε) − εσ]

2 − εp1
and compute

(7.1) σ − p̃1 =
2[σ − p1(1 − ε)]

2 − εp1 .

In the following we want to apply Gagliardo-Nirenberg’s inequality from
Lemma 3.2 with (σ, q, r, θ) replaced by (σ, p̃1, 2(1 − ε), p̃1/σ). This will
be allowed, once we can ensure that σp̃1 ≤ 1 + 2(1−ε)

n holds true. To ensure
this condition, we have to distinguish two cases, whether σ = 2, or σ =
p2(1 − ε). In the case σ = 2, we recall that p1 ≥ 2, so that

σ

p̃1
≤ 1 + ε

1 − 2ε ≤ 1 +
2 − 2ε

n
,

provided 0 < ε < 1
4n . In the case σ = p2(1 − ε), we have

σ

p̃1
= 1 +

σ − p̃1
p̃1

≤ 1 + σ − p̃1
p̃1

≤ 1 + σ − p̃1.

Since we may assume that ε ≤ 1
2 , we may estimate the difference σ − p̃1 as

follows:
(7.2)

σ− p̃1 =
2(1 − ε)(p2 − p1)

2 − εp1 ≤ 2(1−ε)(p2−p1) ≤ 2(1−ε)ω(64�) ≤ 27(1−ε)ω(�0),

where we also used the concavity of ω. Next, we choose �0 in dependence
on n, L small enough to have ω(�0) ≤ 1

26n . This ensures that
σ
p̃1
≤ 1 + 2(1−ε)

n
is satisfied also in the second case when σ = p2(1−ε) and therefore, we are
allowed to apply Gagliardo-Nirenberg’s inequality. Now, we choose radii �1
and �2 such that 4� ≤ �1 < �2 ≤ 16� and (using the notation from the proof
of Caccioppoli’s inequality) we write Q(1) := Q(λ)

�1 (z0) and Q(4) := Q(λ)
�2 (z0).

Applying Lemma 3.2 with (σ, q, r, θ) replaced by (σ, p̃1, 2−2ε, p̃1/σ) slice-
wise to (u − uQ(1) )(·, t) we obtain

Iσ(�1) :=
�

Q(1)

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣σ dz

≤ c
�
Λ(1)

(�
B(1)

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣ p̃1 + |Du|p̃1dx
) [�

B(1)

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣2−2ε dx
] σ−p̃1
2(1−ε)

dt,

where c = c(n, γ2). note that the constant in Lemma 3.2 initially depends
on σ. Since the dependence on σ is continuous, it can be replaced by a
possibly larger constant depending on γ2 instead. Next, we use Hölder’s
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inequality to obtain for a.e. t ∈ Λ(1) that
�

B(1)×{t}

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣2−2ε dx =
�

B(1)×{t}

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣2−2εm−ε(1−ε)
Q(4)

mε(1−ε)
Q(4)

dx

≤
[�

B(1)×{t}

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣2 m−ε
Q(4) dx

]1−ε (�
B(1)×{t}

m1−ε
Q(4) dx

)ε
.

To proceed further, we apply the Caccioppoli type inequality from Theorem
6.1 to get

J := sup
t∈Λ(1)

�
B(1)×{t}

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣2 m−ε
Q(4) dx

≤ cμλ(2−p0)/p0

�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣p(·)(1−ε) dz + cμλ−ε
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣2 dz + cμελ
2

p0
−ε

≤ cμλ(2−p0)/p0

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) p2(1−ε)

σ

+ cμλ−ε
(�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) 2
σ

+ cμλ
2

p0
−ε
,

where in the last line we applied Hölder’s inequality. Here, we also note that
the preceding estimates also imply that Iσ(�1) is finite. We now insert the
previous computations above and apply Hölder’s inequality with exponents
r = 2(1−ε)

ε(σ−p̃1)
and r′ = 2(1−ε)

2(1−ε)−ε(σ− p̃1)
. In this way, we get

Iσ(�1) ≤ cJ
σ−p̃1
2

�
Λ(1)

(�
B(1)

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣p̃1 + |Du| p̃1dx
) (�

B(1)×{t}
m1−ε

Q(4) dx
) ε(σ−p̃1)
2(1−ε)

dt

≤ cJ
σ−p̃1
2

(�
Q(1)

∣∣∣∣∣u − uQ(1)

�1

∣∣∣∣∣p̃1r
′

+ |Du| p̃1r′dz
) 1

r′ (�
Q(1)

mQ(4) (z)1−εdz
) ε(σ−p̃1)
2(1−ε)
.

Now, we observe that p̃1r′ = p1(1 − ε) and therefore, we are allowed to
apply Corollary 5.2 with the choice p1(1−ε) for θ to the first integral on the
right-hand side. Together with the hypothesis of the proposition we obtain

Iσ(�1) ≤ cJ
σ−p̃1
2 λ

1−ε
r′
(�

Q(1)
mQ(4) (z)1−ε dz

) ε(σ−p̃1)
2(1−ε)
.

Moreover, using the definition of mQ(4) and the boundedness of the strong
maximal function we find that
�

Q(1)
m1−ε

Q(4) dz ≤ λ̃1−ε +
�

Q(1)
MQ(4) dz

≤ cλ1−ε + c
�

Q(4)

∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣p(·)(1−ε) dz ≤ cλ1−ε + c
(�

Q(4)

∣∣∣∣∣u − uQ(1)

�

∣∣∣∣∣σ dz
) p2(1−ε)

σ

.
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Inserting this estimate and the estimate for J above, we conclude that

Iσ(�1) ≤ cμλ1−ε+
(2−εp0)(σ−p̃1)

2p0 + cμλ1−ε−
ε(σ− p̃1)

2

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
)σ−p̃1
σ

+ cμλ1−ε+
(2−p0)(σ− p̃1)

2p0

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) (σ−p̃1)p2(1−ε)

2σ

+ cμλ
1−ε
r′ +

(2−εp0)(σ−p̃1)
2p0

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) εp2(σ−p̃1)

2σ

+ cμλ
1−ε
r′ +

(2−p0)(σ− p̃1)
2p0

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) p2(σ−p̃1)

2σ

+ cμλ
1−ε
r′ −

ε(σ−p̃1)
2

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) (2+εp2)(σ−p̃1)

2σ

:= I + II + III + IV + V + VI.

Now we are going to estimate the terms I – VI. From the definition of p̃1
and (7.1) we infer

1−ε+ (2 − εp0)(σ − p̃1)
2p0

≤ 1−ε+2 − εp1
2p1

·2σ − 2p1(1 − ε)
2 − εp1 =

σ

p1
≤ σ

p0
+ω(64�)

so that I ≤ cμλ
σ
p0 . We now come to the estimate of II. Since σ > p̃1, we

use Young inequality with exponents σ
σ−p̃1

and σp̃1 to obtain for any δ ∈ (0, 1)
that

II ≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
(
1−ε− ε(σ−p̃1)

2

)
σ
p̃1

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
p0 ,

where we have used the following identity:(
1 − ε − ε(σ − p̃1)

2

)
σ

p̃1
=

(
1 − ε − ε(σ − p1(1 − ε))

2 − εp1
)
σ(2 − εp1)

p1(2 − 2ε − εσ) =
σ

p1

and hence λ
(
1−ε−ε σ−p̃1

2

)
σ
p̃1 = λ

σ
p1 ≤ λ σp0 +ω(64�) ≤ cλ

σ
p0 . Next, we consider the

estimate for III. We use Young’s inequality with exponents 2σ
p2(1−ε)(σ−p̃1)

and
2σ

2σ−p2(1−ε)(σ−p̃1)
to find that

III ≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
(
1−ε+ (2−p0)(σ−p̃1)

2p0

)
2σ

2σ−p2(1−ε)(σ−p̃1)

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
p0 ,
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since λ ≥ 1 and(
1 − ε + (2 − p0)(σ − p̃1)

2p0

)
2σ

2σ − p2(1 − ε)(σ − p̃1)

=
σ

p0
· 2p0(1 − ε) + (2 − p0)(σ − p̃1)

2σ − p2(1 − ε)(σ − p̃1)

=
σ

p0
· p0(1 − ε)(2 − εp1) + (2 − p0)(σ − p1(1 − ε))
σ(2 − εp1) − p2(1 − ε)(σ − p1(1 − ε))

≤ σ
p0
+ c(γ2) (p2 − p1) ≤ σp0 + c(γ2)ω(64�).

In order to avoid the complicated computations in the estimates for IV−VI,
we shall deal with the estimates in the two cases separately. We start with
the case σ = p2(1 − ε). From (7.2) we deduce that λσ− p̃1 ≤ λcω(�) ≤ c. To
estimate IV , we use Young’s inequality with exponents r and r′ (note that
εp2(σ−p̃1)

2σ = 1
r ) to obtain

IV ≤ cμλ
1−ε
r′
(�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) εp2(σ−p̃1)

2σ

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ1−ε.

To estimate V , we use that λ
1−ε
r′ +

(2−εp0)(σ−p̃1)
2p0 ≤ cλ

1−ε
r′ = λ1−ε−

ε(σ−p̃1)
2 ≤ cλ1−ε

and apply Young’s inequality with exponents 2(1−ε)
σ− p̃1

and 2(1−ε)
2(1−ε)−(σ− p̃1)

= 1 −
σ−p̃1

2(1−ε)−(σ−p̃1)
to deduce

V ≤ cμλ1−ε
(�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) σ−p̃1
2(1−ε)

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ(1−ε)
(
1− σ− p̃1

2(1−ε)−(σ−p̃1)

)

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ1−ε.

Next we consider the estimate for VI. Again, we use that λ
1−ε
r′ −

ε(σ−p̃1)
2 ≤ cλ1−ε.

Applying Young’s inequality with exponents 2σ
(2+εp2)(σ− p̃1)

and 2σ
2p̃1−εp2(σ− p̃1)

we obtain

VI ≤ cμλ1−ε
(�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) (2+εp2)(σ−p̃1)

2σ

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ(1−ε)
2σ

2p̃1−εp2(σ−p̃1)

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ1−ε.
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Therefore, from the estimates above and the fact that λ1−ε ≤ λ σp0 , we con-
clude that in the case σ = p2(1 − ε) there holds
(7.3) Iσ(�1) ≤ δ

�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
p0 .

In the following, we will show that (7.3) also holds in the second case when
σ = 2. It remains to consider the terms IV – VI. Let θ = p̃1

σ
. In order to es-

timate IV , we use Young’s inequality with exponents 4
εp2(2−p̃1)

and 4
4−εp2(2− p̃1)

to get

IV = cμλ
p0(1−ε)+(1−εp0)(2−p̃1)

p0

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) εp2(2−p̃1)

4

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
4[p0(1−ε)+(1−εp0)(2−p̃1)]

p0[4−εp2(2−p̃1)]

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
po ,

where in the last line we have used the following computation:
4[p0(1 − ε) + (1 − εp0)(2 − p̃1)]

p0[4 − εp2(2 − p̃1)]

=
2
p0
· p0(1 − ε)(2 − εp1) + 2(1 − εp0)(2 − p1(1 − ε))

2(2 − εp1) − εp2(2 − p1(1 − ε))
=
σ

p0
·
[
1 +

−(2 − p0(1 − ε))(2 − εp1) + (2(1 − εp0) + εp2)(2 − p1(1 − ε))
2(2 − εp1) − εp2(2 − p1(1 − ε))

]

≤ σ
p0
·
[
1 +

(2 − p1(1 − ε))ε(p2 + p1 − 2p0)
2(2 − εp1) − εp2(2 − p1(1 − ε)) + cω(�)

]
≤ σ

p0
+ cω(�).

The estimate of the term V is similar. Applying Young’s inequality with
exponents 4

p2(2−p̃1)
and 4

4−p2(2− p̃1)
we get

V = cμλ
2p0(1−ε)+(2−p0−εp0)(2− p̃1)

2p0

(�
Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) p2(2−p̃1)

4

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
2[2p0(1−ε)+(2−p0−εp0)(2−p̃1)]

p0[4−p2(2−p̃1)]

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
p0 ,

where in the last line we have used the following computation:
2[2p0(1 − ε) + (2 − p0 − εp0)(2 − p̃1)]

p0[4 − p2(2 − p̃1)]

=
2
p0
· p0(1 − ε)(2 − εp1) + (2 − p0 − εp0)(2 − p1(1 − ε))

2(2 − εp1) − p2(2 − p1(1 − ε))
=
σ

p0
·
[
1 +

−(2 − p0(1 − ε))(2 − εp1) + (2 − p0 − εp0 + p2)(2 − p1(1 − ε))
2(2 − εp1) − p2(2 − p1(1 − ε))

]
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≤ σ
p0
·
[
1 +

(2 − p1(1 − ε))(p2 − p0 + ε(p1 − p0))
2(2 − εp1) − p2(2 − p1(1 − ε)) + cω(�)

]
≤ σ

p0
+ cω(�).

We now come to the estimate for VI. Here, we apply Young’s inequality
with exponents 4

(2+εp2)(2−p̃1)
and 4

4−(2+εp2)(2− p̃1)
to infer that

VI = cμλ1−ε−ε(2− p̃1)
(�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz
) (2+εp2)(2− p̃1)

4

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
4[1−ε−ε(2− p̃1)]
4−(2+εp2)(2−p̃1)

≤ δ
�

Q(4)

∣∣∣∣∣u − uQ(1)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
p0 ,

where we have used that
4[1 − ε − ε(2 − p̃1)]
4 − (2 + εp2)(2 − p̃1)

=
2
p0
· p0[(1 − ε)(2 − εp1) − 2ε(2 − p1(1 − ε))]
2(2 − εp1) − (2 + εp2)(2 − p1(1 − ε))

=
σ

p0
·
[
1 +

(p0(1 − ε) − 2)(2 − εp1) + (2 + εp2 − 2p0ε)(2 − p1(1 − ε))
2(2 − εp1) − (2 + εp2)(2 − p1(1 − ε))

]

≤ σ
p0
·
[
1 − ε(2 − p1(1 − ε))(2p0 − p2 − p1)

2(2 − εp1) − (2 + εp2)(2 − p1(1 − ε)) + cω(�)
]
≤ σ

p0
+ cω(�).

This ensures that (7.3) holds true also in the second case when σ = 2.
Therefore, from (7.3) we conclude that

Iσ(�1) ≤ δ2σ−1
�

Q(4)

∣∣∣∣∣u − uQ(4)

�2

∣∣∣∣∣σ dz + δ2σ−1
∣∣∣∣∣uQ(4) − uQ(1)

�2

∣∣∣∣∣σ + c(δ)μλ
σ
p0

≤ δ2σ
�

Q(4)

∣∣∣∣∣u − uQ(4)

�2

∣∣∣∣∣σ dz + c(δ)μλ
σ
p0

= δ2σIσ(�1) + c(δ)μλ
σ
p0

holds true for any 0 < δ < 1. Recalling that μ = ( �

�2−�1 )
β, where β is a

constant depends only on the structural parameters, we choose δ = 2−(σ+1)

to infer that

Iσ(�1) ≤ 1
2 Iσ(�2) + c

(
�

�2−�1
)β
λ
σ
p0

for any radii �1, �2 such that 4� ≤ �1 < �2 ≤ 16�. At this point, we use
Lemma 3.1 with φ replaced by Iσ to infer that Iσ(4�) ≤ cλ

σ
p0 . This proves

the desired estimate. �

8. Reverse-Hölder type inequality

Proposition 8.1. Let M ≥ 1 be fixed. Then there exists �0 = �0(n, L,M) > 0
and ε = ε(n, γ2) > 0 such that the following holds: Suppose that u is a
very weak solution to the parabolic system (2.1) and that the hypothesis of
Theorem 2.2 are satisfied. Finally, assume that for some parabolic cylinder
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Q(λ)
32�(z0) ⊂ ΩT with 0 < 32� ≤ �0 and λ ≥ 1 the following intrinsic coupling

holds:

λ1−ε ≤
�

Q(λ)� (z0)
(|Du| + |F| + 1)p(·)(1−ε) dz and

�
Q(λ)16�(z0)

(|Du| + |F| + 1)p(·)(1−ε) dz ≤ λ1−ε.

Then we have the following reverse-Hölder inequality:

�
Q(λ)� (z0)

|Du|p(·)(1−ε)dz ≤ c

⎡⎢⎢⎢⎢⎢⎣
�

Q(λ)2� (z0)
|Du| p(·)(1−ε)

q̄ dz

⎤⎥⎥⎥⎥⎥⎦
q̄

+ c
�

Q(λ)2� (z0)
(1 + |F|)p(·)(1−ε)dz

where q̄ = q̄(n, γ2) > 1 and c = c(n,N, ν, L, γ2).

Proof. In the following we abbreviate αQ ≡ αB×αΛ := Q(λ)
α� (z0) for α ≥ 1.

From the Caccioppoli inequality from Theorem 6.1, [i.e. estimate (6.3)],
we obtain�

Q
|Du|p(·)(1−ε)dz

≤ c
�
2Q

∣∣∣∣∣u − uQ

�

∣∣∣∣∣p(·)(1−ε) dz + cλ
p0−2

p0
−ε
�
2Q

∣∣∣∣∣u − uQ

�

∣∣∣∣∣2 dz + c
�
2Q
(1 + |F|)p(·)(1−ε)dz

≤ cIp2(1−ε) + cλ
p0−2

p0
−εI2 + c

�
2Q
(1 + |F|)p(·)(1−ε)dz,

where we have abbreviated

Iσ :=
�
2Q

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣σ dz

for σ = p2(1−ε) and σ = 2. For σ as before, we define q1 := nσ
n+2−2ε , so that

q1 < σ and σq1 =
n+2−2ε

n . We now apply Gagliardo-Nirenberg’s inequality,
i.e. Lemma 3.2 with (σ, q, r, θ) replaced by (σ, q1, 2 − 2ε, q1/σ) slice-wise
to (u − u2Q)(·, t). In this way we obtain

Iσ ≤ c
�
2Λ

(�
2B

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣q1 + |Du|q1dx
) [�

2B

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣2−2ε dx
]σ−q1
2−2ε

dt.

Next, we use Hölder’s inequality to obtain
�
2B

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣2−2ε (·, t)dx =
�
2B

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣2−2εm−ε(1−ε)
4Q mε(1−ε)4Q (·, t)dx

≤ J1−ε
[�

2B
m1−ε
4Q (·, t)dx

]ε
for a.e. t ∈ 2Λ, where we have abbreviated

J := sup
t∈2Λ

�
2B×{t}

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣2 m−ε
4Q dx.
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Inserting this above and applying Hölder’s inequality with exponents r =
2−2ε
ε(σ−q1)

and r′ = 2−2ε
2−2ε−ε(σ−q1)

we get

Iσ ≤ cJ
σ−q1
2

�
2Λ

(�
2B

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣q1 + |Du|q1dx
) (�

2B
m1−ε
4Q (·, t)dx

) ε(σ−q1)
2−2ε

dt

≤ cJ
σ−q1
2

[�
2Q

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣q1r
′

+ |Du|q1r′dz
] 1

r′ [�
2Q

m4Q(z)1−εdz
] ε(σ−q1)

2−2ε
.

Observe that σ − q1 =
2σ(1−ε)
n+2−2ε and

q2 := q1r′ = nσ
n+2−2ε · 2(1−ε)

2(1−ε)−ε(σ−q1)
= σn

n+2−ε(σ+2) .

To proceed further, we apply the Caccioppoli type inequality from Theorem
6.1 (more precisely, we use (6.4) with the choice �1 = 2� and �2 = 4�) and
subsequently Proposition 7.1 to get

J ≤ cλ
2−p0

p0

�
4Q

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣p(·)(1−ε) dz + cλ−ε
�
4Q

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣2 dz + c1ελ
2

p0
−ε

≤ cλ
2−p0

p0 λ
p2(1−ε)

p0 + cλ
2

p0
−ε
+ c1ελ

2
p0
−ε ≤ cλ

2
p0
−ε
.

Moreover, from Proposition 7.1 we infer that�
2Q

m1−ε
4Q dz ≤ λ̃1−ε +

�
2Q

M4Q dz ≤ cλ1−ε + c
�
4Q

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣p(·)(1−ε) dz

≤ cλ1−ε + λ
p2(1−ε)

p0 ≤ cλ1−ε.

Inserting the last two estimates above yields

Iσ ≤ cλ
σ−q1

p0

[�
2Q

∣∣∣∣∣u − u2Q

�

∣∣∣∣∣q2 + |Du|q2dz
] 1

r′
.

Moreover, choosing �0 small enough to have p2 − p1 ≤ ω(32�0) ≤ min{(n+
1)/(n + 3

2 ), 2/n} and ε ≤ min{1/1000n, 1/4γ2}, we have q2 ≤ p1(1 − ε). We
now apply Lemma 5.1 with (θ, Ω̃ × T1, Ω̃ × T2) replaced by (q2, 2Q, 2Q) to
conclude that

Iσ ≤ cλ
σ−q1

p0

⎡⎢⎢⎢⎢⎢⎢⎣
[�

2Q
|Du|q2dz

] 1
r′
+

[
λ
2−p0

p0

�
2Q
(1 + |Du| + |F|)p(·)−1dz

]q1
⎤⎥⎥⎥⎥⎥⎥⎦

≤ cλ
σ−q1

p0

⎡⎢⎢⎢⎢⎢⎢⎣
[�

2Q
(1 + |Du|) p(·)q2

p1 dz
] 1

r′
+

[
λ
2−p0

p0

�
2Q
(1 + |Du| + |F|) p(·)(p2−1)

p2 dz
]q1
⎤⎥⎥⎥⎥⎥⎥⎦ .

Now, we will find a lower bound for the exponents appearing on the right-
hand side; note that there are three different exponents: p(·)q2

p1
with the coice

σ = 2 and σ = p2(1 − ε) and p(·)(p2−1)
p2

. To this aim we define

q̄1 :=
(n + 2 − 4ε)(1 − ε)

n
, q̄2 :=

p1[n + 2 − ε(p2(1 − ε) + 2)]
np2

and q̄3 :=
p2(1 − ε)

p2 − 1 .
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An easy computation shows that q̄1, q̄2 ≥ n+1
n > 1 and q̄3 ≥ γ2− 12

γ2−1 > 1.
Therefore, letting

q̄ := min

⎧⎪⎪⎨⎪⎪⎩n + 1
n
,
γ2 − 1

2

γ2 − 1

⎫⎪⎪⎬⎪⎪⎭ ,
we can use Hölder’s inequality to get from the last estimate that

Iσ ≤ cλ
σ−q1

p0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[�

2Q
(1 + |Du|) p(·)(1−ε)

q̄ dz
] q̄q1

p1(1−ε)
+ λ

(2−p0)q1
p0

[�
2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
] q̄q1(p2−1)

p2(1−ε)
⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Again by Hölder’s inequality and the hypothesis, we obtain for the first term
on the right-hand side that

λ
σ−q1

p0

[�
2Q
(1 + |Du|) p(·)(1−ε)

q̄ dz
] q̄q1

p1(1−ε)

≤ λσ−q1
p0

[�
2Q
(1 + |Du|) p(·)(1−ε)

q̄ dz
]q̄ [�

2Q
(1 + |Du|)p(·)(1−ε)dz

] q1
p1(1−ε)−1

≤ λσ−q1
p0 λ

q1
p1
−(1−ε)

[�
2Q
(1 + |Du|) p(·)(1−ε)

q̄ dz
]q̄

≤ λ σp0 −1+ε
[�

2Q
(1 + |Du|) p(·)(1−ε)

q̄ dz
]q̄

where we have also used that λp0−p1 ≤ c. Similarly, we find for the second
integral on the right-hand side that

λ
σ−q1

p0 λ
(2−p0)q1

p0

[�
2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
] q̄q1(p2−1)

p2(1−ε)

≤ λσ+q1−p0q1
p0

[�
2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
]q̄ [�

2Q
(1 + |Du| + |F|)p(·)(1−ε)dz

] q1(p2−1)
p2(1−ε) −1

≤ λσ+q1−p0q1
p0 λ

q1(p2−1)
p2

−(1−ε)
[�

2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
]q̄

≤ λ σp0 −1+ε
[�

2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
]q̄

Inserting this above, we find that

Iσ ≤ cλ
σ
p0
−1+ε

[�
2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
]q̄

.

Now, we note that for σ = p2(1 − ε), we have λ
σ
p0
−1+ε

= λ
p2(1−ε)

p0
−1+ε

=

λ
(p2−p0)(1−ε)

p0 ≤ c, while for σ = 2, we have λ
p0−2

p0
−ε
λ
σ
p0
−1+ε

= 1. Therefore,
inserting the estimate for Iσ with σ = 2 and σ = p2(1 − ε) above, we arrive
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at�
Q
|Du|p(·)(1−ε)dz ≤ c

[�
2Q
(1 + |Du| + |F|) p(·)(1−ε)

q̄ dz
]q̄

+ c
�
2Q
(1 + |F|)p(·)(1−ε)dz

≤ c
[�

2Q
|Du| p(·)(1−ε)

q̄ dz
]q̄

+ c
�
2Q
(1 + |F|)p(·)(1−ε)dz.

This proves the reverse Hölder inequality. �

9. Proof of the main theorem

In this section we will prove the higher integrability of very weak so-
lutions stated in Theorem 2.2. The idea now, is to prove estimates for
|Du|p(·)(1−ε) on certain upper level sets. The argument uses a certain stop-
ping time argument which allows one to construct a covering of the upper
level sets. This method has its origin in [19, 20]; a slightly simplified ver-
sion can be found in [7]. Since most of the arguments are standard by now,
we will only sketch the proof and refer to [7, §7] for the details.
Let M ≥ 1 and suppose that (2.6) is satisfied. From now on, we consider

a cylinder Qr ≡ Qr(z0) such that Q2r � ΩT and define
(9.1)

λ0 :=
[�

Q2r

(|Du| + |F| + 1)p(·)(1−ε)dz
] pM
2−εpM ≥ 1, where pM := supQ2r

p(·).
For fixed r ≤ r1 < r2 ≤ 2r we consider the concentric parabolic cylinders

Qr ⊆ Qr1 ⊂ Qr2 ⊆ Q2r .

In the following we shall consider parameter λ such that

λ > Bλ0 where B :=
( 8χr
r2 − r1

) (n+2)pM
2−εpM ,(9.2)

and for z0 ∈ Qr1 we consider radii � satisfying

(9.3)
r2 − r1
4χ

≤ � ≤ r2 − r1
2
,

where χ = χ(n, γ1) ≥ 5 denotes the constant from a version of Vitali’s
covering theorem [7, Lemma 7.1] for non-uniformly parabolic cylinders.
Note that this choice ensures that Q(λ)

� (z0) ⊂ Qr2 . Recalling the definition
of λ0 we get by enlarging the domain of integration from Q(λ)

� (z0) to Q2r the
following estimate for λ and � as above:�

Q(λ)� (z0)
(|Du| + |F| + 1)p(·)(1−ε)dz ≤ |Q2r|

|Q(λ)
� (z0)|

�
Q2r

(|Du| + |F| + 1)p(·)(1−ε)dz

≤
(2r
�

)n+2
λ

p0−2
p0 λ

2
pM

−ε
0 ≤

(2r
�

)n+2
Bε−

2
pM λ1−ε ≤ λ1−ε .

As usual, we denoted p0 = p(z0). For λ as in (9.2) we consider the upper
level set

E(λ, r1) :=
{
z ∈ Qr1 : |Du(z)|p(z) > λ}.
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In the following we show that also a reverse inequality holds true for small
radii and for the Lebesgue points z0 ∈ E(λ, r1). By Lebesgue’s differentia-
tion theorem (see [7, (7.9)]) we infer for any z0 ∈ E(λ, r1) that

lim
�↓0

�
Q(λ)� (z0)

(|Du| + |F| + 1)p(·)(1−ε)dz ≥ |Du(z0)|p0(1−ε) > λ1−ε .

From the preceding reasoning we conclude that the last inequality yields a
radius for which the considered integral takes a value larger than λ1−ε, and
on the other hand, the integral is smaller than λ1−ε for any radius satisfying
(9.3). Therefore, the continuity of the integral yields the existence of a
maximal radius �z0 in between, i.e. 0 < �z0 <

r2−r1
4χ such that

(9.4)
�

Q(λ)�z0 (z0)
(|Du| + |F| + 1)p(·)(1−ε)dz = λ1−ε

holds and

(9.5)
�

Q(λ)� (z0)
(|Du| + |F| + 1)p(·)(1−ε)dz < λ1−ε ∀ � ∈ (�z0 ,

r2−r1
2 ] .

At this stage we note that Q(λ)
4χ�z0

(z0) ⊆ Qr2 and therefore by (9.4) and (9.5)
for s = 16�z0 we conclude, that the assumptions of Proposition 8.1 are
fulfilled. Note here that 16 ≤ 4χ and therefore 16�z0 ∈ (�z0 ,

r2−r1
2 ]. We now

impose the following bound on the radius r:

r ≤ r0 ≡ r0(n,N, ν, L, γ2) ,

where r0 denotes the radius bound from Proposition 8.1 (i.e. r0 ≡ �0 where
�0 is from Proposition 8.1). We are now allowed to apply Proposition 8.1,
which yields the following Reverse-Hölder inequality:

�
Q(λ)�z0 (z0)

|Du|p(·)(1−ε)dz ≤ c
(�

Q(λ)2�z0
(z0)
|Du| p(·)(1−ε)

q̄ dz
)q̄

+ c
�

Q(λ)2�z0
(z0)
(|F| + 1)p(·)(1−ε)dz ,

(9.6)

where q̄ = q̄(n, γ2) > 1 and c ≡ c(n,N, ν, L, γ2).
Now, for η ∈ (0, 1) to be fixed later we consider the upper level sets

E(ηλ, r1) of |Du| defined above, and those of |F| + 1, defined by
Φ(ηλ, r1) :=

{
z ∈ Qr1 : (|F(z)| + 1)p(z) > ηλ

}
.

If ηλ > Bλ0, then for a.e. z0 ∈ E(ηλ, r1) there exists a parabolic cylinder
Q(λ)
�z0
(z0) on which (9.4), (9.5) and (9.6) hold, and, moreover that Q(λ)

4χ�z0
(z0) ⊆

Qr2 . We let

p0 ≡ p(z0) , p1 ≡ inf
Q(λ)2�z0

(z0)
p(·) and p2 ≡ sup

Q(λ)2�z0
(z0)

p(·) .

Our next aim is to infer a suitable estimate for the Lp(·)(1−ε)-norm of Du on
the cylinder Q(λ)

4χ�z0
(z0). Using in turn (9.6), (9.4), Hölder’s inequality and
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(9.5) we obtain similar as in [7, page 238] that�
Q(λ)�z0 (z0)

(|Du| + |F| + 1)p(·)(1−ε)dz

≤ c
(�

Q(λ)2�z0
(z0)
|Du| p(·)(1−ε)

q̄ dz
)q̄

+ c
�

Q(λ)2�z0
(z0)
(|F| + 1)p(·)(1−ε)dz

≤ c η1−ε
�

Q(λ)�z0 (z0)
(|Du| + |F| + 1)p(·)(1−ε)dz

+
c

|Q(λ)
2�z0
(z0)|

∫
Q(λ)2�z0

(z0)∩E(ηλ,r2)
λ
(q̄−1)(1−ε)

q̄ |Du| p(·)(1−ε)
q̄ dz

+
c

|Q(λ)
2�z0
(z0)|

∫
Q(λ)2�z0

(z0)∩Φ(ηλ,r2)
(|F| + 1)p(·)(1−ε)dz ,

where c = c(n,N, ν, L, γ2). Choosing η ≡ η(n,N, ν, L, γ2) > 0 small enough
– i.e. of the form η1−ε ≡ 1/(2c) – we can re-absorb the first integral ap-
pearing on the right-hand side into the left. Moreover, using (9.4) and (9.5)
with s = 4χ�z0 we can bound the left-hand side of the preceding inequality
from below by

�
Q(λ)4χ�z0

(z0)
|Du|p(·)(1−ε)dz. Multiplying the resulting inequality

by |Q(λ)
4χ�z0

(z0)| we obtain∫
Q(λ)4χ�z0

(z0)
|Du|p(·)(1−ε)dz ≤ c

∫
Q(λ)2�z0

(z0)∩E(ηλ,r2)
λ
(q̄−1)(1−ε)

q̄ |Du| p(·)(1−ε)
q̄ dz

+ c
∫

Q(λ)2�z0
(z0)∩Φ(ηλ,r2)

(|F| + 1)p(·)(1−ε)dz ,(9.7)

for a constant c ≡ c(n,N, ν, L, γ2).
Now, from (4.4) we infer that

(9.8) λ ≤
(
βnM
�n+2

z0

)p0

.

Moreover, imposing a further bound for the radii r ≤ r0 of the following
form:

(9.9) r ≤ r0 ≤ 1
64M ,

we get from (4.5) that

(9.10) λ(p2−p1)/p0 ≤ c(n) e64(n+3)L.

Thus, so far we have shown that for any λ > Bλ0 the level set E(λ, r1)
is covered by a family F ≡ {Q(λ)

4χ�z0
(z0)} of parabolic cylinders with cen-

ter z0 ∈ E(λ, r1) whose radii �z0 are bounded by the radius r0 from (9.9).
Furthermore, on each cylinder of the covering we have (9.7) at our hands.
From Vitali’s covering theorem, i.e. the version for non-uniformly para-
bolic cylinders from [7, Lemma 7.1] we infer the existence of a countable
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subfamily {Q(λ)
4�zi
(zi)}∞i=1 ⊆ F of pair-wise disjoint parabolic cylinders, such

that the χ-times enlarged cylinders Q(λ)
4χ�zi

(zi) cover the set E(λ, r1), i.e. up to

a set of measure zero there holds (note that Q(λ)
4χ�zi

(zi) ⊆ Qr2 by construction)

E(λ, r1) ⊆
∞⋃

i=1

Q(λ)
4χ�zi

(zi) ⊆ Qr2 .

Recalling that the cylinders {Q(λ)
4�zi
(zi)}∞i=1 are pair-wise disjoint we infer from

(9.7) that∫
E(λ,r1)

|Du|p(·)(1−ε)dz ≤ c
∫

E(ηλ,r2)
λ
(q̄−1)(1−ε)

q̄ |Du| p(·)(1−ε)
q̄ dz + c

∫
Φ(ηλ,r2)

(|F| + 1)p(·)(1−ε)dz ,

with a constant c ≡ c(n,N, ν, L, γ2). Moreover, on E(ηλ, r1)\E(λ, r1) we
have |Du|p(·)(1−ε) ≤ λ1−ε and therefore we may replace the domain of inte-
gration E(λ, r1) on the left-hand side by E(ηλ, r1). Subsequently, replacing
ηλ by λ and recalling that η < 1 depends only on n, ν, L, γ2 we obtain for
any λ ≥ Bλ0/η =: λ1 that∫

E(λ,r1)
|Du|p(·)(1−ε)dz ≤ c

∫
E(λ,r2)

λ
(q̄−1)(1−ε)

q̄ |Du| p(·)(1−ε)
q̄ dz + c

∫
Φ(λ,r2)

(|F| + 1)p(·)(1−ε)dz ,

for a constant c = c(n,N, ν, L, γ2). Having arrived at this stage we would
like to multiply the preceding inequality by λε−1 with ε ∈ (0, 1] and then
integrate with respect to λ over (λ1,∞). This, formally, would lead in a
standard way to the desired higher-integrability of |Du|, where ε has to be
chosen small enough in between in order to re-absorb certain terms on the
left-hand side. However, there is a difficulty in moving terms to the left-
hand side since they may be infinite. This technical problem can be treated,
by truncating |Du|p(·) (see [2, § 8.4] for example). The precise argument is
as follows: For k ≥ λ1 we define the truncation operator Tk : [0,∞)→ [0, k]
by

Tk(σ) := min{σ, k} and Ek(λ, ri) :=
{
z ∈ Qri : Tk

(|Du(z)|p(z)) > λ}, i = 1, 2.

Since Ek(λ, r1) = ∅ in the case k ≤ λ and Ek(λ, r2) ≡ E(λ, r2) in the case
k > λ, we can replace in the last inequality E(λ, ri) by Ek(λ, ri) for i = 1, 2.
Now, we multiply on both sides by λε−1 and integrate with respect to λ over
(λ1,∞). In this way we obtain∫ ∞

λ1

λε−1
∫

Ek(λ,r1)
|Du|p(·)(1−ε)dz dλ ≤ c

∫ ∞

λ1

∫
Ek(λ,r2)

λ−
1−ε

q̄ |Du| p(·)(1−ε)
q̄ dz dλ

+ c
∫ ∞

λ1

λε−1
∫
Φ(λ,r2)

(|F| + 1)p(·)(1−ε)dz dλ .(9.11)

To the integral on the left-hand side we apply Fubini’s theorem and find that∫ ∞

λ1

λε−1
∫

Ek(λ,r1)
|Du|p(·)(1−ε)dz dλ =

∫
Ek(λ1,r1)

|Du|p(·)(1−ε)
∫ Tk(|Du(z)|p(z))

λ1

λε−1 dλdz
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=
1
ε

∫
Ek(λ1,r1)

[
|Du|p(·)(1−ε)Tk

(|Du|p(·))ε − λε1 |Du|p(·)(1−ε)
]
dz .

Similarly, we obtain for the first integral on the right-hand side that∫ ∞

λ1

∫
Ek(λ,r2)

λ−
1−ε

q̄ |Du| p(·)(1−ε)
q̄ dz dλ ≤ q̄

q̄ − 1
∫

Ek(λ1,r2)
|Du| p(·)(1−ε)

q̄ Tk
(|Du|p(·)) q̄+ε−1

q̄ dz .

and for the second integral on the right-hand side we get∫ ∞

λ1

λε−1
∫
Φ(λ,r2)

(|F| + 1)p(·)(1−ε)dz dλ ≤ 1
ε

∫
Q2r

(|F| + 1)p(·)dz .

Joining the preceding estimates with (9.11) and multiplying by ε we arrive
at∫

Ek(λ1,r1)
|Du|p(·)(1−ε)Tk

(|Du|p(·))εdz ≤ cεq̄
q̄ − 1

∫
Ek(λ1,r2)

|Du| p(·)(1−ε)
q̄ Tk

(|Du|p(·)) q̄+ε−1
q̄ dz

+ λε1

∫
Ek(λ1,r1)

|Du|p(·)(1−ε)dz + c
∫

Q2r

(|F| + 1)p(·)dz,

for a constant c = c(n,N, ν, L, γ2). Since Tk
(|Du|p(·)) ≤ λ1 on Qr1 \Ek(λ1, r1),

we may replace the domain of integration Qr1 \ Ek(λ1, r1) on the left-hand
side by Qr1 . At this stage we perform the choice of ε. Choosing

0 < ε ≤ ε0 ≡ ε0(n,N, ν, L, γ2, σ) := q̄ − 1
2cq̄

,

recalling the definitions of λ1, i.e. λε1 = (Bλ0/η)
ε ≤ Bλε0/η since B/η ≥ 1,

ε ≤ 1, and of B from (9.2) and taking into account that Tk(|Du|p(·)) ≤ |Du|p(·),
we arrive at∫

Qr1

|Du|p(·)(1−ε)Tk
(|Du|p(·))εdz ≤ 1

2

∫
Qr2

|Du|p(·)(1−ε)Tk
(|Du|p(·))εdz

+
c∗(2r)βλε0
(r2 − r1)β

∫
Q2r

|Du|p(·)(1−ε)dz + c
∫

Q2r

(|F| + 1)p(·)dz ,

where c∗ := (4χ)β/η and β :=
(n+2)pM
2−εpM

. Since r ≤ r1 < r2 ≤ 2r are arbitrary
we are in the position to apply Lemma 3.1 to infer that∫

Qr

|Du|p(·)(1−ε)Tk
(|Du|p(·))εdz ≤ c(β)

[
2βc∗λε0

∫
Q2r

|Du|p(·)(1−ε)dz + c
∫

Q2r

(|F| + 1)p(·)dz
]
.

Letting k → ∞ (which is possible by Fatou’s lemma) we get∫
Qr

|Du|p(·)dz ≤ c
[
λε0

∫
Q2r

|Du|p(·)(1−ε)dz +
∫

Q2r

(|F| + 1)p(·)dz
]
,

for a constant c ≡ c(n,N, ν, L, γ2). Note that the dependence on β can be
eliminated since pM ∈ [2, γ2]. Finally, passing to averages and recalling the
definition of λ0, i.e. (9.1), we deduce that

�
Qr

|Du|p(·)dz ≤ c
(�

Q2r

(|Du| + |F| + 1)p(·)(1−ε)dz
)1+ εpM

2−εpM
+ c
�

Q2r

(|F| + 1)p(·)dz .

(9.12)
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At this point, it remains to replace in the preceding estimate εpM
2−εpM

by
εp0
2−εp0 , where p0 ≡ p(z0) denotes the value of p(·) evaluated at the center z0
of Q2r ≡ Q2r(z0). Using (2.3) and ε ≤ 1

2 we obtain

0 ≤ εpM

2 − εpM
− εp0
2 − εp0 ≤

2ε(pM − p0)
(2 − εpM)(2 − εp0) ≤ 2ε(pM − p0) ≤ 2εω(4r) ≤ ω(4r).

The preceding estimate together with ε ≤ 1 and (2.6) implies(�
Q2r

(|Du| + |F| + 1)p(·)(1−ε)dz
) εpM
2−εpM

− εp0
2−εp0 ≤

(�
Q2r

(|Du| + |F| + 1)p(·)dz
)ω(4r)

≤ c(n) (2r)−(n+2)ω(4r)Mω(4r).

In order to proceed further we use the logarithmic continuity condition (2.4)
twice to infer for the terms involving r and M that

(4r)−ω(4r) ≤ c(L) and Mω(4r) ≤ c(L) .

The second assertion is obtained as follows :

Mω(4r) = exp
[
ω(4r) logM

] ≤ exp [ω(1/M) logM
] ≤ eL ,

provided r ≤ r0 ≤ 1
4M . This restriction on the size of r0 is already implied

by the restriction from (9.9). Joining the preceding estimates we find(�
Q2r

(|Du| + |F| + 1)p(·)dz
) εpM
2−εpM

− εp0
2−εp0 ≤ c(n, L) ,

which together with (9.12) yields the desired estimate (2.7). This finally
completes the proof of Theorem 2.2.

Remark 9.1. Here, we briefly discuss if the result of Theorem 2.2 can be
extended to p(·) > 2n

n+2 . We think that the result remains to be true in the sub-
quadratic case. However, there is an extra technical difficulty in the proof of
the localization argument in Lemma 4.1. In order to treat the subquadratic
case it would be necessary to improve the estimate A ≤ c �−γ2M2 in the
direction that no negative power of the radius appears, i.e. one would have
to show an estimate of the type A ≤ cM. More precisely, the proof of this
inequality can be reduced to showing that

(9.13) sup
�>0

∫
Q(λ)16�(z0)

∣∣∣∣∣∣
u − uQ(λ)16�(z0)

�

∣∣∣∣∣∣
p(·)(1−ε)

dz ≤ c M.

Assumed that (9.13) holds true, by carefully inspecting the proof of Theo-
rem 2.2 and [7], one could extend Theorem 2.2 to the case p(·) > 2n

n+2 .
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