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Preface

This doctoral thesis consists of two articles:

Qifan Li, Local Well-Posedness for the Periodic Korteweg-de Vries equation in Analytic Gevrey
Classes, Communications on Pure and Applied Analysis, 1097-1109, Issue 3, May 2012.

Verena Bogelein and Qifan Li, Very weak solutions of degenerate parabolic systems with non-
standard p(x, t)-growth, Nonlinear Analysis: Theory, Methods Applications, 190-225, Volume
98, March 2014. (The second author did the major part of the work.)

In these papers we use Harmonic analysis technique to study the partial differential equa-
tions. In the first paper we use multilinear analysis to study the nonlinear term of KdV equa-
tions. In the second paper, we apply the technique of Whitney extensions and strong maximal
functions to construct a proper test functions to prove the higher integrability of the very weak

solutions of degenerate parabolic systems with non-standard p(x, t)-growth.
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Summary and Conclusions

In the first paper, we study local well-posedness of the Cauchy problem for the generalized pe-

riodic Korteweg-deVries equation (GKdV)

dtu+6imu+ukaxu=0 u:Tx[0,T]—R
(1)
u(x,0) =ug(x) xeT

We prove that, in the case s = 1 and k = 1, for initial data ug(x) in G”%, o > 0, there exists a small
positive time T, such that the initial-value problem (1) is well-posed in the space C([0, T, G").
In the second paper, we consider the degenerate parabolic systems whose model is the

parabolic p(x, f) -Laplacian system,
0,u—div(|DulP®""2Du) = div(|FIP™"72F)

in the degenerate range, i.e. p(x, t) = 2. We show that any very weak solution : Q x (0, T) — RY
with |[Du|P?079) € L! belongs to the natural energy space, i.e. |[DulP” € L} , provided e > 0 is

small enough.
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LOCAL WELL-POSEDNESS FOR THE PERIODIC
KORTEWEG-DE VRIES EQUATION IN ANALYTIC
GEVREY CLASSES

Qifan Li

Department of Mathematics
University of Bergen
5008 Bergen, Norway

(Communicated by Igor Kukavica)

ABSTRACT. Motivated by the work of Gruji¢ and Kalisch, [Z. Gru-
ji¢ and H. Kalisch, Local well-posedness of the generalized Korteweg-
de Vries equation in spaces of analytic functions, Differential and
Integral Equations 15 (2002) 1325-1334], we prove the local well-
posedness for the periodic KAV equation in spaces of periodic func-
tions analytic on a strip around the real axis without shrinking the
width of the strip in time.

1 Introduction

This paper studies the local well-posedness of the Cauchy problem
for the generalized periodic Korteweg-deVries equation (GKdV)

O+ 02, u+uFd,u =0 u: Tx[0,T] =R
u(z,0) =up(z) 2€T

(1)

with initial data wug(z) in a class of periodic functions analytic in a
symmetric strip around the real axis. The number k is taken to be a
positive integer and T = R/Z is the torus. For ¢ > 0, s € R, denote
Gevrey classes G™* to be the subset of L?(T) such that

luol|Ees =D (n)*€* ™ @ (n)]* < oo
neL
where (n) := 1+ |n| and dy(n) denotes the Fourier transform of ug on

torus.

2000 Mathematics Subject Classification. Primary: 35Q53; Secondary: 35A07.
Key words and phrases. Generalized Korteweg-deVries Equation, Real-analytic
Solutions, Local Well-posedness.



2 PERIODIC KORTEWEG-DE VRIES EQUATION IN GEVREY CLASSES

In [18], Kato and Masuda introduced a method of obtaining spatial
analyticity of solution for a large class of semi-linear evolution equa-
tions, and the research on Gevrey regularity for the solution of the
semi-linear equations goes back to the work of Foias and Temam [10].
Further results concerning periodic solutions of Navier-Stokes equations
in Gevrey spaces have been obtained by Biswas [1]. We refer to [2, 12]
for the study of Kuramoto-Sivashinsky equation. For a treatment of a
more general case of nonlinear parabolic equations, we refer the reader
to [9]. Also, a number of authors have obtained solutions in Gevrey
spaces without strong regularizing effects. Here we mention the recent
work of Kukavica and Vicol on the three-dimensional Euler equations
[21], and a body of work concerning KdV-like equations (see, for exam-
ple, Hayashi [14, 15], Bouard et al. [5], Gruji¢ and Kalisch [13], Bona et
al. [4]). As explained in [3, 16, 17], analyticity of solution of the KAV
equation plays an essential role in the numerical study of the equation.

The example constructed in [11] shows that the solution of GKdV
equation with an appropriate analytic data may not be analytic in
the time variable ¢. So, we must restrict our attention to the spatial
analyticity of the solution of GKdV. Gruji¢ and Kalisch [13] proved local
well-posedness of non-periodic GKAV for a strip without shrinking the
width of the strip in time. It is of interest to know whether it is possible
to establish the same result for the periodic case.

Kato’s smoothing effect was shown to be useful in the proof of the
main theorem in [13]. However, this technique cannot be used in deal-
ing with GKdV with periodic boundary data. Our approach is in the
spirit of [8, Theorem 1] and the proof relies on the Bourgain’s bilinear
estimate [6], multilinear estimate in [22] and linear estimates in [7, 8].
In addition, the proof reveals some new aspects in the estimation of
the time-cutoff function which are essential in the proof of the main
nonlinear estimate which is given in Lemma 3.2.

Denote by C([0,T], G™*) the space of continuous functions from the
time interval [0, T into G°. We will prove the following theorem.

Theorem 1.1. Let s > 1 and k > 1. For initial data in G, o > 0,
there exists a small positive time T, such that the initial-value problem
(1) is well-posed in the space C(]0,T], G°).

The paper is organized as follows. In Section 2, we set up notations
and terminologies and deal with linear estimates. Section 3 is devoted
to the study of bilinear estimates, and Section 4 provides a proof of
the multilinear estimate. In Section 5, Theorem 1.1 is proved via a
contraction argument.
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2  Some Notations and Linear Estimates

Throughout this paper, A < B denotes the estimate A < C'B, where
the constant C' > 0 possibly depending on s, k and independent of o.
We say that A=~ B, if A < B and B < A. We also denote by A < B
the estimate A4 < B for a large constant K > 0. The Lebesgue classes
on the integer set and real line are denoted by [P and L? respectively,
while the following notation is used to denote the [P — L9 space-time
norms: || f(n, A)llize = [[I1f(n, M|z [liz-

Let u(x,t) be a function defined on the cylinder T xR and s, b € R.
The space-time Fourier transform of u(x,t) is defined by

a(n, \) ://u(x,t)e’2”’\t’2”imd:cdt,
R

where n € Z. We denote by % [u(x,t)] the partial Fourier transform
of u in variable ¢t and by %, [u(x t)} the partial Fourier transform in
variable z. We define the X*0 = X7 2 ¢s(T x R) norm of u(z,t) by

lull e = [|(A = n3>b<n>sﬂ(na Mz

where (-) := 1+ | -|. This norm was introduced by Bourgain [6] and
the space-time symbol is adapted to the linear part of KdV equation.

The low-regularity study of (1) is usually considered in spaces X 53
(see [6, 8, 22]). In order to overcome difficulty in persistence property
in this case, authors [8] and [22] introduced the function space Y** to
be the subset of X** such that

oo+ )", A 1 < 0.

[ullyss = llul

It is indicated in [13] that we have to introduce another family of
function spaces which are adapted to the study of Gevrey regularity.
For o > 0, define X% norm of u(z,t) by

[/l o0 = H()\ — 03 (n)*e”™i(n, \) leLz .
We shall use the space Y** which equipped with the norm
[ullyers = fullxons + [Je7 (n)iln, Al 1y -

By the Riemann-Lebesgue lemma, the Fourier transform of an L' func-
tion is continuous and bounded, and we have the embedding property

vt c C([0,T],G™%) C L=([0,T],G™*). (2)
We will also need the space Z%*® with the norm defined by

ea(n) <7’L>S

mﬂ(n, A)

”u”Z”vva = ||U||Xa,s,—b +

2L
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Consider initial value problem of the Airy equation on T:
Ow+ 02 w=0
_ 3)
w(z,0) = wo(z), z €T.

The explicit solution of the initial value problem (3) can be expressed
in terms of the semigroup S(t) via Fourier transform,

w(z,t) = S(t)wy = CZ 2ot o ).
nez

We shall establish linear estimates for the propagator S(t). Let ¢(t)
be a bump function supported in [—2,2] and equal to one on [—1,1].
Denote by 0 < § < 1 a small constant which need to be determined
later.

Lemma 2.1. We have

[(t/6)S(B)uoll 01 S lluolles
forall s € R and o > 0.

Proof. Let us first write 1#(15/7)3\(15)%@7 A) = Go(n)dd(5(\ — n?)). By
the definition of X*5?,

l(/8)S (ol gy = ZGQUW )| (n )IQ/R<A>52|1/3(5/\)I261/\-

Since fy NI IPENIN S 146, we gt [0(¢/5)S (0ol g4 5 ol
2

e ) (t/0) S |, |
nEN

l|o]|%0.s, which completes the proof. O

On the other hand, we see at once that

Having established Lemma 2.1, we repeat the proof of [8, Lemma
3.1], and we get Lemma 2.2.

Lemma 2.2. We have
S IEN s

Hzp@/(s) /0 t S(t—t)F(t')dt o

forall s € R, 0 > 0 and test functions F on T x R.

We also need to estimate the cutoff function ¢ (¢/0)u in the space
X%%2. We present a proof in a spirit of [20, Lemma 3.2].

Lemma 2.3. Let 0 > 0. We have

[0(t/0)ull yong S lullyosy
for all s € R and o > 0.
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Proof. By the definition of Y?* the proof is reduced to showing that,
if @ = n® then

/R [ (B0 (5N) (D)2 —a)ell < /

s [a(n, )*(A—a)dA+|a(n, Mz, (4)

where %, is the convolution in variable \.
According to the proof of [20, Lemma 3.2], we have

/R [ (FO(EN) D)L — a)el

< / 12T, [ul (n, )0F (5 ) et + / ja(m, AP IA — aldA
R R
and
/ 63 (56(6N) (DPdl < / Ji(m, N)[2dA.
R R

By the Plancherel theorem and the Young inequality,
2

/ |e2miat Z, ] (n, t)atéw(é_ltﬂzdt = emu(n, A) % @%1/}(5_175)()‘)
R

L3
< |la(n, A= ¥ A%(sz&(éA)Hz
- ’ Ly 2
< llatn, M2,
which shows (4), and the proof of Lemma 2.3 is completed. O

3 Bilinear Estimates

The bilinear estimate is a standard technique in dealing with non-
linear term in the equation. This kind of technique has been used and
developed by many authors (See, for instance [6, 13, 19, 23]).

Lemma 3.1. Let s > 0, ¢ > 0, and suppose the functions u, v sat-
isfy [pudr = 0 and [pvde = 0. Assume that ||v||,,.; < oo and
[(t/0)ull oy < 00 Then

[4(/6)°0 ()| oy S 520l gy [0(E/8)tl] iy -

Proof. The main idea of the proof is due to Bourgain [6, page 221].
Since [u =0 and [Lv =0, we write

£, A) = (A = n®) 2 |n]*e”™ |6 (t/8)u(n, A)],
g(n, A) = (A =) e ™ (t/8)v(n, A)].
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Let h(n,A) € L3 and [|hl[;z22 < 1, we introduce a trilinear form:

U(n>6*‘7 n—ni) *U<"1>h(n, A)f(n1, A1)
Alfo) ZZ// WOy — i)

n#0 n1#£0, 1
ni#En
_ A— ) s+1 —s _ —s
~ g(n ni, 1)|n| |n1| |? nl‘ d)\d)\l

<)\ — )\1 — (TL — TLI)3>§
Thus we need only to estimate A(f,g,h)
Since |n| < |ni|jn — ny| and e”‘”‘e‘”‘”‘"”e‘"'”l‘ <1, we obtain

1f( nhAl nl,)\ A)h(n, N)||n|dA
A(f.9.h |<ZZ// )\1—n1> TR R ——

_ 3
n#0 n1#0, n
ni#n

From resonance identity n® = (n — ny)® + n3 + 3nni(n — ny), we get
max {|A — A — (n—m)*|, [\ —nil, [X=n°l} > [n|lnafln—mi]. (5)
As pointed out in [6, Theorem 7.41], we have
A9, M S NFG a2 1 hlliz 2z it [A=n’[ 20
INOAADIBS if A= nil 20
where F(n, ) = f(n, (A = n3)72, G(n,\) = g(n,\)(A —n®) "2 and
H(n,\) = h(n, \)(\ = n3)~2. Let us focus on the first of the above
cases. Recalling that |[hf;zz2 < 1 by assumption, and using Cauchy-

Schwarz, it appears that we have to estimate the terms ||F']| azs and
|G|l Lazs- Recalling the Strichartz estimate [6, Proposition 7.15]

[l zazs S IF o (6)

it becomes plain that the terms || F[| o1 and [|G]| , 3 have to be con-

trolled. To this end, define a a square-lntegrable functlon
6, t) = |0, *e" 0Dz, t) = Z71 [|nf*e” ™ Zu) (2, )
where I denotes the identity operator. We also set
9, A) = e bt /8)u(n, A) = Fi [6(t/6)(F.0) (n, )] (V).
Using the Strichartz estimate (6) for the function ¢ (¢/0)6 yields

[9(n, \)|2dX\ = X33 (t/8) [(t/8)0(x, t)| dadt
> [, Joxesa

< /001y y S S we/0)0, 7
= 53[0 (t/0)ul’,. y-
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By Holder’s inequality and (7), we get

||F||21_Z/ ) f (A
n#0

1

=5 [ (WDt ) s xtan - ©

n#0
< 35 || (t/8)ull]
Making use of the argument above, we deduce

1G] oy S 872 06(t/S)v S 0% o]

X:792'

Ul ot S yoed

from Lemma 2.3. Thus the estimate in the case |\ — n3| = n? may be
continued as follows.

1
[FGzrz < 1 FllzarsllGlirars S 0720l oy 10@/0)ull oy - (9)

(
For the case when |A\; — n| = n? we use the Strichartz estimate (6
to find ||H||p1zs < [|B[lzzz < 1. Recalling the definition of f(n, A), a
similar argument yields as in the previous case yields

1
1Glaeh Flliass S 0% /0l oy 0], s (10)
Finally, interchanging f and g, we obtain
1
IA(f, 9, W) S 07 [0/ 0)ull oy IVl]o g (11)

for the case |\ — A\ — (n — ny)3| 2 n?® by symmetry. Now based on
(9)-(11), we have

102 (0(t/0)*u0) || yoey = sup |A(f, g, D)

<
||h”z%L§—1

1
S0 |ollyony 10(E/0)ull oy -

O
Remark 1. Note we have actually proved that
100 ooy S Ml g N0l e (12)

for s >0 and o > 0.

The bilinear estimate for periodic KdV equation in Sobolev spaces
with negative indices has been studied by Kenig, Ponce and Vega [19].
As the counterexample shows in [19, Theorem 1.4], the boundedness of

the quadratic term fails for Sobolev indices below —%.

Corollary 1. For functions u, v satisfying [ru = 0, [Lv = 0, the
estimate (12) holds for s > —1.
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Proof. According to the above remark, we only need to consider the
case —% < s<0. Let p=—s > 0, we follow the definition of multiplier
bounds which was introduced by Tao [23]. It remains to show that

e?Me=otn=m) e=a(m) | |1=P|n, |P|n — n,y |

1 1 1 < 1
(A=nf2(h —ni)2 (A= M — (n—m)%)?

~

[3,ZxR]

Since e?Mle=oln=mle=olml < 1 the comparison principle [23, Lemma
3.1] reduce this estimate to

N

T T Sl
(A=n®)2 (M = nf)2 (A = A = (n—m)?)

b

[N

[3,ZxR]

which has been proved by Kenig, Ponce and Vega [19, Theorem 1.2]. O

In order to estimate the bilinear term in space of Z”*S’%, it will nec-
essary to analyze the proof of [8, Proposition 1 ]. We will prove the
following result in analogy with discussions in [8, Proposition 1 |.

Lemma 3.2. Lets > 5,0 >0, [Ludz =0, [fvde =0and0 <k < 1.
Assume that [, uvdz =0, [0l oy <00 and |[(t/0)ull onry < o0
Then

(e (/8)%uv(n, \)
<)\ _ nd> 11—k

1
S 070 [t/ 8)ull yos1.g 1V]lyosr 1

2L}

Proof. Since [uv = 0, the quantity (n)® can be replaced with |n|* in
the left hand side of the estimate. Let square-integrable functions u;
and us be defined by
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: - _1 1 1 .
Since eI"l < eolmlesln=ml and |n|*=2 < |n — ny|*~2|ny|*"2, we obtain

In|e7tn wﬂa)\?uv(n N

_ n3>1 K
Z / ‘Ul — Ny, A — /\1>U2(n1> 1)|d)\1
_m#) A —n3)y=r(\ — n1>2()\7)\17(n7n1)3>%
ni#n
e <n>|n|9

X €g<n1>eg<n—n1 |n1|s—1|n _ nlls_l

< Z / ‘Ul n—nl,/\ )\1)U2(n1,/\1)|d)\1
A—n3)Y =5\ — )2 (A — Ay — (n—ny)3)2

n17#0,
ni1#n

1 1 1
< |l —
=S(n, A).
To estimate |[S(n, A)|[;z1 we note that the resonance relation (5) en-

ables us to distinguish three cases once again.
If A=A — (n—mn1)3| > |n||n1||n — 4], S(n, ) can be dominated by

I’U,1 TL-TM,)\ A1)“/2<nl>>\1)|d>\1

—n3) el (A — n3> (M — n?>

TL17£0
nl#n
Taking first the L}-norm, using the Cauchy-Schwarz inequality, and

recognizing that [, [(A — n®~5+%[2d) is finite, it follows from duality
that

ECSVHEREED O IR PR
_ 3

I1Tlg o3 <Ly

x 3(n, A) (A — n®) " 3dAsdA.
(13)

Now define uA’Q(nl, M) = @3(ny, M) (A —n?) "2 and ug(n A) = @3(n, \) (A — n3) 3.
Note that from (6) and (8), we gain the estimates

1
lubllpars S Nluall voi S 072 [[9(t/0)ull oamny (14)
and

lusllzace S Nl oy = N1z s (15)



10 PERIODIC KORTEWEG-DE VRIES EQUATION IN GEVREY CLASSES

Thus, using Parseval’s relation, (14)-(15) and Lemma 2.3, the estimate
takes the form

1St Mllzsy S sup / wniiddtda
o TxR

HUSHl%LiSl

S sup HUIHLgL?||UI2HL§L;1||U§||L4;L;1 (16)
”@Hl%Lg\Sl

1
S 0 [(E/0)ull yorig 10l yosmry-

By symmetry, we also have
1
15( Mlliz ey S 072 10ll e g 19 E/0) 0l ey (17)

for the case |\; — n3| > |n||ni||n — n4l.

We now turn to the remaining case |A — n?®| > |n||ny||n — ny|. This
will be split into three subcases. Suppose first that we also have

1
A== (n=m)*| 2 (@lnlln = n|na]) ™.

Let}?’l(n —ni, A= A) = d(n — n1v)‘1_ M)A =X —(n— n1)3>_%, and
let uh(ny, A1) = az(ny, A )(A\ —ni) "2 as before. Then we deduce that
a3l — |3 (n — g, A — A
S(n,\) < E In]Z|na]2in — ny|2 uf(n —ng, A Al)uZ(nl,)\l)d/\l

1

(A —nd)l-n A=A —(n—my)3)s

n1#0, R
ni#n

~

Z n|2|n|2|n — na|2 ul(n — ng, A = Auh(ng, M)

<
(A —nf)t=~ (6]n] |na| [n — ny|)oo

dAla

n17#0, R
ni#En

and the estimate continues as

1S(n, Ml 1 677 [|(A —n?)~2am ey~ / W (n =, A — ) (ng, Ap)dAg
ni R

2L}
07l p S 07 [t gl o

by using the Cauchy-Schwarz inequality, and the Plancherel theorem
in the same way as in the previous case. It follows from (14) and (15)
that

1S, Mllizry S 612700 |vf| ,ou g [0/ 0)ull yoorg- (18)

Similarly, for the second subcase [\ — n?| = (d|n||n — annl\)ﬁ7 the
argument above can be repeated, and (18) holds, as well.
We proceed to consider the third subcase where

1
max{|)\ — A —(n—n1)?%, M —n‘;’|} < (6|n]|n||n — na]) ™0 .
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Since § is taken to be a small number, we have |\ —n?| & |n||ni||n—n|.
Therefore, it is plain that [[S(n, A)||z1 can be majorized by

_1 ~
S [ nlimati = ml) = A, A
Az J Ay

n17#0,
ni#n

where the domain of integration is given by
1
Ai(n,na, ) = {0 €R = A=A = (n =)’ < (O]nfln|ln —na)™0}
and
1
Ax(n,m) ={A €R ¢ [\ —ni| < (0fnlnalln —na])™0}

Using the Cauchy-Schwarz inequality in each integral, the last expres-
sion is dominated by

RS S TS B B ~
g2t a0 N " (|nf|ny|ln — ny )" 20130y (0 — ng, A2 [l @20, Al 2.

n17#0,
ni#n

Now since |n||ni||n — nq| takes only nonzero integer values, we may
write
15 (n, Mz 2
1 N SR SRTIPN -~
010 1> " (nmyn — na)*2 70 [ (n — na, Nz @201, M|l 23

ni

(19)

2
<61 | (n, M)l g2 |2 M)z 12

Now recalling the definition of @; and 3, it becomes clear that the
estimated can be concluded in the same way as the previous cases.
For more details of the last step we refer the reader to [8, page 200].
Combining estimates (16)-(19), we finish the proof of the lemma. O

4 A Multilinear Estimate

We shall use the multilinear estimate in a variant of [22, Lemma 4.2].

Lemma 4.1. If k> 1, s> 1 and o > 0, then

k k
w(t/0) [T wi S I heallyos
i=1

Xo',sfl,% i=1
Proof. Denote h(n,\) € I2L3 and [Allizr: < 1. We let € > 0 be a

sufficiently small number, it follows that

H)‘%%W(M)’ <5<, H)\*&/}(é)\)H SOSL (20

1
LA

2
L)\
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Since s > 1 > %, by the Cauchy-Schwarz inequality,

"™ a(n, A L = n) % (n)%e’™ a(n, A)|dA
ey = ot~ [ it ) o

< [[e”™ (n)*a(n, A < lul

)ng@ yos

We will only prove the Lemma 4.1 for k£ > 3, since the situation will
be simpler when we deal with the case k = 1 and £ = 2. We let
vy = Hf:s u;. Since el"l < eoln—msleolns—nal .. eolne1l it follows from
(21) and the Young inequality,

o(n) =~ ||
e?"" 0.
H 3y

= 3 [ = A= Al e = A x
R JRE-3
N3 yee ey 1

X |up—1 (ng—2 — g1, Az — Mo—1) [0 (Re—1, Ap—1)|dAs - - - dAp—1dX

< len ™y x|,
Ly

k k
<TI0l < Tl
=3 =3

The multilinear form A(h,uy, us, v3) is defined by

(22)

A(h,ul,ung) = Z / eo<n><)\ _ n3>%7e<n>571+2e|h(n7/\)|
R4

n,ni,n2

X |?2\1(ﬂ — N, A= )\1)||7f2(n1 —Ng, Ay — /\2)\
X |53(n2, Ay — A)||00(6A3)|dA1dAadAsdA
and, consequently,

k
w(t/8) [T w

i=1

= sup A(h,uy, ug, vs).
xos—12e,F—¢ Hh("’)‘)Hz%Liﬁl

Let u}, u} and v4 be square integrable functions such that
L=y, ="My, and vh = "™ 0.
Since e“l"l < e”‘”‘””e”'”l_"?'e”‘”?‘, we have

A(h'7 Uy, Uz, U3)

<> / N = )3 () "2 i, N[l (0 — o, A — Ap)
]R4

n,n1,n2

(23)

x|t (ny — mg, Ay — Ao)||0h(n2y Aa — A3)|[600(5As)|dArdAadAsdA
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We denote by A'(h,u}, uh, v) the right hand side of (23). As in the
proof of [22, Lemma 4.2], estimate (20) gives

N (hyuy, ug, v5) S [luy

N A A

Combining this estimate with (22) and (23), we get

k k
w(t/é)Hul S H ||ui||yo,s,%,
P | 1S
The Lemma 4.1 follows for k& > 3 by letting ¢ — 0 and the Fatou
lemma. u

5 Proof of Theorem 1.1

It is indicated in [22] and [8] that up to a gauge transform, we can
rewrite (1) as follows:

{ O+ & u+PP)ou) =0 o)

U(I,O) = UO(I)7 T € Ta

where P is the projection operator defined by P(u) = u — [ u(z, t)dz.
The well-posedness problem of (1) is reduced to consider the initial
value problem (24).

Since we have the embedding property (2), it is necessary to use the
contraction principle on function space Y72, Let r = |Jug||ges < 00.
By Lemma 2.1, there exists a constant ¢; > 0 such that

[(t/6)S()uolly...y < erlluollges

We aim to show that the integral operator

D) = 00t/ Ouo — 0(1/6) [ S(t = 000710 01 (PO

is a contraction map on the set B = {||ul .1 < 2cir}.
It is easy to check that 9,u = P(9,u), PO, = 0,P and ||0,v||

1~
1,%

yos—

[vll.,0s1 for v € Y3 and Jpv(z, t)de = 0. It follows from Lemma
Yoo

3.1 and Lemma 4.1 that

Hip(t/(S)zP [P(uk)axu} wayi% =~ Hiﬁ(i/é)%?x [P(uk)P(axU)] | xos1-}
S 070 [l g [/ oy

1
< s ul41 .
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On the other hand, by Lemma 2.3, Lemma 3.2 with k = 0, and Lemma

41,

(n)*e” P (3 (t/8) )P ((t/6)0,u) (n, N
(A —n?)

LY

< 57 ul£F .

Therefore, we have

1
(t/0)2P (P(0,0)] .y S S5l .
Combining this estimate with Lemma 2.2, we deduce that there exists
a constant ¢y > 0 such that

+1

_1
IP)llyoey < erlluolies + codmm[fuf 5, .

If we take

1 200
T -
<0< <2’“+102(017’)k>
then T'(B) C B.

We are now in a position to verify that I' is a contraction. By a
similar argument as above, it is not hard to show that

(@) = Ty S020 >~ (/) P, o) ormry = 0lyoey

k—1<I<k
where P)(u,v) is a homogeneous polynomial of degree [. Since u,v € B,
there exists a constant c3 > 0 by Lemma 4.1, such that
1
IT(w) = D)l 0y < 3007 [Ju — o]

YU.S,% ‘

1 200 1 \20
T < § < mi TR E—
B { <2k+1cz(clr)k> ’ (27"’“03) } ’

then T is a contraction on B. It follows that I" has a unique fixed point
u in B and u solves the initial value problem (1).

To prove continuous dependence on the initial data, suppose u and
u are solutions corresponding to initial data ug and @,. Following the
argument above, we arrive at

If we set

_ _ 1 _
lu = allyosy < cllwo = ollgme + S llu —al

Y53 YUVS,% :

Combining this inequality with (2), continuous dependence in C([0, T, G%)
of the solution on the initial data in G°* is immediate, as shown by the

< 630 ||0yull oy [|(E/8)0"|

Xo,sfl,%
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estimate

[ =l L= o.1.600) < cllu—ll,,003 < cllug — oo

Remark 2. If we consider the integral operator

D(u) = (1) S(t)ug — 1 / S(t— 1YR()P [P(ub),u] de

from a similar contraction argument and Corollary 1, it is a simple
matter to establish the following corollary.

Corollary 2. Let s > % when k =1 and s > 1 when k > 2. The initial-
value problem (1) is well-posed in the space C([0,1], G™®) if initial data
in G°°, o > 0 is sufficiently small.

Remark 3. Similarly as in the proof of [13, Lemma 6], we can prove
the uniqueness of the solution (1) in C([0,7], G™*) when s > 3.
In fact, if s > 2, from Holder inequality,

||8xu||Lch§° = SUP HaccUHL?
0<t<

A

sup Hmﬂ(”)J u(n,t) Hl1 < sup lu(s, t)]|ges < o0
0<t<T 0<t<T
(25)
Suppose u and v are solutions to (1) in C'([0, T], G*) with u(z,0) =
v(z,0). Let e = u —v. Using the fact e€,yp = 0y(e€ss) — 30,(€2), we
get the estimate
d
J— e .
e
where P(u,u,,v,v,) is a polynomial with respect to u, u,, v and v,.
From (25) and Gronwall’s inequality, we know that e = 0.

72y < P, ug, v, 00)[le(, 1) |72
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VERY WEAK SOLUTIONS OF DEGENERATE PARABOLIC
SYSTEMS WITH NON-STANDARD p(x, 1)-GROWTH

VERENA BOGELEIN AND QIFAN LI

AsstrACT. We study higher integrability of very weak solutions to cer-
tain degenerate parabolic systems whose model is the parabolic p(x, )
-Laplacian system,
A — div(IDul”™" > Du) = div(|F|P“"7*F).

Under natural assumptions on the exponent function p: Q x (0,7) —
[2, ), we prove that any very weak solution u : Q x (0, T) — RY with
|Du|P©0-9) ¢ L! belongs to the natural energy space, i.e. |DulP") € L'OC,
provided £ > 0 is small enough.

Keywords: Higher integrability; Gehring’s lemma; parabolic p-
Laplacean; non-standard growth condition; degenerate parabolic
systems

1. INTRODUCTION

The reverse Holder inequality for the solutions of elliptic systems was
first studied by Meyer [24]. In principle the argument of the proof is based
on Caccioppoli’s inequality and an application of Gehring’s lemma [15].
Furthermore, Lewis [22] and Iwaniec and Sbordone [18] independently in-
troduced a definition of very weak solutions for elliptic systems, that is so-
lutions which do not belong to the natural energy space. Actually, the very
weak solutions belong to a slightly larger Sobolev space than the natural
one. However, in [18, 22] it has been proved that this kind of solutions are
indeed the weak solutions, provided the deficit is now too large. This result
was extended in [23] to the degenerate elliptic systems with a Muckenhoupt
weight. The treatment of the higher integrability for weak and very weak
solutions to elliptic equations with non-standard p(x)-growth goes back to
Zhikov [25], Bogelein and Zatorska-Goldstein [3]. The treatment of the
time dependent parabolic case is much more difficult. The higher integra-
bility of weak solutions to parabolic p-Laplacian type systems has been es-
tablished by Kinnunen and Lewis [19]; see also [5, 4] for the case of higher
order systems. The treatment of very weak solutions is much more delicate,
because the solution itself cannot be used as a testing function. Using a sub-
tle and involved construction of a testing function by Whitney cylinders,
Kinnunen and Lewis [20] succeeded to prove the higher integrability of
very weak solutions to parabolic systems of p-Laplacian type. The case of

higher order systems was subsequently treated by Bogelein [6, 4]. Recently,
1
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Zhikov and Pastukhova [26] and independently Bogelein and Duzaar [7]
proved the higher integrability of weak solutions to parabolic systems with
non-standard p(x, f)-growth whose model is the parabolic p(x, t)-Laplacian
system
Au — div(|DulP™72Du) = div(|F|P™)"2F)

(see also [1] for the scalar case). Motivated by this work, we will study the
very weak solutions to this kind of parabolic systems in this paper. Our main
result states that any very weak solution is indeed a weak solution, provided
the deficit in integrability is not too large. This problem was suggested as an
open problem in the field of differential equations with non-standard growth
in the overview article [17].

Our proof is in the spirit of [20]. Since the solution multiplied by a cut-off
function cannot be used as a testing function in the weak formulation of the
system, we have to construct a suitable testing function. This is achieved by
a parabolic Lipschitz truncation argument. The major difficulty in our proof
stems from the fact that the usual Poincaré inequality cannot be used in the
case of variable exponent Lebesgue spaces. Instead, we have to use deli-
cate localization arguments in order to get control on the lower order terms.
More precisely, we first use a mixed type maximal function containing first
and zero order terms. Subsequently we prove suitable bounds for the lower
order terms on larger cylinders. We also remark that unlike to the elliptic
case in which the Hardy-Littlewood maximal function plays an important
role in the proof, (see [22]), the proof for the parabolic case should use
strong maximal functions instead (see [20, 4, 6]). Unfortunately, as pointed
out by Kopaliani [21], the strong maximal functions are not bounded in L?©
unless p(:) = constant. Furthermore, we have to work with a “non-standard
version” of the intrinsic geometry invented by DiBenedetto and Friedman
[11, 12]; see also the monograph [10]. As a consequence, we have to use the
modified parabolic distance d,(z1, z2) := max{ |x;—x;|, YAPO-2D/rQ@|t; — 1|}
defined in [7]. Contrary to the case of standard p-growth, the distance d,
depends on the point z € R™! and cannot be considered as a metric space.

This paper is organized as follows. We state the main result in § 2. In
§ 3 we provide some preliminary material, while in § 4 we explain the
construction of the testing function. In particular, we prove the existence
of a Whitney type decomposition of the super level set of a certain strong
maximal function. Subsequently, in § 5 we provide certain Poincaré type
inequalities for constant integrability exponents. § 6 is devoted to the proof
of the Caccioppoli inequality. First, we prove suitable estimates for the
testing function constructed in § 4 and then we show the Lipschitz conti-
nuity of the testing function. Thereby, we use the integral characterization
of Holder spaces (see [9]) instead of pointwise estimates. This idea has
been used in [8, 13] in a different context. The proof of the Caccioppoli in-
equality is given in § 6.4. Subsequently, § 7 is intended to prove estimates
for the lower order terms which play a crucial role in the next section. In
§ 8, we prove the reverse Holder inequality under an additional assumption.
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Finally, in §9, we finish the proof of the higher integrability of very weak
solutions.

2. STATEMENT OF THE MAIN REsuLT

In the following, Q will denote a bounded domain in R” with n > 2 and
Qr = Qx (0, T) ¢ R™!, T > 0 is the associated space-time cylinder.
We denote by Du the differentiation with respect to the space variables,
while 8,u stands for the time derivative. Points in R"*! will be denoted by
z = (x,1), where x € R” and € R. We shall use parabolic cylinders of the
form Q,(z0) = B,(x0)X(fo—0?%, to+0?), where B,(xo) = {x € R" : |x—xo| < o}
denotes the ball of radius o with center x, in R". We consider degenerate
parabolic systems of the type

2.1 O — div A(z, Du) = B(z, Du),
where the vector fields A, B : Qr x R™ — R satisfy the following non-
standard p(z)-growth and ellipticity conditions:
Az, &1 < LA + || + [F)PO!
(2.2 1Bz, &) < L(1 + || + [F)PO!
(Az,6),6) 2 Vgl — |FP9

for any z € Q7 and &£ € RN, Here, F: Q; — R™ with |[F|P© € L'(Q7) and
0 < v < L are fixed structural parameters. For the exponent function p :
Qr — [2,00) we assume that it is continuous with a moduls of continuity
w: Qr — [0, 1]. More precisely, we assume that

(2.3) 2<p(@) <yry <00 and |p(z1) — p(z2)l < w(dp(z1,22)),

holds for any z,z;,20 € Qr and some y, > 2. For a brief discussion on
the lower bound on p(-) we refer to Remark 9.1. Since our estimates are
of local nature, it is not restrictive to assume an upper bound for p(:). For
simplicity, we only consider the degenerate case where p(-) > 2. As usual,
the parabolic distance dp is given by

dp(z1,20) 1= max{lx; = xaol, VI = nal}  for 2y = (x1,11) and 2 = (xp, 1) € R,

The modulus of continuity w is assumed to be a concave, non-decreasing
function satisfying the following weak logarithmic continuity condition:

2.4) sup w() log( ) <L < oo,

1
0<oxI ¢

The spaces LP(, RY) and W'?(Q, R") are the usual Lebesgue and Sobolev
spaces. Moreover, for a variable exponent p(-), we denote by LPO(Qy, RF),
k € N, the variable exponent Lebesgue space

LPOQr, RY) = {v e L'(Qr, RN : f WPOdz < OO}‘
Qr
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For more details on variable exponent Lebesgue and Sobolev spaces we
refer the reader to [14]. We now can give the definition of a very weak
solution to (2.1).

Definition 2.1. Let & € (0, 1). We say that u € L>(Q7,R") is a very weak
solution to the parabolic system (2.1) with deficit € if and only if

ue LPX"9Qr,RY) and Due LP"9(Qr, R
and
(2.5) f u-0p —(A(z, Du), Dp) dz = — f B(z,Du) - pdz
QT QT
holds, whenever ¢ € C5°(Qr,RY).

The following theorem is our main result.

Theorem 2.2. Let p : Qp — [2,7,] satisfy (2.3) and (2.4). Then there
exists a constant &y = &y(n, N, L,v,) > 0 such that the following holds:
Whenever u € L*(Qr,RY) N LPOU-2(Q;, RN) and |Du| € LPOU-9(Qy) with
some € € (0, &y] is a very weak solution to the parabolic system (2.1) under
the assumptions (2.2) and F € LPO(Qr,R™), then we have

|Du| € L"(Qy).

loc

Moreover, for M > 1 there exists a radius ry = ro(n, N, L,y>, M) such that
there holds: If

(2.6) (lul + |Dul + |F| + 1P dz < M
Qr

such that for any parabolic cylinder Q,,(z0) € Qr with r € (0, ry] there
holds
2.7

1+
JC |DulPPdz < ¢ (JE (|1Du| + IFI)”(')(“E)dz)
0r(20) Q2r(20)

where ¢ = c(n, N, L,y,) > 0 and py = p(20).

£p(

0
2-epg

re f (Fl+ )™ dz,
02(20)

3. PRELIMINARY MATERIAL AND NOTATION

For a point zy = (xo, %) € R™! and parameters o > 0, 1 > 1, we define
the scaled cylinder QE,’D(ZO) by

0P (20) 1= By(x0)xAL (20), where A(zg) 1= (tg—A>P/700%, tg+ AP0/ g?),

and py := p(z9). For @ > 0, we write a/QgD(zO) for the scaled cylinder

ffg)(zo). Moreover, for a function f € L'(R™!,R¥), k € N we define its
strong maximal function by

M(f)(2) := sup {f IfldZ: z€ Q, Qisparabolic cylinder}.
9]
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Here, by parabolic cylinder we mean that Q is a cylinder of the form B x A
where B is a ball in R” and A C R is an interval. To simplify the notations,
we write f; instead of fG fdz for any subset G € R"*!. We will use the
following iteration lemma, which is a standard tool and can be found in
[16].

We can reformulate the parabolic system (2.5) in its Steklov form as fol-
lows:
3.1

Qar[u]h(‘, D¢ + ([A(z, D]y, De)(-, Ndx = — L([B(Z, Du)ly, )(-, )dx

for all ¢ € Cg"(Q,RN) and a.e. t € (0,T). For the proof of (3.1) and the
definition of the Steklov averages [-],, we refer the reader for instance to [4,
Chapter 8.2].

The following iteration lemma is a standard tool in order to reabsorb
certain terms from the right hand side into the left.

Lemma 3.1. Let 6 € (0,1), C1,C, > 0 and B > 0. Then there exists
a constant ¢ = ¢(6,B8) > 0 such that there holds: For any non-negative
bounded function ¢: [r,0] — R, satisfying

#(s) < 0p(t) +Ci(t—5)P+C, forall0<r<s<t<p,
we have

¢(r) <c[Cillo-nN7 +C.

Next, we state Gagliardo-Nirenberg’s inequality in a form which shall be
convenient for our purposes later.

Lemma 3.2. Let B,(xp) CR"withO<o<1,1<0,9,r<ooand e (0,1)
such that —njo < 6(1 — n/q) — (1 — O)n/r. Then there exists a constant
¢ = c(o, n) such that for any u € W"(B,(xo)) there holds:

o/q (1-6)a/r
ul” ul? ul"
JC dx<c (J{: + |Du|qu) (JC dx) .
By (x0) By (x0) By (x0)

o 0 o
In this section, we will construct a suitable testing function for the weak
form (2.5) of the parabolic system. To this aim we fix a cylinder Qg)(zo)
with0<p<1,4>1and Q(;z)o(zo) C Qp. Letting o; and o, be two fixed
numbers such that o < g; < 0, < 169, we set

0V =0 @). 0V:=00k). 07:=0 ). 0V:=0 ).

2

4. CONSTRUCTION OF THE TEST FUNCTION

4) . A 5) . A 6) . A
0¥ = 00), 0% := Qi) Q9 := 0% (20,

where o] = 01 + (02 —01) and 05 = 01 + 3(02 — 01). We note that 0© ¢
0D cO®cO®cog®c® c . In the following, we will write B®
for the projection of Q™ in x direction and A® for the projection of Q%
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in ¢ direction for k € {0, -, 6}. Denoting by p; and p, the minimum and
maximum of p(-) over the cylinder 0, i.e.

p1 =infp(-) and p, = sup p(.),
Q(G) Q(ﬁ)
and taking into account that p(-) > 2 and that w is concave, we find that

@1)  pr-p < w(max {640, VAZPm(640)%)) < w(640) < 64w(o).
Therefore, by the concavity of w and assumption (2.4), we have that
4.2) 0™ < ™ = exp [64w(o) log ;] < e

Next, we fix constants § and € such that

~ Y2

1<g< and O<e<l-

1
v -1 qg 7
Throughout this section, we shall assume that
4.3)

A< f (IDul + |F] + )PP gz and JC (IDul + |F| + PO dz < A'*.

oo 0%
holds true. Then, writing py = p(zo) as usual and using the fact that |Q®| =
c(n)o**" A%=P0)/Po and assumption (2.6), we find that

e 1 p()(1-€)
Anf < (|Du| + |F| + 1) dz <
c(n)o"+? 00

c(n)M

Qn+2

Since 4 > 1 and plo -&2 i, this leads to the following upper bound for A:

(4.4) A< (C(”)M )po .

Qn+2

This together with (4.1) implies that for o > 0 with o < gy < there

holds

(4_5) /l(pZ_P])/PO < c(n) Q—('1+2)(P2—p1)Mp2—p1 < c(n) 664('1+3)L.

1
64M°

Moreover, we choose gy so small that w(4py) < 1 — y,(1 - é). Then, we
have for o € (0, 0] that

4.6) pp—1<pi+w@o)—-1=<p+w@oy)—1=<p—y0-

For A; > 1 we denote the lower level set of the maximal function

)P(-)/~

Moo (@) i= M| (= ugol + 1Dul + 171+ 1) x| 112

by

E):={z€ QW : Mys(2) < 477,
If E(1;) = 0, we have by the boundedness of the strong maximal function
that

dz

p()/q
) Xo®

4(1-¢)
/l%—le<4>| < f M[(élu —ugm|+ [Du| + |F| + 1 ]
o®
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p()(1-¢)
< cf (L = ugo| + |Dul + |F| + 1) dz
o ¢
< c271QW) = e 10,

where cg = cg(n,y,) and

1
Nl—-g e
(4.7) 2:=4+(f (l|u—uQm|)”()(l )dz) .
o ¢

For A; < cgA, this leads to a contradiction. Therefore, we conclude that
E(A,) is nonempty for 4; > ced. We note that the set E(1;) is bounded
and closed. Therefore, for any fixed point z € Q™ \ E(4,), there exists a
neighbourhood Q such that O ¢ Q™ \ E(1,). This motivates us to establish
the following Lemma.

Lemmad.l. Let 1> 1, 4, > cgdand @ > 1, z € QW \ E(A,) and define

ro 1= diz EQ) where  d(21,22) = max { [ —xal, \JAP9 Py — ] .

Then for any 71,7, € Q¥ N a/Qﬁf‘)(z) we have
Ip(z1) = p(z2)] < 32 max{a, 1} w(min{r., o) and A7 <c,,
where the constant c, depends on n, L, y, and a.
Proof. We first observe that since p(-) > 2 and 4, 4; > 1 we have
Ip(z2) = p(z1)| < w(min{2ar;, 320}) < 32 max{e, 1} w(min{r;, o}),

where we also used the concavity of w. This proves the first assertion of the
lemma. Since 0¥ N Q" (z) ¢ QW\E(4,), we use Chebyshev inequality
and the boundedness of the strong maximal functions to obtain

1
109 N QM) < IQ\EW)] < —— f My dz
: A7 Jow

<

c p()(1-¢) cA
1 .
— f (L1 = ugo| + 1Dul + |F| + 1) dz = ——,
4 oW 4

with the obvious meaning of A and a constant ¢ = c¢(n,7y,). This implies
the following upper bound for A4;:

4.8) DT P —
109 N a Qi ()|

To estimate the lower bound for [0® N aQSf‘)(Z)L we recall that z € QW \
E(A;) implies

p 2-p@ 2.1
109N Q"V(2)| > ¢ min{r, 0"} min {/ll”“) 2, Aﬁgz} >cA?  min{r?, 0"}

Together with (4.8) this shows that

2

4.9) A £ [cﬂ max{ ! ! }]272 ,

l"12+" ’ Q2+n
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where ¢ depends on n and @. Next, we estimate ‘A as follows:

A< CQ—n(l—e)

f (lul + 1Dul + |F| + 17909 dz + 10V (ugo| + 1)~
oW

P27P1

2 (-2 22 (1) g2
Sco P (M+|Q7 Mo+ Q|| < c(n, L, y2) 0P M7,

where we have used that |QV] < c(n), ;’—? < 2 which we can always assume

and |QV| < c¢(n, L) which follows from (4.2) and (4.5). Inserting the
bound for A into (4.9) and taking into account that o~»27"V < ¢* and
MP=P1 < el (see (4.2) and (4.5)) we end up with

/l\lp(m)*l?(zz)l < c(n, v, L, ).

P2=py
Pl

This finishes the proof of the lemma. O

To construct our test function, we need the following version of the Whit-
ney decomposition theorem for non-uniformly parabolic cylinders.

Lemma 4.2. There exist Whitney-type cylinders {Q;}>, with Q; = B;XA; :=
i=1
Q(,f‘)(z,«), having the following properties:
(i) QNEQ) =UZ, 09 n 0,
(ii) In each point of Q“\E(A,) intersect at most c(n, L,y,) of the cylin-
ders 20
(iii) There exists a constant ¢ = c(n, L,7y,) such that for any Whitney
cylinders Q; and Q; with 2Q; N 2Q; # 0, there holds

|Bil < clBjl < c|Bil and |A| < clAjl < c|Al

(iv) There exists a constant ¢ = &(n, L,7y,) such that for all i € N there
holds

e0; cR™NWEQ) and 2¢0;NEQ)) # 0,

(v) For the constant ¢ from (iv) there holds: 2Q; N 2Q; # 0 implies
20; c ¢Q;.

Proof. By x = x(n,L) > 5 we denote the constant from [7, (7.1)]. We
fix a point z € QW\E(A,) and let d be the corresponding parabolic metric
which was defined in Lemma 4.1. We set r, = )édz(z, E(1,)) where ¢ €

(0, 1/4) will be fixed at the end of the proof. Then, F = {Q%(@)}.com £y
is a covering of the set Q“\E(4,). From [7, Lemma 7.1] applied with A,
instead of A (note that instead of verifying assumption [7, (7.1)] we can
use Lemma 4.1 with @ = 1 in order to bound the terms coming from the
difference p(z;)—p(z2) in the proof of [7, Lemma 7.1]) we infer the existence
of a countable sub-collection G = {Qf.j’l")(z,-)}fi1 C F of disjoint parabolic
cylinders such that l

(4.10) ONEW) c | Jx0 @) n 0®.
i=1
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For i € N, we now set r; := yr; = 6d,(z;, E(1;)) and define the parabolic
cylinders

0; = Bix A; = 01"(z)
In the following we will verify that statements (i)-(iv) are true for the para-
bolic cylinders {Q;}7, .

Statement (i) directly follows from (4.10) and the fact that ;, <
d.(z;, E(A))), so that Q; ¢ R™\E(4,) for any i € N. Now, we come to
the proof of (iii). For any parabolic cylinder Q;, we set p) = p(z;) and
P = min{p(z) : z € 0¥ N2Q;} and p, = max{p(z) : z € 0¥ N 2Q;}.
Since 2Q; ¢ R™N\E(A;) (note that 2r; < d..(z;, E(11))), the application of
Lemma 4.1 with the choice @ = 1 ensures that /lf/fpl‘ < c(n, L,7y,). We now
consider i, j € N such that 2Q; N 2Q; # 0 and show that the two parabolic
distances d;, and d; are equivalent. Since 2Q;N20Q; # 0, there exists a point
Z € 20Q; N 2Q; and therefore, we have

o j _ - i J_ 0 i
- -p@) ,p@)- - -
AT = QRTPE ORI < e, L, ).

This allows us to estimate the distance with respect to d, of two arbitrary
points Z = (%,7) and 7 = (x',¢) in R"*! by

. . J_ iyl pi =iVl A .
dz,-(Z, Z/) = max {|X _ x'l,/l(,po o) PyPy ’/1(1 Po)/l’olt _ [/|} < c(n, L, ,}/2) dz/(Z, Z’).

We now let z; be a point in E(4;) such that d. (z;,z;) = d.,(zj, E(1;)) and
Z € 20Q; N 2Q; as before. With these choices we see that

ri = 6d. (2, E(A1)) < 6d.(2,2;) <6 (dZi(Zi’ 2) +d,(2,2) + dy (2, Z))
< 6(2r,- +cd; (Z,7) + cd (2, Z;)) < 6(2ri +2cr; + grj) < %r,- +2crj,

which implies that ; < c(n, L,7,)r;. Since we can interchange i and j in
the preceding argument, this proves the first claim in (iii). Furthermore, we
find that

IAf=2 /l<12—p{,>/pgri2 _ Af(pg-p@/pgpg /1(12_”6)/”64? <ec /l<12—p{;>/pgr§ < c(n, Ly A,
which proves the second claim in (iii). Next, we will show the statement
(v). We consider i, j € N such that 20; N 2Q; # 0. Then, there exists
Z € 2Q; N 2Q; and hence for any Z; € 2Q; there holds

dZ,‘(Zja Zl) < dZ/'(Zj’ Z) + de(Z’ Zi) + dz/'(zi’ Zl)
<2rj+cd(Z,2) + cd (2, %) < 2rj+ 4er; < &(n, L, yy) rj,

where we have used d; < cd;; and r; < cr; from the proof of (iii). Therefore,
we know that 2Q; C ¢Q); as claimed in (v). At this point, we perform the
choice of 6. Choosing § = 8(n, L, y,) = 1/&, we have that ¢Q; ¢ R™! c
E(1,). Now, we observe that «Q;NE(1;) # 0 if @ > ¢ and aQ; € Q“\E(1,)
if @ < ¢. This proves (iv). Finally, we come to the proof of statement (ii).
Here, we consider z € Q®\E(1,) and denote I, := {ie N:z€2Q,}. Let
j € L. Then, by (iii) we have for any k € I, that |B| > ¢”!|B;| and therefore
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infie;, 0r > 0. This ensures that I is finite and therefore there exists an
element iy € I, such that min,,, |Qi| = |Q;,|. Moreover, by (v) we know that
Q; C ¢Q,, for any i € I,. Taking into account that the cylinders y~'Q; are
disjoint, we have for the cardinality of the set I, that #I, [y ' Q;,| < |¢Q;,| and
hence #I. < (¢y)"*2. This proves (ii) and therefore the proof of the Lemma
is complete. O

Subordinate to the cylinders Q;, we can construct a partition of unity as
stated in the following lemma.

Lemma 4.3. There exists a partition of unity ()32, on R™IN\E()), ie.
Y2 ¢ = 1 on R™N\E(Ay) having following properties,

Ui€ CP20), 0=<y;<1, and ¢Y;zc onQ,

i 9/
[0l < c/l(1p° P =2

i

Dyl < erit,

where ¢ only depends on n, L,y,. O
For i € N, we define (i) := {j € N : suppy; N suppy; # 0} and by #I(i)

we denote the number of elements in /(i). From Lemma 4.2 (ii), we know

that #1(i) < c(n, L,7y,) for any i € N. Furthermore, for i € N we define the
enlarged cylinder

Qi :=20; = O/ (z),
where 7; := ¢r; and ¢ = ¢(n, L,7y,) denotes the constant from Lemma 4};2
(v). Then, by Lemma 4.2 (v) we see that (/) supp ¥, € U ey 29, € Q-
We now define the function v(z) = v(x, 1) := n(x){()[u — ugnl, where 7 €
Cy(BY), { € CY(AP) are cutoff functions satisfying

n=1inB?, 0<n<1, Dyl <c(o—0)"
{=1inAP, 0<7<1, 104 < cdP 2ol — oty
It follows that supp(n¢) ¢ Q. Then, for Q; and ¢; as in Lemmas 4.2 and
4.3 we define the test function
w(2), for z € E(4y),

41D @ =i =
(4.11) #z) = ¥(x. 1) Z vongoi(z), forz € R™\ E(A,).

i=1

Note that vy,now # 0 implies that Q; N O # 0 and consequently supp ¢; N
Q® # 0. For this reason we are mainly interested in getting estimates on
such cylinders. Before, we have to introduce some more notation. We set

2
S1 = {t € R] . |l - t0| < /1(2—170)/1)0 (Q1 + é(gz —,Ql)) }
and
2
S, = {t c Rl =10l < /1(2—P0)/P0 (Ql + %(QZ _Ql)) }
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and note that A’ ¢ §; ¢ S, ¢ A®. Furthermore, we need to consider the
set

®:={ieN:suppy;NS, # 0}
and we decompose the set ® as follows:
0, :={ic®:Q;CR"XS,} and ©,=0\0,.
We find that if i € ©; and 4r; < 0, — ¢ then Q; ¢ Q. While if i € ©, then
there holds /l(lz_p prriz > ¢725, where s = 1@P0/P0(0, — 0))o.

5. POINCARE TYPE INEQUALITIES

Since we have to derive estimates on intersections of parabolic cylinders,
we will formulate Poincaré type estimates for very general types of sets.
The first one can be deduced from [6, Lemma 4.1, Lemma 4.2] and [7,
Lemma 5.1].

Lemma 5.1. Let u be a very weak solution to (2.1) with (2.2) and deficit
g > 0. Suppose that Q € Q is a convex open set such that By(y) C Qc
Boo(y) for somey e R", 0 <p < landa > 1and T\,T, C (0,T) are two
intervals. Then for 1 < 0 < inf o, 7,0, P(2)(1 — &), there holds

f |u—(u>m|0dzscg"(f \Duf'dz + f |Du|9dz)
QxT) QxT) QxT,
0
et (f JC (1+|Dul + |F|>”‘”‘”)
T\UT, Q

where the constant ¢ depends only on n, N, L,y, and a.

Corollary 5.2. Let M > 1 and > 1 be fixed. Then there exists oy =
oo(n,y1, L, , M) such that the following holds: Assume that u is a very weak

solution to (2.1) with (2.2) and deficit 0 < € < 21; satisfying (2.6). Sup-

pose that on the parabolic cylinder Q, ((z0) = By(xo) X (tg — 5,1y + §) with
0<0 <00 0<s<A@ P2 Ay > cpdand Q,4(z0) € Q, there holds

6.1 JC (IDu| + |F| + l)p(-)(l—s) dz < e
Q,.5(20)
Then for any 1 < 0 < infcg, ) p(2)(1 = &), we have
(5.2) f |u N (M)Qn,.r(ZO)lgdZ S CQH/IQ/PO’
QQ.:(ZO) N

where the constant ¢ depends only on n, N, L, y,, and .

Proof. We apply Lemma 5.1, with Ty = T, = (fo — s, o + s) and Q = B, (x0)
to obtain

f lt — (W), ol'dz < ¢ f \Duf’ d
Qg.s (z0) Qy.s (20)
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2
+ CQ(" (/1(21%))/170]6 (|Du| + |F| + 1)17(‘)—1 dz)
Q,.5(20)

=1L+ 1.

We denote by p; and p, the infimum and supremum of p(-) over the intrin-
sic cylinder Q, (z0). As in (4.5), using (5.1), we deduce that A7>~P)/ro <
c(n)e? ™3I We use Holder’s inequality, (5.1) and (5.2) to obtain

)6'/171(18)

I <co (JE (1Dul + 170079 g <A < c(n,, L)' A7
Qyp.5(20)

To estimate /I,, we impose a bound for o < gy such that w(4gy) < yiz Since
e< 2L by assumption, we conclude that
Y2

1 I 1 1
—+pe< —+= <1, which implies p,—p; < w(doy) < — < 1—p;e.
Y2 Y2 2 Y2

We use the estimate above and Holder’s inequality to conclude that

o[, P2 ’
L<co|Am (IDu| + |F| + PO dz
Qp.5(20)

By 0
2-pg ¥ [3’](21715)
<col|am (J[ (IDul + |F| + 1P dz)
Qg,s(ZO)

2-pg ,3271)9 6 8p1-po) | 9p2—P1)

6 2 0L . 2 092
<co (/l A | <celdnAd rn no <cp’dn,

since 1 > 1, pg > 1 and AP27PV/r0 < ¢(n)e® DL This proves the Corollary.
O

6. CACCIOPPOLI TYPE INEQUALITY

We now state the Caccioppoli inequality for very weak solutions to (2.1).
However, the proof of the Caccioppoli inequality will be one of the main
difficulties in proving the higher integrability for very weak solutions. Since
the solution itself is not an admissible testing function, we will use the func-
tion ¥, constructed in (4.11) instead. However, it is quite delicate to prove
the necessary estimates for ¥. This will be achieved in § 6.1. To simplify
the notation, we denote

B
_ . o
= u(o,01,02) =
02 — 01

for some constant 8 that only depends on n, N,, L. The precise value of 3
may change from line to line. Now, we state our Caccioppoli type inequality
as follows:

Theorem 6.1. Let M > 1. Then there exist € = &n, N, L,7y,) and 0y =
oo(n, M, vy, L) such that the following holds: Suppose that u is a very weak
solution to the parabolic system (2.5) and let the assumptions of Theorem
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2.2 be satisfied. Finally, assume that for some parabolic cylinder Q :=
Qé’l)(zo) with 320 = Qé’;)Q(Zo) C Qr with 0 < 320 < 0y the following intrinsic
coupling holds:

(6.1) A< f(lDuI +[F|+ 119 gz
(9]
and
(62) (IDul + |F| + 1)1’(')(1—5) dZ < /ll—s.
160

Then, specifically, for o1 = 0 and 0, = 160 we have
f |DulP@"9dz + supf lu — ugl’mig, dx
9] Bx{t}

teA
p()(1-¢) o2,
dz+cAdr f
20

Scf
20

+c f (1 + |FyrO1=9dz,
20

u—1ug 2

©

u-—ug
Q

6.3)

where mio(z) = max{(cgA)"/'~®, M60(2)} and A is defined in (4.7). More-
over, for o < 01 < 02 < 16, there holds

(6.4)
p()(1-¢)

P U= Updizy
—& 01
sup f |I/t - qu?(m)' m16de < CcH f(d) - dZ
1eA$D t9) ¥/ Boy (xo)x 1) 047 (z0) o
2
P2 _ U= Uy
+ cud gf —2 | dz+cul?|Q|.
0 (z0) e

In any case, the constants ¢ depend only on n, v, L and y,.

We remark that the arbitrariness of the parameters o; and o, in (6.4) is
only needed in the proof of the estimates for the lower order terms in § 7.

6.1. Estimates for the test functions. To start with, we state a simple geo-
metric lemma without a proof.

Lemma 6.2. Let Q ¢ R™! be any parabolic cylinder and Q ¢ R™!' a
parabolic cylinder centered at some point z € Q. Then, for any a > 1 there
holds

10 N aQ] < c(n)a™?1Q N J.

We remark that from the proof of Lemma 4.2, each Whitney type par-
abolic cylinder Q; is centered in Q. This enables us to use Lemma 6.2
with (0, Q) replaced by (Q;, 0™¥). Next, we wish to investigate uniform
estimates for the mean values of |Du| + élu —ugm| +|F| + 1 on the Whitney
cylinders. This is the result of the following lemma.
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Lemma 6.3. Let A, > cpAdand Q; C R™! be a parabolic cylinder of Whitney
type. Then for 1 < 0 < p,/q we have

6 6/
JC (1Dul + Hu = ugo| + |FI + 1) dz < e]™
09ng; ¢

for some constant ¢ depending only onn, N, L, 6, y,, and §.

Proof. To simplify the notation, we write 2l := |Du| + élu —ugm| +|F| + 1.
It is easily seen that there exists Z € E(A4;) and a parabolic cylinder Q’
with Q' N E(1;) # 0 and 2 € Q' such that 0¥ N 4Q; ¢ Q' and |Q'| <
c(n)|0® N 4Q,|. Therefore we conclude that

/G YL A g(l—¢ 1/q
JCQ<4> " W gz < cf WO dz < cMgw(2)"9 < ).
N4Q; /

Next, we use Lemma 6.2, Holder’s inequality and the estimate above to

obtain
o\t ol o/
JC Wz < C(JC up(‘)/qdz) <e/" < ed™,
09nQ; 09N4Q;

where we used Lemma 4.1 for the last estimate. This proves the Lemma.
O

Lemma 6.4. Let 1, > cpdand Q; C R™! be a parabolic cylinder of Whitney
type. Then for 1 < 6 < p,/§g there holds,

0/ pi 0 _0/p
J[ [v’dz < cggxll/po and JC |DvlPdz < c(%) /ll/po.
0900, 09n0; e

Proof. From the definition of v and Lemma 6.3 we immediately deduce the
first estimate. To get the estimate for Dv, we first compute

|Dv| < {n|Du| + {lu — ugo||Dyl < |Dul + Q;Q] lu — ugol,

where we used that |Dn| < ¢/(02 — 01). At this point, Lemma 6.3 immedi-
ately yields the second estimate of the lemma. O

Lemma 6.5. Let A, > cpAdand Q; C R™! be a parabolic cylinder of Whitney
type with Q® N Q; # O and i € ®,. Then for 1 < 6 < p,/§ there holds,

. 6/pi
J[ v — vainlgdz < cumin{r;, ,Q}H/ll/p",
oWNnQ;

where the constant ¢ depends only on n, N, L, and .

Proof. Initially, we observe that i € @, yields A; ¢ A® and there exists a
point y € B; N B such that B, min0)() C Bi N BY C B, miniro)(y) for
some constants 0 < ¢; < ¢;. From the proof of [6, Lemma 5.11] we can
construct a weight function 7 € C’(B; N BY) satisfying 7 > 0, fRn fdx = 1
and |Dfj| < cmax{r;(”"),g‘(“”)}. As in [6, Lemma 5.11] we find that

0
JC lv— va)inlgdz < CJC lv— vﬁlgdz + ¢ max |v,~7(t2) - V,~,(t1)| s
09nQ; 09nQ; 11,0€A;
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where v;(t) = fRn(vﬁ)(-, t)dx. We now apply Poincaré’s inequality slice-
wise to the function v(:, f) to obtain

. 0
JC V=vowngl’dz < cmln{ri,g}gf |Dv|°dz+c sup |v,~,(t2) - v;,(tl)| )
o9NQ; 09nQ; t1,0€N;

Observe that we have /(7) = 1 forany t € A; € A® and v(x, 1) = [u(x, 1) —
uon ]n(x). Then we use the Steklov form (3.1) of the parabolic system with
¢ = i}, and obtain for 4 > 0 the following estimate:

5]
f f [ulimidxdt
n B® NB;

: f f() [K[A(z, D)1, D(mip))| + K[B(z, Du)ly, nip)ldxdt.
41 B®NB;

|l (t2) = ([eda)s(t)| =

Letting 4 | 0 and using assumption (2.2) we find that

[va(t2) = vi(en)] < (1 + DGz (1 + |Dul + |F)"" dz.
09NnY;
To estimate the right hand side of the above estimate, we will distinguish
between the cases r; > o and r; < p.
In the case r; > o, we see that [D(77)| < c|Dn| + ¢|D#| < cuo~1*". Using
also Holder’s inequality and (4.5) it follows that

Pyl
pra—o

va(ta) = va(t)| < cuo™ 10| (fm (1 + |Dul + |F))P"=2 dg
0

< CMQ—(1+n)g2+ﬂ/1(2—P0)/170/l(Pz—l)/Pl < C/JQ/ll/po < CﬂQ/ll/pi‘.
In the case r; < o we have |D(n7})| < c,url._(H") . Using this information
and applying Lemma 6.3 with the choice 6 = p, — 1 we find that

Iv(12) = vy(e)| < cpry 4 f (1 + |Dul + |F)”" dz
09nQ;

~(1+n) ,(P=D/ P 1/pf A (Pi=pp)/ W) 1/p
<cpr; VAT TN < e 04T TR < eprid

which proves the desired estimate. O

Remark 6.6. From Lemma 6.4 we conclude that

1/pt
(6.5) voingw]| < f Wldz < cuod,””
0inQ®
and furthermore for any i € N, we have
(6.6)
3 - 1p] 1p
IPllz20) = Z Voing@¥jl| < sup lVQ/ﬂQ“" <cusup A, < cuod, ",
JeT0) L= jel(i) jel(i



16 V. BOGELEIN AND Q. LI

where we have used Lemma 4.1 for the last estimate. For a fixed i € N,
we know by Lemma 4.2 (v) that Q; C Q, for any j € I(i) and therefore

Q~ =¢0; C cQJ = CZQJ From Lemma 6.2, we get
(6.7) 1090 0 <10 NE2Q)| < cm)e™ 0¥ N Q1.

Let p and p) be the infimum and supremum of p(-) over the intrinsic
cylinder Q;. We use Lemma 4.1 with (a, r;) replaced by (¢, r;) to obtain

/l'flfﬁl1 < ¢(n,L,y,). Fori € ®;, we now apply the proof of Lemma 6.5
again with p! and p} replaced by p/ and pj, to obtain

(6.8) JC _v- VQmeJdZ <cu min{ri,g}/li/po_
09ng;
We now use (6.7) and (6.8) to deduce
(6.9)
Q(‘” N Ol ‘ 1p,
voing; = Voungl < ‘0PN ol o V= Vgengldz < cumin{r;, )4,
J no:

Lemma 6.7. Let A; > cgdand Q; € R™! be a parabolic cylinder of Whitney
type with ¥ N Q; # 0. Then for z € Q¥ N2Q; we can bound DV as follows:
In the case i € Oy, ori € O, and o < r; there holds

(6.10) o @) + 1DV < ey ™
In the case i € ®, we have for any § € (0, 1) that
(6.11) P+ 1DV < LA + cr 2] v geng, P

In the case i € ©, there holds with s = /l(z‘p‘))/”“(gz — 01)o that
(6.12) @) + IDV@)] < Al + esI AT f vPdz.
09NQ;

Moreover, we can bound the time-derivative 0,V as follows: In the case
i € Oy there holds

(6.13) 10,5 < P02 mingr,, o).

In the case i € ®, we have

(6.14) 167(z)| < c,us"g/li/p“

In any cases the constant ¢ depends only on n, N, L, and .

Proof. Letus first prove (6.10). Forz € 0'NQ;, we note that 3, ;) ¥;(z) =
1 and this implies } ;i D¢ j(z) = 0. In the case i € ©®, we apply (6.9) and
Lemma 4.2 (iii) to infer that

1 i
|DV(2)| = |Z [vQ/mQ@) - lenQ<4>]Dz//j(z)| < cur; mln{r,,,g}/l i < c,u/ll/PD.
JeIG)
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While in the case i € ®, and o < r; we use (6.5) to obtain

- —1,1/P 1/p}
DV < Y IvonoellDu () < cuory' 4" < cuay™.
JelG)
The estimates above together with (6.6) yield (6.10). To estimate (6.11) and

(6.13), we only need to consider the case i € ®;. We conclude from (6.9)
for 6 € (0, 1) that

@)1 = | > g,nom = Voo (D) + vongol
JeI()

< LM 1 o0, g pnlPs
where we have used Young’s inequality and the fact that 4 > c. The estimate
above and (6.10) imply (6.11). Since 3’ ;) 0 ;(z) = 0, we now use Lemma
4.2 (iii), Lemma 4.3 and (6.9) again to find that

~ (Ph-1/p) _ .
|0:9(2)| = |Z [Vo,now — inmQ(4>](9t(//j(z)| < c,u/llp‘) p”rl- 2 min{r;, 0},
€It
which proves (6.13). We now turn our attention to the case when i € ©,.
From (6.7) and Young’s inequality, we infer that

R} 1/t -1/p
[Vo,npwl < |QM)—Q'| [vldz < CJC vldz < cr,-/ll/p" + r,-‘lxll /P JC vPdz.
199N Q) Jgingw oing® 0ing®
. . Q@-pIpl 5 Py-2Iply 5
Since i € ©,, we see that 4, ri 2 cs and [0,y (2)| < cA, r;o <
¢s~'. From Lemma 4.1, we conclude that
1~ ~ —1
@I+ DV < ) 17 ol + D Iwg,npliDY()
JelG) JelG)
1/p _ 1=pi)/pi
< c/ll/p” +cs 1/1(1 po)/p”f v*dz,
0:NQ®
which proves (6.12). Next, we use (6.5) to obtain
- ~1_,1/p}
05N < Y o,npwlld (D) < cus™'o4, ™.
JelG)
This proves (6.14) and the proof of Lemma 6.7 is complete. O

Lemma 6.8. Suppose that A; > cpA and Q; € R™! is a parabolic cylinder
of Whitney type with Q® N Q; # 0. Then, there holds:

(6.15) f [92dz < ¢ f vdz.
OW\E(A)) OI\E(1y)

In the case i € ©,, we have

i

(6.16) JC v — vldz < cumin{r;, 0}, ™.
09nQ;
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In the case i € O, there holds
c
(6.17) f 16,7 - (§ = v)ldz < cpdi|QP\E)| + = f vPdz,
B®xS S Jo@
where s = A% P/P(o, — 0))o. In any cases the constant ¢ depends only on
n, N, L and y,.

Proof. We begin with the proof of (6.15). Since QW\E(4;) = U2, (Q% n
0)) and the collection {Q;}7, has a finite overlap, we infer that

4
f [9P2dz < CZ Z lQ;; N0 v*dz
QW\EQ) PP 109 N Q)1 Jo,now

)

<) f vPdz
P QﬁQM)

< cf |v|2dz,
OI\E(41)

since suppv € Q® and this proves (6.15). Next, we turn our attention to
the case when i € ®;. From Lemma 6.5 and (6.9), we obtain

- 0 0 0 0
JC [P —v|dz < JC V= vonowl dz + Z ||lﬁj||Lm|ijmQ(4> = Voino@|
0iNOW inQ® Jjel)
. )
< cpmindr;, 0)'2]"

which proves (6.16). Finally we consider the proof of (6.17). We write the
left hand side of (6.17) as follows:

f3<4>xs, 10,7 - (v — v)ldz < Z f 10,7 - (v — v)ldz + Z f 10,7 - (7 — v)|dz

€0 €0, 090
=L+ L,.

We now apply (6.13) and (6.16) to get the estimate for L;:

1/p} 3 wh=DIph -
Li < cu ) 10% 0 @rd) " A < epdi]QO\E),

€@
since /l<p° PP < ¢. To estimate L,, we observe that
N O
f [Pldz < ¢ Z |Q—%l vldz < cf [vldz.
09n0; b |QJ N QW) 0:NQ@ 0:n0@

Since i € ®,, there holds

~ i -2)/pl _
10,7 < C/l(lp(’ )/p“ri ZJC Wldz < ¢s7! JC [vldz.
09NQ; 09NQ;
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Therefore, we can bound L, from above as follows:

Ly <cs™! Z( f B Ivldz) ( f Vldz + f |v|dz)
09NY; 0Wng; 0WNnY;

€0y

. 2
<ot Y000 al(f, i)
[

4 .
€0y “Nng,

Scs’lf v[dz,
o

which proves (6.17) and the proof of Lemma 6.8 is complete. O

6.2. Estimates on the super-level set O\ E(1;). Recalling that for i € N
the enlarged cylinder Q; = ¢Q; = Q;f‘)(z,-) has the radius 7 = ér; where
¢ = ¢(n, L,y,) denotes the constant from Lemma 4.2 (v).

Lemma 6.9. Let A, > cpAdand Q; € R™! be a parabolic cylinder of Whitney
type with Q% N Q; # O with i € @. Then, with s = A27P0/P (0, — o)), there
holds:

(6.18)
f (IDul + [F| + 1)P@'[(07'61 () + max{o™, r; " }62(0))I¥| + |D7|]dz
o¥n2Q;

< cui|0¥ N Qi + ¢d,(i)s™! f vPdz.
09nQ;

and in the case 7; < (0, — 01)/12 we have for any &, € (0, 1) that
(6.19)

f (IDul + |F| + DX Y9] + |DV|]dz
0®n20;

" . 2 Nl 2
< ZHI0Y N Ol + £161(DIBillvgenng, + coa(i)s f _vidz.
09nQ;

Here 61(i) = 1 ifi € O, and 6,(i) = 0 otherwise, and 6,(i) = 1 if i € ©, and
0,(i) = 0 otherwise.

Proof. We first note that Lemma 6.3 also holds with 2Q; instead of Q; with
a larger constant, i.e.

5 i _1y/pi i _1y/pi
(1 +1Dul + [FIYO " dz < AT < cqW7070,
0Wn2g;

In the case i € ®; ori € ®, and p < r;, we use the last estimate, Lemma 6.2
and Lemma 6.7 (6.10) to obtain

f (1Dul + 1] + 1P [0 5] + |D¥{]dz < cuds |0 1 Q4.
09n20;



20 V. BOGELEIN AND Q. LI

In the case i € ®; and p > r;, we apply estimate (6.12) from Lemma 6.7 and
Lemma 6.2 to get o' < r7! and therefore

f (IDu] + |F| + 1P~ [ 9] + |D¥|]dz
0¥M20;

Pi-rh vl
Pyp, 4 —1 5 2% 4 2
<ci 0P N QO+ s 0P N o)l T iPdz
0iNQW

0iNQW
since 4; > 1 and p| < pi. This proves (6.18) and (6.19) in the case i € ©,. It
now remains to consider the case 7; < (0, —01)/12 and i € ®,. We infer that

@ c O™ in this case. From Lemma 6.2 and estimate (6.11) from Lemma
6.7 we find that

f m(|Du| +|F|+ PO 5] + |Dvydz
(20)NQEY

<culi|Q¥ N Qi +es™! f v[*dz,

,,672 pfyP’i
. oA Pt 2
L0109 N 20N+ carr 24, 4" 10ilvg gl
- 4 >
< L0100 Q)+ ca1lBllvg,nge

IA

. 2-pi)/pi .
since |Q;| = |B;| X rl.z/l(l P0)/Ph and the proof of Lemma 6.9 is complete. O

Remark 6.10. Under the assumptions in Lemma 6.9, we conclude that

f (IDul + 1F + 1P (03 - 01)”'71 + ID¥ldz
OW\E(11)
<u), f (IDul + |F| + 1"~ [o™'[7] + |D¥]dz
=1 Y (20)NQ®

< cpudi|O\E)| + ¢s7! f [v*dz.
ON\E(11)

Lemma 6.11. Let A, > cpA. Then for anyi € ©y, g, € (0,1)and a.e. t € §,
there holds

f (v = vo,now)WWidx
B®x({t}

where 65(i)) = 1 if 7, < (02 — 01)/12 and 63(i) = O otherwise. When i € ®,
then for a.e. t € S| we have

f VW/,- dx
B(4)><[t}

Moreover, for a.e. t € S| we have
(6.22)

f (WP =v=9P)dx > —cud |QP\E(A,)| —cus™ f lu—uga*dz.
(BO\E(1)x{1) oW

(6.20)

4 . 2
< %/MQ( ' N Qi + uerd3(DIBillvo,ngs |

6.21)

< cui|0¥ N Qi +cs7! f o lu — ugo|dz.
o09NQ;
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Proof. From the definition of ¥, we find that ¥ = 3, (V)owng,¥; €
C*(2Q;). This allows us to take the function ¢ = n{7y; as a test function in
the Steklov formulation (3.1) of the parabolic system and we get

f i f |01[ulinZ P+ A, Du)li, D)) +([B(z, Du)ly, sy |dxdr = 0
4=, 002 JRe

for any 7 € §;. Let a be a constant which will be chosen later. Noting that

2— i i . . .
(-t — /l(l po)/p"r?) = 0, we use integration by parts to obtain

t
f C-piph faz[u]hflﬁlﬂidXdT
4=, 002 JRe

= f [u — alyndWidx — f s f [u — alnd({y)dxdr.
Rrx{t} t;

We insert this in the previous equation and pass to the limit 4 — 0. Then
we apply the growth condition (2.2) and recall that supp(n2) ¢ Q® to get

(6.23)
f (u — ayndvpdx
B®x({t}

: Cf (1Dl + [F)"O7 ADGmy] + i) dz
Q3

ve f e — alld(Co)indz = 1+ 11.
Q(3)

We begin with the estimate for /. Noting that |Dn| < c(gz —01)"! and
|Dyi| < crl’1 we see that |D(i;)| < ¢|D¥| + ¢ max{o™ T 1}|9]. This implies
for I that

624) I<c f (1 + |Dul + [F)’@~'(1D¥| + max{o™, r; '}I7]) dz.
09n(20)

We are now in a position to show (6.21), where we consider i € ®,. We use
estimate (6.18) of Lemma 6.9 to infer that

I<cui|Q® N Q) +cs™ f vil*dz.
29nQ;

. i 0/ pi
To estimate /7, we note that [0 < c/l(lp" )/p”rl.‘2 <cs'and

10,7l < cld,7] + 118,41 + 105i]) < cld, 7] + es™'[7]

<es™! Z JC vldz < es™! J{: [vldz
o Joino® 0:nO®

JEIG)

<cs™! JC lu — ugmly oo dz.
0:n0®

We now choose a = uyn and subsequently use Hoder’s inequality to obtain

2
I < es7'0:n Q¥ JC lu — upnlypodz] < cs! JC [ — uQ<1>|2dz.
oing® 0ing®
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This proves (6.21). We now come to the proof of (6.20), where we consider
i € O;. In the case #; > (0, — 01)/12, we infer from (6.24) and estimate
(6.18) from Lemma 6.9 that

I<e f (14 Dl + [F)@ (D¥) + maxlo™, (02 — 01) JI7)dz
020y

< o f (1 + Dul + [P (1D¥] + o' )d=
o9n(2Q))

< cud|0¥ N Q.

In the case 7; < (0, —01)/12, we use (6.24) and estimate (6.19) from Lemma
6.9 to obtain for &, € (0, 1) that

(6.25) 1< 24109 N Qi + £63()IBillvgngwl’s

where 65(i) = 1 in the case 7; < (02 — 01)/12 and 653(i) = 0 otherwise. We
now turn our attention to the estimate of I/ and start with the case 7; >
(02 —01)/12. In (6.23) we choose a = ugn. Since i € ®, we see that { = 1
on supp y; and

(Pi-2)/p},

1l < cf [u — ugo10:(i¥)ldz < cf lu — ugm| |10, + 4, r;2|\7| dz.
o 0920
We now apply estimate (6.13) from Lemma 6.7 to obtain
- Py-DIpy (Py=1/p; - Py=DIpy -
07 < cud;® "r; I'< cud;® (02 —01) I'< cud;® o I

Combining this with estimate (6.5) from Remark 6.6 we find that

i

Pi-D/pi _y wh-P)IP\ Py ,(Ph-1/p, -2
1 < cf |t — ugo [H/ll O 0T oA AT T (00 —01) 7 | dz
09n20)

Pi-1/piy —
< cy/llpu %07 110% N (20)) . lu — ugowlygedz
o920

< cui|0 N Qi
where we have used Lemma 6.2 and Lemma 6.4. This implies that for
i€ ®;and 7 > (02 —01)/12, we have

f v, ydx f (u = up)ndWi(-, Hdx
B® B®

Next, since i € ®, we find that 0¥ N20Q; = [BY N(2B;)] x2A,; and therefore
1B N 2B)] = 2|A7"'10 N 20

<I+II< cu/lllQ(4) N Q.

(Ph-2)/p} 21 (4 Ph-2/P}y 2 ~(4
<cd" 70y — o) FI0W N 204 < cud 007210 N Q.

Joining the estimate above with estimate (6.5) from Remark 6.6 and (6.6),
we conclude

f Vornos Wi Ddx| < cug® A "BY N (2B,)
B&

2Upi—pi Y/ pi pi
< cu LR O® A 0 < cudy |0 N O,
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which proves (6.20) in the case i € ®; and 7; > (0, — 01)/12. We now turn
our attention to the case when i € ®; and 7; < (0, —0;)/12. We first observe
that O; ¢ O™ and we choose a = ug, in this case. For z € (20;) N 0¥ we
infer from estimate (6.11) of Lemma 6.7 and (6.13) that {(z) = 1 and

1y 1/p -1/ pk e
10,(yiv)(2)| < cloil [M ,l ri + 81/1 Iy |VQ anI ] + Cﬂ/l 0 °r;
O _ -1/pi _
< %/l(.po p“n "+ oA e, Ori Vool

To proceed further, we use Lemma 5.1 with (fl, T,,T,,0) replaced by
(B;,T:,T;, 1), Lemma 4.1 and Holder’s inequality to find that

JL: lu - ugldz < cr; f |Duldz + cA7 0 JC (1 + 1Dul + |F)"dz

i i i

A/ll/PB/l(lpi}—ﬁﬁ)/p{,ﬁ’; /ll/po/l(pz P )/pl/l(m -/ PP, <c /11/11 '

<crid, + cr; 1

Combining the estimates above we infer that

11 = fﬁ lu — ug ll0:(EWpi)lndz < cue; T 10 + carl AT 1o e
oo

; 4
< Z410% N Ol + calBillvg gl

Together this estimate and (6.25) yield that

-1 4
f (u —ug)nivpidx| < cug; 410 N Qi + &1Bilvongw .
B®x(1}

Since i € ®;, we have { = 1 and v = n(x)[u — ugn] on supp ;. In order to
prove (6.20), we note that

(v = voingw)W; = (u — ug)np; + ((ug, — ugm)n — vo)wp;.
Letting U(x) := (ug, — ugn)n(x) — vg,, we compute that for x € 2B; that
U)I < [U(x) = Ug| + |Up,| < crisup |VU| + |Upg| := Uy + Us.
2B;

Since Q N E(A;) # 0 by Lemma 4.2 (iv), there exists 7 € 2@ N E(4;) and
therefore, we have

Uy < cri|Dnllug, — ugn| < cri(or - gl)‘lgﬁ o ' lu — ugoldz

Qi
_ alp}
_ /g
< cur; [JCA (Q l|u — uQ(1)| + 1) XQ<4>dZ]
20;

(ph—p' )/P0P|/11/I70 < cur, /ll/p"

< curiMgw ()" A < curid| |

To estimate U,, observe that ugn(17)p, = fQ_ ugondz and therefore

1/pt
U, = |[(u§i —ugm)n — ((u - uQm)n)Q,]B,.| < :ﬁ lu—uglndz < crid, Py

i
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The estimates above together with estimate (6.11) from Lemma 6.7 yield
that

f Unvydx
B®x({1}

<c(U, + U,)|B;|] max ||
09N(20))

1 _
< C/erl I:rlgl l/l /POA([’O Pl)/Pll7o|B | + 81 /P] ]|B ”leQO'
< cue; 1|10W N Qi + pa|Billvgngo s
. - 2—
since 0; ¢ 0® and |0“ N Q)] = |0/l = 1B x 1”72 This finishes the
proof of (6.20).

Finally we come to the proof of (6.22). Recall that Z;’;O Y i(z) = 1 for any
z € OW\E(X,). This motivates us to define the sets

A= {i €O :suppy; N (BY x (1) #0 and |v|+[9] £0 on supp y; N (BY x {t})}

and Z; := ANO; and E, := AN®,. Then, we can decompose the left hand
side of (6.22) as follows:

| W|wwm—2f UV = v = TP
(BD\E (a1))x(r}

i€E,
+ Z f (VP = v = 9P)dx = T+ 1V.
€5, B(MXU}

To estimate I11, we write [v|> — |v — 9> = 2v¥ — [#>. Since i € ®, and
0N Q% # 0, there holds ]A®N(2A,)| > ¢s~! for some constant ¢ depending
only on n. From Remark 6.6 (6.7) and the definition of ¥, we see that

CNN)
~12 2 p(4 2 |Q N Q|
f vilol"dx < ¢ Z |VanQ<4)| IBYN2B)| =¢ Z |VQ/.nQ<4>| W
B@®x({t) el Jjel(i) | N ( l)l
_ 109N O _
1 Z L MPdz<es™ | Ju—ugoldz.
10900l Jgngw 0inQ®

Therefore, we use (6.21) and the estimate from above to conclude that

111 < ch vinkidx + cs” Zf lu — ugm|*dz
@1} ;

iz JOnew

< cu|Q\E@)| + cs7! f lu — ugn*dz,
oW

since {Q;}2, has a finite overlap. We now proceed to find the lower bound
of IV. Note that we can rewrite [v]> = [v=|* = [vg,now[* +2(v=vg,ngw)P— [P —
vonow|* for any fixed i € N. Since i € @y, we infer that [ANQ2A)| = 2IAl.
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From Remark 6.6 (6.9), we conclude that

~ 2 2
lﬁ,‘lv - VQiﬂQ(4)| dx < f lﬁ,‘|Z(VanQ(4) - VQ,-ﬂQ(‘U)Wji dx
B® x|t} B®x({t) 0]
. 2/} 12h=PDIPPY | (4 4
< cumin{r;, o 4,0 4NBY 0 (2B))] < cpi|QW N (20)).
This implies

>, f Yild = vo g Pdx < cudi D 10% 1 20| < i QU\E().
B®x(r} =1

i€x)

Next, we use (6.20) to get

Z f Ui Vool + 206 = vg,ng)¥| dx
By, X{1}

i€z

= f . Wlvongeldx - D ewos@Bllvongol* - ¢ )" uer' 1@ n 0y
IEE| B®x{r) €5 IEE]
=1V, -1V, - 1V;.
We only have to consider the case i € E; and #; < (0, — 01)/12 where
83(i) = 1. Observe that in this case Q; ¢ O™ and we infer from Remark 6.6
(6.9) that
IVaingel < Wone = Vo,nenl + Vo gl < curidy!™ + vg gl

where j € I(i). Let E| :={i € B, : j € E, for any j € I(i)}. We decompose
1V, as follows:

IVy= 3 eilBillvgrgol + " etlBillvongol® =: IVay + V2.

ieE’l €= \E’]

‘We now obtain the estimate for /V,; as follows:

2,2/1} 2
1V, < Z (51y|Bi|ri A o4 81#|Bi||VQ,-mQ<4)| )

=)
1ex)

<ewd )10+ e ) Uilvgngol’dx < culi|Q\EQ)| + IV,
iez, Y B

=y
€2

provided &, = ﬁ < 1. To estimate 1V, ,, we note that for any i € E,\E]

there exists j(i) € I(i) such that j(i) € Z,. This implies that |A;] =
2—pt i 2—pl i . —

2/1(1 p”)/porl.z > c/l(1 I s s, Recalling that Q; ¢ Q“ we conclude

o =
that
C
Vs < > ulBi WPdz < & f i — ugrdz.
e, 0ing § Jo®

Finally, it is easily seen that IV3 < cud;|Q“\E(A;)|. From this, we get the
desired estimate (6.22) immediately. |
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6.3. Lipschitz continuity of 7 on B® x S,. In this Subsection we will
prove that ¥ is Lipschitz continuous with respect to the parabolic metric on
the set B x §|. This property will be essential in the proof of the Cacciop-
poli inequality, since it ensures that 7 is an admissible testing function in the
weak formulation of the parabolic system. For simplicity of notation, we let
Q7 and Q; stand for B x S and B® X S, respectively. First, we will show
that for any z € Q¥ the two parabolic metrics dp and d. are equivalent.
Since p(-) > 2 and 2, > 1, we have for any fixed z;,z; € Q© that

(6.26)  dp(z1,22) < max {le - xal, \//l(lp(Z)_z)/p(Z)|l‘1 - l2|} = dy(z1,22).

On the other hand, since /l(lp(Z)_z)/ P@ < /l(lp 22IP2 e get
/2
(6.27) d(z1,22) < AP dp(z1, 25)

for any z;,z; € Q. Hence, dp and d. are equivalent for any z € Q. In
this subsection, the constants will depend on 4, 4y, 2, 01, 02 and [Vl 1g@).
Note that this is not a problem, since we will only use the qualitative result
that ¥ is Lipschitz continuous with respect to the parabolic metric.

Lemma 6.12. Let A, > cgA. Then there exists a constant K > 0 such that
for any 71,7z, € B® x § | there holds

[7(z1) — ¥(z2)| < Kdp(21,22).
Proof. In order to prove this lemma, we use the metric version of the in-
tegral characterization of Lipschitz continuous functions by Da Prato [9,
Theorem 3.1]. For z,, = (x,,,1,) € a‘l‘ we define
1 -

where we recall that Q,(w) = B,(x,,) X (t,, — 1%, t,, + r*). Our aim now is
to show that /,(z,) is bounded independently of z,, and r. To this aim we
distinguish between the following four cases:

20,(z,) € Q\E(A)),

20,(z) N E()) # 0, 20,(z,) € Q3 and r < 1A/ (g, — o)),
20,(z,) NE) # 0, 20,(z,) € 0 and r > 1A (0, — o)),
20,(z)\0;5 # 0.

In the first case, we observe that |Q] N Q,(z,,)| > ¢,”** and this implies

C
I(z) < = JC f [9(2) - #(2)|dzdz
FJotng, @) Joino e

<c sup [ID¥(z)|+ rd, ()],
€010 (z)

I.(zy) :=

(6.28)

since 7 is smooth on Q3\E(4;). Now, we consider z € O} N Q,(z,).
Then, we can find i € ® such that z € Q;. Since 20,(z,) C Q;\E(/ll)
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we have dp(z, E(1;)) > r. Letting Z; € E(4;) be a point such that
d.(zi,2) = d,(z;, E(41)) < 2¢r; holds (where ¢ > 1 denotes the constant
from Lemma 4.2), we can use (6.26) to infer that

r <dp(z,%) < dp(z,2) + dp(z;, %) < d.,(z,z) + d.(z;, E(4,)) < 3¢r;.
By the definition of ¥, we therefore find that

DV + 07N < ) IDjllvg, = vol+r ) 18ap;llve, - v

JEI() JEI()

c Cr/l(lprz)/pz JC | d
S|—t—— V=V5n0®»1aZ
7T o0

C
<

- v = vgnowldzs
Ti Jc(j,nw ene

where ¢ now depends also on A;. In the case i € @,, we have |Q N oW >
2 piV/pi
C/l(l pO)/pOrl"H—z > C(l’l, Y2, /119 01, 92) as Well as r; > C(l’l, Y2, Al’ 01, Q2)’ SO that

(6.29)
c

2
— |v — V5 (4)|dZ < — f |V|dZ <c ”v”Ll(Q(‘”) <ec.
ri JCQQ YT 00 091 Jainew

Moreover, from (6.8) we conclude that (6.29) also holds in the case i €
®;. Therefore, in any case, we find that |DV(z)| + r|d,%(z)] < c. Since
ZE€ Q‘l‘ N Q,(z,,) was arbitrary, we have thus shown that

(6.30) I(z,) < c,

where ¢ depends on n, L, >, 41,01, 02, |Vl ow), but is independent of z,
and r. -

‘We now turn our attention to the second case. Since z,, € Q‘l‘, it is easy to
check that |Q,(z,,) N Q‘l‘l > ¢(n)|Q,(z,)|. Therefore we obtain

c(n)
10, (2,72

with the obvious meaning of /; and /. To estimate I, we apply the argu-
ments in the spirit of the proof of Lemma 6.5. In a similar way, we con-
struct a weight function #; € C(B,(x,,) N B?Y) satisfying #; > 0, jé fidx =1
and |DAl < cmax{r~"*, o=} We let vy(r) := f
Poincaré’s inequality to conclude that

Ia) < f 25 = vl + Iy = g notldz = )L, + 1),
0,@NQ}

m(vﬁ) dx and use

ny

c
L = _JC [V = Vg, notldz
rJo.@ang! :
c c
<- f v = voldz + = max |vit2) = vit)|
7 Jo,@ang? T 11,0€S 10(ty—r2 by +12)
c . c _. 7 (2)
< —min{r, o} |Dv|dz + — sup vi(ta) — Vﬁ([l)i =1, +17,
r 0,zNQ! T 1.nes 1012 0,+12)
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with the obvious meaning of I;l) and If). In order to estimate I;l), we fix a
point Z € 20Q,(z,,) N E(1;). Then we have

)P(')/?] dz

L' <ec f (IDul + (02 = 01 lu = g | + 1
20:(zw)
< CﬂMQ(4)(Z)1/(é(1—€)) < C,U/li/q.

We now consider the term 152). Since r < %/1(12_”)/(2”2)(92 — 01), we have
SN, —rt, +r*) C S,. Recalling that / = 1 on S, this implies that
v(x, 1) = [u(x, 1) — ugn In(x) whenever ¢t € S1 N (&, — r%, 1, + r). Therefore,
using the Steklov formulation (3.1) of the parabolic system with ¢ = 77}, we
obtain for 1 > 0 and #;,1, € S, N (t,, — %, t,, + r?) that

5]
[l (t2) — ()] < f f  KIAG Dl DI + KB Dl il
H B®NB,(x,)
Letting /2 | 0 and using assumption (2.2) we find that

[va(12) = va(e0)| < (1 + ID@AI) f (1 + 1Dul + [F)y" dz.
09N0(zy)

To estimate the right hand side of the above inequality, we observe that
|D(f)| < cur~"*™ . Using this information we find that

C,
[va(2) = va(e))| < = (1 +Dul + [F))™ ™" dz
! ! " Joono,@
(2w
cpl Ozl ol o
S o Moa @ < curd,”

which ensures that Iéz) < cu/l(lp >=D/P1We now come to the estimate for /.
Recalling that supp v ¢ Q¥, then we use (6.29) to obtain

Cc

c -
L < — f v =vldz < — Z ﬁ v =v5nowldz
r 0r(@)\E(1) P c020im0, G0 ¥ GNOY

¢ Py 4
<=5 D, rlgingYl
i€0:20iN0,(2,)#0

We let w; and w, be two points in 20,(z,,) satisfying w; € 20; N Q,(z,,) and
wy € 20,(z,) N E(Ay). Then, by (6.27), we have

ri < %d- (Zi» Wz) < % [dz,'(zi’ Wl) + dzi(wh Wz)] < % [27‘,- + /l(IPZ_Z)/(sz)dP(Wl’ Wz)] )

Vot 4)

20:N Q,(w) # 0 we therefore have that Q C Q2:+(zy). Keeping in mind that
at each point at most c(n) of cylinders 2Q; intersect we can further estimate

C o~ Cc
|Qi n QZ?r(Zw)| < le%r(ZwN <c
r

Since ¢ > 4 this proves that r; < cA”?™/®"r < cr. Fori € © with

Il s n+2

i€0:20,N0,(2,)#0

Inserting the estimates for /; and I, above we have shown that the estimate
(6.30) continues to hold in the second case.
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Finally we come to the third and fourth case. We first observe that in both
cases we have |Q‘1‘ N O.(zy)| = c(n,y2, A1,01,02). Therefore, we conclude
from estimate (6.15) in Lemma 6.8 that

) <c f 7ldz < clills gy
01n0(z)

which proves (6.30) in the third and fourth case. At this point, the Lipschitz
continuity follows from (6.30) and the integral characterization of Holder
continuous functions from [9, Theorem 3.1]. This finishes the proof of the
Lemma. O

We now have the prerequisites to prove the Caccioppoli inequality stated
in Theorem 6.1.

6.4. Proof of Theorem 6.1. From Lemma 6.12, we know that DV(-, 1) €
LY (@®R" forany 7 € Sy. Lett € A® and 1, € S1\AD with 7, < ¢. In
the Steklov formulation (3.1) of the parabolic system we choose ¢(x, 1) =

n(x)xs(0)[P]n(x, T) as a testing function, where 2 > 0,0 < § < 1 and

0 on (—co, t; + h|U [t —h, o)
U on [# +h, ty+ B+ 6]
Xs(1) =
1 on [t +h+06, t—h-0]

1—%’”5 on [t—h-29,t—h]

to infer that

f . O[uln - mxs[V1n + ([A(z, Du)ln, xsD ([V1nm))d x

6.31) B

= —f [B(z, Du)];, - nxs[V]ndx

B®x{r}

for any 7 € S ;. For the first term on the left hand side we compute
Oc[ulnxs - [V1n = 0:[vInxs - [V]a

= 301X + 0V - [V = Vinxs

= 301X + 0[Pl [F = VInxs = 07 = V1 - [F = vinxs

= 201l = I[P = vIuP)xs + 0714 - [F = vinxe.

Integrating over B® x (¢;,1) and using the fact that f;:[f]h -gdt = f[]tf .
[g]-rdT whenever supp g C (t; + h,t — h) (cf. [8, Lemma 2.10]) we find that

i3 !
f f 8- [ulunys - [V]n dxdr = § f f O (Val* = I[P = vl dxdt
1 JBW n JB®

+f f( ) [0:[F1nxs]_), - (F = v) dxdr

151 B“

= %f f ar[(|[V]h|2 -y - V]hlz))(a] dxdt
1 JB®
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!
- %f f( DI = 17 = v1iF)doxs dxde
t1 JB@

!
+ f f [0-[F1wxs]_y, - (0 — v) dxdr
t1 JBO\EL(1))
=: E1(6,h) + E>(8, h) + E5(6, h).

Since y5(t;) = 0 = y5(t), we have E (6, h) = 0. For the term E,(6, h) we use
the definition of y; to infer that

(6.32)
t—h
E»(6,h) = = f (V1P = 19 = v1ul?) dxdr
t—h—6 J B®
f1+h+0
- % f f (V1P = 117 = v14l*) dxdr
ti+h B@®
-1 WP =[5 =P dx—lf (WP = o =v)| dx=:1+11,
2 B®x(1) [( )] ? B®x{1} [ )]

as d,h | 0, for a.e. 1,1, as above. We now turn our attention to the estimate
of E5(6, h). We define Q, := B® x (t,, ) and observe that the set Q,\E(1,) is
open. This implies that [0.[V],ys]-n-(F—V) — J,Vxs-(P—v) pointwise a.e. on
O\E(4y) as h | 0. Furthermore, we will ensure that |[0.[V],xs]-n - (F—V)| <
cH, where H is defined by

H:=lv=Tlxo, sup 107+ ) r'lv=Tlyg,

ic® 20,009 i€®,

. . . 2— i i
To this aim we define N, = {i e N: h < /l(l Po)/P 0rl.z} and decompose the
term under consideration as follows

[0l =0l < D [Pl - vlxe
i€ONN;:0iNQ,#0

+ > ol G =vlxe =1 Hi + H,
i€®\N;:0iNO0#0

with the obvious meaning of H; and H,. In the case i € ® N N,,, we find that

sup  |[0:[Fluxs]_y| < sup 10,71,
0i:0iNQ#0 20,nQW

which implies that H; < H. Since we are interested in small values of &, we
may assume that i < %/l(lz_p /P20, — 01)%. Then for any i € ®\N, we have
i € ©,. Using the formula for the time derivative of Steklov averages and
Lemma 6.12, we find that for i € ®\N, and z € Q, N Q; there holds

0. [71,(2)] = [V(x, £+ h) = V(x, 1) < K

- < K/l(lﬁz—z)/(zpz)ri—l ,

&
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which proves that H, < H. It remains to prove that H is an integrable

function on Q. A slight change in the proof of Lemma 6.7 shows that
sup 10,7] < cud” VP71 when i€ @,

20inQW

T,

and
sup 19,7 < cus'oA)”" when i€ ©,.
20nQW

We now use estimates (6.16), (6.15) from Lemma 6.8 and Tonelli’s theorem
to get

Hdz<c Z ! f ) v(z) = ¥(2)ldz + ¢ Z meQM) [v(z) — W(2)ldz

oW €0, 0inQ¢ €0y
4 ~ 4
< e 1010 091+ ¢Vl gy + 7l gy | < c1Q®1+ eIl gw, < oo,
€0,

where ¢ depends on n, L, y>, 41, 01, 0> and [[v||;1 o), but is independent of /.
This ensures that H is integrable on Q¥ and therefore, we are allowed to
apply Lebesgue’s dominated convergence theorem to obtain

lim lim E5(8, h) = f 0y —-v)dz=:111I.
010 hi0 O\E(N)
We now start with the estimate of 7. Since 27'%s < |§,\AD| < 21905 we
can choose #; € S;\A" and #; < ¢ such that
1

< —
IS NAD] Jg am Jp

(VP = 9 = v[*) dxdt.

From estimate (6.15) of Lemma 6.8 and the fact that |v| < c(u — ugn), we
obtain

c C c
<~ f VPdz + = f (WP + [9)dz < - f lu — ugn*dz.
§Jo® 5 JONEW) §Jo»

To deal with 111, we apply estimate (6.17) of Lemma 6.8 to get

I < cA1|Q\E(1))] + gf
(¢

Next, we integrate the remaining terms of (6.31) with respect to the time
variable over (#;,¢) and subsequently pass to the limit # | O and 6 | O.
Finally, we decompose the domain of integration into the sets Q®\E(1;)
and E(A;) to obtain

ff (A(z,Du),D(f/n))dxdt+ff {B(z, Du), yn)dxdt
n JE@) f JB®

=f ...dxdt+f oodxdt =1V + V.
O/NE(11) ON\E(1)

| — uQm|2dz.
(3)
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We now use the growth condition (2.2) and Remark 6.10 to conclude that
V<e f (1 + |Dul + |F)*" (o7 "9] + |D¥)dz
OUN\E(a1)
< cu |QP\EQ)| + es7! f lu — ugn|*dz.
(o8
Joining the preceding estimates we find that

C
I+ 1V < cud|Q\E)] + - f |t — ugo|*dz
o’

holds true for a.e. € A", On the other hand we infer from estimate (6.22)
of Lemma 6.11 that

1
I > —cudi|QP\E)| - “ f lu — ugol*dz + = f [v[?dx
s Jow 2 Jeaoxin

and therefore

1

C,
- f WPdx < IV + cud|QW\E(A)| + & f lu — ugnl*dz.
2 E()x{n} S Jow

We multiply both sides by A;'~* and integrate over (cgA, 0o) with respect to
1

A;. Setting mos := max{cgAd, ME)} and s, := 1277/ and multiplying
the result by &, we get the following estimate,

1 f )
- [V|I“m_%,dx
2 B®x({t} 2

- <Az D). DOy + Bz, Dw. vy g dz
B®X(t1,t0+51)

IA

0 C
+ cs,uf /1I€|{z € QW Mys(z) > /11‘8}|d/11 + Tﬂf |t — ugm|*dz
cpd sAE Jow

==VI+eVII+ VIII,

Since A > 4, it follows that VIII < cus™'A7¢ me |u — ug|*dz. Next, we use
Fubini’s theorem and the boundedness of strong maximal function to infer
that

—u p()(1-2)
Q(l)
‘+|Du|+|F|+1) dz
[

u
VII < cu Mys dz < c,uf (
o o

<cu f
oW

To estimate a lower bound for VI, we note that D(vi)(x, ) = n?(x)Du(x, t) +
v(x, £)Dn(x). Therefore, using the ellipticity and growth conditions (2.2) we

u— Upm p(')(l—s)
g dz + cud"*|0W).

©
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obtain

VI > f [(A(z, Du),7*Duy = (A(z, Du), vDi)| = [(B(z, D), vn)l] My dz
BAx(1),tg+51)

>y [ iuromg,dz- [ IFIPOm, dz
oM B®x(t),tg+s1)

C
f (1 + |F| + 1Duly™ ™ u — uglmyy, dz
02 — 01 B®x(t1,tg+51)

= IV1 —1V2—IV3.

It is easily seen that IV, < fQ(4) |[FIPY1-9)dz, In order to estimate IV, we
introduce the set

E:={z€ Q" : IDu@I® 2 &1mga(2))

for some £ € (0, 1) to be specified later. For the integral on E we have
f|Du|”(')(l’g)dz <g® f |DulP¢ )mQ(4) dz < cg[°1V).
E

On the other hand, for z € Q'V\E, we see that either |Dul’® < &My ()=
or [Dul’®@ < g,cgA. This implies that

f |Du|PO1-9g7 < ca}’gf [MQ(4) + ;ll’g] dz
OM\E om

u— uQ(l) pC)(1-g)

< cel A7 QW] + cel™? f dz.
ow o
Summing the previous two estimates, we find that
. R u— Up p)(1-¢)
& f |DulPY""0dz < eIV, + c12'710W] + ey f b dz.
om o® Y

Rewriting the last inequality and using assumption (6.1) we obtain

u— I/tQ(l)

Q
)P(')(IS)

p()(1-¢)
‘ +|F| + 1) dz

IV, > [5107] - cer|QW)]A}* — ¢ f (
oW
U—=ugmn

17109
L0
c o® ©

where we have chosen &, small enough in the last line. Now we come to
the estimate of /V3. Using the definition of m« and Young inequality with

exponents p(z)(1 — &) and % and assumption (6.2), we find that

dz,

‘+|F|+1

IV; < f (1 + |F| + 1Duly’ "y — w0 )dz
Q2 — 01 Jow
Uu— Uy p()(1-g)
<ed"f10W + cout f —= dz,
oW (%)
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where ¢, indicates that the constant depends on the structural data and e.
From the estimates above we arrive at

178109 + sup f |t — ugo|*m 5, dx
BDx({r} Y

reA
pC)(1-¢) 2,
dz + cud » f
oW

cou |
oW

+c | A +F)POYdz + cusa'~E|QW).
Q(4)

u— LtQ(l) 2

(%]

u— MQ(I)
02

This proves (6.4). Moreover, choosing 0; = o and 0, = 20 we have u =
constant. This allows us to choose & small in dependence on n, N, L, 7y, to
obtain

178109 + sup f lu — uglmydx
Bx{t}
u— MQ u— MQ

teA
pC)(1-¢) P2,
<c f dz+cd f
oW © o“ ©

Recalling assumption (6.2), this finishes the proof of the Caccioppoli in-
equality. O

2
| dz+c f (1 +|FyV09dz,
oW

7. ESTIMATES FOR THE LOWER ORDER TERMS

In the final proof, it will be necessary to treat lower order terms, involving
the L? and L”'~®-norm of u. However, these exponents of integrability
could be too large, so that Lemma 5.1 is not applicable. This difficulty
comes from the fact that we consider a variable exponent of integrability.
Therefore, we need the following improvement of Lemma 5.1.

Proposition 7.1. Let M > 1 be fixed. Then there exists oy = oo(n, L, M) > 0
such that the following holds: Suppose that u is a very weak solution to
the parabolic system (2.5) and satisfies the assumptions of Theorem 2.2.
Assume that for some parabolic cylinder QgAZL(zo) C Qr with 0 < 320 < 09
the following intrinsic coupling holds:

A< f (IDul + |F| + DPY"=9dz  and JC (|Dul + |F] + 1)POU=9) gz < p1=2,
05" o) 0l (z0)

Then, for o = max{2, po(1 — &)} there holds:

40

o

dz < can,

U—Uu,
04 @0)

4o

where ¢ = c(n, N, y,,v, L).
Proof. In the following we abbreviate Q = aB X aA = fog)(zo) fora > 1.
Without loss of generality, we may assume that p; < p,. Otherwise, the
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result follows from Corollary 5.2. To begin with the proof, we define the
exponent

pil2( —¢) —e0]

b= 2-¢p
and compute
2[c - p1(1 -
(7.1) oy ]
2-ep

In the following we want to apply Gagliardo-Nirenberg’s inequality from
Lemma 3.2 with (o, g, , 0) replaced by (o, p1,2(1 — &), pi/o). This will
be allowed, once we can ensure that <1+ 2(] %) holds true. To ensure
this condition, we have to dlstmgulsh two cases, whether o=20r0 =
p2(1 — ). In the case o = 2, we recall that p; > 2, so that

€ 2-2¢

o
— <1+ <1+
P 1-2¢ n

s

provided 0 < € < 4—1n. In the case o = p,(1 — ¢€), we have

g=1+0jp151+ <l+o0-p.
P1 P1 P1

Since we may assume that £ < % we may estimate the difference o — p; as
follows:

(7.2)
o 2(1 = &)(p2— p1)

o-p1 5 < 2(1-&)(pa—p1) < 2(1-g)w(640) < 2"(1-)w(py),
.

where we also used the concavity of w. Next, we choose gy in dependence
on n, L small enough to have w(gg) < 2Tln This ensures that ;’l <1+ 2(1 £)
is satisfied also in the second case when o = p,(1 — €) and therefore, we are
allowed to apply Gagliardo-Nirenberg’s inequality. Now, we choose radii o;
and o, such that 4p < 0; < 0, < 160 and (using the notation from the proof
of Caccioppoli’s inequality) we write 0 := QV(z9) and Q¥ = Q\Y(z0).
Applying Lemma 3.2 with (o, g, r, 8) replaced by (o, p, 2 —2¢&, p1/0) slice-
wise to (u — ugm)(-, ) we obtain
u—ugn|”

I,(01) = JC
om Q1
2 ) 22 (IS
< CJC (J[ + IDul”'dx) [JC dx} dt,
AD BM B

where ¢ = c(n,7y,). note that the constant in Lemma 3.2 initially depends
on o. Since the dependence on o is continuous, it can be replaced by a
possibly larger constant depending on 7y, instead. Next, we use Holder’s

u— MQ(I)
Q1

u— MQ(])
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inequality to obtain for a.e. € AV that

2-2¢
BDx{r} BOx{r} ©1
u— Upn 2 I-e i
< [JC —Q‘ mé‘(i) dx} (JC le?f) dx) .
BWx{r} 01 BDx{r}

To proceed further, we apply the Caccioppoli type inequality from Theorem
6.1 to get

J = supJC
teAM J BWx{r)

I(l-&
c /1(2*[70)//70 poxt=e) d —€
u 7+ cud
Q(4) Q(‘U

> pa(1-e)
C'u/l(Z—po)/po (JC dZ) ’ + C/l/l_a (JC
o o@

where in the last line we applied Holder’s inequality. Here, we also note that

the preceding estimates also imply that /(o) is finite. We now insert the

previous computations above and apply Holder’s inequality with exponents
=209 and p = 200 In this way, we get

u— MQ(I) 2-2¢

01

u—ugn —e(l-e), ell=) 5

o“w oW

u— MQ(l) 2

01
u— MQ(l)
@2

—&
m dx
u— uQ(1>
Q2

2
2_
dz + cugAn©

IA

u— MQ(l)

©2

u— I/lQ(l)
%]

IA

o - 2,
dz| +cudrn ",

= slo—-p1) = 2(1-8)-slo—p1)”
iy u— MQ(]) P1 N e 2(1-¢)
I,(01) <cJ 2 ————| +|Dul’'dx m o dx dt
AO\J D Q1 BOx{r)
so—py)
u— MQ(U

oy pir’ . v . 21-¢)
<cJ f + [Dul"'" dz f mya (2)'~°dz :
oM oM

Now, we observe that p;r’ = p(1 — &) and therefore, we are allowed to
apply Corollary 5.2 with the choice p;(1 —¢) for 6 to the first integral on the
right-hand side. Together with the hypothesis of the proposition we obtain

01

so—pp)

c—p1 e 2i-e)
I(0) < cJ T A7 ( f Mo (2)'¢ dz) .
Q(l)

Moreover, using the definition of m gy« and the boundedness of the strong
maximal function we find that

JC le?f) dz < L MQ(4> dz
on on

<cl'+ CJC
oW

pa(1-¢)
u— LtQ(l) T

©

p()(1-¢)
dz<cl'™ +¢ JC
o

u—Ugn "’ dZ)
Y
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Inserting this estimate and the estimate for J above, we conclude that
N Y

u— Upm T

e %l dz)

(%)

(=pppa(l-e)
20

Q-epg)o—p1) O

let =, — _71

I(o1) < cud ™™ 0 4 cua'e (JE
oW

_ oy @=po)o-py)
+opd T JC
oW
+(2 Fpo)(rr 1)
+cud” 270
oW
1-c C=pp)o-pp)
+cud” 270
o@w
u— MQ(I)

1-& F(:r—m)
+cud ™
oW 02

=I1+1+11I+1V+V+VI

U —Upm T

(%)

epa(o=py)

dz)

p2(o—py)

U—uopn|® 2
—Q‘ dz)
©2

Q+epy)o—p))
o 20
dz

Now we are going to estimate the terms / — VI. From the definition of p;
and (7.1) we infer

u— MQ(l)
02

2- -p 2—-¢ep; 20 -2pi(1 -
P Al D Citul 2V < l_gs 280120 nd-¢ o < % 1 (640)
2po 2p; 2 —¢gp; P1 Do

so that I < c,u/l%. We now come to the estimate of /1. Since o > p;, we
use Young inequality with exponents (T_Lp] and 1% to obtain for any ¢ € (0, 1)

that
11 <6 JC
o@

<sf |
oW

where we have used the following identity:

(1 8(0—131))0_( 8(0—171(1—8))) ocR2-ep) O
—e-——— o l-¢- —

Gy SO

—” — %00 ' dz + c@uAl

MQ( )

' dz + c(6),u/ll’0

2 2 —-¢&p; PR -2e-s0) p
and hence A0 F)F = i < A% < caiv. Next, we consider the
estimate for 711. We use Young’s inequality with exponents ——22—— and

pa(1-&)(o—p1)

20
S i-ae T © find that

u—upn|” L 2=pp)o—p)) 2
nr<s f LZHOF gz 4 @l "55 ") mmimm
ow 02
L{Q( )

<sf |
o

‘ dz + c(6),u/lf’0
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since A > 1 and

1 -

N (2—170)(0'—131)) 20
2po 20 = px(1 —&)(o - p1)
2po(1 — &) + (2 = po)(o — p1)
20 = po(1 —e)o - p1)
po(1 —&)(2 —epy) + (2= po)o — pi(1 - &)

po o2 —ep)—pal —e)o - pi(l —g))
< Z b e (2= p1) € — + c(y2) w(640).
Po Po

KRR

In order to avoid the complicated computations in the estimates for IV - VI,
we shall deal with the estimates in the two cases separately. We start with
the case o = py(1 — ). From (7.2) we deduce that 277 < 1°@ < ¢, To
estimate IV, we use Young’s inequality with exponents r and ' (note that
epao—p1) _ 1 :

-5 = 1) to obtain

20
o 20
dz <9 JC
oW

1-&
IV < cud’7 JC
oW
1-¢  (2=epo)o—p1) _ o=p1)

. 1= & (
To estimate V, we use that 17 *~ 2no < A7 = A
e . . 2(1-¢) - 1
and a;zply Young’s inequality with exponents v and oo = 1
g—p1

2(1-&)=(o—=p1)

ep(o=py)
u— MQ(l)

02

U—Ugm o

02

to deduce

V < cua'™® ( JC
o

<5 f
o

<5 f
oW

Next we consider the estimate for VI. Again, we use that A7 <cA'-e.
Applying Young’s inequality with exponents 2o and 27

o e N e
we obtain
[on
VI < cud'™ JC dz
o

< 5JC ’ dz + c(6)/,l/l(] &) T erae D)
o®

<sf |
o

i
u—ugm|” 20-2)
dz)
02
U —Ugn g

‘ dz + C(é)ﬂ/l(l’s)(l’mf;%ﬁr]fm)

U—Ugm o

02

_ &= 1’1)

@+epy)=p1)
u—uopm 2

(%)

MQ( )

MQ( )

' dz + c()ua'~.
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Therefore, from the estimates above and the fact that 1'% < /l%, we con-
clude that in the case o = p,(1 — €) there holds
u— MQ(I)

(7.3) I,(01) < r5f
oW 02

In the following, we will show that (7.3) also holds in the second case when
o = 2. It remains to consider the terms IV — VI. Let 6 = %. In order to es-

dz + c(S)udm.

. - . . 4 4
timate /V, we use Young’s inequality with exponents PG and G
to get
£pp(2-pp)
pol-)+(1-£pp)2=p1) u—Ugn a
IV = cud 70 dz
o“w 02

u—ugn|” 4lpoU—e)+(1=epg)2=p ]
< 6 dZ + C((S)/l/l pold—epr2—p]
o“w 02
U — Ugn T e
<6 dz + c(O)udr,
o® 02

where in the last line we have used the following computation:
4[po(1 — &) + (1 = epo)(2 = p1)]
pold — ep2(2 — p1)]

_ 2 po-8)Q2-ep)+2(1 —epo)2 - p:i(1 - &)

- 22 -ep) —epa2 = pi(1 — 8))
' [1 . —(2 = po(1 —€))(2 —ep1) + (2(1 — &po) + £p2)(2 — pi(1 — &))

22 —ep1) —epa2 - pi(1 —¢)

T [1 L C=pid = e)elp2 + pi ~ 2po)

S8 3

< + cw(g)} < g + cw(p).
Po

Po 22 -ep1)) —ep22 - pi(1 —¢)
The estimate of the term V is similar. Applying Young’s inequality with
4 4
exponents - and T We get
P2(2-pp)
2po(1-£)+(2=py~£pg)2=p1) U —Ugn g
V= cu A 2pg JC dz
ow 02

U — Ugn T 2[2pg(1-8)+(2—po—ep)2—p)]
< 6 dZ + C((S)/,l/l Pold=p22=p]
owl @2
u—ugn|” ra
<6 dz + c(O)udn,
owl O

where in the last line we have used the following computation:
2[2po(1 — &) + (2 = po — €po)(2 — p1)]
pold — p2(2 = py)]
_ 2 pol =82 —&p)+(2—po—ep)2—pi(l — &)
o 22-ep) - p2-pi(1 - &)

_ 9|y 2@ =)@~ ep) + 2~ po—epo + p2)2 ~ pi(1 - &)

Po 22 -ep) -2 - pi(l - 9)
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<Z. [1 2 - pi(1 = &)(p2 = po + &(p1 — Po))
T Po 22 -¢ep) - p2-pi(1-¢)

We now come to the estimate for VI. Here, we apply Young’s inequality
with exponents and 4 to infer that
U—ugmn

4=(2+ep1)2-p1)
o
dz)
(%)

U —Ugm T 41-e-eQ2=p))]

dz + c(O)UA*@+erp1)
(%)

u— MQ(l)

(%)

+ cw(g)] < z + cw(0).
Po

4
(2+ep2)(2—p1)

VI = cud' = f
oW

<o f
o@

<5 f
Q<4)

where we have used that

All-e-e@2-p)] _ 2 pol(d—-&)2-ep)—-2e2 - pi(l —¢))]
4-Q2+ep)2-p1) po 22-ep)—2+ep)2 - pi(l —¢)
_o. [1 . (po(1 —&) =2)(2 —ep1) + 2 + &p2 — 2pee)(2 — pi(1 — 5))]

(2+£py)(2=p))
F

‘ dz + c(S)udn,

Po 22-ep) - @+ ep)2 —pi(l - )

o &2 -pi(1-¢€)2po—p>—p1) o

i a .
= [ 22 —ep) - 2+ e pri(l - ) ““’(Q)} < 5 Hewl@

This ensures that (7.3) holds true also in the second case when o = 2.
Therefore, from (7.3) we conclude that

U—upaw|” Uow — Upm |7 -
(o)) < 627 J[ 9 gz 4 520! M' + Gyl
oW (%) ©2
- U= Uga o P
<62 ——| dz+ c(d)udr
o® 2

= 6271,(01) + c(S)ud¥

holds true for any 0 < 6 < 1. Recalling that u = (ﬁ)ﬁ, where 8 is a

constant depends only on the structural parameters, we choose § = 2~“+D
to infer that

VR
I,(01) < 3o(02) + ¢ (Z5) A

for any radii o;, 0, such that 40 < 0, < g, < 16p. At this point, we use

Lemma 3.1 with ¢ replaced by I, to infer that I,(40) < A . This proves
the desired estimate. ]

8. REVERSE-HOLDER TYPE INEQUALITY

Proposition 8.1. Let M > 1 be fixed. Then there exists oy = oo(n, L, M) > 0
and € = &(n,y,) > 0 such that the following holds: Suppose that u is a
very weak solution to the parabolic system (2.1) and that the hypothesis of
Theorem 2.2 are satisfied. Finally, assume that for some parabolic cylinder
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Q;/Z,(Zo) C Qr with 0 < 320 < gg and A > 1 the following intrinsic coupling

holds:

A< (1Du| + |F] + DPOY2 g4z and (IDu| + |F] + PO gz < 2172,
05" (z0) ol (20

Then we have the following reverse-Holder inequality:

q
p()(l &)
fl IDuPON9dz < ¢ f} |Du| 7 dz
05 (z0) o)

where g = g(n,y,) > 1 and ¢ = ¢c(n, N, v, L,y,).

+c JC (1 +|F)rOU=9dz
0% @)

Proof. In the following we abbreviate Q = aB X aA = Q“)(zo) fora > 1.
From the Caccioppoli inequality from Theorem 6.1, [i.e. estimate (6.3)],
we obtain

Jchu|p(~)(1*8)dZ
Q
u— I/lQ

p()(1-¢) w2,
<c JC dz+cAn JC
20 o 20

2 ()1-2)
< Clpz(l_g) +cdn "I+ (1+ |F|)p dz,
20

u—ugl?
©

dz+c JC (1 +|FPPOI=29dz
20

where we have abbreviated

1, = JC
20

for o = py(1-¢) and o = 2. For o as before, we define g, := 5%, so that
¢ < o and qil = ’”2 22 'We now apply Gagliardo-Nirenberg’s inequality,
i.e. Lemma 3.2 W1th (0' q,r,0) replaced by (0, q1,2 — 2¢, q1 /o) slice-wise
to (# — uz0)(-, 7). In this way we obtain

M—MZQU
o

dz

o=q1

u—u q1 Uu—u 2-2¢ 2-2¢
I, < CJ{: (JC ) IDulq‘dx) [JE 20 dx} dt.
2A \J2B o 2B Q
Next, we use Holder’s inequality to obtain
Uu—1u 2-2¢ Uu—1u 2-2¢
f —=| (ndx= f 21 gm0 dx
2B o 2B 0

< Ji=® J[ mf‘Qg(-,t)dx}
| J2B

for a.e. t € 2A, where we have abbreviated

2
u—u
J :=sup J[ g
12 J2Bx{r} ©

g dx.
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Inserting this above and applying Holder’s inequality with exponents r =

2-2¢ ’ 2-2¢
e and ' = oy We get
e(d—q1)
o-q) U — Uy | e =
I, <cJ 2 —=| +|Du|"dx myy (- dx dt
2A \J2B © 2B
q r &lo—qy)
oa u—up|" e
<cJ7 [JC e |Du|q"dz} [JC myo(z)'™ gdz} )
20 Y
20(1-¢)
Observe that o — q; = ==~ and

- /) _ _no__ 2(1-¢) _ on
D =47 = 5 M e —so—q) . nir-sc+D)

To proceed further, we apply the Caccioppoli type inequality from Theorem
6.1 (more precisely, we use (6.4) with the choice po; = 20 and o, = 40) and
subsequently Proposition 7.1 to get

2-pg p()(1-¢)
JSC/IPOJC dz+c/l_5f
40 40

2-pg  pa(l-e) l_g l_g l_g
<cd o A o 4cdro T+ crgdn T < cAdro

u—=ug 2

o

u—up

©

L—S
dz + cjedm

Moreover, from Proposition 7.1 we infer that
p()(1-¢)

- =1- - U—u
fm}thdz§/11€+JCM4deSC/119+cf — dz
20 40 ©
(l —&)
<cA'™®+ /1 o < cAl7E.
Inserting the last two estimates above yields
1
T-q — Uy ’/
I<eam |4 [ee”y |Du|qzdz]

Moreover, choosing o small enough to have p, — p; < w(3200) < min{(n +
/(n+ %), 2/n} and & < min{1/1000n, 1/4vy,}, we have ¢, < p;(1 — &). We
now apply Lemma 5.1 with (6, Q x Ty, Q x T) replaced by (¢,,20,20) to
conclude that

1
[ f \Du|dz| +
20
741 POaR ’i'
<A™ [JC (1 +|Dul)  dz
20

Now, we will find a lower bound for the exponents appearing on the right-
hand side; note that there are three different exponents: 2% ¢ )‘” with the coice

7-q)
I, <cAdn

2mg “
A0 f (1 +|Du|+|F|)”(')'dz]
20

+

o=2and o = py(1 —¢&)and ”(‘)(5%. To this aim we deﬁne

n+2-4e)(1 -¢) B piln+2—e(p(1 — &) + 2)]

n nps

PO ) a
o JC(1+IDu|+IF|) 2 .

g = , Q= and @g; :=

pa(1—¢)
p2—1 '



DEGENERATE PARABOLIC SYSTEMS WITH NON-STANDARD GROWTH 43

. — - n+l = n73
An easy computatlon shows that g;, g > = > 1and g3 > T > 1.
Therefore, letting

_ . {n+17—%}
g = min , s
n y,—1

we can use Holder’s inequality to get from the last estimate that

991 491(p2-1)
o=q1 pO1-¢) pid-e) C=pp)ay /()(1 s) p2(1=e)
I, <cAdm (1 +|Du)) 7 dz +A4 (1 + |Du| + |F))
20

Again by Holder’s inequality and the hypothesis, we obtain for the first term
on the right-hand side that

ﬂ 20 )(1 b) l’li‘{]‘“
A7 f (1 + |Du) 7"
20
<A [f (1 +Du) 7" } [JC (1 +|Du|)”(')(1"8)dz} 1
2 2
f(1+|1)u|)"”“ “d ]
)
dz}

where we have also used that 777! < ¢. Similarly, we find for the second
integral on the right-hand side that

</l r'o /11’1 -(-9

< /ll’o_Hg[
2

4491 (pa=1)

-4 ("‘Io 91 P )(1 s) p2(1-e)
A A [JC (1 + |Du| + |F)) }
20

q1(pp-D 1

P PG ! oa-e o |77
<A (1 + |Dul + |F]) dz (1 + |Dul + |F])? dz
20

T+41-P091 'I](I’Z‘l)_(]_é,) pO)(1-g) a
<A A n ' (1 + |Du| + |F|)" 7
20

L0 )(1 F)

< Am e [J[ (1 + |Dul + |F])
20

Inserting this above, we find that

(=& q
L,swo‘“[f (1 + |Dul + |F))"™ >dz} .
20

o pp(l-¢)
- =1+
Now, we note that for & = p,(1 — &), we have A A €
(pp—po)(1-¢) . P02 _ o
A~ < ¢, while for o = 2, we have 1 %0 “An~ *° = 1. Therefore,

inserting the estimate for /, with o = 2 and o = p,(1 — &) above, we arrive
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at

f |DuPO'-9dz < ¢ [ f (1 + |Dul + |F))"7" dz
0 20

q
+c f (1 +|FrOI=9dz
20

=g q
<c f 1Dl dz| + e f (1+ F)y 1=,
20 20
This proves the reverse Holder inequality. O

9. PROOF OF THE MAIN THEOREM

In this section we will prove the higher integrability of very weak so-
lutions stated in Theorem 2.2. The idea now, is to prove estimates for
|Du|P=#) on certain upper level sets. The argument uses a certain stop-
ping time argument which allows one to construct a covering of the upper
level sets. This method has its origin in [19, 20]; a slightly simplified ver-
sion can be found in [7]. Since most of the arguments are standard by now,
we will only sketch the proof and refer to [7, §7] for the details.

Let M > 1 and suppose that (2.6) is satisfied. From now on, we consider
acylinder Q, = Q,(30) such that O, € Q7 and define

©.1)
Ao = [J[ (1Dul + 1F+ )"0z "™ > 1, where py = supg,, P()-
Qor

For fixed r < r; < r, < 2r we consider the concentric parabolic cylinders

Qr g er - Qr2 g er'

In the following we shall consider parameter A such that

8 (l;*:?pM
9.2) A>Bly  where Bz ()T
I — 1
and for zp € Q,, we consider radii o satisfying
I —r rp —r
9.3 <p< ,
9.3) by 9573

where y = x(n,77;) > 5 denotes the constant from a version of Vitali’s
covering theorem [7, Lemma 7.1] for non-uniformly parabolic cylinders.
Note that this choice ensures that Qéﬂ)(zo) C Q,,. Recalling the definition
of 4y, we get by enlarging the domain of integration from Qg)(zo) to O,, the
following estimate for A and o as above:

f (1Dul + |F| + DPP19dz < %

0 (z0) 10y (zo)l Jour
2r\n+2 _n? g 2rymi2 2 -
<(=) Amar (=) BTmATT <A
© Q

As usual, we denoted py = p(zp). For 4 as in (9.2) we consider the upper
level set

(|IDu| + |F| + 1)U gz

E, 1) :={z € Q) : [Du@)"® > a}.
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In the following we show that also a reverse inequality holds true for small
radii and for the Lebesgue points zy € E(4, r;). By Lebesgue’s differentia-
tion theorem (see [7, (7.9)]) we infer for any zy € E(4, ry) that

lim (1Du| + |F| + 1)POU=9dz > |Du(zo)|P? 2 > 212

0 Jo )
From the preceding reasoning we conclude that the last inequality yields a
radius for which the considered integral takes a value larger than 1'%, and
on the other hand, the integral is smaller than A'~® for any radius satisfying
(9.3). Therefore, the continuity of the integral yields the existence of a
maximal radius g, in between, i.e. 0 < g, < % such that

9.4 JC (IDul + |F| + 1?0097 = 21=
50 (20)
holds and
9.5) JC“) (IDu| + |F| + 1)P00-9g7 < A1 Voe (on,%].
0, (20)

At this stage we note that Qfﬁ()% (z0) € O, and therefore by (9.4) and (9.5)
for s = 16p,, we conclude, that the assumptions of Proposition 8.1 are
fulfilled. Note here that 16 < 4y and therefore 160;, € (0,, *5~]. We now
impose the following bound on the radius r:

r<ry=ryn,N,v,L,y5),

where ry denotes the radius bound from Proposition 8.1 (i.e. ry = oy where
©o is from Proposition 8.1). We are now allowed to apply Proposition 8.1,
which yields the following Reverse-Holder inequality:

(9.6)

po0-s \ 3=
f |DulP""9dz < c( JC |Du|”™ 7 dz) +c f (IF] + DPOU=9dz
o) () sy, @) sy, @)

where g = g(n,y,) > 1 and ¢ = ¢c(n, N, v, L, y5).
Now, for n € (0,1) to be fixed later we consider the upper level sets
E(nA, ry) of |Du| defined above, and those of |F| + 1, defined by

DA, r) = {z € Qpy : (F@I+ 1P > na}.
If nA > BAy, then for a.e. zp € E(n4,r;) there exists a parabolic cylinder
gl; (zo) on which (9.4), (9.5) and (9.6) hold, and, moreover that QES()@O (z0) C
0,,. We let
Po = p(zo) pi= inf p() and  py= sup p().

gy ) 0% @)

Our next aim is to infer a suitable estimate for the L’©~9-norm of Du on
the cylinder QM) (z0)- Using in turn (9.6), (9.4), Holder’s inequality and

4xoy,
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(9.5) we obtain similar as in [7, page 238] that

JC (|IDu| + |F| + 1?12 qz
(GNP
Qg (20)

L) pO)(1-8)
<c |Du| + c (F|+1) dz
5., @0) 05, @)

< CUI_SJC (IDul + |F| + 1)PV19)dz
0% (20)

C @G-h-g) pOUA-¢)
- f A7 |Dul 7 dz
IQ , @IV conEwn)

C .
0D o f (F+ 10z,
IQ @)l Jo conemar

where ¢ = ¢(n, N, v, L,7y,). Choosing n = n(n, N, v, L,y,) > 0 small enough
—ie. of the form '~® = 1/(2c) — we can re-absorb the first integral ap-
pearing on the right-hand side into the left. Moreover, using (9.4) and (9.5)
with s = 4y, we can bound the left-hand side of the preceding inequality
from below by me . |DulPY'~®)dz. Multiplying the resulting inequality

4yoz)

by |QES()QZU (z0)| we obtain

@-1-¢g) ()(1-2)
f IDM|P(<)(17‘9)dZS Cf /1‘1#|D Il dz
QE{){(LZU(ZU) 00 (o)NEMAr)

207

.7 + Cf (|IF| + POy
05 (z0)N@(pA.r)

for a constant ¢ = c¢(n, N, v, L, y»).
Now, from (4.4) we infer that

BM
©09) 1< (2
'QZ()
Moreover, imposing a further bound for the radii r < ry of the following
form:

9.9) r<ry< =

64M

we get from (4.5) that
9.10) AP2POIPO < () SHHIL

Thus, so far we have shown that for any 4 > B4, the level set E(4, 1)
is covered by a family ¥ = {QES()Q (zo)} of parabolic cylinders with cen-
ter zo € E(A,r;) whose radii g,, are bounded by the radius ry from (9.9).
Furthermore, on each cylinder of the covering we have (9.7) at our hands.
From Vitali’s covering theorem, i.e. the version for non-uniformly para-

bolic cylinders from [7, Lemma 7.1] we infer the existence of a countable
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subfamily {Qii{_(zi)}:?i] C F of pair-wise disjoint parabolic cylinders, such
that the y-times enlarged cylinders Qfg()gv_(z[) cover the set E(4, ), i.e. up to

(D)

a set of measure zero there holds (note that Q ixo

(z) € Q,, by construction)

EQrmc| Oy, @ <0,
i=1
Recalling that the cylinders {Qfé))__ (z)}2, are pair-wise disjoint we infer from
(9.7) that ‘

G-1(-¢) p(-)(1-&) o
f |DulP19dz < cf AT puTT dz+cf (IF] + 1y"909 47
E(a,r1) E(nA,r) D)

with a constant ¢ = c(n, N, v, L,y,). Moreover, on E(nad, r)\E(A,r)) we
have [DulP©1~9 < A17¢ and therefore we may replace the domain of inte-
gration E(A, ry) on the left-hand side by E(n4, ;). Subsequently, replacing
nd by A and recalling that < 1 depends only on n, v, L,y, we obtain for
any A > BAy/n =: 4; that

(G-hd-e) pOU-¢) 1=
f |DulP""9dz < ¢ f A4 |Dul 7 dz+c f (IF] + DP9z,
E(A,r1) E(A,r2) D(A,r2)

for a constant ¢ = c(n, N, v, L,7y,). Having arrived at this stage we would
like to multiply the preceding inequality by 47! with & € (0, 1] and then
integrate with respect to A over (A, c0). This, formally, would lead in a
standard way to the desired higher-integrability of |Du|, where € has to be
chosen small enough in between in order to re-absorb certain terms on the
left-hand side. However, there is a difficulty in moving terms to the left-
hand side since they may be infinite. This technical problem can be treated,
by truncating |Du|P”) (see [2, § 8.4] for example). The precise argument is
as follows: For k > A; we define the truncation operator 7} : [0, c0) — [0, k]
by

Ti(0) := min{o, k} and Ex(,r) :={z € Q,, : Ti(IDu)|"®) > 4}, i=1,2.

Since Ey(A,r;) = 0 in the case k < A and Ei(A,r;) = E(A, rp) in the case
k > A, we can replace in the last inequality E(A, r;) by Ex (A, r;) fori = 1,2.
Now, we multiply on both sides by 1°~! and integrate with respect to 1 over
(41, ©0). In this way we obtain

00 00

_l-e pO)(1-e)
f ! f |DulP""9dz dA < ¢ f f 7|Dul "7 dzdA
4 Ex(4,r) A JE(A)

9.11) p f 257! f (F] + DHPOU9dzda.
A1 D(A,rp)

To the integral on the left-hand side we apply Fubini’s theorem and find that

0 Tr(|Du(z)|P@)
f ! f |DulP" 9 dzda = f |DufP =2 f A7 dadz
A Ey(A,ry) Er(A1,r1) A
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1 R e ) .
— _f [|Du|p(')(1_")Tk(|Du|”(')) X |Du|p<')(1_‘s)]dz.
€ JE1,m)

Similarly, we obtain for the first integral on the right-hand side that

« o p()(1-2) q ()(1-2) gre-1
f f D" dz s =2 1Dul T (1Dul) T dz.
A JEAr) q-

Ex(A1,r2)
and for the second integral on the right-hand side we get

0 1
f /lg—l f (|F| + ])p(')(l—S)dZd/l < - (|F| + l)p(')dz.
e D) € Jo,,

Joining the preceding estimates with (9.11) and multiplying by € we arrive
at

: e ceq p()(1-£) A=
f |Du|p(')(1‘&)Tk(|Du|p(>)£dzS __qf |Du|l 7 Tk(lDuI”()) 7 dz
Ex(1,r1) q Ex(A1,12)

+ A5 f IDulP"Pdz + ¢ | (F|+ 1)"Vdz,
Ex(A1,r1) 02

for a constant ¢ = ¢(n, N, v, L, y,). Since T;(|Dul’”’) < A, on Q,, \ Ex(4;, 1)),
we may replace the domain of integration Q,, \ Ey(4;, 1) on the left-hand
side by Q,,. At this stage we perform the choice of &. Choosing

g-1

2¢q -’
recalling the definitions of A;, i.e. A7 = (BAo/n)® < BA;/n since B/n > 1,
£ < 1, and of B from (9.2) and taking into account that T;(|Du|"")) < |Du|"®,
we arrive at

|Du|p(‘)(1_S)Tk(|Du|p('))6dz < %f |Du|p(')(]_S)Tk(|Du|p('))8dz

O<e<eg=¢ey(n,N,v,L,y,,0) :=

er Qr2
c.(2rfAe
+———2 | |Duff9"Pdz + ¢ f (IF| + D)"Vdz,
(n—ny Qo 0
where ¢, = (4y)’/n and 8 := %. Since r < r| < r, < 2r are arbitrary

we are in the position to apply Lemma 3.1 to infer that

f |Du|p(')(I_E)Tk(|Du|p(‘>)8dz < c(ﬂ)[Zﬁc*/léf |Du|17(-)(l—a)dZ +c (F| + 1)p<‘)dz] .
" Qor

Oar
Letting k — oo (which is possible by Fatou’s lemma) we get

|Du|p(')dz < C[/lg |Du|p(-)(l—8)dZ + (F| + 1)p(-)dz] ,

Or Qo Qo

for a constant ¢ = c(n, N, v, L,y,). Note that the dependence on 8 can be
eliminated since py, € [2,v,]. Finally, passing to averages and recalling the
definition of Ay, i.e. (9.1), we deduce that

(9.12)

£Pm
2-epyy

1
DuOdz < o £ (Dl +Fl+ 170 0dz) ™ e £ (F1+ 10z,

O Qo
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At this point, it remains to replace in the preceding estimate zf’; ZM by
(220

Tepy? where py = p(39) denotes the value of p(-) evaluated at the center 3
of 0, = 02,(30). Using (2.3) and & < § we obtain

epPu £po 2&(pu — po)
- = <2 - < 2ew(4r) < w(dr).
2 epm  2—epy S C—epm)@—spy) = 2EPM = P0) (4r) < w(4r)

The preceding estimate together with £ < 1 and (2.6) implies
ePm £pg

pOY(1=e) 7 \TM T o7\
(|IDul + |F| + 1) dz < (IDu| + |F| + 1)*Vdz
Oor Qo

0<

< C(n) (2r)—(n+2)w(4r)Mw(4r)'

In order to proceed further we use the logarithmic continuity condition (2.4)
twice to infer for the terms involving r and M that

4rn % <L)  and MY <¢(L).
The second assertion is obtained as follows :
MU = exp [w(4r)log M] < exp [w(1/M)log M] < e*,

provided r < ry < ﬁ. This restriction on the size of ry is already implied
by the restriction from (9.9). Joining the preceding estimates we find

EPM__EPO

) 2-epp;  2-epg

( f (1Dul + |F| + 1?9dz <en, L),
Qo

which together with (9.12) yields the desired estimate (2.7). This finally

completes the proof of Theorem 2.2.

Remark 9.1. Here, we briefly discuss if the result of Theorem 2.2 can be
extended to p(-) > n% We think that the result remains to be true in the sub-
quadratic case. However, there is an extra technical difficulty in the proof of
the localization argument in Lemma 4.1. In order to treat the subquadratic
case it would be necessary to improve the estimate A < co *M? in the
direction that no negative power of the radius appears, i.e. one would have
to show an estimate of the type A < cM. More precisely, the proof of this

inequality can be reduced to showing that

pO)1-2)
9.13) sup f
>0 JOi (@)

dz<cM.
Assumed that (9.13) holds true, by carefully inspecting the proof of Theo-

rem 2.2 and [7], one could extend Theorem 2.2 to the case p(-) > %

U=t )

©
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