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Abstract 1 

It is frequently observed that long cracks in sea-ice tend to form between parallel channels during ice management 2 

operations. The long cracks that develop play an important role in reducing the size of the managed ice floes, 3 

which is one of the main goals in an ice management operation. However, the fracture mechanism behind these 4 

long cracks remains unclear. To address this issue, a comprehensive study is reported here in two associated papers. 5 

In the current paper (i.e., Paper I), an edge-crack theoretical model is proposed to elucidate the parallel channels’ 6 

fracture mechanism. The proposed theoretical model is partially based on theories regarding ship – level ice 7 

interactions and partially based on previous studies on the general ice fracturing mechanism. The edge-crack 8 

theoretical model is extensively examined using a separately developed numerical scheme based on the eXtended 9 

Finite Element Method (XFEM), which allows for the existence of a singularity field and displacement jump 10 

within conventional Finite Elements (i.e.., FEM). The numerical scheme is benchmarked against known 11 

asymptotic analytical solutions and field experiments. Afterwards, with the developed numerical scheme, through 12 

fitting numerical simulation results in terms of the edge crack’s Stress Intensity Factors (SIFs) and a relevant 13 

asymptotical analysis, we managed to derive a group of closed-form formulae with wide application ranges. For 14 

the current engineering problem, this set of formulae quantifies the maximum parallel channel spacing maxh , 15 

beyond which the observed parallel channels’ fracturing events cease to occur. Moreover, the same numerical 16 

scheme is utilised to study parallel channels’ fracturing paths. Based on the XFEM-based crack path simulations, 17 

a second group of formulae and a numerical recipe were obtained to characterise a simplified crack path. This set 18 

of equations enables us to quantify the maximum floe size MCDL  that can be generated between two parallel 19 

channels and its corresponding floe size ratio. In the sequel paper (i.e., Paper II), these equations are validated by 20 

a series of well-controlled field experiments undertaken during the Oden Arctic Technology Research Cruise of 21 

2015 (OATRC2015). 22 

 23 

Keywords: 24 
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1 Introduction 27 

An important objective for a physical ice management operation is to reduce the size of drifting ice floes that will 28 

interact with downstream protected structures (e.g., platforms and drilling vessels). This can be achieved via 29 

different ice management strategies. Typically, several icebreakers are hierarchically deployed upstream and 30 

operated with different prescribed patterns to systematically breakdown the incoming large ice floes. The designed 31 

operational patterns include circular, elliptical, (linear/arched) racetrack, orbital, and linear patterns (Hamilton et 32 

al., 2011a, Hamilton et al., 2016). For all these different patterns, the icebreakers’ tracks over ice usually form a 33 

series of parallel channels (see Fig. 1a) filled with newly broken ice rubble (i.e., brash ice). Notably, it was often 34 

observed that long cracks were formed between parallel channels, leading to a further reduction in ice floe sizes 35 

(Farid et al., 2014, Hamilton et al., 2011a). The term ‘long cracks’, as adopted herein, is to make a differentiation 36 

from conventional fracture patterns such as radial and circumferential cracks formed during interactions of level 37 

ice and sloping structure (e.g., the bow region of an icebreaker or an offshore structure with a sloping surface at 38 

the waterline/ice line). Fig. 1a illustrates one such long crack captured during the Oden Arctic Technology 39 

Research Cruise in 2015 (OATRC2015). An overview of OATRC2015 is given by Lubbad et al. (2016); Fig. 1b 40 

conceptually highlights the described fracturing phenomena during ice management operations. 41 

 42 

Fig. 1. Illustration of long cracks formed between parallel channels during ice management operations, a) field experiment with icebreaker 43 
Oden; b) conceptual abstraction. 44 

Such ice fracturing phenomena are rather important while designing ice management operations. Hamilton et al. 45 

(2011a, 2011b) developed a numerical simulator based on ship and ice field kinematics to quantify the 46 

performances of different ice management strategies. One critical assumption of the simulation is that ice floes 47 

with aspect ratios of 1:1 are ‘naturally’ generated between two parallel channels. Given the distance between two 48 

parallel channels, the downstream managed ice floe size is thus quantified. This assumption was mainly based on 49 

field observations, as there exist no theoretical explanations or experimental quantifications. This paper (i.e., Part 50 
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I of two sequential papers) seeks to offer a theoretical explanation regarding such an observed ‘parallel channels’ 51 

fracturing mechanism’. The sequel paper (i.e., Part II) reports comparisons between the theoretical results and full-52 

scale data collected by conducting well-controlled experiments in the field. The two papers address and answer 53 

practical questions regarding, for example, ‘optimised parallel channel spacing’ and ‘out-going floe size’ for 54 

specific ice management operations. Moreover, the theoretical formulations presented herein are useful to enhance 55 

the capacities of the numerical Simulator for Arctic Marine Structures (SAMS, 2018) so that it can be used to 56 

evaluate different ice management strategies. For a description of SAMS, its theoretical background and potential 57 

applications, the reader is referred to (Lu, 2014, Lubbad and Løset, 2011, Lubbad and Løset, 2015, Lubbad et al., 58 

2018).  59 

This paper starts with qualitative field observations regarding the ice fracturing phenomena between parallel 60 

icebreaker channels. Based on field observations and knowledge regarding ship – level ice interactions, a 61 

theoretical model is proposed to address one of the important contributors to the observed long cracks. The 62 

theoretical model entails an edge crack’s propagation and kinking in the presence of a neighbouring free boundary. 63 

Extensive parametric studies were carried out on the theoretical model. All the analyses are carried out with an 64 

eXtended Finite Element Method (XFEM) based numerical scheme. The numerical results were further fitted to 65 

analytical closed-form formulae conforming to both existing analytical results in limiting scenarios (i.e., 66 

asymptotic solutions) and field experiments. In the sequel paper (Paper II), the developed analytical formulations 67 

will be verified against a series of well controlled parallel channel tests undertaken during OATRC2015.  68 

2 Observations and Theoretical Model 69 

2.1 Ice Fracturing during Ship – Level Ice Interactions  70 

Before we present the ship – ice interactions under the presence of an adjacent parallel channel, it is beneficial to 71 

take a retrospective look into the theory of ship – level ice interactions. This is because the theory can be further 72 

extended to the observed ‘parallel channels’ fracturing mechanism’. Particularly, it is the ice breaking/fracture 73 

patterns that are of interest here. It is generally accepted that during ship – level ice interactions, aside from local 74 

crushing and potential shearing failure taking place at the contact zone (Enkvist et al., 1979), level ice mainly fails 75 

in the bending failure mode. This continuous bending process leads to an identifiable fracture pattern with the 76 

consecutive formations of cusps (or half-moon) and wedges along the ship’s bow’s waterline. Naegle (1980) 77 

reviewed the previous literature and noted the general agreement regarding such level ice fracture patterns. 78 

However, Naegle also noted that two schools of thinking exist regarding how ice fails at the ship stem. One school 79 
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favours a bending failure mechanism at the stem (e.g., (Lewis and Edwards, 1969, Milano, 1972, Kotras et al., 80 

1983)), while the other school (e.g., (Kashteljan et al., 1969, Enkvist et al., 1979, Ettema et al., 1989)) suggests 81 

that mainly crushing and shearing take place at a ship’s stem. Another opinion was later put forward by Lindqvist 82 

(1989), who mentioned that continuous crushing occurs only for wedge-shaped bows, and by Valanto (2001), who 83 

stated that ‘hardly any bow crushing occurs for stems with sufficient radius’. In later studies regarding ship – level 84 

ice interactions, without specially treating the potential dominant stem shearing failure, most researchers focused 85 

on the cusp and wedge bending failures around the waterline of a ship’s entire bow (e.g., (Riska, 2011, Su et al., 86 

2010, Sawamura et al., 2009, Tan et al., 2013, Lubbad and Løset, 2011)). This paper adopts the same ‘bending-87 

failure dominant’ interaction mechanism to further describe the physics behind the crack formations. Accordingly, 88 

the same ice breaking pattern (i.e., cusp- and wedge-shaped crack formations) around a ship’s entire bow is adopted 89 

herein. Fig. 2 illustrates both a conceptual plot and a perfect real-life local bending failure pattern in sea ice. In 90 

terms of the cusp- and wedge-shaped crack formations, two types of crack, i.e., radial and circumferential cracks, 91 

are highlighted.   92 

 93 

Fig. 2. Cusp- and wedge-shaped crack formations around the ship hull: a) conceptual plot of a series of crack formations; 2) a real-life 94 
example showing a perfect crack pattern captured by a camera installed aboard Frej during OATRC2015. 95 

Historically, radial and circumferential cracks have been studied extensively with a theoretical model of ‘an 96 

infinite/semi-infinite elastic plate on a Winkler type foundation’ (see, e.g., a review paper by Kerr (1976)). It is 97 

generally agreed that while a large floating ice plate is loaded vertically, radial cracks first emanate from the 98 

loading area; afterwards, its final failure is governed by the formation of a circumferential crack. Putting this 99 

fracturing mechanism under the context of ship - level ice interaction scenarios, the idealised interaction sequences 100 
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in Fig. 3 are anticipated. In reality, the formation of contact zones and their associated sequential fractures are not 101 

synchronised around the entire ship’s bow, as shown in Fig. 3. It can very well be that at any given time point, e.g., 102 

2t , radial cracks are formed at some of the contact zones, whereas circumferential cracks are already formed at 103 

some other zones. In addition, the formation of contact zones is rather random both with respect to time and 104 

location. Nevertheless, such random contact and fracture processes create an identifiable fracture pattern in the 105 

channel (Naegle, 1980, Lewis and Edwards, 1969).  106 

 107 

Fig. 3. Sequential formation of radial and circumferential cracks during ship - level ice interactions; t3>t2>t1. 108 

2.2 Ice Fracturing with an Adjacent Free Boundary  109 

In terms of ship-ice interactions with the presence of a neighbouring parallel channel, the fracture pattern can be 110 

altered. One of the significant consequences is that the nearby free boundary can influence the propagation of 111 

radial cracks and promote the formation of long cracks rather than circumferential cracks (i.e., at 3t , the fracture 112 

pattern changes from that shown in Fig. 3 to that in Fig. 4). In Fig. 4, the initial radial crack shows a great tendency 113 

to be further propagated through the entire ice region reaching the nearby free boundary. Depending on the initial 114 

contact’s location and the orientation of the initial radial crack, the final long crack shows different paths.  115 
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 116 

Fig. 4. Potential fracture pattern with the formation of long cracks between two parallel channels. 117 

Fig. 4 demonstrates long Cracks #1 to #4, among which long Cracks #1 to #3 have initial orientations that are 118 

almost in line with the ship’s surge direction, whereas Crack #4’s initial direction is perpendicular to the surge 119 

direction. These two types of cracks are termed ‘front’ and ‘side’ cracks and were studied previously with a 120 

simplified fracture model (Lu et al., 2015d). The sketched long cracks in Fig. 4 are frequently observed in the field. 121 

Fig. 5 shows two scenarios of the corresponding cracks observed in the field during the Oden Arctic Technology 122 

Research Cruise in 2013 (OATRC2013). The images in Fig. 5 were captured by a 360° camera system installed 123 

on board Oden (Bjørklund et al., 2015) and qualitatively illustrate the pattern of long cracks.  124 

 125 

Fig. 5. Formation of long cracks observed in the field in the presence of a neighbouring free boundary on August 28th, 2013, during 126 
OATRC2013. 127 

Although the long cracks shown in Fig. 5 were not strictly associated with the parallel channels, the influence of 128 

an adjacent free boundary is demonstrated. Among all the potential long cracks (#1-4 shown in Fig. 4 and Fig. 5), 129 

we shall primarily focus on Crack #1, which originates from the ship’s stem. This is because, among all the 130 
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potential long crack formations, Crack #1 leads to a greater chance to produce the largest ice floe between two 131 

parallel channels. Cracks #1 to #3 are, in many cases, prone to be mutually exclusive (e.g., see Fig. 5). The reason 132 

is that once a long crack is formed, other contact zones’ pressures are alleviated, leading to lower probabilities to 133 

form fractures of similar scale. Supposing that only Crack #1 is occurring, with the absence of Cracks #2 and 3, a 134 

relatively large ice floe can be created. During an ice management operation, one primary goal is to effectively 135 

fracture ice and reduce the size of ice floes under a certain threshold. By knowing the largest possible ice floes that 136 

can be created between two parallel channels via studying the scenario of Crack #1 enables us to quantify this 137 

threshold and to establish its relationship with other factors (e.g., ice thickness, channel spacing and contact 138 

properties).    139 

 140 

2.3 Theoretical Model and Assumptions 141 

Given the fracturing mechanism presented in previous sections, a simplified interaction model and its assumingly 142 

equivalent fracture model are proposed in Fig. 6 to address the propagation of Crack #1. In Fig. 6, the channel of 143 

interest is located at the port side (left side) of the vessel. The channel spacing (distance from the ship’s centreline 144 

to the closest edge of the channel) is denoted h . The ice floe is assumed to be infinitely large (i.e., H h  and 145 

L h ) to simplify the theoretical analysis (i.e., additional free boundaries are excluded). At the ship’s stem, we 146 

focus on the case with a radial crack 0A  that is initially developed in the surge direction. Within the interaction 147 

zone, a pair of wedging-out forces YF  and a force component in the surge direction XF can be identified acting on 148 

the ice floe (see Fig. 5). Not plotted in the figure is the out-of-plane vertical force component ZF , which is 149 

primarily responsible for creating radial cracks (e.g., 0A ) and potential circumferential cracks. For the current 150 

paper, the formation of long cracks is essentially a splitting problem due to in-plane force components XF  and 151 

YF  (Bhat et al., 1991, Bhat, 1988, Dempsey et al., 1993) as plotted in Fig. 6a.     152 
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 153 

Fig. 6. Proposed theoretical model for the formation of long cracks with the presence of an adjacent parallel channel (note that the sketched 154 
sizes are not in scale), a) actual engineering problem; b) a simplified two dimensional model involving an edge crack in a quarter plane.  155 

Notably, the cracked geometry involving an edge crack in Fig. 6b was extensively studied in the early literature 156 

under various loading conditions. General solutions to this cracked geometry have wide engineering applications 157 

in relation to edge dominated cracking phenomena (Thouless and Evans, 1990, Thouless et al., 1987). In ice 158 

research communities, the same edge cracked geometry has been adopted to address ice fractures at different scales. 159 

For example, the spalling fracture (flaking) of an ice sheet while interacting with a vertical structure was studied 160 

by a similar model (Evans et al., 1984). In the spalling fracture model (see Fig. 7a), an ice-structure contact pressure 161 

is applied onto the surface of 1 2O O . In this context, the surface 1 2O O  represents the ice thickness direction 162 

(i.e., ice thickness = H + h). Because of the tri-axial stress state within the ice thickness, an initial crack 0A  at a 163 

location O  tends to open and kink towards the ice surface (i.e., 1 3O O ), thus creating a spall (i.e., within 164 

1 4 3O O O O   ) off the intact ice sheet. Moreover, Renshaw and Schulson (2001) utilised the same cracked 165 

geometry at a much smaller scale (i.e., approximately 1 to 4 mm) to elucidate the mechanisms of comb-like 166 

secondary cracks in the scenario of brittle compressive failures. In the comb-crack model (see Fig. 7b), due to a 167 

compressive force, a frictional drag along the 2 1O O  surface creates a clockwise overturning moment upon 168 

micro-plates (e.g., 1 4 3O O O O   ), thereby leading to the successive bending failures of micro-plates and 169 

creating the observed secondary cracks (Schulson and Duval, 2009).  170 
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 171 

Fig. 7. Previous application of the proposed fracture model in ice research: a) cross section of an ice – structure contact in the thickness 172 
direction with a scale within 2 metres; b) the secondary crack development model at ice grain scale. 173 

Both of the aforementioned applications implicitly adopted the Linear Elastic Fracture Mechanics (LEFM) theory, 174 

which is yet subjected to discussions given their limited physical scales (i.e., < 2 m for the case in Fig. 7a and 175 

approximately 1 to 4 mm for the case in Fig. 7b, respectively). This is because the presence of a Fracture Process 176 

Zone (FPZ) ahead of a crack tip in quasi-brittle materials (e.g., ice) would invalidate LEFM given the limited 177 

cracked body size (Dempsey, 1991, Dempsey et al., 1999a, Bažant and Planas, 1998). Without detailed reasoning, 178 

Bažant (2002a, 2002b) noted that the FPZ’s size for sea ice is approximately 40 cm and several metres in the 179 

vertical and horizontal directions, respectively. Furthermore, Mulmule and Dempsey (2000), after rigorous model 180 

calculations and a series of field measurements (Dempsey et al., 1999a), concluded that LEFM becomes valid only 181 

after a cracked body size 12 ch  , which is approximately 0.5 to 3.6 m (see the detailed reasonings in, e.g., (Lu et 182 

al., 2015b, Lu et al., 2015d)) given the definition of characteristic length ch  introduced by Hillerborg et al. (1976) 183 

and a range of fracture energy values available in the literature (Dempsey et al., 1999a, Mulmule and Dempsey, 184 

1998, Schulson and Duval, 2009). In comparison, the parallel channel fracturing problem in Fig. 6 is at a much 185 

larger scale, which is in the range of tens to hundreds of metres. Even if indeed a large FPZ exists for sea ice, the 186 

cracked body’s size (Fig. 6b) in our application is large enough such that LEFM theory becomes valid. Therefore, 187 

one major assumption in this paper is the adoption of LEFM theories to study the long cracks developed in between 188 

two parallel channels with the edge crack model. In terms of the force conditions in the proposed cracked body in 189 
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Fig. 6b, we follow an existing paper (Freund, 1978) and introduce additional force components in Eq. (1), with t  190 

being ice thickness. 191 

 
/ 2

/
X

Y

P F t

Q F t




  (1) 192 

 193 

3 Methods 194 

With the proposed edge crack model in Fig. 6b, we are to establish the relationship among geometrical factors (i.e., 195 

h  and 0A ), crack propagation criteria related terms (i.e., SIFs IK  and IIK ) and the eventual crack propagating 196 

path. Ultimately, we shall address practical questions such as 1) what is the maximum channel spacing maxh  197 

beyond which the long crack ceases to develop and 2) what is the maximum floe size maxL  that can be produced 198 

between two parallel channels with a given spacing. In this paper, an XFEM based approach is developed to 199 

evaluate crack 0A ’s propagation. During the course of crack propagation, we assume that a quasi-static 200 

equilibrium always exists, i.e., before each crack segment iA ’s advancement (i.e., 1i iA A  ), the overall SIF 201 

( )tot i ICK A K . 202 

3.1 Calculation of Stress Intensity Factors 203 

To evaluate the SIFs for the edge cracked body in Fig. 6b, we first consider the two asymptotic scenarios in Fig. 204 

8, for which analytical solutions are available in the existing literature.   205 
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 206 

Fig. 8. Two asymptotic scenarios of the edge crack model in Fig. 6b with a) 0A h  and b) 0h A .  207 

 208 

3.1.1 Asymptotic solution for the case of long crack 209 

For the long crack scenario (i.e., 0A h ) in Fig. 8a, the SIFs are written in Eq. (2) according to Dyskin et al. 210 

(2000) (the solutions were originally from Zlatin and Khrapkov (1990, 1986)) by considering a semi-infinite 211 

beam’s solutions under a combined total force ( N  and T ) and moment ( M ) at the crack tip. 212 

 

3/2 1/ 2 1/ 21
( )

2

1.932 1.951 0.4346
, ,

1.506 0.032 0.5578

beam
I

M N T Mbeam
II

M N T

K
K Mh K Nh K K Th

K

K K K

   
    

 
     

             

  (2) 213 

Considering the external forces, which lead to 0M QA , N Q , and T P  , the long crack’s asymptotic 214 

solutions are formulated in Eq. (3). 215 

 0

0

1.932( / ) 1.951 0.5314

1.506( / ) 0.032 1.3108

beam
I
beam
II

A hK
h Q P

A hK

     
          

  (3) 216 

Eq. (3) shows that the crack parallel force P  tends to close the crack and that the crack orthogonal force Q  is 217 

trying to open the crack. The influences from both of these force components upon SIFs are considered in this 218 

paper. 219 
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3.1.2 Asymptotic solution for the case of short crack 220 

For the short crack scenario (i.e., 0h A ) in Fig. 8b, the SIFs can be written as the summation of two parts in Eq. 221 

(4) according to a similar study conducted by Dyskin et al. (2000).  222 

 0 ( , )dip
i i iK K K i I II     (4) 223 

According to Dyskin et al. (2000), in the scenario of 0h A , the leading term 0iK  denotes the solution as if the 224 

‘nearby’ free boundary is infinitely far away (i.e., h  ). In this regard, the solutions for 0iK  in Fig. 8b with 225 

h  can be found in the literature (e.g., (Freund, 1978, Dempsey and Mu, 2014, Tada et al., 2000)) and are 226 

written in Eq. (5).  227 

 0 1/ 20
2

0

2
4

( )
4

0

I

II

K Q PA
h

K h







           

  (5) 228 

The other term, dip
iK , takes into account the influence of the free boundary. Based on the dipole asymptotic 229 

method, Dyskin et al. (2000) derived the closed form of dip
iK  for the case of an embedded crack, demonstrating 230 

the term’s functional dependency upon 3/2
0( / )A h . In this paper, we will assume a similar functional dependency 231 

such that 4
3 0( / )dip

iK A h   , for which the parameters 3  and 4  are fitted from numerical simulation results. 232 

  233 

3.1.3 Proposed solution for the case of arbitrary crack length 234 

Having obtained the above two asymptotic solutions, we adopt Eq. (6) with parameters 1 , 2 , 3  and 4  (to be 235 

fitted by numerical results) to construct the complete solution of SIFs for the edge cracked model in Fig. 6b. A 236 

similar version of Eq. (6) was originally used by Dyskin et al. (2000) to interpolate intermediate results between 237 

two bounding asymptotic values. It has the properties that beam
i iK K  as 0 /A h   (i.e., a long crack) and 238 

0
dip

i i iK K K   as 0 / 0A h   (i.e., a short crack). 239 

 
2 4 2

2 2

1 0 3 0 1 0
0 0 2 4
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  (6) 240 

  241 
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3.2 Crack Propagation Path 242 

Based on the adopted LEFM assumption, a new crack grows once the overall SIF 2 2
tot I IIK K K   reaches the 243 

fracture toughness ICK  of sea ice. Afterwards, the crack propagates along a certain path throughout the whole ice 244 

section 1 4 3O O O O    and reaches the free boundary.  245 

In terms of the direction of propagation from iA  to 1iA  , three criteria are often adopted stating that the crack 246 

propagates in the direction *  (Moës et al., 1999). These criteria show rather little variation for most engineering 247 

applications (Hutchinson and Suo, 1991). In this paper, for the convenience of having an explicit formulation, we 248 

adopt the third criteria, with *  given by Eq. (7) (Hibbitt et al., 2013).  249 

 
2 4 2 2

* 1
2 2

3 8
cos ( )

9
II I I II

I II

K K K K

K K
   




  (7) 250 

To predict the crack path, we first numerically evaluate SIFs ( )I iK A  and ( )II iK A  given an initial crack geometry 251 

iA ; after obtaining the crack’s propagation direction *  by solving Eq. (7), new crack geometry 1iA   can be 252 

obtained. The procedure is repeated until the solution-dependent crack path reaches the free boundary, thus 253 

yielding the crack path. 254 

 255 

3.3 XFEM based Numerical Scheme 256 

Here, we shall adopt a generalised numerical approach to calculate the crack’s propagation. To avoid continuous 257 

mesh refinement and to capture the stress singularity at the crack tip, an XFEM based numerical scheme (Lu et al., 258 

2017) is utilised. Based on results from the numerical scheme, we aim to provide detailed analytical solutions to 259 

the SIFs values for the initial crack in accordance to Eqs. (6) and a study on the crack path trajectories during the 260 

crack propagation process.  261 

3.3.1 A brief introduction to XFEM 262 

For a cracked body involving complicated geometries or loading conditions, closed-form analytical solutions in 263 

terms of its stress state are usually not available. Thus, numerical methods, e.g., Finite Element Methods (FEM) 264 

and its various evolved forms and the Boundary Element Method (BEM), are usually adopted to characterise the 265 

stress state near a crack tip (Anderson, 2005). One of the major challenges of various numerical methods are to 266 

replicate the ‘stress concentration’ and ‘discontinuities’, which involve significant/abrupt changes in field 267 
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variables (e.g., stress, strain and displacements) near the crack tip and along the crack. Traditionally, rather refined 268 

meshes (e.g., a so-called focused mesh) and specially designed elements, e.g., singularity element (Tracey, 1971), 269 

were utilised to characterise the field variables near the crack tip. Later, the domain integral approach (Shih et al., 270 

1986, Moran and Shih, 1987) largely increased the calculation efficiency even with a relatively coarse mesh. In 271 

this paper, an XFEM based approach is adopted. This approach together with the domain integral method enable 272 

us to utilise an even coarser mesh to achieve satisfactory accuracy. The general formulation of the XFEM approach 273 

is written in Eq. (8) (see, e.g., (Hibbitt et al., 2013)).    274 

 
4

1 1

[ ( , ) ]
n

m
i i i m i

i m

N H F r 
 

   u u a b   (8) 275 

Within Eq. (8), the first term on the RHS represents the conventional FEM with a nodal displacement of iu  that is 276 

multiplied by shape functions iN . The second term on the RHS applies to the nodes ia  of the enriched elements 277 

that are fully cut through by a crack and describes the displacement jump over the crack by additional 278 

multiplication by the Heaviside function H , the ‘jump’ property of which is illustrated in Eq. (9). 279 

 
1 if node with coordinate is on the RHS of the crack

( )
1 otherwise

i
H


 

x
x   (9) 280 

The third term is applied to the element that encompasses the crack tip, describing the near-tip displacement field 281 

by additionally multiplying an asymptotic singularity function ( , )mF r  , which is expressed in Eq. (10) with polar 282 

coordinates r  and   with the origin at the crack tip (see Fig. 9).  283 

 ( , ) [ sin( / 2) cos( / 2) sin( )sin( / 2) sin( )cos( / 2)]nF r r r r r         (10) 284 
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 285 

Fig. 9. Enriched element encompassing the crack tip and corresponding leading term of the asymptotic function in Eq. (10).  286 

 287 

Notably, the leading term in Eq. (10) introduces a discontinuity along a crack face (i.e., at    ) within a 288 

partially cracked element (Moës et al., 1999, Belytschko and Black, 1999). Following standard FEM procedures, 289 

this term is visualised in Fig. 9 with a 2 1  bilinear rectangular element (see Fig. 9a) as an example. This 290 

interpolation function is visualised within the partially cracked element in both two- and three- dimensional 291 

perspectives in Fig. 9b and c, respectively. The discontinuity at     is illustrated. The asymptotic singularity 292 

function ( , )mF r   was derived from the closed-form near-crack tip displacement field of a linear elastic and 293 

isotropic material under a combination of Mode I and Mode II fractures (e.g., see Eqs. (4, 5) in Belytschko and 294 

Black (1999)). The analytical solution to the near-tip behaviour largely increases the simulation efficiency and 295 

accuracy. However, if material properties other than linear elastic and isotropic behaviours are encountered, 296 

different functions should be adopted. In Eq. (8), both ia  and m
ib  are additionally enriched degree of freedoms 297 

that are to be calculated given the cracked geometry and loading condition.  298 
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3.3.2 A Numerical Scheme for Crack Propagation 299 

In this paper, the XFEM functionality within the ABAQUS/Standard was employed to calculate SIFs IK  and IIK  300 

via a contour integral method involving the interaction energy release rate formulation (Shih and Asaro, 1988). 301 

Afterwards, a numerical scheme is developed to update the crack geometry according to Eq. (7) for each new 302 

simulation loop, thereby driving the crack propagation; the scheme has been programmed in MATLAB. The 303 

general procedure is illustrated in Fig. 10, and detailed information can be found in (Lu et al., 2017).  304 

 305 

Fig. 10. General procedure of the developed numerical scheme to propagate the crack. 306 

By virtue of XFEM’s mesh independency characteristics, the solid body needs to be meshed only once in Fig. 10’s 307 

numerical scheme. This largely increases the computational efficiency by alleviating us from constantly re-308 

meshing the solid body. In each consecutive simulation, only the crack’s geometry is updated according to the 309 

calculated SIFs IK  and IIK  and Eq. (7).  310 

3.3.3 Numerical Set-ups 311 

Based on the previous described numerical method and numerical scheme, the mechanical model in Fig. 6b is 312 

solved with the set-ups in Fig. 11. Theoretically, we are expected to calculate models in Fig. 6b with infinite 313 

boundaries at O2-O5 and O3-O5. However, numerically, it is convenient to define a finite simulation domain. In 314 

this regard, we set fixed boundaries O2-O5 and O3-O5 far from the crack tip and loading location. Trial simulations 315 

were made in-advance to ensure that the boundaries are far enough to be considered as infinitely distant. To cover 316 

a large range of 0 /A h  scenarios and reach asymptotic solutions more effectively, two different geometries are 317 

adopted, i.e., geometries catering to the short crack scenario in Fig. 11a and the long crack scenario in Fig. 11b. In 318 

these two different geometries, a biased mesh pattern is employed. Fig. 11a and b illustrate the distribution of 319 

element nodes in the simulation domain. Dense meshes were utilised near the crack and loading areas such that 320 

accurate results can be obtained in the crack propagation simulations. Fig. 11c locally illustrates the mesh pattern 321 

together with the loading conditions. Because both the P  and Q  force components were simulated, a relatively 322 

symmetrical mesh pattern towards either side of the crack is adopted.    323 
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 324 

Fig. 11. Numerical set-ups: biased mesh pattern with a) short crack; and b) long crack scenarios; c) mesh pattern near the loading area and 325 
initial crack. 326 

Considering the additive nature of linear elastic problems, we simulate two separate loading cases, i.e., Cases #1 327 

( 1Q   and 0P  ) and #2 ( 0Q   and 1P  ). In the simulations, we varied the ratio of 0A  over h  and calculated 328 

the corresponding IK  and IIK . According to Eq. (6), together with numerical results, parameters ( 1, 2,3,4)i i   329 

are fitted to complete Eq. (6). Moreover, following the crack propagation criteria, the crack paths are studied.  330 

4 Benchmark Tests 331 

Before we apply the proposed methods and numerical scheme to our problem, relatively simplified benchmark 332 

tests were conducted to validate the numerical model. The benchmark test results are presented herein. 333 

4.1  Calculation of the SIFs 334 

For the edge cracked model in Fig. 6b, analytical solutions exist for the asymptotic scenarios of 0 /A h   and 335 

0 / 0A h   (i.e., in Eqs. (3) and (5)). The validity of the adopted numerical model can be proved if the numerical 336 

results show similar results towards asymptotic values. Before we use the numerical results for fitting Eq. (6), the 337 

asymptotic behaviours of the adopted numerical model in each loading scenario have been satisfactorily 338 

benchmarked. More details of this are presented in the results section.    339 
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4.2 Crack path simulation 340 

Next, the proposed numerical scheme’s capability for predicting crack paths is studied. In this regard, an off-centre 341 

splitting experiment was carried out. The test was conducted on a square shaped ice floe, which was cut free from 342 

land-fast sea ice cover at Svea, Svalbard in April 2017. The geometry, initial crack length, and thickness of the ice 343 

floe are shown in Fig. 12a. Notably, the initial crack 0A  was prepared ‘off-centre’. This is in direct contrast to the 344 

test setup described in previous ‘fracture properties – oriented tests’ (Dempsey et al., 1999a, Dempsey et al., 1999b, 345 

Morley and Dempsey, 2015, Lu et al., 2015a), in which a rectangular ice floe was loaded right in the centre. For a 346 

centrally loaded test sample, in an ideal condition, the crack is expected to propagate along the centre line due to 347 

its symmetry conditions. However, for a test sample loaded off-centre, the crack tends to kink. This is the major 348 

motivation behind this test.  349 

The square ice floe shown in Fig. 12a was loaded using a purposely designed jack, which was sufficiently stiff 350 

such that little additional compliance was introduced into the entire test system. The jack together with the motor 351 

were also sufficiently strong to carry out a displacement-controlled loading scenario. Fig. 12b shows in detail how 352 

the splitting force pair YF  was applied to the prepared ice floe. The initial crack on the ice floe was comprised of 353 

two sections. One section (i.e., 140 cm) was cut using a heavy machine (i.e., the DitchWitch described in Lu et al. 354 

(2015a)) with a crack width of approximately 10 cm, and the crack tip part (i.e., 10 cm) was cut with a handsaw 355 

with a crack width < 3 mm.   356 

 357 

Fig. 12. Field off-centre splitting test set-up. 358 

During the test, the ice floe was free floating with no significant boundary confinement aside from the presence of 359 

sea water. The jack’s loading speed was 0.6 mm/s, which was considered slow enough such that a quasi-static 360 
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loading scenario can be assumed. After the test, the crack path was documented by camera images (e.g., see Fig. 361 

13a). With the knowledge of a rectangular shape in the image (i.e., the rectangular frames highlighted by dark 362 

lines), a similar image processing technique (see, e.g., (Lu et al., 2016b)) was adopted to rectify Fig. 13a into b 363 

without perspective distortion. Thus, the digitalised crack path was obtained, as depicted in Fig. 13b. 364 

 365 

Fig. 13. Crack path after off-centre splitting test. 366 

At the same time, simulations based on the developed scheme in Fig. 10 was conducted. The simulated crack path 367 

versus the experiment are illustrated in Fig. 14.  368 

 369 

Fig. 14. Crack path of off-centre splitting experiment, a) simulation results; b) a comparison between the experimental and simulated results. 370 

  371 
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5 Results 372 

After the satisfactory benchmark tests conducted in the previous section, the developed numerical scheme was 373 

applied to the proposed test setup in Fig. 11 to study the edge crack’s propagation.  374 

5.1 Calculation of Stress Intensity Factors 375 

In terms of the calculations of SIFs, the explicit formulae are developed in the following Eqs. (11) to (16) given 376 

the asymptotic constraints in Eqs. (3) and (5). This derivation is based on numerical simulation results with varying 377 

0 /A h  values for the numerical setup in Fig. 11. For each loading case, the simulated results, IK , IIK  and totK , 378 

are later fitted with the function in Eq. (6), fulfilling the asymptotic constraints. With the obtained fitting 379 

parameters, we present the final results in Eqs. (11) to (16). 380 

For loading Case #1 ( 1Q   and 0P  ), the Mode I and II SIFs are presented in Eqs. (11) and (12).  381 

 1/ 20 0
2 -1.3569

0

2.0284( / ) 2.98904
( )

4 ( / ) 1.0499

Q
I A A hK h

Q h A h




 
 

 
  (11) 382 

 0
-1.4702

0

1.8134( / ) 0.5498

( / ) 1.2041

Q
II A hK h

Q A h





  (12) 383 

For loading Case #2 ( 0Q   and 1P  ), the Mode I and II SIFs are presented in Eqs. (13) and (14).  384 
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  (13) 385 
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Correspondingly, the Mode I and II SIFs under both Q  and P  are written jointly in Eqs. (15) and (16). 387 
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  (15) 388 
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The fitted Eqs. (11) to (14) are plotted together with the simulation results in Fig. 15. Satisfactory fittings in both 390 

the local data points in Fig. 15a and all the data points, i.e., the global behaviour, are illustrated in Fig. 15b. In 391 

particular, Fig. 15a demonstrates the 0 / 0A h   asymptotic behaviour in accordance with Eq. (5) for the P  and 392 

Q  loading condition separately, and Fig. 15b demonstrates the 0 /A h   behaviour following Eq. (3).   393 

 394 

Fig. 15. Simulation results and fitted equations for normalised SIFs, a) local simulated data points with 0 / 0A h   asymptotic behaviour; 395 

b) all simulated data points with 0 /A h   asymptotic behaviour. 396 

 397 

5.2 Crack Propagation Path 398 

Regarding the crack path studies, in this study, our aim is primarily directed to engineering applications. Therefore, 399 

precise and thorough crack paths simulations under the complete combinations of P  and Q  forces and various 400 

0 /A h  ratios are not carried out in this paper. Instead, using our developed numerical scheme, we confined our 401 

simulations in the region where 0 /A h  is approximately 1 and smaller because in the current engineering 402 

applications concerning long cracks within two parallel channels, its spacing (i.e., h ) is generally larger than the 403 

initial crack length 0A . In addition, a careful examination of Eq. (5) shows that a crack ceases to propagate if 404 

2 / 0Q P    in the limiting scenario of 0 / 0A h  . To achieve generality in the final results and for the current 405 

engineering application, we limit our analysis within 1.5P Q .  406 

First, visual illustrations of the crack paths under different P  and Q  ratios are presented in Fig. 16 for a particular 407 

case with 0 / 0.6A h  . Simultaneously, we introduce in Fig. 16a the parameter maxL , which can be correlated to 408 

the largest size of an ice floe generated between a parallel channel.    409 
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 410 

Fig. 16. Visual illustrations of crack paths influenced by various combinations of P  and Q  for the case 0 / 0.6A h   (Note that only the 411 
lower-left part of the simulated domain is illustrated).   412 

 413 

Fig. 17. Summary of XFEM-based numerical simulation results of maxL  with varying 0 /A h  and /P Q  ratios. 414 

The complete simulation results concerning maxL  with varying 0 /A h  and /P Q  are presented in Fig. 17. For the 415 

XFEM based numerical scheme, the utilised mesh sizes shown in the dense mesh region in Fig. 11 were varied for 416 

a large number of initial trial simulations until the final simulated crack path became less affected by the chosen 417 

mesh size. Fig. 17 presents results for two different mesh sizes, i.e., 0.04 h  and 0.08 h .   418 

Post-print version of the paper by Lu et al. 
in Int J Cold Region of Science and Technology,  156 (2018) 117-133, 

https://doi.org/10.1016/j.coldregions.2018.07.010



In practical applications, it is nontrivial to establish a similar computational mechanics (e.g., XFEM) based 419 

numerical scheme to derive maxL . Therefore, a relatively simple approach combining the theoretical results in Eqs. 420 

(11) to (16) and the numerical results in Fig. 17 is introduced herein to approximate maxL . The basic idea is to 421 

idealise a kinked crack in Fig. 18a to a scenario in Fig. 18b with a straight crack and an additional moment 422 

M P h   having a tendency to close the crack. h  is the horizontal (i.e., in Y-direction in Fig. 6) distance 423 

between the crack tip and the loading point O . To analytically calculate the SIFs through Eqs. (11) to (16) in this 424 

idealised scenario, we further introduce the effective splitting opening force /effQ Q P h A    in an effort to 425 

approximate the crack closing effect from the additional moment M . Based on this idealised geometry and 426 

loading condition, we assume the actual kink angle in Fig. 18a can be approximated by the model in Fig. 18c with 427 

scaling parameters fitted according to numerical results shown in Fig. 17.  428 

 429 

Fig. 18. Idealisation of a kinked crack to straight crack in an off-centre splitting scenario.  430 

Following the above idealisation procedure, the calculation of the intermediate '
maxL  is achieved via the following 431 

numerical recipe.   432 

Table 1. A simple numerical recipe to approximate maxL  with derived analytical solutions for SIFs in Fig. 18c. 433 

1. Initialisation of variables for ( 1)i  , 0iA A , and 0h  . 

2. Introduce the crack advancing step in Y -direction as dh . 

3. Starting the numerical loop: while h h  , do, 

i. 1i ih h i dh     . 

ii. P P , , /eff i i iQ Q P h A   . 

iii. IK  and IIK  are calculated according to Eqs. (15) and (16), in which, Q  is replaced 

with the above calculated ,eff iQ . 

iv. With known IK  and IIK , *
i  is calculated according to Eq. (7). 

v. */ tan( )i iA dh   , and 1i i iA A A    . 

vi. 1i i    

At the end of the loop, '
max 1iL A  . 

 434 
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Some general calculation results gained from employing the simple numerical recipe in Table 1 are presented in 435 

Fig. 19. The numerical recipe grasps these trends: 1) increasing /P Q  leads to larger '
maxL  and 2) increasing 436 

0 /A h  also leads to larger '
maxL  but with a relatively milder influence compared to that of /P Q .  437 

 438 

Fig. 19. Crack paths and '
maxL  calculated using the simple numerical recipe in Table 1, a) crack path with varying /P Q ; b) crack path with 439 

varying 0 /A h ; and c) '
maxL  with different combinations of /P Q  and 0 /A h .  440 

However, the '
maxL  calculated using Table 1’s numerical recipe were generally smaller than the XFEM-based 441 

numerical simulation maxL  results presented in Fig. 17. Therefore, we scaled '
maxL  according to Eq. (17) with a 442 

linear function of 3 ( / )f P Q , the parameters of which were obtained by a least squares fitting of the numerical 443 

results in Fig. 17. The final approximations of maxL  with Eq. (17) and Table 1 are presented in Fig. 20.  444 

 
'

max 3 max

3
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L f P Q L
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 446 

Fig. 20. The calculations of Eq. (17) and Table 1 versus XFEM-based numerical simulation results.  447 

6 Discussion 448 

This paper offers a theoretical explanation of the observed long cracks that frequently develop between two parallel 449 

channels during ice management operations. After revisiting the theories concerning ship – level ice interactions 450 

and corresponding ice fracture patterns, the theoretical model shown in Fig. 6, i.e., an edge crack scenario, has 451 

been proposed to explain the observed parallel channels’ fracturing mechanism. The theoretical model was 452 

extensively studied using a separately developed numerical scheme based on XFEM. The following discussion is 453 

based on the proposed methods and major results.  454 

6.1 XFEM based numerical scheme 455 

The proposed numerical scheme, which is based on XFEM, offers solutions to both Mode I and II SIFs given 456 

arbitrary crack geometries and loading conditions. In addition, crack geometry is automatically updated with 457 

known SIF information, thereby leading to numerical predictions of crack paths. The capability for calculating 458 

SIFs using the numerical scheme is validated in Fig. 15 by showing that the numerical results vary in accordance 459 

with the asymptotic trend, which would be expected theoretically. Notably, the simulations were conducted with 460 

a relatively coarse mesh but with a much higher efficiency when compared to a series of similar simulations 461 

conducted by the authors (Lu et al., 2015c) with a conventional FEM scheme. The increased efficiency enabled us 462 

to conduct a considerable amount of simulations within a reasonable period of time, making the predictions of 463 

crack paths possible.  464 
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Afterwards, a field off-centre splitting experiment was introduced to verify the numerical scheme’s capability of 465 

predicting the crack paths. The simulated crack paths were solely solution dependent. They depended on the 466 

solutions of both IK  and IIK  and propagated according to Eq. (7). In the benchmark test, an exact match was not 467 

achieved, but the general crack propagation direction was captured. This is considered sufficient for the current 468 

engineering application, as we are mainly interested in the aspect ratio of ice floes that will be produced between 469 

parallel icebreaker channels. Exact crack path predictions are unnecessary if the overall trajectory is captured.  470 

6.2 Analytical formulations on an edge cracked body 471 

The proposed theoretical model, i.e., the edge crack’s propagation under different P  and Q  loading conditions, 472 

was studied in this paper. In particular, analytical formulations conforming to the theoretical model’s asymptotic 473 

behaviours were obtained in Eqs. (11) to (16) based on the fitting numerical simulations presented in Fig. 15. In 474 

Eq. (6), the major functional form was initially determined based on asymptotic behaviours following the same 475 

method presented by Dyskin et al. (2000); afterwards, only the parameters in the equations were fitted from 476 

numerical results with the least squares fitting method. In Fig. 15, one can see that rather satisfactory fittings were 477 

achieved between the numerical simulations and proposed formulation. In particular, Fig. 15a and b demonstrate 478 

that both the proposed formulations and numerical simulations were asymptotically converging to the theoretical 479 

values. This signifies the correctness of both our numerical simulation results and fitted analytical formulations.  480 

Furthermore, as stated before, the edge crack problem is found in a wide range engineering applications. The 481 

proposed analytical formulations, i.e., Eqs. (11) to (16), are expected to have a wider outreach than the current 482 

engineering application. This is attributed to the fact that Eqs. (11) to (16) are capable of yielding useful SIF 483 

calculations over a wide range of 0 /A h  values. However, our major engineering application in this paper resides 484 

in a range that features relatively small 0 /A h , as depicted in Fig. 6.  485 

Afterwards, the propagation path of the edge crack was studied by a series of simulations with varying /P Q  and 486 

0 /A h . The XFEM-based simulation results are presented in Fig. 17, in which the results calculated with two 487 

different mesh sizes are presented. Although the simulation results from both mesh sizes were not exactly the same, 488 

they both showed a trend whereby the size, maxL , increases with increasing 0 /A h  or /P Q . This also means that 489 

a large contact force 2XF P  in the surge direction has a tendency to create a long crack that travels farther, thus 490 

leading to a large maxL . However, P  cannot be too much larger than Q , as demonstrated by the limiting scenario 491 

in Eq. (5), in which such a splitting crack ceases to open while / 2 1.57P Q Q   or X YF F . In such 492 
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situations, it is expected that the vertical force component ZF  initiates a local bending failure mode to make way 493 

for the structure (Lu et al., 2016a).  494 

On the other hand, this XFEM-based numerical scheme is nontrivial to implement in engineering applications to 495 

calculate maxL . In that regard, we further exploited the analytical formulae in Eqs. (15) and (16) to derive an 496 

approximation of maxL  based on the idealisation shown in Fig. 18 following the simple numerical recipe presented 497 

in Table 1. This simple numerical recipe together with a fitting formula in Eq. (17) yielded relatively reasonable 498 

predictions of maxL , as demonstrated in Fig. 20. The results of maxL  from Table 1 and Eq. (17) combine both 499 

information of an idealised crack tip’s SIFs under the joint influence of P  and Q  and XFEM-based numerical 500 

simulation results giving rise to a scaling factor 3 ( / )f P Q . The curves in Fig. 20 show similar trends of the XFEM-501 

based numerical simulation in the sense that maxL  increases with increasing 0 /A h  or /P Q , whereas the 502 

influence of 0 /A h  is less pronounced relative to that of /P Q . Most importantly, the numerical recipe in Table 1 503 

is much easier to implement in comparison with the XFEM-based simulation, demonstrating its potential to yield 504 

approximations for engineering applications.  505 

These developed analytical formulations (i.e., Eqs. (11) to (17)) and the numerical recipe in Table 1 will be applied 506 

to explain the current parallel channels’ fracture mechanism. As noted in the beginning, practical engineering 507 

questions were sought in this paper, i.e., 1) what is the maximum channel spacing maxh  beyond which the long 508 

crack ceases to develop and 2) what is the maximum floe size that can be produced between two parallel channels 509 

with a given spacing. In the next two sections, these two questions will be discussed by invoking the support of 510 

the developed analytical formulations.  511 

6.3 Maximum parallel channel spacing 512 

Eqs. (15) and (16) state the criteria for crack initiation. In other words, in order for any initial crack 0A  in Fig. 6 513 

to further propagate into the observed long cracks, SIFs calculated from Eqs. (15) and (16) should be larger than 514 

the fracture toughness of sea ice. After rearranging the equations, we can therefore obtain Eq. (18), in which the 515 

maximum channel spacing maxh  is given in an implicit form. In Eq. (18), two functions, 1 0( / , )YXf A h   and 516 

2 0( / , )YXf A h  , are introduced to characterise the influence from 0 /A h  and /P Q .  517 
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The first term in Eq. (18) illustrates maxh ’s functional dependence with parameters, such as contact force in the 518 

surge direction XF and fracture toughness ICK . Given information of these parameters, one can calculate maxh , 519 

beyond which, long cracks of Types #1-3 in Fig. 4 cease to occur. 520 
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  (18) 521 

In Eq. (18), there is another undetermined parameter, i.e., the initial crack length 0A . This initial crack length is 522 

considered to be introduced by the radial cracking process at the ship stem (see Fig. 3). According to previous 523 

studies (Lu et al., 2015c, Sodhi, 1996), the maximum length the radial crack length can reach is 0 2A   , in which 524 

  is the characteristic length for an elastic plate on a Winkler type foundation. Its expression is written in Eq. (19): 525 

 4 /D k ,  (19) 526 

in which  527 

3 2/ [12(1 )]D Et    is the flexural rigidity of an elastic plate expressed with material properties of Young’s 

modulus E  and Poisson ratio  ; and 

wk g  is the foundation stiffness. In this case, it is expressed by the sea water density w  and 

gravitational acceleration g  . 

In the sequel paper (Paper II), a series of well-controlled field experiments are reported, and comparisons are 528 

presented. It is reminded here that by utilising Eq. (18), an upper limit maxh  is solved, i.e., parallel channel spacings 529 

exceeding maxh  will lead to the absence of long cracks, as in Fig. 5. On the other hand, a channel spacing maxh h  530 

does not necessitate the occurrence of long cracks due to other important factors that are not studied in this paper, 531 

e.g., initial crack formation, location and orientation and the required crack propagation force history, which might 532 

become sufficiently large to prohibit further development of a long crack although it has been initiated according 533 

to (18).  534 

 535 

Post-print version of the paper by Lu et al. 
in Int J Cold Region of Science and Technology,  156 (2018) 117-133, 

https://doi.org/10.1016/j.coldregions.2018.07.010



6.4 Floe size ratio production 536 

Suppose that the channel spacing maxh h  and a long crack of Type #1 in Fig. 4 is formed. Based on the study of 537 

crack paths and definition of maxL  (see Fig. 16), we can first define, in a conventional way, the floe size as the 538 

Mean Calliper Diameter (MCD) MCDL  as Eq. (20), 539 

 max4( ) /MCDL L h  ,  (20) 540 

or in floe ratio form shown in Eq. (21).  541 

 maxfloe ratio / 4( / ) /MCDL h L h     (21) 542 

Given the formulations on maxL  based on Eq. (17) and Table 1, Eq. (21) is plotted in Fig. 21 to illustrate the 543 

relationship between generated floe size MCDL  versus channel spacing h  for ice thicknesses 1 mt   and 2 m. In 544 

the figure, reference curves with 2MCDL h  and MCDL h  are also illustrated.  545 

 546 

Fig. 21. The maximum possible ice floe size MCDL  versus channel spacing h . 547 

Fig. 21 shows that most of the floe sizes MCDL  are rather close to the approximation of 2MCDL h , although a 548 

larger ratio of /P Q  leads to larger MCDL . Fig. 21 also shows that there is no significant influence on MCDL  from 549 

ice thickness. Ice thickness is important in determining whether such a long crack occurs, but once such long 550 

cracks are formed, the eventual floe size is less dependent on ice thickness. 551 
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In particular, the curve MCDL h  shown in Fig. 21 has often been used to characterise the floe size between two 552 

parallel channels (e.g., in (Hamilton et al., 2011b)). Fig. 21 shows that MCDL  can exceed h . However, it is 553 

important to stress the physical meaning of MCDL , which is the maximum possible ice floe size that is produced 554 

according to the discussed parallel channel fracturing mechanism. It does not characterise how frequently such 555 

maximum ice floes are produced. In reality, fractures of different types, e.g., Types #1-4 in Fig. 5, occur. This 556 

creates ice floes with various sizes, shapes and aspect ratios. In the sequel Paper II, field experiments are conducted 557 

to quantify all the floe sizes within parallel channels, and it can be shown that for the majority (i.e., to the extent 558 

of 80%) of ice floes, the sizes MCDL h . For now, the formulation of MCDL  is of theoretical importance in the 559 

sense of drawing a border in terms of the maximum possible floe size that can be produced. Later, study shall 560 

explore its corresponding floe size distribution. 561 

6.5 Limitations of the theoretical model 562 

The studied theoretical model in Fig. 6 has limitations to explain the complete parallel channels’ fracturing 563 

mechanism. After all, we focus mainly on the in-plane splitting type failures and the influence of out-of-plane 564 

contact force ZF  is not included in the preceding analysis. Moreover, among all the possible in-plane crack 565 

patterns (see Fig. 4), we focus on the scenario with Crack #1. In the field, ice floes of various sizes were generated 566 

in between two parallel channels by the joint effects of both in-plane and out-of-plane contact forces and also 567 

various splitting scenarios in Fig. 4. The proposed theoretical model in Fig. 6 primarily focus on an upper threshold 568 

scenario in terms of the largest ice floe MCDL  and maximum channel spacing maxh . The statistical floe size 569 

distribution within parallel channels shall be studied in the sequel Paper II.   570 

7 Conclusions 571 

Based on a review and discussion of the theories regarding level ice – ship interactions, the physics behind parallel 572 

channel fracture mechanisms were presented. The observed long cracks between two parallel channels are 573 

considered to be caused by the presence of a nearby free boundary. In lieu of this, a theoretical model involving 574 

the splitting of an edge crack has been proposed in this paper. The model was extensively studied using a separately 575 

and purposely developed eXtended Finite Element Method (XFEM) based numerical scheme. Before the actual 576 

studies were undertaken on the target theoretical model, benchmark tests were conducted, and satisfactory 577 

confidence were gained on the validity of the proposed numerical scheme.  578 
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With the XFEM based numerical scheme, two issues were investigated regarding the proposed theoretical model: 579 

the propagation of a pre-existing radial crack and its sequential crack path. Based on extensive numerical 580 

simulations and theoretical analysis, two groups of important formulations were proposed. These two groups of 581 

equations are in direct response to the practical questions raised in this paper.   582 

The first group of equations (i.e., Eqs. (11) to (16)) were obtained by first constructing a formula form following 583 

the stated problem’s asymptotic analysis, and the formula’s parameters were then fitted from the XFEM-based 584 

numerical calculation results. These equations enable us to calculate the Stress Intensity Factors (SIFs) of an edge 585 

cracked body with a wide range of ratios between initial crack length 0A  and the edge crack’s width h  and the 586 

ratio between the crack parallel force P  and the crack orthogonal force Q . Practically, this group of equations is 587 

converted into Eq. (18), which allows us to determine if a long crack between two parallel channels would occur 588 

at all. In another words, if the parallel channel’s spacing exceeds a threshold maxh  (expressed in Eq. (18)), the 589 

potential parallel channel fracture mechanism is not expected.   590 

The second group of equations and algorithm (i.e., Eq. (17) and a numerical recipe in Table 1) characterise the 591 

crack path of an edge crack. The closed-form and simplified crack paths were obtained from an idealised cracked 592 

geometry analysis using the previously derived Eqs. (11) to (16), yielding an initial approximation of maxL (defined 593 

in Fig. 16, giving a certain measure of generated floe size). The actual maxL  is scaled up in Eq. (17) via fitting 594 

numerical results from the XFEM-based simulation of crack paths. Practically, the studied crack path represents 595 

the observed long cracks’ profiles between two parallel channels, the knowledge of which sheds light on the 596 

produced ice floes’ size ratios and their possible maximum size MCDL . Further formulations of floe size ratio or 597 

MCDL were given in Eqs. (20) and (21). 598 

The obtained equations are the major contributions of this paper. In particular, Eqs. (11) to (16) are expected to 599 

have a wider outreach in terms of edge crack problems. Given the above equations, practical applications were 600 

thoroughly demonstrated and discussed. In the associated Paper II, these equations shall be further verified by a 601 

group of well-controlled field experiments concerning parallel channels’ fracturing mechanism. In that paper, more 602 

quantifiable results will be provided.  603 
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