
The Generalized Empirical Interpolation
Method

Martin Arnesen

Master of Science in Physics and Mathematics

Supervisor: Einar Rønquist, MATH

Department of Mathematical Sciences

Submission date: February 2014

Norwegian University of Science and Technology

Problem Description
A classical way to approximate functions is through interpolation. A classical inter-
polation method is based on a particular set of interpolation points and associated
interpolating functions. For well-chosen points, the interpolation error can be quite
small, yet simple to implement. The empirical interpolation method (EIM) was pro-
posed a few years ago as a way to interpolate parameter-dependent function, or more
generally, interpolation of functions spanned by a given set of functions. This method
generates problem-dependent interpolation points and basis functions.

Very recently, an extension of this method was proposed, denoted as the general-
ized empirical interpolation method (GEIM). The GEIM considers approximation of
linear functionals of a given set of functions. The objective of this thesis is to study
the properties of the GEIM and consider potential applications such as parameter es-
timation.

Assignment given: 2. September 2013
Supervisor: Einar Rønquist, MATH

Preface

This thesis concludes my masters program at the Department of Mathematical Sci-
ences at NTNU, Trondheim, Norway. The course code for this subject is TMA4910
and constitutes 30 ECTS credits.

My field of study is applied mathematics, however, our program (Physics and
Mathematics) also gives an introduction to the most common areas of the natural
sciences such as mechanics, chemistry and electromagnetism.

For the reader to fully appreciate the contents of this report, knowledge of
numerical analysis is an advantage, but the basic principles and results should be
understandable for any graduate level mathematics student.

All implementations are done in MATLAB, which is a great tool for testing
small to medium scale problems, and also for visualizing results.

Finally, I would like to thank my supervisor Einar Rønquist at the Department
of Mathematical Sciences, NTNU. His ideas and feedback have been a great help
throughout the work with this thesis.

Martin Arnesen
Trondheim

February 7, 2014

i

ii

Abstract

The empirical interpolation method is an interpolation scheme with problem de-
pendent basis functions and interpolation nodes, originally developed for param-
eter dependent functions. It was developed in connection with the reduced basis
framework for fast evaluation of output from parameterized partial differential
equations, but the procedure may be applicable to a variety of problems, such as
image and pattern recognition, numerical integration and data compression. We
present the theoretical background and implementation of the method, and give
examples to verify exponential convergence for analytic problems.

An extension of the method was proposed recently, denoted as the general-
ized empirical interpolation method (GEIM). The GEIM considers a parametric
manifold of functions, with a set of linear functionals.

Further, we explore how the interpolation points can be used as measurement
points in the estimation of parameters from noisy data. We present the statistical
framework, and we show how we can identify a set of parameter values that are
consistent with our measurements.

iii

iv

Sammendrag

Den empiriske interpolasjonsmetoden en er interpolasjonsmetode med problem-
avhengige basisfunksjoner og interpolasjonsnoder, opprinnelig utviklet for param-
eteravhengige funksjoner. Metoden ble utviklet for rask evaluering av parametris-
erte partielle differensialligninger, men metoden kan være anvendbar innen flere
felt, for eksempel bildegjenkjenning, numerisk integrasjon og komprimering av
data. Vi presenterer den teoretiske bakgrunnen og implementering av metoden,
og gir eksempler for å verifisere eksponentiell konvergens for analytiske problemer.

Nylig har en utvidelse av metoden blitt presentert, betegnet som den gener-
aliserte empiriske interpoleringsmetoden. Den generaliserte versjonen betrakter
approksimasjon av lineære funksjonaler av ett gitt sett av funksjoner.

Vi utforsker ogs̊a hvordan interpolasjonsnodene kan brukes som målepunkter
i estimering av parametre fra data med støy. Vi presenterer det statistiske ram-
meverket, og vi viser hvordan vi kan identifisere et sett av parameterverdier som
er konsistente med de målte verdiene.

v

vi

Contents

1 Introduction 1
1.1 Gauss-Lobatto Legendre quadrature 2
1.2 Polynomial approximation and interpolation 4

2 The Empirical Interpolation Method (EIM) 7
2.1 Interpolation procedure . 8
2.2 EIM error analysis . 10
2.3 The Runge function . 11
2.4 The Adaptive cross approximation (ACA) 14
2.5 Multiple dimensions . 17

3 Estimation of parameters from noisy data 23
3.1 Statistical framework . 23
3.2 Parameter estimation . 25
3.3 The Runge function . 25

4 The Generalized EIM (GEIM) 29
4.1 A linear functional EIM . 29
4.2 Parameter estimation: GEIM . 31
4.3 Numerical examples . 32

4.3.1 Gaussian filter . 32
4.3.2 Fourier coefficients filter . 44
4.3.3 The Runge function: revisited 53

5 Conclusions 55

Bibliography 57

vii

viii CONTENTS

Chapter 1

Introduction

In interpolation we want to approximate a given function or fit a function to some
numerical data. There are several reasons to do this, for example we can be given
a function u that is expensive to evaluate in the form of a computer procedure.
In this case, we want another function g that is simpler to evaluate and produce
a reasonable approximation to u. Or we can have a table of numerical values
and we want to fit a function through those points. Note that interpolation is
not to be mistaken for regression. If for instance the values in the table have
been contaminated by errors, as might occur if the values came from a physical
experiment, we then want a formula that represent the data approximately. This
type of technique is called regression analysis [1].

All the interpolation methods have one thing in common: they use a set of
points in some domain Ω where the interpolating function and the given function
match. We call the points interpolation nodes, and we say that the function in-
terpolate in those nodes. Immediately a question pops up, what happens between
the nodes? In the two-dimensional case the easiest choice would just be to use
linear interpolation between each pair of adjacent nodes. Another common choice
is to use polynomial interpolation between the nodes. This approach is well un-
derstood, but have proven rather bad under certain conditions, which brings us to
the next question: if we are free to choose where we want the interpolation nodes,
where do we want them? The obvious choice is to let the nodes be equidistant over
Ω. However, with equidistant nodes, polynomial interpolation have the defect of
being highly oscillatory when the number of interpolation nodes increases [2].

We will consider the case when we want to approximate a given parameter
dependent function u(x;µ), where x is in the space domain Ω and µ represent the
parameter domain. In one space dimension the location of almost optimal points
is provided by Gauss-Lobatto Legendre nodes [3]. In dimensions greater than one
more conditions must be fulfilled for a polynomial interpolation to be well defined,
and the interpolant may not even be unique [4].

1

2 CHAPTER 1. INTRODUCTION

In 2004 the interpolation method called Empirical Interpolation was introduced
[15]. The method was developed as a tool within the reduced basis framework for
parametrized partial differential equations. Since then, work have been done to
generalize the method further. We will look at one interpretation, and present the
generalized empirical interpolation algorithm.

We will also explore how the interpolation points can be used in estimation of
parameters from noisy data. We will present the statistical framework, and see
how we can estimate given parameters that are consistent with our experimental
data.

The empirical interpolation method is remarkably simple to implement, and
has proven relatively competitive to other interpolation methods. In Chapter 2 we
present the method, followed with examples to verify exponential convergence for
analytic problems.

1.1 Gauss-Lobatto Legendre quadrature

We first consider the case when there are no parameter dependence, i.e. u = u(x).
Legendre polynomials are solutions to the Sturm-Liouville problem [6],

d

dx

[
(1− x2)

d

dx
Ln(x)

]
+ n(n+ 1)Ln(x) = 0,

which is in fact an eigenvalue problem,

LLn(x) = λnLn(x).

Each Legendre polynomial Ln(x) is an n-th degree polynomial. The polynomials
can be expressed by

Ln(x) =
1

2nn!

dn

dxn
[(x2 − 1)n],

and with L0(x) = 1 and L1(x) = x the polynomials satisfy the recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x).

By using the Legendre polynomials as basis, we write the approximation of a
function u(x) as

uN(x) =
N∑
i=0

aiLi(x),

where {ai} is the set of basis coefficients. We want to find the best approxima-
tion of u(x) by the polynomial uN(x). With “best” approximation we mean the
approximation which minimizes the quadratic error

E =

∫
Ω

(u− uN)2dx =‖ u− uN ‖2
L2(Ω), (1.1)

1.1. GAUSS-LOBATTO LEGENDRE QUADRATURE 3

over all polynomials of degree less than or equal to N . This error can be minimized
by adjusting the coefficients {ai}. Note that we could let the “best” approximation
be defined by the error of some other norm, for example we could consider the L∞-
norm, and minimize E =‖ u − uN ‖2

L∞(Ω). In search for good approximations we

often consider the Lesbegue constant, ΛN [7]. The constant give an idea of how
good the interpolant is in comparison with the best polynomial approximation.

Assume we want to evaluate the integral

I =

∫ 1

−1

g(x)dx,

for some function g. With Gauss Legendre quadrature [6] the integral is approxi-
mated by

I ≈
n∑
i=0

wig(xi),

where wi is the quadrature weight corresponding to the function evaluated at xi.
Here there are 2n+ 2 degrees of freedom. We are in principle free to choose where
we want to evaluate g, and if we choose xi to be the roots of the n-th Legendre
polynomial Ln, it can be shown that we are able to exactly integrate a polynomial
of degree 2n+ 1 or less. In Gauss-Lobatto Legendre (GLL) quadrature, however,
we fix x0 and xn to be the two endpoints −1 and 1, which leaves us with 2n degrees
of freedom. If we now let xi, i = 1, . . . , n − 1, be the roots of L′n, we are able to
integrate a polynomial of degree 2n− 1 or less. In this case we can state that for
all g ∈ P2n−1(−1, 1), ∫ 1

−1

g(x)dx =
n∑
i=0

wig(xi),

where Pq(−1, 1) is the space of all polynomials of degree q or less.
A general limitation to the GLL points are that they are only defined on the

line, the square or other tensor product domains. If GLL points are to be used
in other domains, the problem must be mapped from the actual domain over to
a reference domain where the GLL points are defined. This can often be either
tedious or impractical.

Later we will use GLL quadrature to approximate several integrals over some
domain Ω. If for instance Ω = (a, b)× (c, d) and g = g(x, y), the integral we need
to consider is

I =

∫ b

a

∫ d

c

g(x, y)dydx.

We do a change of variables to get the integral on a familiar form, and are left
with

I =
(b− a)(d− c)

4

∫ 1

−1

∫ 1

−1

g

(
b− a

2
ξ +

a+ b

2
,
d− c

2
η +

c+ d

2

)
dηdξ,

4 CHAPTER 1. INTRODUCTION

which can be approximated by the tensor product

I ≈ (b− a)(d− c)
4

n∑
i=0

n∑
j=0

wiwjg

(
b− a

2
ξi +

a+ b

2
,
d− c

2
ηj +

c+ d

2

)
.

1.2 Polynomial approximation and interpolation

We consider interpolation through the GLL points introduced in the previous sec-
tion using Lagrange interpolation. Given a set of interpolation points {ξ0, . . . , ξN}
the i-th Lagrange interpolation polynomial is defined by

`Ni (x) ∈ PN(−1, 1), i = 0, . . . , N,

`Ni (xj) = δij, 0 ≤ i, j ≤ N.

For example the interpolation polynomial `5
2(x) is equal to 1 at the node (ξ2) and

0 at the others, see Figure 1.1. If we let IN [u] be the interpolant of u through

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Figure 1.1: Lagrange interpolation polynomial `5
2(x). Note that `5

2(ξ2) = 1, but
zero at the other GLL nodes.

N + 1 GLL points, we can express IN [u] as

IN [u](x) =
N∑
i=0

u(ξi)`
N
i (x).

1.2. POLYNOMIAL APPROXIMATION AND INTERPOLATION 5

Consider the quadratic error in (1.1). Assume that the function u has a certain
regularity. In particular let u ∈ Hσ(Ω), where

Hσ(Ω) = {u|
∫ 1

−1

σ∑
j=0

(
dju

dxj

)2

dx <∞},

i.e. the function u and all its derivatives up to order σ are square integrable. The
norm induced by Hσ(Ω) is then given by

‖ u ‖2
Hσ(Ω)=

∫ 1

−1

(
u2 +

(
du

dx

)2

+ . . .+

(
dσu

dxσ

)2)
dx.

This allows us to state an a priori error estimate [3],

‖ u− IN [u] ‖L2(Ω)≤ cN−σ ‖ u ‖2
Hσ(Ω),

where c > 0 is a constant. We see that the error, measured in the L2-norm,
decreases as N increases, and that the rate of convergence is in fact dependent on
the regularity of u. In the special case where σ → ∞ then u is analytic, and the
error decreases exponentially towards zero as N increases. In GLL interpolation
the set of basis functions and interpolation nodes is completely detached from the
problem, which makes them easy to compute and analyze. However, as we shall
see in the next chapter, there are ways of determining superior, problem dependent
basis functions and interpolation nodes.

6 CHAPTER 1. INTRODUCTION

Chapter 2

The Empirical Interpolation
Method (EIM)

The basic interpolation methods use predefined interpolation points and basis func-
tions. This allows easy implementation and predictable error behaviour. However,
this approach does not adapt to the specific problem, and the only information
extracted from the underlying function is the nodal values. The EIM uses a greedy
algorithm that adapt to the problem by choosing the next interpolation node and
forming the next basis function based on the current interpolant. We will see how
this adaptive approach may be superior compared to GLL interpolation.

Consider a function u(x;µ), x ∈ Ω, which depends smoothly on a parameter
µ over some parameter space D. We want to exploit the parametric dependence,
which is not done in standard interpolation, i.e. for every different parameter value
a new interpolant will have to be constructed separately.

Instead of predefined basis functions, the EIM we sample u at different points
in D, so that the interpolation space becomes XN = span{u(x;µ1), . . . , u(x;µN)}.
Because of the assumed smooth parameter dependence, we expect a linear combi-
nation of these basis functions to approximate u(x;µ) for any parameter value in
D.

Note that the EIM could be realized analytically, but this is often impossible
or impractical. Instead we will consider discrete sets for both the parameter space
D and for the space domain Ω. However, we are able to use our interpolant for all
parameter values µ ∈ D. We say that we train the interpolation space, based on
the discrete version of D and Ω; more on this below.

The EIM approach to approximate u is then

u(x;µ) ≈ IN [u](x;µ) =
N∑
i=1

ϕi(µ)qi(x),

7

8 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

where qi(x) are the parameter independent basis functions that will span our in-
terpolation space, and ϕi(µ) are parameter dependent basis coefficients. Once the
interpolation process is done and the basis functions are constructed, the coeffi-
cients can be computed separately for any parameter value µ ∈ D. Even though
the qi-s are vectors in the discrete case, we will still refer to them as basis func-
tions because it is more consistent, and as mentioned earlier the procedure could
in principle be done analytically.

2.1 Interpolation procedure

The interpolation points will be referred to as magic points [4] as suggested by
some of the original developers of the EIM. The interpolation procedure relies on
a greedy selection of the next magic point, and this choice determines the next
basis function. This may in some cases lead to a globally optimal algorithm, but
in most cases, as for the EIM, this is not generally true.

Below follows the EIM algorithm, with a quick explanation of the steps. We let
Ξ and Ωd be discrete subsets for D and Ω respectively for computational purposes.
The current interpolant of u through the n magic points is denoted by In[u].

Algorithm 2.1 The Empirical Interpolation Method

µ1 = arg maxµ∈Ξ ‖ u(·;µ) ‖L∞(Ωd)

u1(·) = u(·;µ1)
x1 = arg maxx∈Ωd |u1(x)|
q1(·) = u1(·)/u1(x1)
B1 = q1(x1)
for n = 2, . . . , N ≤ nmax do
µn = arg maxµ∈Ξ ‖ u(·;µ)− In−1[u](·;µ) ‖L∞(Ωd)

un(·) = u(·;µn)
xn = arg maxx∈Ωd |un(x)− In−1[u](x;µn)|

qn(·) =
un(·)− In−1[u](·;µn)

un(xn)− In−1[u](xn;µn)

(Bn)ij = qj(xi), 1 ≤ i, j ≤ n
end for

At stage n we need the current interpolant In−1[u] for each parameter value
µ ∈ Ξ. We store the basis functions (which are vectors in the discrete case) in
one big matrix Qn−1 = [q1 | q2 | . . . | qn−1]. The representation of the interpolant
can now be expressed as In−1[u] = Qn−1y, where the coefficient vector y ∈ Rn−1

2.1. INTERPOLATION PROCEDURE 9

is determined by solving the system

n−1∑
j=1

(Bn−1)ijyj = u(xi), i = 1, . . . , n− 1,

for all µ ∈ Ξ. This construction ensures that we obtain interpolation at xi, i =
1, . . . , n− 1.

The next basis element is chosen to be the parameter value that maximizes the
difference between u and the current interpolant In−1[u],

µn = arg max
µ∈Ξ
‖ u(·;µ)− In−1[u(·;µ)] ‖L∞(Ωd) .

An alternative way to look at it is that the next basis function is the function
corresponding to the paremater value that the current interpolant is least suitable
to approximate.

We let the position where the largest error occurs be our next magic point,

xn = arg max
x∈Ωd

| un(x)− In−1[u](x;µn) |,

and add that point to our set of interpolation nodes. As the interpolant In−1[u](x)
by definition is equal to the underlying function at the magic points, the error at
xi, i = 1, . . . , n− 1, is equal to zero. The next normalized basis function is then

qn(·) =
un(·)− In−1[u](·;µn)

un(xn)− In−1[u](xn;µn)
,

and all that is left to do is store the entries in Bn.
The final interpolant is given as

IN [u](x;µ) =
N∑
i=1

ϕi(µ)qi(x),

where for every new µ ∈ D, we find the parameter coefficients by solving

N∑
j=1

(BN)ijϕj(µ) = u(xi;µ), i = 1, . . . , N,

or in matrix notation
IN [u](x;µ) = QNB

−1
N uN(µ),

where uN(µ) is a vector containing u sampled at the magic points,

uN =


u(x1;µ)
u(x2;µ)

...
u(xN ;µ)

 .

10 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

It can be shown that this procedure indeed produces a valid interpolation
scheme given by the basis functions q1, . . . , qN and interpolation nodes x1, . . . , xN
[4].

We make a couple of remarks. First, each new magic point, at step n, does not
effect the previous n − 1 points. This is not surprising given the EIM algorithm,
but remember that it is not at all the case for interpolation method based on
predefined interpolation points. Often, if we want to extend an interpolant with
one more interpolation point, we must change all the previous nodes and construct
a whole new interpolant. The second remark is closely linked to the first: the EIM
algorithm produces a sequence of hierarchical interpolation spaces X1 ⊂ X2 ⊂
. . . ⊂ XN , where Xi = span{q1, . . . , qi}, which is a desired property. If we are
forced to limit the number of basis functions to Ñ < N , then for EIM the optimal
choice is simply given by q1, . . . , qÑ .

2.2 EIM error analysis

Since the EIM is problem dependent the general error analysis is both limited and
often very pessimistic compared to the observed behaviour. However, the greedy
selection in the algorithm gives an advantage as it immediately allows access to
an a posteriori error estimate,

‖ u− In+1[u] ‖L∞(Ω)≤‖ u− In[u] ‖L∞(Ω) .

This implies that we always know the maximum error for the previous interpolation
space, which can be used to end the algorithm at a predefined tolerance, thus
avoiding all nmax stages.

If we introduce the Lagrangian functions we can alternatively write the inter-
polant as

IN [u] =
N∑
i=1

`Mi (x)u(xi;µ),

where `Ni (x) =
∑N

j=1 qj(x)(BN)−1
ij , and the Lagrangian functions are as usual a

nodal basis for XN , i.e. `Ni (xj) = δij. Then we make use of the Lebesgue constant

defined as ΛN = supx∈Ω

∑N
j=1 | `Nj (x) |. For the EIM an upper bound for ΛN is

given by 2N − 1 [4]. Again, this is often a very pessimistic estimate, and observed
behaviour is usually far better.

Lebesgue’s lemma [4], which is a classical result in approximation theory, gives
the following bound for the interpolation error

Lemma 2.1. Assume X is a Banach space, and XN ⊂ X, dim(XN) = N . For

2.3. THE RUNGE FUNCTION 11

any u ∈ X, the interpolation error satisfies

‖ u− IN [u] ‖X≤ (1 + ΛN) inf
gN∈XN

‖ u− gN ‖X .

Here the projection error, infgN∈XN ‖ u−gN ‖X , is the best possible approximation
of u in the approximation space XN , measured by the norm ‖ · ‖X induced by X.

For the EIM Lemma 2.1 can be made more precise if a few conditions are
fulfilled. Theorem 2.2 gives an upper bound for the interpolation error from the
greedy algorithm,

Theorem 2.2. Assume U ⊂ X ⊂ L∞(Ω) and there exists a (possibly unknown)
sequence of finite dimensional spaces

Z1 ⊂ Z2 ⊂ . . . ⊂ ZN ⊂ span(U), dim(ZN) = N,

such that there exists c > 0 and α > log(4) with for all u ∈ U

inf
gN∈ZN

‖ u− gN ‖X≤ ce−αN .

Then
‖ u− IN [u] ‖L∞(Ω)≤ ce−(α−log(4))N .

A proof is given in appendix B in [4].
The theorem ensures that if there exists a finite dimensional space allowing for

an exponentially converging approximation, the EIM will achieve an exponential
rate of convergence. Also, if the spaces Zi are not predetermined, the greedy
algorithm provides such sequence through the EIM space XN .

2.3 The Runge function

Theorem 2.2 tells us that under reasonable assumptions the EI procedure achieves
an exponential rate of convergence. With the example below we present numerical
results which verify this behaviour.

To see how the EIM works we will look at an example with a single scalar
parameter, µ ∈ D, and one space dimension. The function we consider is the
Runge function,

u(x;µ) =
1

1 + µx2
,

where Ω = (−1, 1) and D = (1, 25); see Figure 2.1. This function is a classic in

12 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

−1 0 1
0.4

0.6

0.8

1
f(x;1)

−1 0 1
0

0.5

1
f(x;10)

−1 0 1
0

0.5

1
f(x;25)

Figure 2.1: Runge function over Ω = (−1, 1), with µ = 1, µ = 10 and µ = 25.

numerical interpolation, and it was shown by Runge that polynomial interpolation
with equidistant (EQ) points will lead to divergence [8].

To compare we will consider Lagrange interpolation through equidistant points
and through the GLL points [6]. This is done by creating a test setQ of 100 random
µ-values drawn uniformly from the parameter domain D. We then compute the
maximum L∞-error of the interpolant over all µ ∈ Q,

eN = max
µ∈Q
‖ u(·;µ)− IN [u](·;µ) ‖L∞(Ω) . (2.1)

The maximum error for the first 25 iterations can be seen in Table 2.1.

Table 2.1: Maximum L∞-error over a sample of 100 random parameter values
drawn uniformly from [1,25]. The table shows the error for the EIM- (eEIM), GLL-
(eGLL) and equidistant (eEQ) interpolation for the 25 first interpolation points.

n eEIM eGLL eEQ

5 1.175e-3 4.381e-1 4.380e-1
10 1.333e-7 2.944e-1 3.000e-1
15 3.256e-11 4.902e-2 7.153
20 5.551e-15 4.097e-2 8.523
25 9.992e-16 7.491e-3 254.495

As seen in Figure 2.2 both GLL interpolation the and EIM converges expo-
nentially, but the EIM converges more rapidly and reach machine precision after
21 iterations. We also see how the the polynomial interpolation with EQ points
oscillates and diverges as expected.

Why is the EIM superior to standard polynomial interpolation? For GLL
interpolation the maximum error occurs for the biggest parameter value, µ ∈ Q.
The reason for this is that for this particular example the function forms a spike
around x = 0, which is also where the GLL points have lowest density. The GLL

2.3. THE RUNGE FUNCTION 13

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

10
5

n

m
a
x
 e

rr
o
r

EQ

GLL

EIM

Figure 2.2: Maximum L∞-error as a function of the interpolation points. Both
GLL and EIM give an exponential convergence rate.

interpolation fails to pick up the sharp curvature around x = 0, and therefore do
not achieve high precision. However, since the EIM always uses a greedy choice to
determine the next magic point instead of predefined interpolation points, there
will never be an area in the interpolation space that the algorithm can not “reach”.
As the interpolation space expand the maximum error will move around in the
parameter space, and then be dealt with immediately. Also, because of the smooth
parameter dependence we expect that the basis function for a given µn-value will
also reduce the error in the neighbourhood of that µn. This approach, as seen
numerically, gives far superior convergence.

In Figure 2.3 we have plotted the first 20 magic points and the first 5 basis
functions the EIM algorithm constructs. Note that the magic points are all neg-
ative and have highest density near x = 0. This is where the changes in u are
the greatest, and it shows the adaptive ability of the method. Another interesting
feature of the EIM is that all the basis functions, as the underlying u we are ap-
proximating, are symmetric around x = 0. This is very desirable, and are not the
case for the Lagrange interpolation polynomials based on GLL points.

14 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

magic centers

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

Figure 2.3: Distribution of the first 20 magic points over Ω and the first 5 basis
functions. All the basis functions are symmetric around x = 0

2.4 The Adaptive cross approximation (ACA)

In [9] an alternative interpolation method is suggested, where Gaussian elimination
is considered as an iterative algorithm. The method is equivalent to the well-known
Adaptive cross approximation [10].

The method considers two space dimensions, which in case transforms to a
single scalar parameter µ ∈ D and one space dimension. Given a smooth function
u(x;µ), the method is constructed so that it forms an approximation In[u] after
n iterations that matches u(x;µ) exactly on at least n horizontal and n vertical
lines, see Figure 2.4 for an example.

The algorithm for this method is given below, followed with an explanation of
each step.

2.4. THE ADAPTIVE CROSS APPROXIMATION (ACA) 15

x

µ

Figure 2.4: The n-th interpolant interpolate the function at n horizontal and n
vertical lines through the interpolation space.

Algorithm 2.2 Adaptive cross approximation method

µ1 = arg maxµ∈Ξ ‖ u(x;µ) ‖L∞(Ωd)

x1 = arg maxx∈Ωd | u(x;µ1) |
p1(µ) = u(x1;µ)
q̃1(x) = u(x;µ1)
c1 = 1/u(x1;µ1)
r1(x;µ) = u(x;µ)− I1[f](x;µ)
for n = 2, . . . , N ≤ nmax do
µn = arg maxµ∈Ξt ‖ rn−1(x;µ) ‖L∞(Ωd)

xn = arg maxx∈Ωd | rn−1(x;µ1) |
pn(µ) = rn−1(xn;µ)
q̃n(x) = rn−1(x;µn)
cn = 1/rn−1(xn;µn)
rn(x;µ) = u(x;µ)− In[f](x;µ)

end for

As for the EIM we use a greedy selection to pick µ1 and x1, but here we store
two functions (instead of one for EIM), p1(µ) and q̃1(x). We also store the inverse
of the function evaluated at the interpolation point, c1 = 1/u(x1;µ1). The first
interpolant is found by

I1[u] = c1p1(µ)q̃1(x),

an “outer product” of two univariate functions (rank 1 functions), corresponding
to the “slices” p1(µ) = u(x1;µ) and q̃1(x) = u(x;µ1). With the interpolant we
can form the residual error r1(x;µ) = u(x;µ) − I1[u](x;µ). By the same greedy
selection on r1(x;µ) we determine the next interpolation point, parameter variable,
two new functions p2(µ) and q̃2(x), and c2.

16 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

The interpolant for each iteration is found by summing the last interpolant
with the current cn times a new “outer product” of the new functions,

In[u](x;µ) = In−1[u](x;µ) + cnpn(µ)q̃n(x).

Note that the algorithm produces the maximum error over the domain at each
iteration, which is rn−1(xn;µn) = 1/cn, so by storing the cn-s we are also storing
information on the maximum error.

The iterations continue until it has reached some predefined nmax or a desired
accuracy in the approximation.

The final interpolant after N iterations is given by the sum

IN [u](x;µ) =
N∑
i=1

cipi(µ)q̃i(x),

and we have a rank N approximation that matches u(x;µ) exactly on at least N
horizontal and N vertical lines.

We want to compare the ACA to the EIM, so we will apply the algorithm again
on the Runge function and compare the maximum error to see which one of them
approximates u(x;µ) the best. Table 2.2 shows the maximum error for the two
methods. From the table we see that the two methods approximates the function

Table 2.2: Maximum L∞-error for two methods.

n eEIM eACA

2 0.1085 0.1085
4 0.0052 0.0052
6 2.221e-4 2.221e-4
8 1.364e-5 1.364e-5
10 1.333e-7 1.333e-7

with the same accuracy. Figure 2.5 shows a plot of the maximum error.
It can be shown that the two methods chooses the same interpolation points.

Further, it can also be shown that the EIM and the ACA are in fact equivalent, the
EIM also interpolate exactly for all the chosen µi-s, i.e. In[u](x;µi) = u(x;µi), for
all x ∈ Ω, i = 1, . . . , n. This property is somewhat surprising since it is not in any
way obvious from the EIM algorithm, and has previously not been appreciated.

The two methods use the same interpolation points, and therefore approximate
the function with the same accuracy. In implementation, however, there are dif-
ferences. The EIM stores one vector qi(x) for each iteration, while the other stores

2.5. MULTIPLE DIMENSIONS 17

0 2 4 6 8 10 12 14 16 18 20 22
10

−15

10
−10

10
−5

10
0

n

m
a
x
 e

rr
o
r

Figure 2.5: The maximum error is the same for the two methods.

two, pi(µ) and q̃i(x). Also, in the EIM we are required to solve the system

n∑
j=1

(Bn)ijyj = u(xi;µ), i = 1, . . . , n,

for all µ ∈ Ξ in each iteration, while in the ACA we compute an outer vector
product.

In the end the EIM has one advantage over the ACA: in the EIM we can
compute the final interpolant for all µ ∈ D, while for the ACA we are only able
to find the interpolant by taking a “slice” of IN [u](x;µ) at say µ̃, where µ̃ have to
be in the discrete set Ξ.

2.5 Multiple dimensions

Interpolation in the one dimensional setting is quite well documented. There exist
many results for the best points and basis functions under different optimality con-
ditions, especially for polynomial interpolation. In multiple dimensions, however,
the situation is more open and complex. Some of the results from the scalar case

18 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

can be generalized, but it is typically harder to find optimal points as the number
of dimensions increase.

As in the one dimensional case the EIM still offers a simple way to determine
interpolation nodes and basis functions for higher dimensions. Also, if the con-
ditions in Theorem 2.2 is fulfilled the EIM still achieves exponential convergence.
The downside is of course that when the number of dimensions increases we usu-
ally require a large number of terms in our EIM expansion to get a satisfying
approximation of the underlying function.

We consider the two dimensional function

u(x;µ) =
1√

(x1 − µ1)2 + (x2 − µ2)2
, (2.2)

in Ω = (0, 1)2, where x = (x1, x2), µ = (µ1, µ2) and D = (−1,−0.01)2. Figure
2.6 shows the function, with µ = (−0.1,−0.1). For the test set, Ξ, we use a

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

x
2

x
1

Figure 2.6: u(x;µ) with µ = (−0.1,−0.1)

uniform distribution of 50 points in each direction which gives a total of 502 = 2500
parameter values. This time we represent each of the EIM basis functions with a
tensor product based on 75× 75 GLL points.

In Figure 2.7 we have compared the L2-error associated with the EIM and
GLL interpolation. Clearly, the EIM is superior to the GLL approach. The n

2.5. MULTIPLE DIMENSIONS 19

0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

n

L
2
−

e
rr

o
r

EIM

GLL

Figure 2.7: L2-error over a sample of 500 random parameter values drawn uni-
formly from the parameter domain D for EIM and GLL. The EIM is clearly supe-
rior.

given along the horizontal axis is the total number of interpolation points, and the
error is computed for 2 to 7 points in each spatial direction.

Since the interpolation points are not predetermined for the EIM, the nodes
can be concentrated in areas where the function is irregular, as seen in Figure 2.8.
The parameter values and magic points selected by the greedy selection is clustered
at the corners µ = (−0.01,−0.01) and x = (0, 0). Where the EIM adapts to the
specific problem, GLL interpolation will waste resources by covering parts of Ω
where only a few nodes are necessary.

Assume we have constructed the EIM by the description over and we now want
to evaluate the integral

I(µ) =

∫
Ω

u(x1, x2;µ1, µ2)dx1dx2.

20 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1

−0.8

−0.6

−0.4

−0.2

0

µ
1

µ
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

Figure 2.8: Parameter samples (top) and magic points (below) selected by the
EIM algorithm. The spatial points are clearly concentrated near the corner points
µ = (−0.01,−0.01) and x = (0, 0).

2.5. MULTIPLE DIMENSIONS 21

By the EIM approximation we can approximate the integral by

I(µ) ≈
∫

Ω

N∑
j=1

ϕj(µ)qj(x1, x2)dx1dx2

=
N∑
j=1

ϕj(µ)

∫
Ω

qj(x1, x2)dx1dx2

=
N∑
j=1

ϕj(µ)ωj,

where ωj =
∫
qj(x)dx. Since the basis functions are represented on a GLL grid we

can now approximate ωj by the GLL quadrature from Section 1.1. If we use GLL
quadrature directly we would need to calculate a new integral approximations for
each new parameter value. However, if we first run the EIM algorithm we can
precalculate the ωj from the basis functions, and for each parameter value we need
to find the parameter dependent coefficients ϕj(µ) by solving the system

N∑
j=1

(BM)ijϕj(µ) = u(xi;µ), i = 1, . . . , N. (2.3)

Next, we can use the EIM algorithm to approximate the integral by

I(µ) ≈
N∑
j=1

ϕj(µ)ωj. (2.4)

In Figure 2.9 we have used the EIM to approximate the function from (2.2) given
over, and compared it to GLL quadrature. The maximum error given is the dif-
ferences between our approximations and analytical solution. For GLL the x-axis
represents the total number of points, N ×N , in the GLL grid, while for EIM the
lower axis corresponds to the total number of magic points, N , from (2.4).

In terms of computing costs, using GLL directly goes as O(N 2) when there are
N GLL points in each spatial direction in the two dimensional case. Alternatively
we first use EIM and compute the ωj-s, which goes as O(NN 2). After the ωj values
are found, we only have to find the parameter dependent coefficients in (2.3) for
each new parameter value, which goes as O(N3), where N is the total number of
magic points used. Since typically N << N this approach may be preferable if
we need to evaluate the integral a large number of times for many values of µ.

22 CHAPTER 2. THE EMPIRICAL INTERPOLATION METHOD (EIM)

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−10

10
0

m
a
x
 e

rr
o
r

EIM

GLL

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−10

10
0

10
10

m
a
x
 e

rr
o
r

EIM

GLL

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−10

10
0

10
10

m
a
x
 e

rr
o
r

EIM

GLL

Figure 2.9: Maximum error for GLL quadrature and when we use EIM in inter-
polation approximation. We have used µ = (−1,−1) (top), µ = (−0.1,−0.1)
(middle) and µ = (−0.01,−0.01) (bottom).

Chapter 3

Estimation of parameters from
noisy data

Consider the case where we measure a system u(x;µ∗) in different spatial points
which we are free to choose, but our measurements are polluted by some random
noise. From the observations we want to estimate the underlying parameter value
µ∗. However, we will not be able to determine µ∗ exactly because of the noise.
Naturally some measurement points will provide more information on the parame-
ter value than others. We are working under the hypothesis that the magic points
produced in the EIM algorithm are generally a better choice than for instance just
using equidistant points.

We have to make certain assumptions on the introduced noise, which in turn in-
duce the statistical framework we will use. Since the measurements are polluted by
noise, there might be several parameter values that could explain the results. We
show how we can construct a set of parameter values that are consistent with the
experimental data. Further, we expect the size of the set with consistent parame-
ter values to be dependent on where we measure the system, which we will confirm
by numerical observations. We will try to explain why some measurement points
are better than other by looking at analytical expressions for the Runge function,
and the sensitivity of the function at the points where we take our measurements.

3.1 Statistical framework

We assume that the measured experimental data is on the form

Z ′k = u(xk;µ
∗) + ε′k, 1 ≤ k ≤ n,

where n is the predefined number of measurement points, and ε′k ∼ N (0, σ2),
1 ≤ k ≤ n, is normal, zero-mean, uncorrelated and with standard deviation σ [11].

23

24 CHAPTER 3. ESTIMATION OF PARAMETERS FROM NOISY DATA

Throughout the report we are going to use σ = 0.02 in the numerical experiments.
We then define m′ independent realizations of Z ′

Z ′k;i = u(xk;µ
∗) + ε′k;i, 1 ≤ k ≤ n, 1 ≤ i ≤ m′,

so there is a total of nm′ measurements available. We will refer to the nm′ mea-
surements as one experiment. Before each individual experiment neither µ∗ nor σ
are known, and we want to estimate these.

We let Z ∈ Rn be the average measured values in the observation points

Zk =
1

m′

m′∑
i=1

Z ′k;i, 1 ≤ k ≤ n

Next, the standard deviation can be estimated by

σ̂ =

√√√√ 1

nm′ − n

n∑
k=1

m′∑
i=1

(Z ′k;i − Zk)2.

We let
ρ̂ = σ̂

√
nF−1(n, nm′ − 1, γ),

where F−1(d1, d2, γ) is the F-statistic γ quantile for d1 and d2 degrees of freedom,
and we let V be a vector containing u sampled at the measurement point with the
underlying µ∗,

V =


u(x1;µ∗)
u(x2;µ∗)

...
u(xn;µ∗)

 .
If we define ‖ · ‖ as the Euclidean norm, we can state

Proposition 3.1. With confidence level γ,

‖ V − Z ‖≤ ρ̂√
m′
.

A sketch of the proof is given in [11].
Proposition 3.1 is great to test if our numerical implementation is correct. By

doing several experiments and checking if the inequality is satisfied, it should hold
the same number of times corresponding to our choice of the confidence level γ.
Note that the underlying µ∗, and hence the vector V , is in principle unknown.

3.2. PARAMETER ESTIMATION 25

3.2 Parameter estimation

Let Υ be a fine discrete set of parameter values over the domain D. For simplicity
we let Υ = Ξ and we assume that the underlying parameter value µ∗ is in Υ. Let

Ṽk = u(xk; µ̃p), 1 ≤ k ≤ n, (3.1)

where µ̃p ∈ Υ. If we loop over all parameter values µ̃p ∈ Υ, and check if the
inequality

‖ Ṽ − Z ‖≤ ρ̂√
m′

(3.2)

is satisfied, we get a set Υcon containing parameter values that are consistent with
the experimental data. By the statistical framework, the underlying value µ∗ is
then in the estimation set Υcon the same number of times corresponding to the
choice of γ.

Now that the regression framework is set, one question remains: in what points
do we want to measure? In the example below we will see that the size of Υcon

depends on the measurement points, and how the magic points from the EIM are
good candidates. Note that all we use from the EIM are the magic points, and that
parameter estimation otherwise has nothing to do with function approximation.

3.3 The Runge function

In Section 2.3 we shown how the EIM was superior to GLL interpolation in function
approximation. Now we want to use the statistical framework over to estimate
given parameters.

In the numerical experiments we let Nexp be the total number of independent
experiments, and for each experiment we randomly choose a parameter value µ∗ ∈
Υ to estimate. Further we let E(|Υcon|) be the average size of the estimation set,

E(|Υcon|) =
1

Nexp

Nexp∑
|Υcon|,

so that the quantity E(|Υcon|)/|Υ| represent the average sharpness of our estima-
tion.

Before we start, the Runge function has one improtant property to notice, the
EIM produce x1 = 0, where xi is the i-th magic point. However, for the Runge
function we have

u(x1;µ) = 1,

for all µ ∈ D, i.e. that point alone gives no information on the underlying µ∗ what-
soever. Since the example is rather simple, containing a single scalar parameter

26 CHAPTER 3. ESTIMATION OF PARAMETERS FROM NOISY DATA

and one space dimension, we can show analytically that the second magic point
is at x2 = −1/

√
5, so when we measure the system in only one point we will use

that one.
First we do measurements at only x = −1/

√
5 and compare this to measure-

ments at only x = −1. We will also do measurements at several magic points,
n = 2, . . . , 10. The “manually” chosen point x = −1 has been used for two
reasons: it is the third magic point the EIM produces, and it could have easily
been chosen as an observation point if we had no prior knowledge of parameter
estimation.

We start off by trying to approximate µ∗ = 10 with the two single points; see
Table 3.1. The table shows that measuring in x = −1/

√
5 gives a sharper estimate

Table 3.1: The number of parameters that are consistent with the experimental
data compared with the total number of elements in the discrete set Υ at two
different measurement points, with m′ = 20, σ = 0.02 and γ = 0.95. A total of
1000 independent experiments are preformed.

measurement point E(|Υcon|)/|Υ|
x = −1 0.095

x = −1/
√

5 0.035

than x = −1, and note that the precision is approximately three times better for
x = −1/

√
5 than for the other.

The question now is why is x = −1/
√

5 a better measurement point than
x = −1 for this example? We consider the derivative

∂u(x;µ)

∂µ
= − x2

(1 + µx2)2
, (3.3)

which represent the functions sensitivity. A plot of the absolute value of ∂u/∂µ at
different points in Ω can be seen in Figure 3.1.

Ideally we want to measure the function where the absolute value of (3.3)
realized with µ∗ is maximized, but since µ∗ in principle is unknown this is not
possible. With µ∗ = 10 and x = −1 we get∣∣∣∣∂u∂µ

∣∣∣∣
x=−1

=
1

121
≈ 0.008,

and with x = −1/
√

5 ∣∣∣∣∂u∂µ
∣∣∣∣
x=−1/

√
5

=
1

45
≈ 0.022.

3.3. THE RUNGE FUNCTION 27

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

µ

d
u
/d

x

x = −1

x = −1/√5

x = −1/√10

x = 0

Figure 3.1: The sensitivity of u(x;µ) at different points in Ω. We see that for
µ∗ = 10 the function is more sensitive at x = −1/

√
5 than at x = −1, and

therefore gives higher precision. Also, we see that for x = 0 the function does not
change as expected.

So, x = −1/
√

5 is a better measurement point than x = −1 since the function
is more sensitive at that point for µ∗ = 10. Remember how x = −1/

√
5 gave

approximately three times better precision than x = −1 in Table 3.1? We see the
same ratio here. The quality of our measurements is a reflection of how sensitive
the function is at a given point and for a given parameter value µ∗.

If we where to measure the system at just one point, the absolutely optimal
point would be at x = −1/

√
10, since∣∣∣∣∂u∂µ
∣∣∣∣
x=−1/

√
10

=
1

40
= 0.025,

which is consistent with the plot in Figure 3.1. However, the difference in the
sensitivity between x = −1/

√
10 and x = −1/

√
5 are relatively small, and since

we do not know the underlying µ∗ from the beginning x = −1/
√

5 is without a
doubt a pretty good measurement point in this case.

More generally we randomly choose a parameter value µ∗ ∈ Υ to estimate
in each individual experiment. The result is given in Table 3.2. In this case,

28 CHAPTER 3. ESTIMATION OF PARAMETERS FROM NOISY DATA

Table 3.2: Estimation sharpness using the measuring at the magic points provided
by the EIM. Here m′ = 5 and σ = 0.02.

n E(|Υcon|)/|Υ|
2 0.128
3 0.125
4 0.088
5 0.086
6 0.085
7 0.069
8 0.071
9 0.063
10 0.060

when we measure in 10 magic points, we can on average tell the parameter value
with an accuracy of 0.060, or 6.0% of the parameter domain. Note that the
estimation sharpness here is lower than when we only use the one observation
point at x = −1/

√
5 in Table 3.1. The reason is that previously we used m′ = 20,

while now we have m′ = 5.

Chapter 4

The Generalized EIM (GEIM)

To generalize the EIM assume we are given a parameter dependent function u(x;µ),
and imagine that the only way we are able to observe that function is through some
filter. The filter is applied by introducing a linear functional version of EIM [12].
When we are dealing with less regular functions we typically want a filter that
smooths it out, with the advantage to more robustly capture the behaviour. Later
we will experiment with different filters to see how they effect given functions.

Aside from the filter, the GEIM algorithm is similar to standard EIM. However,
the implementation we use is a little different, so we give the algorithm in full.
Then we give the details on how to apply our statistical framework from Section
3.1 after the GEIM procedure, in parameter estimation problems.

4.1 A linear functional EIM

We consider the case where we are given a parametric manifold of functions,M =
{u(·;µ)|µ ∈ D}, where for a given µ in the domain D the field u(·;µ) is a function
in X (Ω). Then we define a set of linear functionals, `j : X → R, 1 ≤ j ≤ J , on
the form

`j(v) =

∫
Ω

g(x− xj)v(x)dx, v ∈ X , (4.1)

where the function g is the filter we use to observe the function v. The functionals
represent what we actually observe, and we will refer to these as “magic function-
als”. Further, each magic functional `j is associated to a functional center xj ∈ Ω,
which we will denote “magic centers”. Examples of the filer g could be

g(x− xj) = δ(x− xj), (4.2)

and

g(x− xj) =
1√

2πσm
e
−(x−xj)

2

2σ2m . (4.3)

29

30 CHAPTER 4. THE GENERALIZED EIM (GEIM)

We denote (4.3) as a “Gaussian filter”, which we can adjust by changing the filter
width σm. Higher σm will result in smoother functionals. Note that the Gaussian
filter given here corresponds to one space dimension. When we are not able to
evaluate the integral in (4.1) exactly, the functionals will be approximated by
some quadrature, for example the GLL quadrature described in Section 1.1. Also
note that in the special case of (4.2) the GEIM is equivalent to the EIM.

From an approximation perspective the magic functionals will span a space
which is in some sense close to the full set of functionals, in other word, from a
linear combination of the subset we should be able to construct an interpolant
for all µ ∈ D. From an estimation perspective the magic functionals will provide
good discrimination between members of the the manifold, i.e. different values of
µ ∈ D. Later we will investigate which σm are preferable in parameter estimation
for a given example.

We introduce a discrete training set Ξ of P points µp ∈ D, 1 ≤ p ≤ P . We let
up = u(x;µp) be the “snapshots” of the function for all points in Ξ, and evaluate
Hjp = `j(up), 1 ≤ j ≤ J , 1 ≤ p ≤ P . We also specify nmax as the number of magic
functionals desired. The GEIM algorithm is given below.

Algorithm 4.1 Generalized Empirical Interpolation Method

set ̃1, p̃1 = arg maxj,p |Hjp|
set (q1)j = `j(up̃1)/H̃1,p̃1 , 1 ≤ j ≤ J
set B1 ∈ R : B1

11 = 1
for i = 1, . . . , n ≤ nmax − 1 do

for p = 1, . . . , P do

find αip ∈ Ri : Biαip =

H̃1,p
...

H̃i,p


evaluate (rip)j = Hjp −

∑i
i′=1(αip)i′(qi′)j, 1 ≤ j ≤ J

end for
set ̃i+1, p̃i+1 = arg maxj,p |(rip)j|
evaluate τ i = (rip̃i+1

)̃i+1

define (qi+1)j = (rip̃i+1
)j/τ

i, 1 ≤ j ≤ J

construct Bi+1 ∈ Ri+1 : Bi+1
kk′ = (qk′)̃k

end for

As for the EIM, at iteration i the algorithm chooses the magic center and
functional least well represented by the previous magic centers and functionals
measured by the error τ i. The same error measurement could also be used to stop
the iterations after a desired tolerance is achieved, thus avoiding all nmax stages.

After the algorithm is applied we are left with a GEIM system of size n

4.2. PARAMETER ESTIMATION: GEIM 31

comprised by the magic centers x̃k , the magic functionals `̃k , 1 ≤ k ≤ n,
the basis functions qi, 1 ≤ i ≤ n, the associated approximation space W n =
span{q1, . . . , qn}, and the interpolation matrix B ∈ Rn×n.

Note that the nested construction, as for the EIM, gives us a hierarchy of
interpolation spaces W 1 ⊂ W 2 ⊂ . . . ⊂ W n, where W i = span{q1, . . . , qi}, which
implies that for any ñ, 1 ≤ ñ ≤ n we have a GEIM system of size ñ.

Next, assume we are given a function v ∈ X (Ω). We let L ∈ RJ so that

Lj = `j(v), 1 ≤ j ≤ J, (4.4)

and V ∈ Rn so that
Vk = L̃k , 1 ≤ k ≤ n, (4.5)

i.e. V contains the observations of the function v ∈ X (Ω). The GEIM system
then provides an approximation L̃ to L based on V , by computing β̃ ∈ Rn from

Bβ̃ = V, (4.6)

and then

L̃j =
n∑
i=1

β̃i(qi)j, 1 ≤ j ≤ J.

By construction B is a lower triangular matrix with Bii = (qi)̃i = 1 on the
diagonal, thus it follows that (4.6) has a unique solution. As a result of this
construction the GEIM approximation satisfies

L̃j = Lj, j ∈ {̃1, . . . , ̃n}, (4.7)

i.e. we have interpolation in the magic centers, which is the GEIM interpolation
property.

Note that a GEIM approximation can be constructed for all v ∈ X (Ω), even
though the algorithm trains only on function from the manifoldM. So in a sense
we may say that B and qi, 1 ≤ i ≤ n, bear aM “label”. However, the interpolation
property (4.7) shall still hold for all v ∈ X (Ω).

We make a short remark on the notation. In the EIM the magic centers was
denoted xj, 1 ≤ j ≤ N , while in GEIM xj, 1 ≤ j ≤ J represent the functional
centers. The magic centers in the GEIM is denoted x̃k , 1 ≤ k ≤ n.

4.2 Parameter estimation: GEIM

As mentioned earlier the introduced linear functionals allow us to capture the
behaviour of less regular functions, which in turn enable us to estimate given

32 CHAPTER 4. THE GENERALIZED EIM (GEIM)

parameters from the underlying function. When we observe the function we now
use the magic centers provided by the GEIM algorithm.

In this case we do measurements on the filtered u(x;µ∗), and we assume that
the measured experimental data this time is on the form

Z ′k = Vk + ε′k, 1 ≤ k ≤ n,

where V is defined in (4.4) and (4.5), and ε′k ∼ N (0, σ2), 1 ≤ k ≤ n, is again
normal, zero-mean, uncorrelated and with standard deviation σ. We define m′

independent realizations of Z ′ in the same way,

Z ′k;i = Vk + ε′k;i, 1 ≤ k ≤ n, 1 ≤ i ≤ m′.

Here we assume need to assume that V is constructed from a function u ∈ M,
and again we assume that µ∗ ∈ Υ = Ξ. The vector Ṽ from Equation (3.1) we use
to determine the set Υcon now is constructed from the functionals,

Ṽk = `̃k(u(·; µ̃p)), 1 ≤ k ≤ n,

where µ̃p ∈ Υ, 1 ≤ p ≤ P .
The rest of the statistical framework and how to estimate parameters is given

in the previous chapter.

4.3 Numerical examples

Below we examine different examples with irregular functions, both in one and
multiple space dimensions. For each example we apply the GEIM coupled with a
given filter.

For each example we first consider the error behaviour after filter use on a given
function, by considering the maximum error |τ i| provided by the GEIM algorithm.

Second we explore how the magic centers can be used in parameter estimation.
Remember that the average sharpness of our estimation is given by E(|Υcon|)/|Υ|,
defined by

E(|Υcon|) =
1

Nexp

Nexp∑
|Υcon|.

Note that in function approximation we use fine grids for both the space domain
and the parameter domain, while for parameter estimation we will see that we can
make due with a coarse grid for the space domain.

4.3.1 Gaussian filter

The Gaussian filter described in (4.3) smooths out a given function in a relatively
intuitive manner, and is therefore great to use as an introduction to how a filter
may affect a function.

4.3. NUMERICAL EXAMPLES 33

Example 1: One dimensional step function

For our first example we consider the one dimensional function

u(x;µ) =

{
1 −1 ≤ x ≤ µ,
0 µ < x ≤ 1,

where Ω = (−1, 1) and D = (−0.5, 0.5); see Figure 4.1. The function is partly

−1 0 1
0

0.5

1
u(x;−0.5)

−1 0 1
0

0.5

1
u(x;0)

−1 0 1
0

0.5

1
u(x;0.5)

Figure 4.1: u(x;µ) over Ω = (−1, 1) with µ = −0.5, µ = 0 and µ = 0.5.

chosen for its simple irregularity and will provide a clear picture to what happens
after filter use.

We apply the Gaussian filter (4.3) with σm = 0.2 on a fine grid, the filtered
function can be seen in Figure 4.2. The figure shows how the filter smooths out

−1 0 1
0

0.5

1
u(x;−0.5) with filter

−1 0 1
0

0.5

1
u(x;0) with filter

−1 0 1
0

0.5

1
u(x;0.5) with filter

Figure 4.2: u(x;µ) with Gaussian filter with σm = 0.2, and µ = −0.5, µ = 0 and
µ = 0.5. The parameter µ here represent the position of the discontinuity in u.

the function, which can now be approximated by the GEIM. If we increase the
filter width σm, the resulting functionals after filter use will give an even smoother
function. We expect a smoother function to be easier to approximate, which is
confirmed in Figure 4.3. The maximum error |τ i| is plotted for three different
σm-s, and the iterations is stopped when |τ i| < 10−14.

Next we want to see if we are able to estimate a given parameter value µ∗

when we add noise according to Section 3.1, and why using a filter could be an
advantage on a coarse grid. Imagine we are measuring the function u(x;µ∗), where
xj ≤ µ∗ < xj+1. With no filter we get no additional information on µ∗. However,

34 CHAPTER 4. THE GENERALIZED EIM (GEIM)

0 5 10 15 20 25 30 35 40
10

−15

10
−10

10
−5

10
0

i

τ
i

σ
m

 = 0.1

σ
m

 = 0.2

σ
m

 = 0.3

Figure 4.3: With σm = 0.10 the GEIM reaches the tolerance |τ i| < 10−14 after 39
iterations, σm = 0.20 after 24 iterations and σm = 0.30 after 18 iterations.

j j+1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Blue dots; u(x;µ∗) measured without filter and without noise. We
can not say anything about the parameter value between xj and xj+1. Red dots;
u(x;µ∗) measured with filter and without noise.

4.3. NUMERICAL EXAMPLES 35

if we use a Gaussian filter we do, see Figure 4.4 for an example. In this example we
see that the resulting functionals is slightly shifted towards xj+1 and therefore so
is also µ∗. By letting Ω stay coarse and Ξ be fine we should be able to determine
the underlying parameter value µ∗ with good accuracy by the procedure given in
Section 3.1.

When we do parameter estimation (when noise have been added) we want to
compare the estimation sharpness with something, so we examine what we can
say about the parameter value without filter and without noise. If we let J = 10
we get ∆x = xj+1 − xj = 0.2222, and since D = (−0.5, 0.5) we can tell µ∗ with
an accuracy of 0.2222 = 22.22% of the parameter domain if we measure in all the
points of the coarse space grid.

To determine which parameter values that are consistent with our measure-
ments we are always considering the inequality

‖ Ṽ − Z ‖≤ ρ̂√
m′
.

If, for some reason, we could observe the functionals without noise, the right hand
side of this equation would be equal to zero. In that case we would be able to tell
the exact parameter value with only one obsevation point. However, when we add
noise, the quantity ρ̂/

√
m′ > 0, and there might be several parameter values that

are consistent with the numerical data.
Moving on with the example, we need to fix several values, see Table 4.1. As

Table 4.1: Numerical values for our first example.

0 ≤ j ≤ J = 10 points in space dimension
0 ≤ p ≤ P = 500 points in parameter space
∆x = 0.2222 grid spacing
Nexp = 1000 number of experiments
m′ = 5 number of magic centers
σ = 0.02 introduced noise
γ = 0.95 confidence level

mentioned earlier we let Υ = Ξ for simplicity. In each experiment we randomly
choose a µ∗ ∈ Υ to estimate.

We apply the Gaussian filter for different σm-s and magic centers, 2 ≤ n ≤ 10.
Because of numerical round off error the implemented algorithm starts to choose
the same centers multiple times for small σm-s, so we set nmax to the maximum
number of distinct magic centers chosen. Table 4.2 shows the estimation sharpness

36 CHAPTER 4. THE GENERALIZED EIM (GEIM)

Table 4.2: The table shows E(|Υcon|)/|Υ|, horizontal is n, vertical is σm. Note
that for n = J = 10 we observe the function in all possible centers of our coarse
grid over Ω. This disable in a way the greedy choice of the GEIM, so in a sense
we can say that on a coarse grid the GEIM only helps for the first few choices of
magic centers.

2 3 4 5 6 7 8 9 10
0.01 0.633 0.395 0.205 0.139 0.140 0.137 - - -
0.02 0.608 0.255 0.183 0.093 0.096 0.096 - - -
0.03 0.389 0.225 0.135 0.058 0.059 0.059 - - -
0.04 0.345 0.177 0.107 0.038 0.035 0.033 0.033 0.035 -
0.05 0.332 0.149 0.076 0.025 0.024 0.020 0.021 0.022 -
0.06 0.300 0.125 0.058 0.021 0.019 0.017 0.017 0.017 -
0.07 0.268 0.101 0.046 0.018 0.017 0.015 0.016 0.016 0.016
0.08 0.255 0.078 0.035 0.017 0.016 0.015 0.015 0.016 0.016
0.09 0.230 0.072 0.030 0.017 0.016 0.015 0.016 0.016 0.016
0.10 0.211 0.060 0.027 0.017 0.017 0.015 0.016 0.017 0.017
0.20 0.091 0.035 0.027 0.023 0.023 0.023 0.023 0.023 0.023

E(|Υcon|)/|Υ|. In the table the red numbers represent estimates that is less sharp
than without a filter and without noise. The blue numbers is when our estimate
is less or equal to 0.020 = 2.0% of the parameter domain. We see that after filter
use we are mostly able to estimate µ∗ with high accuracy, if we choose somewhat
right σm and n.

In Figure 4.5 we have plotted the sharpness E(|Υcon|)/|Υ| as a function of
the number of magic centers, 2 ≤ n ≤ 10. The figure shows that the points
chosen, after approximately the first five, gives little additional information on
the parameter value. This illustrates one of the key points when doing parameter
estimation: there are, as stated, a total of nm′ measurements available. If we
are given the opportunity, it is often better to do more repeated measurements
in good measurement points (increase m′), rather that increasing the number of
magic centers1 (increase n).

1From Equation (3.2) we expect the estimation sharpness to approximately decrease by a
factor of two when m′ increase by a factor four, which we will confirm by numerical experiments
later.

4.3. NUMERICAL EXAMPLES 37

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

E
s
ti
m

a
ti
o
n
 s

h
a
rp

n
e
s
s

σ

m
 = 0.01

σ
m

 = 0.10

σ
m

 = 0.20

σ
m

 = 0.50

Figure 4.5: Estimation sharpness as a function of n for different σm-s.

Example 2: One dimensional box function

For the next example we will look at the one dimensional function

u(x;µ) =

{
1 µ− b/2 ≤ x ≤ µ+ b/2,

0 elsewhere,

where Ω = (−1, 1) and D = (−0.9, 0.9). We let b = 0.2 so that we are looking at
an one dimensional box with unit height and width 0.2 moving inside the domain
when µ changes; see Figure 4.6.

Once again we apply the Gaussian filter, this time with different σm values; see
Figure 4.7. The filter smooths out the function as expected, which enables us again
to use the GEIM algorithm to more easily construct a function approximation; see
Figure 4.8. Note that we have used a higher filter width for this example than for
the previous. This function is in a sense even more irregular, and therefore must
be smoothed out even further out to achieve a satisfying approximation.

The first ten chosen magic centers the GEIM picks when σm = 0.5 can be
seen in Figure 4.9. Interestingly, the distribution of the chosen centers seems to
resemble something between equidistant- and a GLL distribution.

38 CHAPTER 4. THE GENERALIZED EIM (GEIM)

−1 0 1
0

0.5

1

u(x;−0.9)

−1 0 1
0

0.5

1

u(x;0)

−1 0 1
0

0.5

1

u(x;0.9)

Figure 4.6: u(x;µ) with µ = −0.9, µ = 0 and µ = 0.9.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Ω

σ
m

 = 0.5

σ
m

 = 0.75

σ
m

 = 1.0

Figure 4.7: u(x;−0.3) filtered with three different choices for σm over Ω.

4.3. NUMERICAL EXAMPLES 39

0 2 4 6 8 10 12 14 16 18
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

i

τ
i

σ
m

 = 0.5

σ
m

 = 0.75

σ
m

 = 1.0

Figure 4.8: With σm = 0.5 the GEIM reaches the tolerance |τ i| < 10−14 after
16 iterations, with σm = 0.75 after 13 iterations, and with σm = 1.0 after 11
iterations.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Ω

Figure 4.9: Where the GEIM chooses the magic centers when doing function
approximation on the box function with σm = 0.5 on a fine grid.

40 CHAPTER 4. THE GENERALIZED EIM (GEIM)

When doing parameter estimation on this example we are estimating where
the box is centered in the domain. In the case when σm is small we need the grid
size to be equal to or smaller than the box width. If the grid spacing is bigger, we
might end up with the case where we are given a random chosen parameter value
to estimate that “falls between” the grid, and we will never pick up where that
value lies. Therefore we let J = 11 so that the distance of two adjacent grid points
is ∆x = 0.2, the same as the boxwidth.

In the previous example we saw that if we could observe the functionals without
noise, we would in principle only need one measurement point to determine the
exact parameter value µ∗. In this case, however, we would generally need two
observation points to determine the exact value. Figure 4.10 shows an illustration
of why this is the case.

−1 1

Ω

Figure 4.10: If we observe the functionals in one magic point before noise have been
added, there are generally two parameter values that may explain the measured
value. To find the exact µ∗ we need to measure in one additional point.

If we could measure the function in the points on the coarse grid without filter
and without noise, we can, with this construction, again tell the parameter value
with an accuracy of 0.4/1.8 = 0.2222 = 22.22% of the parameter domain.

The numerical values for the experiment is given in Table 4.3, and the resulting
estimation sharpness can be seen in Table 4.4. In the estimation table we have
highlighted the σm values which gives the best estimation sharpness for each given
number of magic centers. We see that when n is smaller we need a higher σm.
The reason for this is we will more often be given values to estimate that are
“far away” from the magic centers, and therefore need a higher σm so that the
functionals “reach out” to those centers to pick up the given µ∗ value. However,
when n is larger we have more of the domain covered, so can use a smaller σm and
still observe where the filtered box function is centered.

4.3. NUMERICAL EXAMPLES 41

Table 4.3: Numerical values for our second example.

0 ≤ j ≤ J = 11 points in space dimension
0 ≤ p ≤ P = 500 points in parameter space
∆x = 0.2 grid spacing
Nexp = 1000 number of experiments
m′ = 5 number of magic centers
σ = 0.02 introduced noise
γ = 0.95 confidence level

Table 4.4: E(|Υcon|)/|Υ|. Horizontal is n, vertical is σm. The highlighted numbers
shows which σm value that gives the best estimation for a given number of magic
centers.

2 3 4 5 6 7 8 9 10
0.04 0.345 0.156 0.055 0.033 0.017 0.014 0.010 0.010 0.010
0.05 0.302 0.116 0.029 0.017 0.012 0.009 0.007 0.007 0.006
0.06 0.273 0.102 0.022 0.014 0.011 0.009 0.007 0.007 0.007
0.07 0.253 0.094 0.020 0.014 0.011 0.009 0.007 0.007 0.007
0.08 0.242 0.082 0.018 0.014 0.011 0.009 0.008 0.007 0.007
0.09 0.223 0.076 0.018 0.015 0.013 0.010 0.008 0.008 0.008
0.10 0.181 0.065 0.018 0.016 0.013 0.011 0.008 0.008 0.008
0.20 0.066 0.053 0.035 0.033 0.024 0.022 0.022 0.020 0.019
0.30 0.097 0.072 0.052 0.046 0.042 0.042 0.039 0.037 0.036

42 CHAPTER 4. THE GENERALIZED EIM (GEIM)

Example 3: Two dimensional box function

We move on by extending the previous example into two dimensions by

u(x;µ) =

{
1 µ1 − b1/2 ≤ x1 ≤ µ1 + b1/2, µ2 − b2/2 ≤ x2 ≤ µ2 + b2/2,

0 elsewhere,

where x = (x1, x2), µ = (µ1, µ2), b = (b1, b2) and Ω = (−1, 1)2. We let D =
(−0.9, 0.9)2 for the parameter domain and b = (0.2, 0.2). A plot of the function
with µ = (0, 0) can be seen in Figure 4.11.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

Figure 4.11: u(x;µ) with µ = (0, 0).

We apply the Gaussian filter, which in the two dimensional case has the form

g(x− xj) =
1

2πσm
exp

(
− (x1 − xj,1)2 + (x2 − xj,2)2

2σm

)
.

Like in the one dimensional case the function is very hard to approximate, espe-
cially for small σm-s. Figure 4.12 shows the error |τ i| for three σm-s. Even though
the function is hard to approximate, the GEIM still preform with exponentially
convergence.

Again we estimate random chosen parameter values, see Table 4.5 for the ex-
periments numerical values. Without filter and noise, and with J = 11 × 11 and
D = (−0.9, 0.9)2 we can tell the parameter value with a sharpness of

0.4× 0.4

1.8× 1.8
= 0.0493,

4.3. NUMERICAL EXAMPLES 43

0 20 40 60 80 100 120 140 160 180 200
10

−15

10
−10

10
−5

10
0

i

τ
i

σ
m

 = 0.5

σ
m

 = 1.0

σ
m

 = 3.0

Figure 4.12: With σm = 0.50 the GEIM reaches the tolerance |τ i| < 10−14 after
189 iterations, σm = 1.0 after 82 iterations and σm = 3.0 after 30 iterations.

Table 4.5: Numerical values for our two-dimensional example.

0 ≤ j ≤ J = 11× 11 = 121 points in space dimensions
0 ≤ p ≤ P = 100× 100 = 10000 points in parameter space
Nexp = 1000 number of experiments
m′ = 5 number of repeated measurements
σ = 0.02 introduced noise
γ = 0.95 our confidence level

44 CHAPTER 4. THE GENERALIZED EIM (GEIM)

or 4.93% of the parameter domain.
We use the Gaussian filter for different σm and n values, and look at E(|Υcon|)/|Υ|.

We do 1000 experiments for each value, see Table 4.6. The table shows if we choose

Table 4.6: E(|Υcon|)/|Υ|. Horizontal is n, vertical is σm.

10 15 20 25 30 35 40 45 50
0.05 0.407 0.230 0.113 0.050 0.024 0.011 0.005 0.001 0.001
0.06 0.324 0.186 0.071 0.026 0.008 0.004 0.001 0.001 0.001
0.07 0.278 0.129 0.037 0.008 0.004 0.002 0.001 0.001 0.001
0.08 0.253 0.086 0.024 0.008 0.003 0.002 0.001 0.001 <0.001
0.09 0.195 0.060 0.016 0.004 0.002 0.002 0.001 0.001 0.001
0.10 0.180 0.063 0.011 0.003 0.002 0.001 0.001 0.001 0.001
0.20 0.052 0.019 0.012 0.009 0.007 0.007 0.006 0.006 0.005
0.30 0.095 0.056 0.049 0.035 0.036 0.032 0.030 0.027 0.026

an appropriate σm we are able to estimate the parameter value with high accuracy.
Note that when σm is small the function after filter use is nearly unchanged,

i.e. there is little change in the filtered u(x;µ) when the change in µ is small.
This means that to be able to estimate µ∗ well, one of the magic centers need to
“hit” the box. This affects each individual independent experiments in a couple
of ways: if we do not hit the box with a magic center the estimation set Υcon will
be rather bad, and when we do hit it, say at magic center i, the rest of the chosen
centers ni+1, . . . , nmax will be redundant. When we do not hit the box we are in
a sense removing parameter values that are not consistent with our data, instead
of closing in on the right value; see Figure 4.13 for an example. On the other
hand, when σm becomes too big the resulting function after filter use will be very
smooth and contain low values. With low values the introduced noise will affect
our measurements relatively more, and we will not be able to estimate the value
as well. In that case we need to increase the repeated measurements in each center
by m′ to get a sharper estimate.

4.3.2 Fourier coefficients filter

In the previous examples we have used the Gaussian filter that smooths out a
given function in a fairly intuitive manner. However, there is nothing stopping us
from applying any other filter and then use the same framework as before. In the
next example we first define our function globally and approximate it by a Fourier
series. Then we let the coefficients defined from the resulting Fourier series to be
the functionals on a local domain.

4.3. NUMERICAL EXAMPLES 45

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.13: The red dot is the parameter value we want to estimate, and the blue
is potential points. The five chosen centers have removed some of the points, but
fails to find the correct one because the filtered function is too sharp. To get a
more accurate estimate we need to either increase n to find the parameter value,
or change our filter width σm.

46 CHAPTER 4. THE GENERALIZED EIM (GEIM)

We let the global function be

u(x;µ) =


−1 −µ− b/2 ≤ x ≤ −µ+ b/2,

1 µ− b/2 ≤ x ≤ µ+ b/2,

0 elsewhere,

where b is the box width, Ω̂ = (−2, 2) and D = (0.1, 1.9). As before we use b = 0.2.

We define the filter as

g(x) =
1

2
sin

(
jπx

2

)
,

so the functionals becomes

aj =
1

2

∫ 2

−2

u(x;µ) sin

(
jπx

2

)
. (4.8)

This construction might seems strange, but is in fact the same one dimensional box
function as before with an odd extension and the domain shifted from (−1, 1) to
(0, 2); see Figure 4.14. The magic funtionals is now the corresponding coefficients

−2 0 2

−1

−0.5

0

0.5

1

u(x;0.1)

−2 0 2

−1

−0.5

0

0.5

1

u(x;1)

−2 0 2

−1

−0.5

0

0.5

1

u(x;1.9)

Figure 4.14: The box function u(x;µ) from example 2 with an odd extension,
µ = 0.1, µ = 1 and µ = 1.9.

in a Fourier series of the global periodic function u(x;µ). The functionals in (4.8)
can be found analytically by

aj =
1

2

∫ 2

−2

u(x;µ) sin

(
jπx

2

)
=

1

2

(∫ −µ+b/2

−µ−b/2
(−1) sin

(
jπx

2

)
dx+

∫ µ+b/2

µ−b/2
sin

(
jπx

2

)
dx

)
...

=
4

jπ
sin

(
jπµ

2

)
sin

(
jπb

4

)
. (4.9)

4.3. NUMERICAL EXAMPLES 47

Note that the functionals is constructed by using the global periodic version of
u(x;µ) defined over Ω̂ = (−2, 2). With the functionals well defined we now let the
local domain be Ω = (0, 2).

If we want we can now write our function as an infinite sum

u(x;µ) =
∞∑
j=1

aj sin

(
jπx

2

)

=
∞∑
j=1

4

jπ
sin

(
jπµ

2

)
sin

(
jπb

4

)
sin

(
jπx

2

)
,

or approximate by a finite sum

u(x;µ) ≈ uJ(x;µ) =
J∑
j=1

4

jπ
sin

(
jπµ

2

)
sin

(
jπb

4

)
sin

(
jπx

2

)
.

To check that aj is correctly computed we plot uJ over Ω with J = 50 and µ = 1;
see Figure 4.15.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ω

u
5
0
(x

,1
)

Figure 4.15: The approximation u50(x; 1) over Ω = (0, 2).

Note that in previous examples the functionals was associated with a “center”
or measurement site, xj ∈ Ω, while now we associate the functionals with coeffi-
cients of Fourier series dependent on the box position by µ. Figure 4.16 shows the

48 CHAPTER 4. THE GENERALIZED EIM (GEIM)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

a
1

µ

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

a
2

µ

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

a
3

µ

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

a
4

µ

Figure 4.16: The functionals aj, j = 1, 2, 3, 4, over the parameter domain µ.

functionals aj, j = 1, 2, 3, 4, as a function of µ. The functionals after filter use are
not in any way smooth as before, and we will see how this affect the results when
using the GEIM in function approximation.

From (4.9) we expect aj to decay with a rate of 1/j, i.e.

aj ∼ C/j, (4.10)

or on a logarithmic scale
log aj ∼ C ′ − log j.

A logarithmic plot of maxµ∈D |aj| is shown in Figure 4.17. The figure shows that
aj decay with a rate of 1/j. This result have an important impact in parameter
estimation, the introduced noise will affect the results relatively more for ak than
aj, when k >> j. This may not be a problem in itself, but for this example
it reinforces the argument that it is better to measure multiple times in good
measurement points than producing loads of magic centers.

We try to use the GEIM algorithm to approximate. Let 1 ≤ j ≤ J = 5000
and set nmax = 1000. Figure 4.18 shows the maximum error given by |τ i| on a
logarithmic scale. The plot shows that the error does not decrease like previous
examples, which is of course connected with the shape of the functionals (as seen
in Figure 4.16).

4.3. NUMERICAL EXAMPLES 49

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Figure 4.17: Logarithmic plot of maxµ∈D |aj| when j increases.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

i

τ
i

Figure 4.18: The maximum error |τ i|

50 CHAPTER 4. THE GENERALIZED EIM (GEIM)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

i

c
h
o
s
e
n
 c

e
n
te

r

Figure 4.19: The 100 first magic coefficients chosen by the GEIM. A chosen j
corresponds to aj.

Figure 4.19 shows the chosen magic centers (or magic coefficients) for this filter.
The GEIM choose the centers in a linear like fashion, which make sense because
of the decay rate of the functionals from (4.10). This means that for parameter
estimation we gain little by increasing J , meaning that if we want to measure for
instance in the first three magic coefficients the algorithm will choose the exact
same three whether J = 10 or J = 100, 1 ≤ j ≤ J . Figure 4.20 shows the
first six basis functions that the GEIM constructs. Of course, now the qi-s are not
functions in the same sence as before, but rather vectors containing information on
the difference between the current interpolant and the filtered function represented
by the matrix H from the GEIM.

Since u(x;µ) can be expressed by a Fourier series it is also integrable over Ω.
By Parceval’s identity [13] we can express the the L2-norm of uJ(x;µ) as

‖ uJ ‖2
L2(Ω)=

∫
Ω

u2
Jdx,

where Ω = (0, 2), which we define as the energy of the approximation. Looking at

4.3. NUMERICAL EXAMPLES 51

0 50 100 150
−1

0

1

q
1

0 50 100 150
−1

0

1

q
2

0 50 100 150
−1

0

1

q
3

0 50 100 150
−0.5

0

0.5

1

q
4

0 50 100 150
−1

0

1

q
5

0 50 100 150
−1

0

1

q
6

Figure 4.20: Basis functions qi, i = 1, 2, 3, 4, 5, 6, when J = 150.

52 CHAPTER 4. THE GENERALIZED EIM (GEIM)

the integral we get

∫
Ω

u2
Jdx =

∫
Ω

(J∑
j=1

aj sin

(
jπx

2

))(J∑
k=1

ak sin

(
kπx

2

))
dx

=
J∑
j=1

J∑
k=1

ajak

∫
Ω

sin

(
jπx

2

)
sin

(
kπx

2

)
dx︸ ︷︷ ︸

c

.

To determine the value c there are two cases to consider, j = k and j 6= k. When
j = k we get

c =

∫ 2

0

sin2

(
jπx

2

)
dx

=

[
x

2
− sin(jπx)

2jπ

]2

0

= 1,

and when j 6= k

c =

∫ 2

0

sin

(
jπx

2

)
sin

(
kπx

2

)
dx

=

[
sin(πx(j − k)/2)

π(j − k)
− sin(πx(j + k)/2)

π(j + k)

]2

0

=
sin(π(j − k))

π(j − k)
− sin(π(j + k))

π(j + k)
= 0,

since j, k = 1, . . . , J . So the energy of the signal is simply given by

‖ uJ ‖2
L2=

J∑
j=1

a2
j .

One way to interpret this result is that the GEIM chooses the coefficients that
contributes the most to the signal given by uJ(x;µ).

We apply the statistical framework. In Table 4.7 we have estimated random
chosen parameters from the parameter domain, µ∗ ∈ Υ, with |Υ| = 1000, m′ =
5, 10, 15, 20, and as usual γ = 0.95 and Nexp = 1000. As seen, for this example the
filtered version of the function looks nothing like the original. However, remember
that for each independent experiment the µ∗ ∈ Υ we estimate still represent the
position of the original box in the domain Ω.

4.3. NUMERICAL EXAMPLES 53

Table 4.7: Estimation sharpness given by E(|Υcon|)/|Υ|. Horizontal n, vertical m′.
Note that when m′ → 4m′ the sharpness goes approximately down by a factor
two.

1 2 3 4 5 6 7 8 9 10
5 0.272 0.076 0.033 0.026 0.021 0.016 0.014 0.012 0.011 0.010
10 0.182 0.049 0.022 0.016 0.014 0.010 0.009 0.008 0.007 0.007
15 0.149 0.039 0.018 0.013 0.011 0.008 0.007 0.006 0.006 0.005
20 0.128 0.035 0.014 0.011 0.010 0.007 0.006 0.005 0.005 0.005

4.3.3 The Runge function: revisited

At the end of this thesis we once more return to the Runge function. Just to recap,
the problem contains a single scalar parameter µ ∈ D and one space dimension,
and the function is

u(x;µ) =
1

1 + µx2
,

where Ω = (−1, 1) and D = (1, 25).
So far we have only used the magic centers from the EIM or the GEIM in

parameter estimation, and discarded the rest of the information provided by the
algorithms. Now we let the filter g from (4.1) be the basis functions produced by
the EIM, so that the functionals becomes

`j(u) =

∫
Ω

u(x;µ)qj(x)dx.

In a way we are taking the process one step further from the EIM by using the
basis function instead of the magic centers. In other words, first we use the EIM to
determine the basis functions to use as the filter, then we form the linear functionals
by GEIM. Now we have two options, we could let the measurement points either
be the same as the magic centers from the EIM, or we can use the GEIM on the
resulting system given by the functionals to determine a new set of magic centers
to measure at. For the second we need the total number of functionals to be bigger
than the number of magic centers, J > n, so that the GEIM algorithm have a few
options to choose from.

For the first case we let 1 ≤ j ≤ J = n and let n = 2, . . . , 10, with the result
given in Table 4.8. Compared with the results with no filter in Table 3.2 from
Section 3.3 the estimation sharpness now is better when using a few magic centers.
However the sharpness does not improve when n increases, as it does without the
basis function filter. The reason for this is that the qj-s become more oscillatory
when j increases, with the result that the numerical values of the functionals `j

54 CHAPTER 4. THE GENERALIZED EIM (GEIM)

Table 4.8: Estimation sharpness using the basis functions as filter. Here m′ = 5.

n E(|Υcon|)/|Υ|
2 0.076
3 0.077
4 0.077
5 0.083
6 0.085
7 0.081
8 0.087
9 0.085
10 0.088

greatly decreases. The noise given by σ then affects the measurements relatively
more, just like in “Fourier coefficients filter” example.

Furthermore, we can use the GEIM on the functionals to determine where to
do our measurements, with the results given in Table 4.9. Again the results do

Table 4.9: Estimation sharpness using the basis functions as filter and the GEIM
applied. Here m′ = 5.

n E(|Υcon|)/|Υ|
2 0.103
3 0.078
4 0.084
5 0.081
6 0.084
7 0.087
8 0.087
9 0.088
10 0.085

not improve greatly when n increases, which is no suprise for the same reason as
without applying the GEIM on the functionals.

Chapter 5

Conclusions

In this report we have focused on the empirical interpolation method (EIM). The
method was first introduced in 2004, developed in connection with the reduced
basis framework for parametrized differential equations. We considered one way
to generalize the method further, by introducing a linear functional EIM , denoted
as the generalized empirical interpolation method (GEIM).

The work done in this report can be divided into two topics. We presented the
EIM and GEIM, and looked at the properties of those method. We also investi-
gated whether the interpolation points produced by the interpolation method are
good candidates for measurement points in parameter estimation problems.

In Chapter 2 we introduced the EIM and gave a fairly extensive explanation
of all the steps of the algorithm. We did a short section on error analysis, and in
Theorem 2.2 we stated that for functions with analytic parameter dependence the
EIM achieves exponential convergence, which we verified in Section 2.3 and 2.5 for
both one- and multiple dimensions. In the experiments we compared the method
to interpolation through classical Gauss points, and we saw that EIM was far
superior. We also investigated how the EIM can be used in integral approximation.

Furthermore, in Chapter 4 the GEIM was presented by introducing a linear
functional EIM. The functionals allowed us to observe functions through some
given filter, and consequently more robustly capture the behaviour of less regular
functions. We used the GEIM on several examples with irregular functions, and
saw how the method approximated a given function with different filters.

For each example we also estimated given parameters, after doing measure-
ments on the functions, with the statistical framework given in Section 3.1. Here
we measured in the interpolation points provided by the GEIM algorithm, and
we showed that with an appropriate filter we was able to estimate the parameters
with high accuracy.

Numerically we observed that repeated measurements in a few good measure-
ment points give a sharper parameter estimation than increasing the number of

55

56 CHAPTER 5. CONCLUSIONS

points in which we measure. With the one dimensional Runge function we was
able to look at analytical expressions, and we showed that the precision on how
well we can estimate parameters is a reflection of how sensitive the function is for
parameter variation at certain points in the spatial domain.

We have been working undre the hypothesis that the points provided from the
interpolation algorithms are generally good pionts to use in a parameter estimation
setting [11]. The reason for this, however, is not clear, since there are no other
obvious connection between parameter estimation and function approximation.
The hypothesis has only been verified by numerical results, so we would like back
it up with some theoretical work as well.

The generalized empirical interpolation method have been fairly recently pro-
posed [12, 15], and the amount of literature on the subject is limited. However, it
is definitely an interesting extension of the EIM, and it has potential use in a wide
range of applications such as image processing and compression, visualization and
animation. More research is needed, both theoretical and practical.

Bibliography

[1] G. Konidaris, J. D. Penn, M. Yano, A. T. Patera, Math, Numerics, and
Programming (for Mechanical Engineers), lecture notes from Massachusetts
Institute of Technology (2012).

[2] W. Cheney, D. Kincaid, Numerical Mathematics and Computing, 6th edition,
Thomson Brooks/Cole (2008).

[3] E.M. Rønquist, Approximation and interpolation by higher order polynomials,
NTNU lecture notes (2012).

[4] Y. Maday, N.C. Nguyen, A.T. Patera, G.S.H. Pau, A general multi purpose
interpolation procedure: The magic points, Communications on pure and ap-
plied analysis, Vol. 8, Number 1, pp. 383-404 (2009).

[5] M. Barrault, N.C. Nguyen, Y. Maday, A.T. Patera, An ”empirical interpo-
lation” method: Application to efficient reduced-basis discretization of partial
differential equations, C. R. Acad. Sci. Paris, Serie I., pp. 667-672 (2004).

[6] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential
Equations, Springer-Verlag (1994).

[7] R. Pasquetti, F. Rapetti, Spectral element methods on unstructured meshes:
which interpolation nodes, Springer Science (2012).

[8] C. Runge, Uber empirische funktionen und die interpolation zwischen a quidis-
tanten ordinaten, Zeit. Math. Phys. (1901).

[9] A. Townsend, L.N. Trefethen, Gaussian Elimination as an Iterative Algo-
rithm, SIAM News, Volume 46, Number 2 (2013).

[10] M. Bebendorf, Y. Manday, B. Stamm, Comparison of some reduced represen-
tation approximation, (2013).

57

58 BIBLIOGRAPHY

[11] A.T. Patera, E.M. Rønquist, Regression on parametric manifolds: Estimation
of spatial fields, functional outputs, and parameters from noisy data, C. R.
Acad. Sci. Paris, Ser. Vol. 350, pp. 543-547 (2012).

[12] A.T. Patera, E.M. Rønquist, Regression on Parametric Manifolds: Validation
and Prediction from Noisy Data, work in progress.

[13] N. Young, An Introduction to Hilbert spaces, Cambridge University Press,
(1988).

[14] T. Aanonsen, Empirical interpolation with application to reduced basis ap-
proximations, Master of Science Thesis, NTNU Department of Mathematical
Sciences (2009).

[15] Y. Maday, O. Mula, A generalized empirical interpolation method: application
of reduced basis techniques data assimilation, Analysis and Numerics of Partial
Differential Equations, Springer pp. 221-235 (2013).

[16] A. Townsend, L.N. Trefethen, An extension of Chebfun to two dimensions,
work in progress/preprint.

[17] N.R. Draper, H. Smith, Applied Regression Analysis, Wiley (1998).

