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Using persistent homology to reveal hidden covariates in systems governed by the kinetic Ising model
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We propose a method, based on persistent homology, to uncover topological properties of a priori unknown
covariates in a system governed by the kinetic Ising model with time-varying external fields. As its starting point
the method takes observations of the system under study, a list of suspected or known covariates, and observations
of those covariates. We infer away the contributions of the suspected or known covariates, after which persistent
homology reveals topological information about unknown remaining covariates. Our motivating example system
is the activity of neurons tuned to the covariates physical position and head direction, but the method is far more
general.
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I. INTRODUCTION

The resolution of neural recordings continues to improve
rapidly, generating increased interest in the use of appropriate
models to fit to the data. Identification of the relevant features
to include is an important but often puzzling step in the
process, in particular when the possibilities are many and
difficult to observe [1,2]. In this work we focus on time-varying
features, or covariates, and describe a method for revealing
their topological properties, and how this can be used to guide
model construction.

The modeling framework we consider is that of the gener-
alized linear model (GLM) [3], specifically the kinetic Ising
model. We assume that these covariates come from (non-time-
dependent) functions on the system’s state space. For example,
in the case of head direction or in the case of place cells, the
relevant covariates would arise from the non-time-dependent
selectivity of the neuron to the state space underlying the
selectivity, i.e., the head direction or position, respectively, of
the animal. Recent studies have stressed the importance of
correctly identifying and including relevant covariates when
modeling a wide array of systems [4]. However, the number of
well-characterized cell types, such as head direction or place
cells, is minuscule relative to the likely number of cell types.

Potential issues from ignoring covariates include the fol-
lowing:

(i) incorrectly attributing selectivity that is related to but
different from the activity of the cell, i.e., head direction versus
movement direction of the animal;

(ii) failure to identify additional unknown tuning of some
or all of the recorded neurons;

(iii) incorrect identification of functional connectivity that
is more likely attributed to common selectivity of the neurons.
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The first and third issues mentioned here can be approached
using common model selection approaches [5,6]. The second
issue, however, is less straightforward and is the focus of this
work. In the following we describe a method for revealing
topological information of covariates and show how it can be
used to systematically identify which are the relevant ones and
provide indications as to what possible unknown covariates
might be.

Our motivation comes from recent applications of topo-
logical methods—those central to the field of topological
data analysis [7–10]—to the study of information encoded
by neurons [11]. In particular, several authors have studied
the topological aspects of the covariates of neuronal activity
[12–15]. As an example of what is meant by topological aspects
of the covariates of neuronal activity, Dabaghian et al. [13]
consider the activity of a simulated population of place cells—
neurons in rats and other mammals that preferentially fire when
the animal is located in certain regions of its surrounding space
[16]—and use persistent homology to recover the homology
of the physical space. They are thus able, for example, to
count the number of obstacles in the space explored by the
simulated animal using only the spike trains of neuronal
firing as input. Giusti et al. [15] use persistent homology
of certain simplicial complexes built from correlations of
neural recordings to show that the neuron population under
observation encodes geometry. We can see here that what is
meant by the state space of the activity is a combination of the
selectivity of the neurons, the properties of the experiment, and
other aspects of the system modeled (e.g., the behavior of an
animal).

These topological methods, therefore, are useful for iden-
tifying the geometry of state space, given data. On the
other hand the statistical models can be constructed to in-
clude the identified covariates and testing their relevance.
In this work we have sought to bring together these two
methods such that the topological insight can guide the
construction of the statistical model, which can then be
used to generate residual data that might contain additional
information about any unknown features still remaining in
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the data, or feed back into the topological side for further
analysis.

For simplicity, we work with two-state model neurons
whose interactions are given by an arbitrary graph and whose
dynamics are governed by a Bernoulli GLM or kinetic Ising
model with multiple external fields. We assume that the domain
of these external fields is some reasonably well-behaved state
space manifold, and it is this manifold that we seek to reveal
topological information about by observing the dynamics of
a realization of the system. We refer to [17] for different
neuron models in the context of studying neuronal systems
using homology.

We do not primarily seek to recover the homology of
the state space itself (indeed, the experiments in Secs. IV B
and IV D illustrate that that is not required in our method),
although this is also discussed and is a part of the method.
Rather, the questions we address in this paper are the
following:

(i) Given data from a neural recording, and supposing that
we know some external covariates contributing to the observed
data, how do we decide whether the known covariates account
for the data?

(ii) Are there other hidden covariates to be revealed?
(iii) If so, can topology help to reveal information about

these?
Very briefly summarized, our method starts by build-

ing a certain filtered simplicial complex (a combinatorially
constructed space generalizing the notion of a graph) from
correlations of observations of the binary dynamics of the
nodes in the system. Under some assumptions, the correlations
of neuron activity are proxies of intersection information for
regions of elevated activity in the state space, and the simplicial
complex we build approximates the nerve of those regions, as
illustrated in Fig. 1. By inferring away the contributions of
known covariates from the observations, we reveal geometric
information about any remaining, unknown covariates by com-
puting persistent homology of a filtered simplicial complex
built from the observations.

Finally, we point out that our method should also be
applicable to the large class of real systems whose behavior is
sufficiently well described by a kinetic Ising model. Examples
of such are (real) neural recordings [18], stock markets [19],
and contagion dynamics [20].

This project grew out of work in the first author’s thesis,
and a much lengthier and substantially different presentation
can be found in the preprint [21].

II. BACKGROUND

We briefly recap the kinetic Ising model and the prerequisite
constructions from topology and topological data analysis. See
for example [22] for an introduction to the former, and the
textbooks [9,10,23] or the survey article [7] for the latter.

A. Kinetic Ising model

The kinetic Ising model governs a set of ±1-valued ran-
dom variables S1(k), . . . ,SN (k) at time steps k = 1,2, . . . .
The model is specified by couplings J ∈ RN×N , which
define the neighbor relationships and their strengths, and
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FIG. 1. Neuron cofiring is a proxy for firing field intersections,
here illustrated in the motivational neuroscience application in a
purely spatial setting. As the animal moves along the indicated path
(a) in state space (here the same as physical space), we might observe
the (highly idealized) firing events (b) of the corresponding place cells
(nodes in the kinetic Ising model). The firing events in the leftmost
box are indicative of the triple intersection of the red (3), green (6),
and blue (5) place fields (regions of elevated activity), and those in the
rightmost box are indicative of the double intersection of the red (3)
and blue (5) regions. After the space has been thoroughly explored,
the intersection data obtained from the cofiring of the spike trains
are translated into a space (c) by means of an approximation to the
nerve construction, as described in Sec. II B. This space and the space
covered by place fields, i.e., physical space in this example and the
abstract state space in general, share some topological properties that
are reflected in their persistent homology.

external fields E1, . . . ,EN : N → R which define the in-
fluence of external covariates on the system as a func-
tion of time steps. We shall later assume that the exter-
nal fields are in fact functions of the system’s fixed state
space, and that the temporal dependence comes from pre-
composing with the system’s evolution path. If each vari-
able Si(l) took the value si(l) ∈ {−1,+1} for l � k, then at
time step k + 1, the conditional probability of observing +1
from the variable Si(k + 1) (that is, that “neuron i fires” in the
neuroscience interpretation) is

P [Si(k + 1) = 1 | S1(k) = s1(k), . . . ,

SN (k) = sN (k)] = exp Fi(k)

2 cosh Fi(k)
,

where Fi(k) = Ei(k) + ∑N
j=1 Ji,j sj (k). For ease of notation,

we set s1(0) = · · · = sN (0) = −1. This random initial state
should not significantly affect our method, as such initial noise
will be no more influential than spontaneous firing at later
times.

We refer to the expressionFi(k) as the system’s Hamiltonian
(at time step k).

We assume that the temporal variation of the external fields
Ei arise in a quite particular way through a random walk
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on, or other exploration of, the state space M . The precise
definition is given in Sec. III. For now it suffices to know that
the relationship between the external fields, the state space,
and the random walk are such that there are regions of state
space where a certain node is more likely to be in state +1.
Adopting the language of neuroscience, the region of elevated
activity for a node will be referred to as the node’s place field.
Hopefully the two unrelated uses of “field” in “place field” and
“external field” do not cause confusion.

B. From binary dynamics to spaces

Our method is topological in nature, and we will therefore
construct certain topological spaces from observations of the
system under study. These spaces, called simplicial complexes,
can be thought of as higher-dimensional generalizations of
graphs, or discrete versions of topological spaces. Abstractly,
simplicial complexes consist of pieces of various dimension:
vertices (or zero-simplices), edges (one-simplices), filled tri-
angles (two-simplices), filled tetrahedra (three-simplices), and
so on. Analogously with how an edge in a graph is associated
to precisely two distinct vertices, p-simplices in a simplicial
complex are associated to p + 1 distinct (p − 1)-simplices,
called its faces, also required to be present in the complex. The
lower right part of Figure 1 shows an example of a simplicial
complex. It has seven zero-simplices, nine one-simplices, and
three two-simplices.

Though defined abstractly, we often think of a simplicial
complex K geometrically as above, which is to say we consider
its geometric realization, a topological space |K|.

One interesting question that can be asked of a graph is the
number of cycles it has, i.e., its number of holes. The analog of
this property for a simplicial complex is much more interesting,
for there cycle and hole are distinct notions; the latter being
the former without triangles filling it in. Moreover, one has
the higher-dimensional analogs of cycles and holes built from
higher-dimensional simplices rather than edges. In general, a
p cycle will be a collection of p-dimensional simplices having
no boundary, and a (p + 1)-dimensional hole will be a p cycle
not filled in by a collection of (p + 1)-dimensional simplices.
Homology, the definition of which is recalled in Sec. II C,
captures this notion precisely with linear algebra. It will be
the tool we use to analyze simplicial complexes built from
observations of the system in a manner that we now describe.
Throughout the present section, we simply let homology be
some vector space associated to a simplicial complex or to a
topological space that is assumed to provide useful information
about said complex or space.

Our method is concerned with revealing information about
the system’s a priori unknown state space, so we will obviously
not be attempting to build that space as a simplicial complex.
At the heart of our method is the nerve construction.

Definition 1. Let U = {Ui | i ∈ I } be a finite collection of
sets. The nerve ofU is a simplicial complex NU that contains a
p-simplex [i0, . . . ,ip], p � 0, if and only if Ui0 ∩ Ui1 ∩ · · · ∩
Uip �= ∅.

The nerve of a collection of sets is a simplicial complex that
has a vertex for each of the sets, an edge between any pair of
vertices representing overlapping sets, a triangle between any
triple of vertices representing overlapping sets, and so forth.

Under some assumption of the underlying set of sets, the
nerve contains a lot of information. The nerve theorem ensures
that if a collection of sets is a nice enough cover of a space X,
then (the geometric realization of) the nerve of that collection
is a topological space that can be continuously deformed into
X itself without tearing. The precise statement follows.1

Theorem 2. Let X be a metric space, and let U = {Ui |
i ∈ I } be a finite cover of X by closed sets with the property that
for all subsets J ⊆ I , the intersection

⋂
j∈J Uj is either empty

or contractible. Then X and |NU | have the same homotopy
type.

(For a proof, see Corollary 4G.3 of [24].) In particular, it
follows that a space and the nerve of a cover satisfying the
above conditions have the same homology. This is crucial
to our method because the nerve is a purely combinatorial
construction.

We think of the nodes in the Ising model as each having
a region Ui in state space X wherein its activity is elevated
(place fields in the neuroscience setting). Even though X and
each Ui are unknown, we can get some information about
intersections of various Ui’s by observing the correlations of
the activities of the corresponding nodes in the system. Figure 1
illustrates the idea in the neuroscience setting: if n place fields
intersect, then the corresponding n neurons are likely to fire
together often. Cofiring of neurons is thus a proxy for the
intersection information of their fields of elevated activity, and
we can go from observing binary time series or spike trains,
to intersection information, to a simplicial complex. If we
assume that the Ui’s are nice enough to satisfy the conditions of
Theorem 2, we are now guaranteed that homology of N ({Ui}i)
is the same as that of X.

The overlapping or not of regions of elevated activity in state
space should, however, not be considered as a binary property.
Just as correlation is a continuous measure, so is degree of
overlap. A set of nodes whose observed dynamics are highly
correlated are likely to have regions of elevated activity in
state space that overlap greatly, such as the red, green, and
blue neurons in Fig. 1. Similarly, a set of uncorrelated nodes
correspond to regions of elevated activity that do not overlap.
We have thus moved from a binary measure of intersection to
a range from “not overlapping” to “highly overlapping.” This
is suitable for analysis with persistent homology, to be detailed
in Sec. II C.

Input for persistent homology takes the form of a filtered
simplicial complex, which is a sequence of simplicial com-
plexes Kε such that Kε ⊆ Kδ whenever ε � δ. We refer to
the simplicial complex Kε as that of the filtration at scaleε.
Correlations (or other real-valued functions on pairs) give rise
to filtered simplicial complexes as follows.

As part of our input (the rest is described in Sec. III), we
take observations of N nodes in the kinetic Ising model over T

time steps as binary vectors si = (si(1), . . . ,si(T )) ∈ {−1,1}T ,
i = 1, . . . ,N . For each pair of observations we compute the

1A reader unfamiliar with the notion of “homotopy type” may think
of two spaces as having the same homotopy type if and only if they
can be continuously deformed into one another without tearing. See
for example [24].
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Pearson correlation2corr(s,s ′). The computations that follow
could be based on these correlations directly, but as was argued
in [15], one may instead want to consider only the order of
the correlations. For i,j ∈ {1, . . . ,N}, we thus sort the values
of 1 − corr(si,sj ) in ascending order, breaking ties arbitrarily.
In the complete graph on the vertices 1, . . . ,N , we assign a
weight w(i,j ) to the edge (i,j ) according to the corresponding
position in the above ordering, normalized so that the edge
corresponding to the two nodes with lowest correlation is
assigned a value of 1.

Starting from the weighted graph G coming from corre-
lation order as described above, we build the flag complex
(or Rips complex) R(G): its zero- and one-simplices are the
vertices and edges of G, respectively, weighted by 0 and the
corresponding edge weights; for each three-clique in the graph,
add a two-simplex with weight equal to the maximum of the
weights of the three edges in the clique; for each four-clique
in the graph, add a three-simplex with weight equal to the
maximum of the weights of the four two-simplices in the
clique; and so forth. A filtration of R(G) is given by taking
as R(G)ε all the simplices with weight � ε.

C. Persistent homology

For an introduction to homology in general, both the notion
for topological spaces and that for simplicial complexes, see
[24]. Here we describe the simplicial notion tersely.

Let K be a simplicial complex. Algebraically, we think of
collections of p-simplices, called p-chains, as finite formal
sums of p-simplices with coefficients 0 or 1. Under addition
modulo 2, this is aZ/2Z-vector space Cp(K) with the p-chains
of K as its basis. For notational reasons, we define C−1 to be
the trivial vector space.

For all p � 0 there is a linear function δp : Cp(K) →
Cp−1(K) defined on basis elements of Cp(K) by sending a
p-simplex to the sum of (p − 1)-simplices that are its faces.
One verifies that δp−1 ◦ δp = 0. Chains in ker δp are called
p-cycles for reasons that become geometrically apparent from
Fig. 2. Chains in im δp are likewise called (p + 1)-boundaries.

As discussed in Sec. II B, homology measures cycles that
are not filled in, i.e., cycles that are not boundaries. Thus,
one defines the pth homology of K as the quotient vector
space Hp(K) = ker δp/ im δp+1. Figure 2 shows a geometric
interpretation of cycles in a homology class.

Persistent homology takes a filtration as input and tracks
homology across all scales. Hp(K) consists of all the vector
spaces Hp(Kε) for each ε, as well as the linear functions
Hp(Kε) → Hp(Kδ) coming from the inclusions Kε ⊆ Kδ

whenever ε � δ. These linear functions then track the lifespan
of homology classes.

Theorems from algebra [25,26] ensure that Hp(K) can be
fully specified in a compact manageable way, through its so-
called barcode decomposition. Because of this decomposition,

2When working with data collected from real physical experiments
it may be useful to replace the Pearson correlation with an average
of Pearson correlations of shifted observations in order for the
method to be less vulnerable to timing or desynchronization errors
in observations.

FIG. 2. A simplicial complex K with 20 zero-simplices, 38 one-
simplices, and 22 two-simplices, and some highlighted one-chains.
The solid yellow (light) one-chain consists of a single one-simplex,
and is neither a cycle nor a boundary. The dashed red (dark) one-chain
has trivial boundary, and is therefore a cycle. It is not a representative
of any nontrivial homology class, for it is the boundary of two-chain
consisting of the three two-simplices it encloses. The dashed green
(light) and the solid blue (dark) one-chains are cycles that represent
the same homology class (intuitively the two-dimensional hole in the
middle). H0(K) is one dimensional, reflecting K’s single connected
component, while H1(K) is one dimensional due to the central hole.

persistent homology of a filtered simplicial complex can be
represented and drawn as a persistence diagram, a plot of
points (with multiplicity) above the diagonal in (R ∪ {∞})2.
The horizontal coordinate indicates the birth scale of some
homology class and vertical coordinate indicates its death
scale. Figure 3 shows an example.

When multisets of points in the extended plane are inconve-
nient to work with, one may also discard some information and
simply keep track of the number of homology classes present

⊆
Ka

⊆
Kb ⊆Kc

⊆Kd

⊆Ke

Kf
a b

f

b

c

e

FIG. 3. On the outer rim is shown a filtration K =
(Ka,Kb,Kc,Kd,Ke,Kf ) for some 0 < a < b < c < d < e < f .
The persistence diagram shown is an overlay of H0(K) in blue (dark)
and H1(K) in green (light). The triangle symbolizes the infinite
summand of H0(K), i.e., the single connected component of K that
cannot disappear. Both classes in H1(K), i.e., two-dimensional holes,
die at finite scales (e and f ).
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FIG. 4. Persistent homology of a realization of an Erdős-Rényi
complex with 120 vertices. Increasing homology dimension results
in an increase in peak Betti number and a narrowing of the edge
probability range where nonvanishing Betti numbers are likely. This
behavior is a signature of ER complexes. (a) Persistence diagram and
Betti curve for H1. (b) Betti curves for H0, H1, H2, and H3.

at each scale and thus reduce a persistence diagram to a Betti
curve. An example of this is shown in Fig. 4.

D. Statistics and comparison of persistence diagrams

When we later infer away covariates of a system, we need
to compare filtered simplicial complexes to those arising from
certain data models. One important such model is that of
random data. In this section we give two ad hoc measures
of closeness to a random system and argue for their validity.
Comparison with filtered simplicial complexes arising from
other models will depend on the model. In particular, one
may look to [15] for comparison with complexes arising from
geometric data.

The survey by Kahle [27] covers much of what is known
about the homology of some special cases of random simplicial
complexes, namely those that are flag complexes of Erdős-
Rényi (ER) random graphs. An (n,p)–Erdős-Rényi random
graph has n nodes, and each possible edge appears indepen-
dently with probability p. We will refer to flag complexes of
such graphs as ER complexes with parameters n and p. While
most results known are asymptotic in the number of vertices in
the complex, and thus of little direct relevance to our setting,
some qualitative conclusions can be drawn also about the finite
case assuming the size of the vertex set is not too small.

The first qualitative observation is that homology is likely to
occur only in ER complexes when the edge probability param-
eter is in a certain range, and this range becomes narrower as
the homology dimension grows. Within the “allowed range,”
however, a large Betti number may occur. As the homology
dimension increases, the allowed range shrinks while the peak
Betti number within the range grows. Figure 4 illustrates
the behavior. We will use this behavior as a signature of
the underlying graph having random weights. The persistent
homology of our correlations complexes will be compared with
these random ones in two different ways, which we now detail.

If G is a complete weighted graph on a vertex set V , we
write S(G) for (a realization of) the complete graph on V

having the edge weights of G randomly shuffled. Except in
degenerate cases R(S(G)) should be a good realization of the
order flag complex of an ER random graph. The discussion
above then suggests two ad hoc measures for how consistent
a flag complex is with an ER random complex by comparing
H∗(R(G)) and H∗(R(S(G))).

For various p and q we define

δk(G) = dp,q(Hk(R(G)),Hk(R(S(G)))),

where dp,q is the (p,q)-persistence module metric.3 We further
let βk and β ′

k denote the Betti curve of Hk(R(G)) and of
Hk(R(S(G))), respectively, and define the ratio

�k(G) = maxs βk(s)

maxs β ′
k(s)

whenever it exists. �k(G) thus compares the peak Betti number
of R(G) to that of its shuffled version. If, for as large a k as
is computationally feasible, δk(G) is close to 0 and �k(G) is
close to 1, we have an indication that R(G) resembles an ER
random complex.

III. UNCOVERING HIDDEN COVARIATES

We suppose that some, but not all, covariates of the activity
of the nodes in the system are known. Measurements of these
known covariates throughout the observation of the system
supplement the time series of node dynamics observations as
our input data. We further suppose that the known covariates
can be described by certain functions of distances on some
simple manifolds whose product makes up state space. We
will specifically consider the following:

(i) boxes (0,1)d of any dimension d, with the Euclidean
metric,

(ii) boxes with any number number of d disks removed so
long as these do not disconnect the manifold,

(iii) circles, with their usual metric,
(iv) spheres, with their usual metric,
(v) products of the above, with the product metric.

3The (p,q)-persistence module metric between two persistence
diagrams X and Y is dp,q (X,Y ) = minf [

∑
x∈X′ ‖x − f (x)‖q

p]1/q ,
where f ranges over all multiset bijections f : X′ → Y ′, X′ and Y ′

are X and Y with infinite multiplicity everywhere on the diagonals
(so bijections exist), and ‖ · ‖p denotes the Euclidean p-norm.
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Section V discusses a generalization, and the fact that in
some of these cases (such as boxes), edge effects may introduce
problems.

The true state space of the system is assumed to be a product
M = M1 × · · · × ML with each factor a manifold from the
list above corresponding to a covariate. If only P < L of
the covariates are known, we can only observe a partial state
space M̃ . For ease of notation we will assume that the factors
M1, . . . ,MP are the known ones.

The system is observed by recording the activity of its
nodes, together with samples of the trajectory of the system
through the known factors of state space at T time steps. Our
measurement data thus consist of N binary vectors of the form

si = (si(1),si(2), . . . ,si(T )) ∈ {−1,1}T ,

together with samples of the observable coordinates in the state
space. If we write α : R → M for the temporal evolution of
the system through state space, we record samples of this path
as

π̃ (α(1)),π̃ (α(2)), . . . ,π̃ (α(T )) ∈ M̃.

Here π̃ : M → M̃ denotes projection onto the known factors
of M .

We now assume that the external field part of the Hamil-
tonian decomposes into a sum of Gaussians on the various
factors of the state space. Corresponding to known covariate
number 1 � l � P is a linear combination of Ql Gaussians,
each having parameters σl,q ∈ R and cl,q ∈ Ml . Projections
onto individual factors (both known and unknown) are written
πl : M → Ml , and we denote the metric on Ml by dl . Define
Gaussians Vl,q : Ml → R by

Vl,q(x) = exp

(
− (dl(x,cl,q ))2

2σ 2
l,q

)
for 1 � l � P and 1 � q � Ql , and assume that the external
part of the Hamiltonian for node i at time step k can be written
(recall that α is the system’s path through its state space)

Ei(k) =
L∑

l=1

Ql∑
q=1

Ai,l,q(Vl,q ◦ πl ◦ α)(k).

To gain some intuition about the above expressions, it may
be instructive to consider the special case where for each i

and l there is only one q for which Ai,l,q �= 0. This is also the
setting in which all of our data for the experiments in Sec. IV
are generated. Fix an i and an l and let q be the only index for
which Ai,l,q �= 0. Then cl,q is the center of a region of elevated
activity corresponding to covariate number l, σl,q is a measure
of its width, while Ai,l,q specifies the peak strength with which
it influences node i in the system (the sign determining whether
the influence is activating or suppressing). In the neuroscience
example, neuron i has a place field centered at cl,q with size
controlled by σl,q . When the above relationship between the
indices of A•,l,• does not hold, we allow each covariate to
govern the activity of nodes in the model through a linear
combination of Gaussian fields, which will be necessary for
the inference process described next.

The likelihood of data,

s = {si(k) | 1 � i � N,1 � k � T },

observed under the kinetic Ising model is

L(s) =
N∏

i=1

T −1∏
k=1

exp [si(k + 1)Fi(k)]

2 cosh Fi(k)
.

Its logarithm is convex in A•,•,• and J•,•, and we can there-
fore perform likelihood maximization by means of convex
optimization to infer the values of these parameters that
best fit the observed data. Should such optimization be too
computationally expensive, one may employ heuristic or ap-
proximate methods instead, though that was not a problem
encountered in our experiments. With these coefficients in
hand, we can selectively subtract from the spike trains the
(expected) contribution of the candidate covariates as provided
by the model with the inferred coefficients. The residual data
after removal no longer consist of binary observations, but
instead are real-valued discrete time series for each node. The
interpretation of such residuals is fraught with difficulties, but
as we will only consider their correlations we do not touch
upon this problem.

To illustrate our method (in Sec. IV), we will work with
spatial and head direction tuning in the context of the moti-
vational neuroscience example. Throughout, all the inference
will be performed with 252 = 625 spatial basis functions, and
25 circular basis functions, both with uniformly distributed
means. For example, if the known factors of state space are
M̃ = M1 × M2 with M1 = (0,1)2 and M2 = S1, then Q1 =
252 and Q2 = 25, and with the c1,q’s forming a regular grid on
(0,1)2 and the c2,q’s uniformly distributed on S1.

After we have removed the contributions from the known
or suspected covariates, we build the flag complex of the graph
weighted by correlations of residual (discrete) time series, and
compute its persistent homology. The resulting persistence di-
agrams are then analyzed for conformity with known behavior
of simplicial complexes arising from null-model networks.
The fact that this is possibly to do with persistent homology
has been demonstrated repeatedly [15,28,29]. For example
if they are consistent with a random simplicial complex, as
described in Sec. II D, we can be confident that there are no
unknown covariates to the extent that our ad hoc measure of
randomness holds up. If, on the other hand, they conform to
data with a geometric structure, the work of Giusti et al. [15]
shows that it is likely that further unaccounted-for covariates
are present in the system. If in addition some of the geometric
structure is discernible from the persistence diagrams, it will
guide further model selection. In the neuroscience setting, such
unaccounted-for covariates are frequently discovered [30], and
their presence and homological properties may prove useful to
their discovery.

The method can thus be written out as follows:
(i) Perform an experiment as described above, yielding

binary time series s1, . . . ,sN and samples of (some of the)
known coordinates of the state space path π̃ ◦ α.

(ii) Compute the correlation order weights w(i,j ) for the
complete graph G on N vertices.

(iii) Compute H∗(R(G)).
(iv) If H∗(R(G)) is consistent with the persistent homology

of a filtered simplicial complex coming from a null-model
network (e.g., ER random complex per Sec. II D), go to step
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FIG. 5. Our main contribution summarized. The process starts in
the lower right corner with input data. At every iteration of the loop
one may be able to learn new properties of the system (dashed lines)
until the candidate covariate list has been exhausted, at which point
topological properties of hidden covariates are extracted.

(iv) (a). If it is consistent with some other known complex
structure, such as the geometric one of [15], go to step III.

(a) There is nothing more to learn from our method. We are
done.

(v) Is the list of candidate stimuli exhausted? If so, go to
step (v)(a). If not, go to step (vi).

(a) There are likely further covariates of a geometric or
otherwise interesting nature. Moreover, H∗(R(G)) may reveal
information about the homology of the state space correspond-
ing to unknown covariate(s).

(vi) Pick another suspected covariate (if possible, one
informed by the persistence diagrams), and use the inference
process described above to remove the contribution of this
and all previously chosen covariates. This yields real-valued
residual time series that from now on replace the binary ones
s1, . . . ,sN . Go to step (ii).

Figure 5 summarizes the above procedure.
We finally point out that it is not essential to our method that

we necessarily capture the correct homology of the full state
space. It is the presence of geometric or otherwise interesting
structure incompatible with null-model networks, and any
possible homological feature of that, that is essential.

We end this section with an illustration of our method in a
concrete setting. Again we return to the motivational example
from neuroscience where nodes in the kinetic Ising model are
neurons, and these are influenced by two simple covariates: the
spatial location of the animal as it explores a box B = (0,1)2,
and the animal’s head direction parametrized by the circle S1.
Let us imagine that only the first is known. The full state
space is therefore M = B × S1, and the known covariate space
corresponds to M̃ = B. An experiment is performed wherein
the activity of N neurons are recorded at the same time as
the animal’s position in B (the only known factor of the state
space). Supposing that N = 100 neurons are recorded over
the course of 10 min,4 the data we are given then consist of

4This is a realistically sized data set according to the computational
neuroscience data sharing website https://crcns.org.

100 binary spike train vectors of length 60 000 together with
60 000 samples of the animal state as points in the proposed
state space (0,1)2. Our goal is then to determine whether the
suspected covariate—spatial position—describes the observed
activity, and, most importantly, if not, what the homological
properties of any remaining unknown stimuli are.

After having performed steps (ii)–(vi) once, the second
iteration leads us to step (v) (a); there are no more stimuli to
account for, yet we see persistent homology inconsistent with
random data, and consistent with geometric data. Examination
of the persistence diagrams of H∗(R(G)) reveals that the
unknown covariate(s) correspond to a state space with the
same homology as a circle. Together with other evidence, this
may lead the researchers to suspect head direction tuning as
a hidden covariate. New experiments may then be performed
to investigate this, and our method may be applied also to the
new data.

IV. COMPUTATIONAL RESULTS

We test the efficacy of our method in some situations
motivated by the neuroscience application. We use syntheti-
cally generated data in order to be in complete control of all
“experimental parameters,” and because publicly available real
data often come from experiments without a topological focus
(for example the spatial environment tends to be homologically
trivial). For the results presented here, neuron activity was
simulated from the same GLM as used for the inference process
by appropriate selection of peak field strength coefficients
A•,•,•, centers c•,• and widths σ•,•. The field widths were
selected to nicely cover state space for the given number of
neurons, as with too few neurons or too small fields it is
unreasonable to expect to be able to apply our method. In
addition, a constant negative term (typically −1) was added
to the external fields to make the overall firing rate low, but
nonzero, outside of place fields, as is the case for many real
cells. This term essentially just lowers the noise floor of our
data, and should be of no deeper significance to us. All of
the experiments except for those in Secs. IV C and IV E are
performed on data generated from a coupling-free (J•,• = 0)
model.

When describing the experiments and their result, we will
mostly, in accordance with our motivation, adopt the language
of the neuroscience application of neurons or cells firing and
tuning to biologically relevant covariates.

If the physical environment is denoted B, then the B × S1

(factors of) state space is explored as follows: If at some time
step the animal’s state is (x,y,θ ) ∈ B × S1, then the next state
is found by choosing a θ ′ randomly and uniformly within 0.02
of θ in S1. If (x + 5 × 10−4 cos θ ′,y + 5 × 10−4 sin θ ′,θ ′) is
within B × S1, this point is the next state. If not, new angles
are drawn until the new state is valid. Additional factors are
explored similarly. We note that qualitatively similar results
are obtained if this slightly realistic random walk is replaced
by ordinary Brownian motion or uniform random sampling.

The experiments were all done with 100 neurons. See [17]
for a discussion regarding the necessary number of neurons to
recover one or multiple features. We point out that for hundreds
of neurons, we do not face any obstacles of computational
resources. Indeed, computations take on the order of minutes
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FIG. 6. Results of the experiment in Sec. IV A. (a) The activity of a single node/neuron as a function of spatial position. (b) Persistent
homology of the space built from correlations. All higher dimensions of homology are trivial or close to trivial.

on moderate laptops (see also [31] for an overview of the real-
world computational demands of persistent homology).

A. Recovering spatial homology

While the central point of this paper is the uncovering of
the homological properties of unknown covariates, we begin
by providing an example of how we can solve a simpler task:
recovering the homology of a spatial environment. This is
analogous to some of the results presented in [13].

State space is now the unit square punctured by four disks of
radius 0.15. The disks are centered at (0.27,0.27), (0.27,0.72),
(0.72,0.27), and (0.72,0.72). We refer to the punctured box as
B below.

In the notation of Sec. III, N = Q1 = 100, M1 = B, L = 1,
and Ji,j = 0 for all 1 � i,j � N . The c1,q ’s form a regular grid
on B, and

Ai,1,q =
{

2 if i = q

0 otherwise.

As an example, Fig. 6(a) shows the spatial tuning of a single
neuron.

Figure 6(b) shows that we correctly recover the homology of
B, the only part of M that influences neural activity. In other
words, this example illustrates how we in the neuroscience
setting can detect and even count the obstructions in a physical
space from neuron activity alone.

B. Proof of concept

The simplest possible setting wherein our inference scheme,
laid out in Sec. III, is useful, is perhaps one where both spatial
and head direction tuning govern neuron activity, but where
the researcher believes only one of those to be real.

For this computation, the spatial component of the state
space is a unit square punctured in its center by a single disk
of radius 0.2, denoted by B. The head direction component is
S1.

In the notation of Sec. III, N = Q1 = Q2 = 100, M̃ =
M1 = B, M2 = S1, P = 1, L = 2, and Ji,j = 0 for all 1 � i,

j � N . The c1,q’s form a regular grid on B, and

Ai,1,q =
{

2 if i = q

0 otherwise.

Similarly, the c2,q’s are uniformly spread out over S1. To avoid
artificially coupling head direction and spatial tuning through
the ordering of their place field centers, we let τ be a random
permutation of {1, . . . ,N} and then let

Ai,2,q =
{

2 if i = τ (q)
0 otherwise,

for all i,q.
We reiterate that we assume that the researcher is unaware

of head direction tuning as a real influence on place cell activity
in this example; he believes spatial position is the only relevant
stimulus. After conducting an experiment, he sees the neurons’
spatial dependence exemplified in Fig. 7(a). The head direction
dependence in Fig. 7(b) is not known to the researcher.

Persistent homology of the observed correlations can be
seen in Figs. 7(c) and 7(d). Note that we do not observe the
actual persistent homology of the state space (a thickened torus,
having two features in H1 and one in H2). This is not entirely
satisfactory, but at least the observed persistence diagrams
indicate there is homologically nontrivial information present
in the neuron activity, which should be sufficient motivation
for the researcher to continue investigating.5

Satisfied that the persistence diagrams are consistent with
his hypothesis about the relevant covariates, the researcher
proceeds to the next step, namely removing the effect of the
spatial covariate (the only one he is aware of) by the means
described in Sec. III.

The resulting rate maps after removal on spatial activity
tuning can be seen in Figs. 7(e) and 7(f). They are as
expected, and obviously do not provide new information to
the researcher. The persistence diagram in Fig. 7(g), however,
shows that there is still homologically nontrivial information

5It turns out that by carefully balancing the relationship between the
strength of the spatial and head direction tunings, one can obtain the
correct persistent homology. This suggests that one of the torus radii
simply collapses to a circle for many strength relationships.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Data and results throughout the experiment in Sec. IV B. (a) Activity of a single neuron as a function of spatial position. (b) Activity
of a single neuron as a function of head direction. The researcher is not privy to this information in our experiment. (c),(d) Persistence diagrams
of the space built from correlations at the start of the experiment before removing any contributions. (e),(f) Rate maps after removing influence
from spatial position. (g),(h) Persistence diagrams after removing the influence of spatial position. A circular contribution remains!
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(a) (b)

(c) (d)

(e)

FIG. 8. Data and results throughout the experiment in Sec. IV B, after all contributions have been removed. (a) Activity of a single neuron
as a function of spatial position. (b) Activity of a single neuron as a function of head direction. (c),(d) Persistence diagrams and Betti curves of
the space built from correlations after all contributions have been removed. (e) Betti curves compared to those of typical ER random complexes,
indicating that no structure is left. (The β0 curves obscure each other.)

contained in the observed data. This should hopefully lead the
researcher to suspect that there are further, hidden, influences
on neuron activity, and, most importantly, that this or these are
of a circular nature.

Guided by this, the researcher might consider head direction
tuning. He therefore sets up a new experiment where also this
is recorded, so that also its influence may be removed from the
data. Doing so results in Fig. 8.

Alternative scenario

One may also want to consider an alternative hypothetical
scenario wherein head direction tuning is the only suspected
covariate. For readability reasons we do not include that
scenario in full here. The interesting part is the persistent

homology after the removal of head direction tuning. Figure 9
shows that we recover the correct H1 also in this case.

C. Effect of couplings

In the preceding experiments, neurons were never coupled.
To illustrate that our method also copes with such “internal
stimuli,” we repeated the experiment from Sec. IV B with the
change that every cell is given a weak but random coupling
to a every other cell. Specifically, we kept all simulation
parameters as before, but let every Ji,j be drawn independently
and uniformly from [−0.1,0.1]. The couplings are thus weak
compared to the external stimuli (which peak at 2 in the centers
of fields), but should nevertheless introduce noise to the data.
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FIG. 9. Persistent homology after removing the effect of head
direction tuning in an alternative version of the experiment in
subsection of Sec. IV B.

Figures 10(a) and 10(b) show the results before any co-
variate removal. Observe that the random couplings introduce
significant noise in the spatial dependence of the activity
compared to that in Fig. 7(a). Figures 10(c) and 10(d) show
that we are able to carry out the same procedure as in Sec. IV B
also in the presence of couplings.

D. Effect of θ preference

Neurons tend to show increased activity at a certain phase
of local oscillations, in particular in the range of θ . We

simplistically model θ preference as each neuron preferentially
firing near a randomly chosen phase of a 7 Hz sinusoidal
wave in time. The experimental parameters are the same as
in Sec. IV B, except now L = 3, and the state space gains an
extra factor M3 = S1. The c3,q’s are uniformly spread out over
S1, and for a random permutation6 τ ′ of {1, . . . ,N} the new
field strength coefficients are

Ai,3,q =
{

2 if i = τ ′(q)
0 otherwise,

for all i,q.
θ preference is thus, as far as topology is concerned,

precisely the same as head direction preference, except that the
M3 factor of state space is explored by always moving forward
in time (modulo 1/14) instead of by a random walk. We
therefore expect that θ preference will contribute to homology
in the same way as head direction tuning. Figure 11(b)
confirms this. Again it should be pointed out that we are
not observing homology consistent with the three-dimensional
torus S1 × S1 × S1. While this may seem unsatisfactory, it is a
quite natural effect of one covariate suppressing the expression
of the homology of the others, i.e., one of the radii of the
torus dominating over the others. This illustrates well why the
inference process and removal of covariates really is necessary;

6Present for the same reason as for the head direction tuning in Sec.
IV B. The effect of more systematic couplings between related stimuli
is investigated in [17].

(a) (b)

(c) (d)

FIG. 10. Results from the experiment in Sec. IV C. (a) Activity of a single neuron as a function of spatial position before removing any
covariates. (b) H1 before removing any covariates. (c) H1 after removing spatial dependence and internal couplings. A circular component
remains! (d) H1 and Betti curve in dimension 1 after removing also head direction tuning. We see the characteristic signature of there being no
more structure.
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(a) (b)

(c) (d)

FIG. 11. Observations from the experiment in Sec. IV D. (a) Activity of a single neuron as a function of theta phase. (b) H1 before removing
any covariates. (c) H1 after removing the contribution of both head direction and spatial position. A circular component remains! (d) After
removing all covariates, we are left with a persistence diagram and Betti curve indicating that we are done.

the fact that there are three circular factors in the state space
cannot be glanced at directly from the observed data.

Figures 11(c) and 11(d) show that we obtain the expected
results when left with only θ preference and when all covariates
are removed.

E. Homology from internal couplings

In the preceding experiments, internal couplings have been
absent, or, as in Sec. IV C, not themselves been the focus of
our attention. We now illustrate that our method is also capable
of detecting the homology of (the flag complex of) the graph
defining the neighbor relations of the neurons.

We generate data with only spatial fields and internal
couplings. Specifically, N = Q1 = 100, M = M1 = (0,1)2,
the c1,q’s form a regular grid on (0,1)2, and the peak field
strengths are

Ai,1,q =
{

1 if i = q

0 otherwise.

The symmetric matrix J describes a circle on all N nodes
with edges in both directions with weights 2. The indices
defining the edges of the circle are chosen randomly to avoid
an unnatural coupling to the spatial fields through the ordering.

Figure 12(a) shows an unexpected result consistent with
(at least) two circles. Manual inspection of the spike train
distances reveals that this is an artifact of the GLM being
coupled across only two consecutive time steps. When we use
correlations of spike trains with no averaging over temporal

shifts, we are unable to resolve any coupling interactions
across an even number of neurons. The simplicial complex
thus breaks into two circles, corresponding to the even and odd
parity edges of the neighborhood graph ({1, . . . ,N},{(i,j ) |
Ji,j �= 0 or Jj,i �= 0}). This undesired behavior vanishes when
one replaces the correlation with an average of correlations of
various shifted spike trains. For example, Figure 12(b) shows
the case of averaging over ten shifts.

V. DISCUSSION

We believe that the core aspects of the method presented in
this paper generalize to a wider setting. Imagine a point cloud
C = {p1, . . . ,pN } in some metric space (M,d) that we view
as encoding the state of the system being observed. The exact
further assumptions on M need to be worked out, for now we
have only relied on numerical evidence. The pairwise distances
of the points are a priori unknown. The system we measure
consists of a Bernoulli process Si , 1 � i � N , for each point. A
crucial assumption is that the “success” probability of process
i at a time point is given by the distance from pi to our state
at that time. In other words, if we assume that we explore M

through some time-dependent random walk X(k), we assume
at time step k that

P (Si(k) = 1 | X(k) = x) = f (d(x,pi)) (1)

for some monotonically decreasing sufficiently integrable
(unknown) function f : R+ → [0,1]. If the random walk has
progressed long enough that the distribution of X(k) is close to
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(a)

(b)

FIG. 12. Persistent homology of the observations in the experi-
ment from Sec. IV E. (a) No correlation averaging. (b) Correlations
averaged over ten shifts.

uniform, then we are in a setting where we believe our methods
are applicable.

The question to ask is whether the persistent homology
of the flag complex of the correlation-weighted graph of the
observations closely approximates the persistent homology of
the Rips complex of C.

In the above setup, define gk : M × M → R by

gk(y,z) =
∫

M

f (d(y,x))f (d(z,x))dρk(x)

with ρk the probability density function for the random walk
at time step k (assuming enough structure on M that the

integral makes sense). The function gk arises naturally as the
probability

P [Si(k) = 1 ∩ Sj (k) = 1] = gk(pi,pj )

and is the essential part of the estimated Pearson correlation
corr(si,sj ). In the case that X(k) is fully uniform, i.e., dρk =
dx, proving correctness of our recovered persistent homology
amounts to showing the existence of a monotonically decreas-
ing h : R+ → R that makes

M × M R

R
+

d
h

commute. In the Euclidean situation (M = Rn and dropping
the assumptions on M) this is an easy calculus exercise, but the
details need to be worked out for the more general situations.

A weakness of our method arises in cases where the system’s
position in state space is biased. The observed correlations then
reflect this bias instead of the actual overlap of fields of elevated
activity, unless one employs a model that can correct for the
observational bias. In the neuroscience setting, such a bias can
come from the animal tending to prefer certain regions of space
or certain head angles.

Work should be done to give rigorous bounds on the
persistence modules based on the statistical properties of the
Pearson correlations corr(si,sj ), especially in the settings when
the random walk distribution is not yet truly uniform (which
clearly is the case in many real applications, especially if the
observation time is short).

A later work [32] addresses real neuronal data with a method
similar to ours. We believe both methods promise to provide
useful insight into the geometric structures encoded in data
from neuronal and related systems.
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