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Problem Description
Let Q be a quiver with two vertices and two arrows going in the same direction,
known as the 2-Kronecker quiver. Let V = (V1, V2, A,B) be a representation
of the quiver, where V1 and V2 are vector spaces over a field k, and A and B
are linear transformations from V1 into V2. It can be shown that there are only
three classes of indecomposable representations over this quiver. This thesis
considers two problems:

1. The main problem of this thesis is the problem of classifying all the inde-
composable representations of the 2-Kronecker quiver over an algebraically
closed field.

2. The other problem mentioned in this thesis is the problem of solving a
system of linear differential equations, Ax = Bẋ, where A and B are
m× n-matrices.





Abstract
We present a way of classifying all the indecomposable representations of the
2-Kronecker quiver over an algebraically closed field. We do this by construct-
ing classes of irregular indecomposable representations by the coxeter functor,
and by constructing a class of regular indecomposable representations by math-
ematical induction using projective resolutions and the Ext1(A,B) functor.

When the indecomposable representations have been classified, we use the de-
composition of any representation into a finite direct sum of indecomposable
representations to evaluate some systems of linear differential equations on the
form Ax = Bx′, where A and B are m× n-matrices.

Sammendrag
I denne oppgaven presenteres en m̊ate å klassifisere de ikke-dekomponerbare
representasjonene av 2-Kronecker koggeret (Engelsk:quiver) over en algebraisk
lukket kropp. To klasser av ikke-dekomponerbare representasjoner blir bestemt
ved å benytte Coxeterfunktoren p̊a noen f̊a, velkjente, ikke-dekomponerbare
representasjoner. Den siste klassen blir bestemt ved hjelp av Ext1-funktoren og
betraktninger om den projektive oppløsningen av ikke-dekomponerbare repre-
sentasjoner.

I tillegg til å klassifisere de ikke-dekomponerbare representasjonene som beskrevet,
blir denne klassifiseringen brukt til å studere lineære likningssystemer av formen
Ax = Bx′, hvor A og B er m× n-matriser.
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Introduction
The objective of this thesis is to classify all the indecomposable representations
of the 2-Kronecker quiver over an algebraically closed field. We also consider
how this classification might prove useful for solving systems of differential equa-
tions.
The 2-Kronecker quiver is a quiver with two vertices, and two arrows both going
in the same direction.
Given a representation V of a quiver over a field, k. V is indecomposable if it
cannot be written as a direct sum of representations, V = V1⊕V2. The focus of
this thesis is to classify all indecomposable representations for the given quiver,
that is, to find a finite number of classes of representations such that every in-
decomposable representation of the quiver is an element in one of these classes.
The classification of the indecomposable representations over the 2-Kronecker
quiver has been known for a long time. In [2], the indecomposable represen-
tations have been classified by the use of representation theory for hereditary
algebras, and by tools such as the Auslander-Reiten quiver. However, the aim
of this thesis is to achieve the classification in a simpler way, by a more ad hoc
theoretical approach.
In chapter 1, we establish some basic definitions and properties of modules and
sequences of modules, and finally study the baer sum, which is a useful tool in
the evaluation of exact sequences.
Chapter 2 is considered to be the main body of this thesis, and contains the con-
struction of the three different classes of indecomposable representations, and
a proof that all indecomposable representations are contained in one of these
classes.
In chapter 3, we consider one possible application for the classification obtained
in chapter 2.

For the proofs provided in this thesis, the symbol � is used to indicate comple-
tion of the proof.



2 CONTENTS



Chapter 1

Preliminary Results

In this chapter, we will give some basic definitions, and use these to derive some
useful properties of modules and sequences of modules. Although the reader
is assumed to be familiar with most of the concepts contained in this chapter,
the chapter provides a general introduction to some of this theory to make the
remainder of the thesis more accessible to any reader. For more about the
fundamental background, and for some of the definitions omitted, see [1], [2],
[3], and [5].

1.1 Free, projective, and injective modules

Definition.
For a ring, R, a left R-module, M is an additive abelian group, and a mapping
(r,m) 7→ rm of R×M into M such that the following holds:

(i) r(m1 +m2) = rm1 + rm2,

(ii) (r1 + r2)m = r1m+ r2m,

(iii) (r1r2)m = r1(r2m),

(iv) 1m = m, if 1 ∈ R

where r, r1, r2 ∈ R,m,m1,m2 ∈M .

Throughout this chapter, unless otherwise stated, whenever we refer to
”modules”, we really mean left R-modules for a ring R.

3
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Definition.
Let R be a ring. Let A and B be left R-modules. Then a mapping f : A → B
is called an R-homomorphism if

(i) f(x+ y) = f(x) + f(y)

(ii) f(rx) = rf(x)

for all x, y ∈ A, and r ∈ R.

Definition.
Let R be a ring with unity. An R-module, F , is a free R-module if it admits a
basis. That is, if there exists a set X = {xj}j∈J ⊆ F such that X is linearly
independent, and for each f ∈ F ,

f =
∑
j∈J

cjxj , cj ∈ R,

and only finitely many cj 6= 0.

Proposition 1.1. Let R be a ring with unity, and let M be a left R-module,
then there exists a free left R-module F , and a surjective R-homomorphism
φ : F →M .

Proof: One may construct a free left R-module, F , and an R-homomorphism
φ : F →M as follows:
Let F = {h : M → R |M \ h−1(0)| <∞}. (All functions h such that there is a
finite number of elements not mapped to zero.)
Let f1, f2 ∈ F . Define an addition on F as follows: (f1 + f2)(m) = f1(m) +R

f2(m). Here, +R is the addition operator in R. By construction, F contains
additive inverses and a zero element.
For r ∈ R, (r · f)(m) = r · f(m) ∈ R. Thus, F is an additive abelian group, and
it is easy to confirm that it satisfies the remaining conditions of an R-module.
To show that F is a free R-module, it is enough to show that it is an R-module
that admits a basis.
To see that F has a basis, consider for each m ∈M the kronecker function

δm(x) =

{
1 if x = m,
0 if x 6= m.

Now for any f ∈ F ,

f(x) =
∑
m∈M

f(m)δm(x),
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so the set {δm|m ∈M} spans F . Also, this set is linearly independent, since for
each x ∈M , we have:∑
m∈M

rmδm(x) = rx, when ri ∈ R,
∑
m∈M

rmδm = 0⇒ rm = 0 ∀m ∈M.

Thus, F admits a basis, and F is a free leftR-module. Define theR-homomorphism

φ : F →M,φ(f) =
∑
m∈M

f(m) ·m.

φ(f1 + f2) = φ(f1) + φ(f2)

φ(r · f1) = r · φ(f1)

As φ(δm) = m, this is surjective.

Definition. Let R be a ring. Let A and B be left R-modules. A left R-module,
P , is a projective module if for every surjective R-homomorphism f : A → B,
and every R-homomorphism g : P → B, there exists an R-homomorphism
h : P → A such that fh = g.

P

BA f

∃h g

Proposition 1.2. A free left R−module is projective.

Proof: Let F be a free left R-module. Then there exists a set B s.t. B is
a basis for F . Consider any left R-modules A and B and any surjective R-
homomorphism f : A → B and any R-homomorphism g : F → B. As f is
surjective, one may choose a mapping h′ : B → A such that

h′(x′) ∈ {a ∈ A|f(a) = g(x′)},∀x′ ∈ B,

by the axiom of choice. As any element x ∈ F is uniquely determined by

x =
∑
x′i∈B

rix
′
i, ri ∈ R,
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this gives rise to an R-homomorphism

h : F → A

h(x) =
∑
x′i∈B

rih
′(x′i)

which is uniquely determined by the choice of h′, and we have that gh(x) = f(x).
Thus, F is a projective module.

B F

BA

h′

f

h
g

Proposition 1.3. A projective module is a summand of a free module.

Proof: By Proposition 1.1, for any projective module P , there exists a free
module F and a surjective R-homomorphism φ : F → P , such that the following
diagram commutes:

P

PF φ

h 1P

Now, φ ◦ h = 1P ⇒ P ' Im h. F = Im h⊕ ker φ. Hence, P is a summand of a
free module.

Proposition 1.4. Let P be a direct summand of a free R-module F . Then P
is a projective module.

Proof: Let P be a direct summand of a free R-module, F . Let h : P ↪→ F be
an inclusion, and h′ : F → P be an R-homomorphism such that h′◦h = 1P . Let
A and B be R-modules, such that there exists an R-homomorphism g : P → B,
and a surjective R-homomorphism f : A→ B. As F is projective by Proposition
1.2, and as f ◦ h′ : F → B defines an R-homomorphism from F to B, there
exists an R-homomorphism f ′ : F → A, such that f ◦ f ′ = g ◦ h′. Then, by
composition by h on the right, one obtains the relation f ◦ f ′ ◦h = g, hence one
have obtained an R-homomorphism f ′ ◦ h : P → A, and thus, P is projective.
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P

BA

F

g

f

h′

h

f ′
g ◦ h′

Proposition 1.5. Let P1, P2, ..., Pi be projective modules. Then P =
i⊕

j=1

Pj is

projective.

Proof: Let P1, P2, ..., Pi be projective modules. By proposition 1.3, projec-
tive modules are summands of free modules. Let F1, F2, ..., Fi be free modules
such that Pj is a summand of Fj for all j ∈ {1, ..., i}. Now we have that

P =

i⊕
j=1

Pj

is a direct summand of the module

F =

i⊕
j=1

Fj

F is a free module by the definition of a free module. Thus, a direct sum
of projective modules is a summand of a free module. By proposition 1.4, a
summand of a free module is projective.

Definition. Let R be a ring. Let A and B be left R-modules. A left R-module,
I is an injective module if for every injective R-homomorphism f : A→ B, and
every R-homomorphism g : A→ I, there exists an R-homomorphism h : B → I
such that hf = g.

I

BA f

∃h
g
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1.2 Exact sequences

Definition. An exact sequence of R-modules, is a sequence of R-modules,
{Ai}i∈Z, and morphisms fi : Ai → Ai+1, such that Im fi=ker fi+1, ∀i ∈ Z,

· · · → Ai
fi−→ Ai+1

fi+1−−−→ Ai+2 −→ · · ·

Definition. The length of an R-module M , is defined as ∞ or the number n
of submodules in the longest chain of submodules of M such that:

N0 ( N1 ( · · · ( Nn = M,

where Ni are submodules of M for i ∈ {1, 2, ..., n}.

Remark. By the Jordan-Hölder Theorem, see [2, Theorem 1.2, p. 3], the length
of an R-module of finite length, n, is independent of the choice of submodules.

Remark. For a vector space, V , `(V ) = dim(V ).

Proposition 1.6. Let

0→ A
f−→ B

g−→ C
h−→ D → 0

be an exact sequence, where f is a monomorphism, and h is surjective. If A,
B, C, and D are R-modules of finite length, then `(A) + `(C) = `(B) + `(D).

Proof: Construct the short exact sequence

0→ A
f−→ B

p−→ B
/

Im f = E → 0,

where p is the projection in the obvious way. That this sequence is ”short”,
means that f is injective and p is surjective. By a corollary of the Jordan-
Hölder theorem, see[2, Corollary 1.3, p. 4], one obtains

`(A) + `(E) = `(B). (1.1)

Also, there is the short exact sequence

0→ E
g′−→ C

h−→ D → 0,

where g′ : E → C, by g′(b+ Imf) = g(b), and hence

`(E) + `(D) = `(C). (1.2)
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Combining equation 1.1 and equation 1.2, one obtains equation 1.3.

`(A) + `(E)− `(D)− `(E) = `(B)− `(C)⇒ `(A) + `(C) = `(B) + `(D) (1.3)

Definition. An R-module M is called noetherian if for every ascending se-
quence of R-submodules of M ,

M1 ⊂M2 ⊂M3 ⊂ · · ·

there exists a positive integer k such that Mk = Mk+1 = Mk+2 · · · .

Definition. An R-module M is called artinian if for every descending sequence
of R-submodules of M ,

M1 ⊃M2 ⊃M3 ⊃ · · ·

there exists a positive integer k such that Mk = Mk+1 = Mk+2 · · · .

Remark. An R-module of finite length is both artinian and noetherian.

1.3 Extension modules

Definition.
An extension of a module B by A, is a short exact sequence

0→ B
f−→ C

g−→ A→ 0

Definition. A short exact sequence

0→ A
f−→ B

g−→ C → 0

is split if there exists a map j : C → B with gj = 1C .

Definition. Two extensions α : 0→ B
f−→ C

g−→ A→ 0 and

β : 0 → B
f ′−→ C ′

g′−→ A → 0 are equivalent if there exists a map φ : C → C ′

such that the following diagram commutes:

α

β

:

:

0

0

f g

f ′ g′

B

B

C A

C ′ A

0

0

φ
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Moreover, by the Five Lemma, see [5, p. 90], if the two extensions α and β are
equivalent, then φ is an isomorphism.

Example. R = Z. Take the extensions as follows:

α : 0→ Z3
λ3−→ Z9

p−→ Z3 → 0

β : 0→ Z3
λ6−→ Z9

p−→ Z3 → 0

where p is the projection onto Z3 by isomorphism with the quotient ring Z9/Z3,
and

λi : Zi → Zj , λi(x) = ix.

To show that α and β are not equivalent, it is enough to show that no
φ : Z9 → Z9 can make both of the following diagrams commute:

Left side:

λ3

λ6

Z3

Z3

Z9

φ

Z9

Right side:

p

p

Z9

Z9

φ

Z3

Z3

In order to make the left side commute, φ(0) = 0, φ(3) = 6, φ(6) = 3. Hence,
φ = λ2 or φ = λ5. But considering the right side, pφ(1) = 2̄ 6= 1̄ = p(1). Hence,
the right side diagram does neither commute for φ = λ2 nor φ = λ5.

Definition.
Let X be a left R-module. Then a projective presentation of X is an exact
sequence

P1
f1−→ P0

f0−→ X → 0

where P1 and P0 are projective modules.

1.4 Categories and functors

Definition. A category, C consists of

1. a class of objects, obj C,
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2. a class of morphisms between objects, hom C,

3. and a composition of morphims. This is a binary operation such that when
a, b, c ∈ obj C, hom (a, b)× hom (b, c) 7→ hom (a, c). Let f ∈ hom (a, b),
g ∈ hom (b, c), then the composition is denoted by gf ∈ hom (a, c).

such that

a) the composition of morphisms is associative,
f ∈ hom (a, b), g ∈ hom (b, c), h ∈ hom (c, d), (hg)f = h(gf).

b) for every object x ∈ obj C, there exists an identity morphism, 1x : x→ x,
such that for any morphism f : a→ b, 1bf = f1a.

Definition. Let C and D be categories. A covariant functor, F from C to D is
a mapping that

1. associates to each object a ∈ C an object F (a) ∈ D.

2. associates to each morphism f : a→ b ∈ C a morphism
F (f) : F (a)→ F (b) ∈ D such that

a) identity morphims are preserved, and

b) compositions are well behaved.

That is, F (1a) = 1F (a), and F (gf) = F (g)F (f) for all objects a, b, c ∈ C
and all morphims f, g ∈ C, such that: f : a→ b and g : b→ c.

Definition. Let C and D be categories. A contravariant functor, F from C to
D is a mapping that

1. associates to each object a ∈ C an object F (a) ∈ D.

2. associates to each morphism f : a→ b ∈ C a morphism
F (f) : F (b)→ F (a) ∈ D such that

a) identity morphims are preserved, and

b) compositions are well behaved.

That is, F (1a) = 1F (a), and F (gf) = F (f)F (g) for all objects a, b, c ∈ C
and all morphims f, g ∈ C, such that: f : a→ b, and g : b→ c.

Example. We may define a category whose objects are sets, x, where the mor-
phisms from the set x1 to the set x2 are taken to be all mappings of sets from
x1 to x2. This category is called the category of sets, and is denoted by Set.
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Example. We may define a category whose objects are all abelian groups, g,
where the morphisms from the abelian groups g1 to the abelian group g2 are all
group homomorphisms from g1 to g2. This category is called the category of
abelian groups, and is denoted by Ab.

1.5 The functors Hom(−, x) and Ext1(−, x)

Definition. To each x ∈ Set, the contravariant Hom-functor, Hom(−, x) : C →
Set is a functor given by mapping:

1. an object a ∈ C to the set of morphisms mapping a to x, Hom(a, x), and

2. each morphism f : a→ b to the function

Hom (f, x) : Hom (b, x)→ Hom (a, x)

g 7→ gf, ∀g ∈ Hom(b, x)

The extension functor, Extn(−, x), is a useful functor for canonically con-
structing exact sequences from short sequences, and repairing exactness lost
when using the Hom-functor. Also, there are some useful results when it comes
to deciding wheter or not a module is either projective or injective by use of
Ext1(−, x). The derivation of the different characteristics and propositions con-
cerning the Ext1(−, x) functor is beyond the scope of this paper, but a useful
result will be cited to prove the main theorem of chapter 2.

Proposition 1.7. If Ext1R(C,A) = {0}, then every extension of A by C splits.

Proof: The proof is omitted in this thesis, but a complete proof of this
proposition may be found in [5, p. 421].

Obviously, two exact sequences being equivalent by the definition of equivalence
in section 1.3, is an equivalence relation, and it can be seen that Ext1(A,B)
is really a group of residual classes of exact sequences up to this equivalence
relation.

Definition. Let A and B be R-modules.

Ext1
R(A,B) =

{
0→ B

f−→ C
g−→ A→ 0

}/
∼



1.6. PUSHOUT AND PULLBACK DIAGRAMS 13

1.6 Pushout and Pullback diagrams

Definition. For two morphisms f : Z → X, g : Z → Y , the pushout of f and
g consists of an object, P , and two morphisms iX : X → P and iY : Y → P ,
s.t. iX ◦ f = iY ◦ g.

�
P

Y

X

Z

f

g

iX

iY

Q

jY

jX
u

Also, the pushout must be universal with respect to this diagram. That is, for
any other Q, jX , jY such that jX ◦f = jY ◦g, there must be a unique morphism
u : P → Q such that jY = u ◦ iY and jX = u ◦ iX .

To prove that the pushout exists, it is enough to show that at least one
module and pair of morphisms exists satisfying these requirements. For all
morphisms f and g, we may construct an object, P , and morphisms iX and iY
such that:
P = Coker

(
f
−g

)
. We define the image of

(
f
−g

)
by:

I = {(f(z),−g(z))|z ∈ Z}.

The morphism iX is the compositions of the inclusion lX with the projection p,
given by the definition of the cokernel, such that iX = plX ,

lX : X ↪→ X × Y, lX(z) = (z, 0),

p : X × Y → P, p(x, y) = (x, y) + I.

Thus, we see that iX(z) = (z, 0) + I.
The morphism iY is the composition of the inclusion lY with the projection

p, such that iY = plY ,

lY : Y ↪→ X × Y, lY (z) = (0, z).

From this, we see that iY (z) = (0, z) + I.
This construction is a pushout, and thus, the pushout exists.
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Definition. For two morphisms f : X → Z, g : Y → Z, the pullback of f and
g consists of an object, P , and two morphisms pX : P → X and pY : P → Y ,
s.t. the following diagram commutes, that is, f ◦ pX = g ◦ pY :

�
P

Y

X

Z

f

g

pX

pY

Q

jY

jX
u

Also, pX and pY must be universal with respect to this property.

To prove that the pullback exists, it is enough to show that at least one object
and two morphisms exists satisfying these requirements.
For all morphisms f and g, we may construct an object, P , and morphisms pX

and pY such that: P = ker
(
f
−g

)
. The morphism pX is the composition of the

inclusion m with the projection qX , such that pX = qXm,

m : P ↪→ X × Y, m is inclusion of the kernel of
(
f
−g

)
,

qX : X × Y → X, qX(x, y) = x.

The morphism pY is the composition of the inclusion m with the projection qY ,
such that pY = qYm,

qY : X × Y → Y, qY (x, y) = y.

This construction is a pullback, and thus, the pullback exists.

1.7 Baer sum

The Baer sum of two extensions can be used as an operation in order to make
Ext1

R(A,B) an abelian group. It works by applying pushout and pullback to
operate on a pair of extensions,

α : 0→ B
f−→ C

g−→ A→ 0

β : 0→ B
f ′−→ C ′

g′−→ A→ 0
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as follows:
Pullback:

0

0

B ⊕B

B ⊕B

H

C ⊕ C ′

A

A⊕A

0

0

i k

(
f 0
0 f ′

) ( 1
1 )(

g 0
0 g′

)j

By applying ”pullback along A ⊕ A” one obtains the pullback, H, j, k. As the
identity and ( 1

1 ) are both injective, j is injective. By commutativity of the right
square of the exact sequences, we get:

H =
(
g 0
0 g′

)−1

{(a, a)|a ∈ A}

= {(c, c′) ∈ C ⊕ C ′|g(c) = g′(c′)}

For the diagram to commute, it needs to satisfy

( 1
1 ) k(c, c′) = (g(c), g′(c′)), (c, c′) ∈ H

Thus, we solve the different commutative diagrams and obtain:

k((c, c′)) = g(c)

j((c, c′)) = (c, c′)

i((b, b′)) = (f(b), f ′(b′))

Pushout:

0

0

B ⊕B

B

H

K

A

A

0

0

(1 1)

i k

l n

m

By applying ”pushout along B ⊕B”, one obtains K,m, l which is a pushout of
i and (1 1) . As both (1 1) and the identity are surjective, m is surjective.

K ' Coker

(
i

−1 −1

)
' H/I,
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where
I = {(f(b),−f ′(b))|b ∈ B}, I ⊆ H ⊆ C ⊕ C ′.

Baer sum:
α+ β : 0→ B

l−→ K
n−→ A→ 0

Where the functions l and n are given as follows:
l : B → K is the composition B −−−−−−−→

b 7→(f(b),0)
H −−−−−−−−−−−→

(h,h′)7→(h,h′)+I
K

n : K → A is uniquely induced by k : H → A, as k(I) = 0.

l : B → K, l(b) = (f(b), 0) + I = (0,−f ′(b)) + I

n : K → A,n((k, k′) + I) = g(k).

Example. Consider the extensions

α : 0→ Z3
λ3−→ Z9

p−→ Z3 → 0

β : 0→ Z3
λ6−→ Z9

p−→ Z3 → 0

used in the example of section 1.3.
To compute the Baer sum, γ = α + β, we first construct a submodule H of
Z9 ⊕ Z9 such that
H = {(z, z′) ∈ Z9 ⊕ Z9| p(z) = p(z′)}. Explicitly, this submodule is given by:

H = {(0, 0), (0, 3), (0, 6), (1, 1), (1, 4), (1, 7), (2, 2), (2, 5), (2, 8),

(3, 0), (3, 3), (3, 6), (4, 1), (4, 4), (4, 7), (5, 2), (5, 5), (5, 8),

(6, 0), (6, 3), (6, 6), (7, 1), (7, 4), (7, 7), (8, 2), (8, 5), (8, 8)} ' Z9 ⊕ Z3.

Secondly, construct the submodule I = {(f(z),−f ′(z)|z ∈ Z3}
I = {(0, 0), (3, 3), (6, 6)} ' Z3. Thus,

K ' H/I = {(0, 0), (0, 3), (0, 6), (1, 1), (1, 4), (1, 7), (2, 2), (2, 5), (2, 8)}.

Here (z, z′) denotes the coset (z, z′) + I.

By the isomorphism

φ : K → Z3 ⊕ Z3

φ((0, 0)) = (0, 0), φ((0, 3)) = (0, 1), φ((0, 6)) = (0, 2),

φ((1, 1)) = (1, 0), φ((1, 4)) = (1, 1), φ((1, 7)) = (1, 2),

φ((2, 2)) = (2, 0), φ((2, 5)) = (2, 1), φ((2, 8)) = (2, 2),
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we have that K ' Z3 ⊕ Z3.

l : Z3 → Z3 ⊕ Z3, l(z) = (0, z).

n : Z3 ⊕ Z3 → Z3, n(z, z′) = z.

We have the Baer sum:

α+ β = γ : 0→ Z3
(0 1)−−−→ Z3 ⊕ Z3

( 1
0 )
−−→ Z3 → 0.

Remark. α, β and γ are all the possible elements of Ext1
Z(Z3,Z3), and these

form an abelian group isomorphic to Z3!
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Chapter 2

Kronecker Quiver

In this chapter, we study the finite oriented graph known as the 2-Kronecker
Quiver, and try to classify all indecomposable representations of this quiver over
an algebraically closed field. Some of the more well-known propositions of this
chapter are not proven, but rather referred to from the sources where the reader
is provided with complete proofs.

2.1 Motivation

The 2-Kronecker Quiver, here denoted by Q, is an oriented graph with two
vertices, 1 and 2, and two arrows, α and β, both going in the same direction,
as shown in Figure 2.1.

1 2
α

β

Figure 2.1: The 2-Kronecker Quiver, Q.

By assigning to each vertex a finite dimensional vector space over a field, k,
a k-vector space, and to each arrow a linear transformation between the vec-
tor spaces, we obtain a representation of Q over a field k. This representation
may be written as a four-tuple (km, kn, lα, lβ), where km and kn are the vector
spaces assigned to vertices 1 and 2 respectively, and lα and lβ are linear maps as-

19
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signed to arrows α and β respectively. A map between two such representations,
(km, kn, lα, lβ) and (km

′
, kn

′
, l′α, l

′
β) is a pair of linear maps,

f1 : km → km
′

f2 : kn → kn
′

such that:

l′αf1 = f2lα

l′βf1 = f2lβ .

This way we get the category of finite dimensional representations of the quiver,
Q, where the objects are the representations and the morphisms are the maps
between representations.
Let Λ be the path algebra defined in equation 2.1.

Λ = kQ '


a 0 0
b c 0
d 0 c

 a, b, c, d ∈ k

 (2.1)

Proposition 2.1. The category of representations of Q over k, rep(Q, k) is
equivalent as a category to the category of Λ-modules of finite k-dimension, mod
Λ.

Proof: For a proof of this proposition, see [2, p. 57].

Each finite dimensional module is both artinian and noetherian, so by the Krull-
Remak-Schmidt Theorem, see [7, Theorem 3.3, p.7], every Λ-module may be
written as a direct sum of indecomposable Λ-modules. Thus, in order to prove
something for a general Λ-module, it may be enough to show that it holds for
the indecomposable Λ-modules.
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2.2 Constructing indecomposable Λ-modules

Let J = (V1, V2, lα, lβ) be interpreted as a Λ-module corresponding to the rep-
resentation of Q over k, where:

V1 = vector space assigned to vertex 1

V2 = vector space assigned to vertex 2

lα = linear transformation assigned to arrow α

lβ = linear transformation assigned to arrow β.

For the remainder of this chapter, the vector spaces assigned to the vertices
will be denoted by kn where n ∈ N, unless otherwise stated. As we have an
equivalence of categories between mod Λ and rep(Q, k), we use the same nota-
tion to describe the representations and the Λ-modules corresponding to them
throughout the text, however, whether the notation is referring to a module or
a representation is explicitly stated in every case where it might be unclear.

2.2.1 Coxeter functors

To study indecomposable objects of a category of representations of a quiver
without oriented cycles, we may use a powerful tool named the coxeter functor,
introduced by Bernstein, Gel’fand and Ponomarev, see [8]. The general idea,
is that the coxeter functor is a functor constructed in such a way that inde-
composable objects are either mapped to other indecomposable objects, or to a
zero object. Explicitly, for the case we are concerned with, we have the coxeter
functors

C+ : mod Λ→ mod Λ

C− : mod Λ→ mod Λ

which maps indecomposable Λ-modules to indecomposable Λ-modules or the
module 0 = (0, 0, 0, 0).

Constructing the coxeter functor

Starting out more general, we have a quiver, Q′, given by equation 2.2.

Q′ = {Q0, Q1, h : Q1 → Q0, t : Q1 → Q0} (2.2)
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Q0 : Is a finite set, called the vertices in the quiver.

Q1 : Is a finite set, called the arrows of the quiver.

h(q) : Is the head of the arrow q ∈ Q1.

t(q) : Is the tail of the arrow q ∈ Q1.

Head and tail of an arrow is defined such that for an arrow

q : i→ j, h(q) = j, t(q) = i.

Definition. A quiver is said to contain oriented cycles if there exists a finite
composition of arrows q = q1q2...qn such that h(q) = t(q).

Definition. A representation of Q′ over a field k, is for each vertex i ∈ Q0 a
k-vector space, V (i), and for each arrow q : i→ j ∈ Q1 a linear transformation
lq : V (i)→ V (j).

Remark. Let Q′ be a quiver with n vertices and m arrows. Then a representation
V will be denoted by V = (V (1), ..., V (n), l1, ..., lm).

Definition. A map between two representations V and V ′ over the same quiver,
Q′, is defined as a set of linear maps

{fi : V (i)→ V (i)′}i∈Q0

such that if lq and l′q are linear transformations assigned to the same arrow
q : i→ j in the different representations, we have:

l′qfi = fj lq

This is the same as the linear maps {fi}i∈Q0 making the diagram

V (i) V (i)′

V (j) V (j)′
fj

fi

lq l′q

commute for any i, j ∈ Q0, and q : i→ j ∈ Q1.
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Definition. A sink, is a vertex i ∈ Q0 such that t(q) 6= i,∀q ∈ Q1.

Definition. The partial coxeter functor of a sink i, C+
i , is defined by:

C+
i : rep(Q′, k)→ rep(Q′i, k)

where Q′i is the quiver obtained when reversing the direction of every arrow
q ∈ Q′ such that h(q) = i. That is, replacing each arrow q : j → i ∈ Q′ by the
arrow q′ : i→ j ∈ Q′i.

a) Let V (j) be the vector space assigned to vertex j ∈ Q0.

C+
i (V (j)) =

{
V (j), j 6= i
V (i)′ = ker g, j = i.

where

g :
⊕
q∈Q1

h(q)=i

V (t(q)) −−−−−−−−−−→ V (i).

Let vt(q) ∈ V (t(q)), then g is defined by

g

(
(vt(q)) q∈Q1

h(q)=i

)
=
∑
q∈Q1

h(q)=i

lq(vt(q)).

b) Let lq : V (j) → V (k), be the linear transformation assigned to the arrow
q : j → k ∈ Q1.

C+
i (lq) =

 lq, k 6= i,

lq′ : C+
i (V (i))

incl.−−−→
⊕

q∈Q1

h(q)=i

V (t(q))
proj.−−−→ V (t(q)), k = i.

Assuming the quiver we are considering does not have any oriented cycles,
we may describe how C+ acts on a representation of the quiver, V , by the
following algorithm:

1. Locate a sink, i.

2. Apply C+
i to the representation.

3. Locate a previously unchanged sink, j 6= i, in the quiver Q′i.
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4. Apply C+
j to the representation C+

i (V ).

5. Repeat the procedure until every vertex in the quiver have been a sink
exactly once.

In other words, by changing the numbering of our vertices to fit to the order in
which they appear as a sink for our given choice of order of operations, we may
write:

C+(V ) = C+
n C

+
n−1...C

+
2 C

+
1 (V )

Definition. A source, is a vertex i ∈ Q0 such that h(q) 6= i,∀q ∈ Q1.

Definition. The partial coxeter functor of a source i, C−i , is defined by:

C−i : rep(Q′, k)→ rep(Q′′i , k)

where Q′′i is the quiver obtained when reversing the direction of every arrow
q ∈ Q′ such that t(q) = i.

a) Let V (j) be the vector space assigned to vertex j ∈ Q0.

C−i (V (j)) =

{
V (j), j 6= i
V (i)′ = Coker g, j = i.

where

g : V (i)→
⊕
q∈Q1

t(q)=i

V (h(q))

Let vi ∈ V (i), then g is defined by:

g(vi) =
⊕
q∈Q1

t(q)=i

lq(vi)

b) Let lq : V (j) → V (k), be the linear transformation assigned to the arrow
q : j → k ∈ Q1.

C−i (lq) =

 lq, j 6= i,

lq′ : V (k)
incl.−−−→

⊕
q∈Q1

h(q)=i

V (h(q))
proj.−−−→ C−i (V (i)), j = i.
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Assuming the quiver we are considering does not contain any oriented cycles,
we may describe how C− acts upon a representation of a quiver, V , by the
following algorithm:

1. Locate a source, i.

2. Apply C−i to the representation.

3. Locate a previously unchanged source in Q′′i , j 6= i.

4. Apply C−j to the representation C−i (V ).

5. Repeat the procedure until every vertex has appeared as a source exactly
once.

In other words, by changing the numbering of our vertices to fit to the order in
which they appear as a source, we may write:

C−(V ) = C−n C
−
n−1...C

−
2 C
−
1 (V )

Remark. For any indecomposable representation V 6' Si. C−i C
+
i (V ) = V . Si is

the representation with a one dimensional vector space assigned to the vertex
i, zero spaces assigned to every vertex j 6= i, and zero maps assigned to every
arrow q ∈ Q1.

Example. Consider the quiver without cycles given by:

1 2 3
α β

γ

Construct a representation of this quiver over a field k by assigning to each
vertex i ∈ {1, 2, 3} a vector space V (i) over k, and to each arrow
χ ∈ {α, β, γ} a linear map lχ. Denote such a representation by

V = (V (1), V (2), V (3), lα, lβ , lγ).

Now consider the representation V1 =
(
k, k2, k3, ( 1

0 ) ,
(

1 0
0 1
0 0

)
,
(

0 0
1 0
0 1

))
.

k k2 k3
( 1

0 )

(
1 0
0 1
0 0

)
(

0 0
1 0
0 1

)
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Applying the coxeter functor C+ to this representation will give us C+(V1) =
C+

1 C
+
2 C

+
3 (V1). Starting out, there is only one sink to consider: V (3). Comput-

ing, we get:
C+

3 (V (3)) = ker g, g = (lβ , lγ) : k2 ⊕ k2 → k3,

C+
3 (V (3)) = ker

(
1 0 0 0
0 1 1 0
0 0 0 1

)
=

{(
0
a
−a
0

)
a ∈ k

}
' k.

The new representation, V ′1 , obtained is:

k k2 k
( 1

0 ) ( 1
0 )

( 0
1 )

This quiver has a new sink, the vertex 2, and hence, we need to compute C+
2 (V ′)

in the same way:

C+
2 (V (2)) = ker ( 1 1 0

0 0 1 ) =
{(

a
−a
0

)
a ∈ k

}
' k.

The new representation, V ′′1 , obtained is:

k k k
1 1

0

Now, there is only one vertex left to consider, 1, and this is actually turned
into a sink from the last use of the partial coxeter functor, so we apply C+

1 (V ′′),
and finally obtain C+(V ):

C+
1 (V (1)) = ker 1 = 0.

0 k k
0 1

0

The quiver is now the same quiver we started with, and we see that

C+
((
k, k2, k3, ( 1

0 ) ,
(

1 0
0 1
0 0

)
,
(

0 0
1 0
0 1

)))
= (0, k, k, 0, 1, 0).

In a similar way, we may apply C− to the representation V2 = C+(V1) by
considering the sources of the quiver. First, we consider the source at vertex 1:

C−1 (V (1)) = Coker 0 = k/Im 0 ' k

The new representation, V ′2 , obtained is:
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k k k
0 1

0

Now the source is located at vertex 2:

C−2 (V (2)) = Coker
(

0
1
0

)
= k ⊕ k ⊕ k/Im

(
0
1
0

)
' k2

The new representation, V ′′2 , obtained is:

k k2 k
1 ( 0

0 )

( 0
1 )

And finally, the last source is now at vertex 3:

C−3 (V (3)) = Coker

(
0
0
0
1

)
= k ⊕ k ⊕ k ⊕ k/Im

(
0
0
0
1

)
' k3

The new representation obtained is:

k k2 k3
1

(
1 0
0 1
0 0

)
(

0 0
1 0
0 1

)
And hence, we see that: C−(V2) = V1, and C−C+(V1) = V1.

2.2.2 Coxeter functor and indecomposables of Q.

Let V = (km, kn, A,B) be a representation of the quiver Q, as defined in sec-
tion 2.1. In order to obtain all the indecomposable representations of Q over a
field k, or ”the indecomposables of Q”, one possible idea is to start out by find-
ing different types of indecomposables and obtain indecomposables of a similar
form by applying the coxeter functor to these. The indecomposable representa-
tions are either irregular, or regular, and the irregular indecomposables may all
be derived from a finite number of indecomposable representations simply by
applying the coxeter functors C+ or C−.[8, Theorem 1.3, p. 25].

Proposition 2.2. Let V = (km, kn, A,B) be a representation of the quiver Q
over the field k, such that m > n. Now C+(V ) is indecomposable if and only if
V is indecomposable.
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Proof: Let Λ be the path algebra defined in equation 2.1. A Λ-module,
M , of finite length, is indecomposable if and only if the endomorphism ring
EndΛ(M) is local, see [2, Theorem 2.2, p. 33]. So in order to prove that the
coxeter functor preserves indecomposable modules, it is enough to observe the
endomorphism rings of M and C+(M). Consider the diagram:

0

0

C+
i (V (i))

C+
i (V (i))

⊕
q∈Q1

h(q)=i

V (t(q)

⊕
q∈Q1

h(q)=i

V (t(q)

V (i)

V (i)

0

0

figi

As the diagram commutes, any homomorphism fi : V (i) → V (i) induces a
homomorphism gi : C+

i (V (i))→ C+
i (V (i)), and the converse is also true.

⇒) Assume that M is indecomposable, and M 6' Si. We have that End(M) '
End(C+(M)), and as End(M) is local, End(C+(M)) is local, and thus, C+(M)
is an indecomposable module.
⇐) Assume that C+(M) is indecomposable, and C+

i (M) 6' Si for the quiver
Qi. We have that End(C+(M)) ' End(M), and as End(C+(M)) is local, so is
End(M), and hence, M is an indecomposable module.
A Λ-module M is indecomposable if and only if C+(M) is indecomposable. The
same holds for representations of the quiver Q over k, by proposition 2.1.

Proposition 2.3. Let V = (km, kn, A,B) be a representation of the quiver Q
over the field k, such that m < n. Now C−(V ) is indecomposable if and only if
V is indecomposable.

Proof: The proof is similar to the proof of proposition 2.2.

General requirements for indecomposable modules

Before we start considering the use of the coxeter functor on an indecomposable
representation, we first need to derive some basic properties for the indecom-
posable representations, or by equivalence, for the indecomposable Λ-modules.

Proposition 2.4. Let J = (km, kn, A,B) be an indecomposable Λ-module, with
m > 0. Then Im A + Im B = kn
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Proof: Assume Im A + Im B = kn
′
. Let n′′ = n− n′. One might write

J = (km, kn, A,B) = (km, kn
′
, Ā, B̄)⊕ (0, kn

′′
, 0n′′ , 0n′′)),

where 0n′′ is the zero matrix of dimensions 1 × n′′, and Ā and B̄ are A and B
when removing the rows simultaneously taking every element to zero for both
A and B. J is decomposable for any n′′ 6= 0.

Proposition 2.5. Let J = (km, kn, A,B) be an indecomposable Λ-module, with
n > 0. Then ker A ∩ ker B = 0

Proof: Let K=kerA ∩ kerB = km
′
. Then

J = (km−m
′
, kn, Ā, B̄)⊕ (km

′
, 0, 0m

′
, 0m

′
),

where 0m
′

is the zero matrix of dimensions m′ × 1, and Ā and B̄ are A and
B restricted to the vector space km \ K. Thus J is decomposable for any
m′ 6= 0.

Coxeter functor of a representation of Q.

Let V = (km, kn, A,B) be an indecomposable representation of the quiver Q
over k.

km kn
A

B

Obviously, for the quiver, Q, there is only one sink, the vertex 2. Hence, we
may let the coxeter functor C+ act on V by:

C+(V ) = C+
1 C

+
2 (V )

Starting out:

C+
2 (kn) = ker (A B)

And we get the new representation, V ′, such that:

V ′ : km ker (A B)
A′

B′
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Here, dim (ker (A B)) is given by constructing the short exact sequence:

0→ ker (A B) ↪→ km ⊕ km (A B)−−−−→ kn → 0

where (A B) is surjective by proposition 2.4. Now as the length of a vector
space is equal to its dimension, we get that dim (ker (A B)) = m + m − n=
2m− n, and hence, ker (A B) ' k2m−n.

C+(V ) = C+
1 (V ′)

C+
1 (kn) ' ker(A′ B′),

And we get the representation C+(V ) such that:

C+(V ) : ker(A′ B′) k2m−nA′′

B′′

By constructing an exact sequence in the similar way as before, we get

0→ ker (A′ B′) ↪→ k2m−n ⊕ k2m−n (A′ B′)−−−−−→ kn → 0

dim (ker (A′ B′)) = 2m− n+ 2m− n−m = 3m− 2n, ker (A′ B′) ' k3m−2n.

C+(km, kn, A,B) = (k3m−2n, k2m−n, A′′, B′′).

By this relation, we may define the coxeter matrix, Φ, which is a matrix describ-
ing what happens to the dimensions of the vector spaces in an indecomposable
Λ-module when applying the coxeter functor C+ on it.

2.2.3 Coxeter Matrix

Let the dimensions of an indecomposable Λ-module

J = (km, kn, A,B)

be given by the dimension vector

dJ = (mn ) .
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When we use the coxeter functor C+ to move from one indecomposable Λ-
module, J1, to another indecomposable Λ-module, J2 = C+(J1), the dimension
vectors dJ1 and dJ2 are related by the coxeter matrix, Φ:

Φ =

(
3 −2
2 −1

)
,

Applying the coxeter functor C+ on a module q times, will change the dimension
vectors by Φq, given by:

Φq = q ·
(

2 −2
2 −2

)
+

(
1 0
0 1

)
This is given by the binomial expression of (A + I)q for quadratic matrices

A =
(

2 −2
2 −2

)
and I = ( 1 0

0 1 ), as
(

2 −2
2 −2

)2
= ( 0 0

0 0 ).

The inverse coxeter functor, C− may be studied in a way similar to how we
approached C+, and it gives an inverse coxeter matrix, Φ−1, such that:

Φ−1 =

(
−1 2
−2 3

)
,

Applying the inverse coxeter functor C− to a module, V , q times, will change
the dimension vectors by Φ−q, given by:

Φ−q = q ·
(
−2 2
−2 2

)
+

(
1 0
0 1

)
We have that

ΦΦ−1 = Φ−1Φ =

(
1 0
0 1

)

2.2.4 Indecomposables in the class N1

To find indecomposable Λ-modules, it is a good idea to start with the simple
modules S1 = (k, 0, 0, 0) and S2 = (0, k, 0, 0), which are obviously indecompos-
able. By constructing injective Λ-modules of the simple Λ-modules S1 and S2,
we obtain the injective Λ-modules

I1 ' S1 = (k, 0, 0, 0),
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and
I2 = (k2, k,

(
1 0

)
,
(
0 1

)
).

respectively. Applying the coxeter functor C+ to I1 gives us:

C+(I1) = C1 =

(
k3, k2,

(
1 0 0
0 1 0

)
,

(
0 1 0
0 0 1

))
Applying the coxeter matrix C+ on I2, gives us the module:

C2 =

k4, k3,

1 0 0 0
0 1 0 0
0 0 1 0

 ,

0 1 0 0
0 0 1 0
0 0 0 1


Now,

C1 = C+(I1)

C2 = C+(I2),

and both C1 and C2 are indecomposable Λ-modules, as I1 and I2 are indecom-
posable Λ-modules. Expanding on this idea, by applying C+ consecutively on
the modules attained this way, we may construct an entire class of indecompos-
able Λ-modules on the form of equation 2.3,

N1 =
{

(kn+1, kn, (in 0), (0 in)) n ∈ N
}
. (2.3)

Where in for the rest of this thesis denotes the n× n-identity matrix.

2.2.5 Indecomposables in the class N2

Construct the projective Λ-modules

P1 =

(
k, k2,

(
1
0

)
,

(
0
1

))
,

and
P2 ' S2 = (0, k, 0, 0)

over S1 and S2 respectively. We obtain another class of indecomposable Λ-
modules on the form given in equation 2.4, by applying C− to P1 and P2 in a
similar manner to the construction we performed in section 2.2.4.

N2 =

{(
kn, kn+1,

(
in
0

)
,

(
0
in

))
n ∈ N

}
. (2.4)
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2.2.6 Indecomposables in the class N3

Jordan canonical form

The last class of indecomposable Λ-modules we construct, may be simplified by
restricting our study to deal with the cases where k is an algebraically closed
field, that is, all the irreducible polynomials in the polynomial ring k[x] are of
degree 1. When this is the case, any square matrix A, being a linear transfor-
mation from kn to kn, may be written on Jordan canonical form as a direct
product of matrices on the form of equation 2.5, called Jordan blocks. For fur-
ther explaination of the Jordan canonical form of a matrix, see for instance [1,
p. 423].

JBλni =


λ 1 0 ··· 0 0
0 λ 1 ··· 0 0
0 0 λ ··· 0 0
...

...
...

. . .
...

...
0 0 0 ··· λ 1
0 0 0 ··· 0 λ

 (2.5)

JBλni is an ni × ni-matrix, where λ is an eigenvalue of the matrix A. Let the
algebraic multiplicity, mλ

a of a fixed eigenvalue λ of A be given by:

mλ
a =

∑
ni∈N,
∃JBλni

ni.

Described with words, mλ
a is the dimension of a direct sum of all Jordan blocks

in the Jordan canonical form of A containing the eigenvalue λ. The number
of different such Jordan blocks, mλ

g , is called the geometric multiplicity of the
eigenvalue λ. The dimension of the direct sum of all Jordan blocks in the Jordan
canonical form of a matrix, A, is given by∑

λ

mλ
a = n,

where the sum is taken over every different eigenvalue of A.

Indecomposables in the class N3

Using the well behaved structure of the Jordan blocks, we may construct a third
class of indecomposable Λ-modules by considering the Λ-module

S∗λ = (k, k, 1, λ), λ ∈ k ∪ {∞},
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where λ =∞ corresponds to the module (k, k, 0, 1).
We see that:

dim(Ext1
k(S∗λ, S

∗
γ))

{
1 if λ = γ
0 if λ 6= γ

,

We obtain a class of indecomposable modules by taking S∗λ, λ ∈ k extended with
itself. These are the Λ-modules in the class N ′3, given by equation 2.6.

N ′3 =
{(
kn, kn, in, JB

λ
n

)
n ∈ N, λ ∈ k

}
(2.6)

Also, S∗∞ extended with itself gives us the Λ-modules in the class N ′′3 , given by
equation 2.7.

N ′′3 =
{(
kn, kn, JB0

n, in
)
n ∈ N

}
(2.7)

The modules in the class N ′′3 may be denoted as modules of the form of equation
2.6 with λ =∞. Thus, the classes N ′3 and N ′′3 may be written as a single class
of Λ-modules, N3, given by equation 2.8.

N3 =
{(
kn, kn, in, JB

λ
n

)
n ∈ N, λ ∈ k ∪ {∞}

}
(2.8)

2.3 Main Theorem

The three classes N1, N2, and N3 does in fact cover all the indecomposable
Λ-modules, as will be shown in the next section. Due to this fact, we arrive at
the main theorem of this thesis:

Theorem 2.6. Let k be an algebraically closed field. Let M be a Λ-module.
Then:

M '
(
km1 , km1+1,

(
im1

0

)
,
(

0
im1

))
⊕ · · · ⊕

(
kmr , kmr+1,

(
imr

0

)
,
(

0
imr

))
⊕ (kn1+1, kn1 , (in1

0), (0 in1
))⊕ · · · ⊕ (kns+1, kns , (ins 0), (0 ins))

⊕ (kl1 , kl1 , il1 , JB
λ1

l1
)⊕ · · · ⊕ (klt , klt , ilt , JB

λt
lt

), r, s, t ∈ N,
λt ∈ k ∪ {∞}

Where in is the identity matrix of dimension n × n, and JBλili is the Jordan
block of dimension li × li with eigenvalue λi.
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2.4 Proof of Main Theorem

If N1, N2 and N3 are all indecomposable Λ-modules, Theorem 2.6 follows im-
mediately from the Krull-Remak-Schmidt theorem, see [7, Theorem 3.3, p.7].
Hence, we need only show that the classes N1, N2, and N3 contain all indecom-
posable Λ-modules. Considering an arbitrary indecomposable Λ-module

J = (km, kn, A,B)

the cases we need to study may be divided into three separate cases:

1. The case where m < n.

2. The case where m > n.

3. The case where m = n.

These three will turn out to correspond to the three different classes of inde-
composable modules discovered in the previous section.

2.4.1 Indecomposables in the classes N2 and N1

In the following proofs, the specifics of the linear transformations in the rep-
resentations are not always shown, as the proofs generally rely on dimension
arguments from using the coxeter functor.

Proposition 2.7. Let J = (km, kn, A,B) be an indecomposable Λ-module.
If m < n, then n = m+ 1.

Proof: Assuming the module J is not isomorphic to P1 or P2, in which
case it would belong to the class N2, we may use the coxeter functor C+ on
the module, to obtain a Λ-module on the form (k3m−2n, k2m−n, A′′, B′′). By
continued application of the coxeter functor, the dimension of the vector spaces
will be given by Φq, as defined in section 2.2.3. This yields modules

(k(2q+1)m−2qn, k2qm−(2q−1)n, Aq, Bq), q ∈ N.

As m < n, this means that after using the coxeter functor C+ a finite number of
times, the modules generated will contain vector spaces of negative dimension,
imaginary vector spaces so to say. The coxeter functor will only transform an
indecomposable module into such ”imaginary modules” if it is used on one of the
projective modules, P1 or P2. So at the last point before the dimensions turn
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negative, the module must have been reduced to one of the projective modules.
Thus, we arrive at equation 2.9 if the projective module obtained is P1 and
equation 2.10 if the projective module obtained is P2:

Φq (mn ) = ( 0
1 ) (2.9)

(2q + 1)m− 2qn = 0,

2qm− (2q − 1)n = 1

⇒ n = m+ 1

Φq (mn ) = ( 1
2 ) (2.10)

(2q + 1)m− 2qn = 1,

2qm− (2q − 1)n = 2

⇒ n = m+ 1

Proposition 2.8. Let J = (km, kn, A,B) be an indecomposable Λ-module.
If m > n, then m = n+ 1

Proof: The proof is similar to the proof of Proposition 2.7, but instead of
using the coxeter functor C+, we may look at what happens when applying C−

to an indecomposable Λ-module, J . Assume J is not equal to I1 or I2, in which
case it would belong to the class N1 of. C−, will yield negative dimensions
after being applied some finite number of times, as the dimensions are given by
Φ−q, and m > n. Thus, as applying C− to an indecomposable Λ-module only
yields imaginary modules when being applied to one of the injective Λ-modules,
I1 or I2. We arrive at equations 2.11 and 2.12, by the same reasoning as for
proposition 2.7.

Φ−q (mn ) = ( 1
0 ) (2.11)

− (2q − 1)m+ 2qn = 1,

− 2qm+ 2(q + 1)n = 0

⇒ m = n+ 1

Φ−q (mn ) = ( 2
1 ) (2.12)

− (2q − 1)m+ 2qn = 2,

− 2qm+ (2q + 1)n = 1

⇒ m = n+ 1
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2.4.2 Indecomposables in the class N3

By now, the modules in the classes N1 and N2 have been shown to be the only
indecomposable Λ-modules where n 6= m only by relying on the theory of the
coxeter functor. However, to obtain the proof of existence and uniqueness of the
last class of indecomposable modules, we need to apply the Ext1

Λ(−, x) functor
described in section 1.5. We start by looking at the well-behaved structure of
the 2-Kronecker quiver.

Proposition 2.9. For any indecomposable Λ-module,

J = (km, kn, A,B), n < 2m,m 6= 0,

there exists a projective presentation

0→ p
(m,n)
2 → p

(m,n)
1 → J → 0

where p
(m,n)
2 and p

(m,n)
1 are given by:

p
(m,n)
2 = (P2)2m−n,

p
(m,n)
1 = (P1)m.

Proof: Let J = (km, kn, A,B) be an indecomposable left Λ-module. Now
construct

pm,n1 = (km, k2m, A′ =
(
im
0

)
, B′ =

(
0
im

)
),

pm,n2 = (0, k2m−n, 0, 0),

where A′ and B′ are inclusions into the first m copies of k and the last m copies
of k respectively. pm,n2 and pm,n1 are direct sums of a finite number of copies
of projective modules P2 and P1 respectively, and thus, pm,n2 and pm,n1 are also
projective, by proposition 1.5. This gives the projective presentation

0→ pm,n2 → pm,n1 →M → 0

more precisely given by:
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0 0

0 km km

k2m−n k2m kn

0 1

(A B)i

where i is inclusion into ker (A B) ⊆ k2m.

Proposition 2.10. Let M = (km, km, A,B) be a left Λ-module. Then M be-
longs to indecomposable class N3 or it is decomposable by Theorem 2.6.

Proof: We may prove this by mathematical induction:
m = 1:
For the case where m = 1, consider the case of the module K defined by equation
2.13,

K = K(x,y) = (k, k, x, y). (2.13)

In the case where (x, y) = (0, 0), the module would decompose as

K(0,0) = (k, k, 0, 0) = (k, 0, 0, 0)⊕ (0, k, 0, 0),

which satisfies Theorem 2.6. Now, assume (x, y) 6= (0, 0), as the module would
otherwise be decomposable. To create a projective resolution of this module,
consider the projective modules P1 and P2, and the exact sequence:

0→ P2 −→ P1 → K(x,y) → 0

given by:

0 0

0 k k

k k2 k

0 1

(x y)(
y
−x )

Now, define K ′ = K(x′,y′). To calculate the Ext1
Λ(K,K ′), consider the exact

sequence

0→ H(K,K ′)→ H(P1,K
′)→ H(P2,K

′)→ E(K,K ′)→ 0

where

H(A,B) = HomΛ(A,B),

E(A,B) = Ext1
Λ(A,B).
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The homomorphisms including the projective modules, H(P1,K
′) and

H(P2,K
′), are completely determined by the first and second vector space re-

spectively, hence, the length of their homomorphism group are both equal to 1
(they are of k-dimension 1).
Also E(P1,K

′) = E(P2,K
′) = 0.

By Proposition 1.6,
`(E(K,K ′)) = `(H(K,K ′)).

H (K,K ′) is the set of homomorphisms such that the following diagram com-
mutes:

k

k

k

k

x x′y y′

1

γ

this is only possible for (x, y) = γ(x′, y′), γ ∈ k. If K ' K ′, H(K,K ′) ' k, if
not H(K,K ′) = 0, and so `(E(K,K ′)) = 1 or 0 respectively. Thus, the module
may be written as K(1,λ) ' K(x,y) by

λ =

{
x−1y if x 6= 0

∞ if x = 0

Hence, for m = 1, the module belongs to the indecomposable class N3.
m = n:
Now assume that the statement holds for m = n− 1. Let

Mn = (kn, kn, A,B)

be an indecomposable matrix. If both A and B are of full rank, this module is
isomorphic to

M∗n = (kn, kn, I, A−1B),

and we may change the bases of V1 and V2 such that A−1B is on Jordan canonical
form[1, Theorem 5.4, p. 423]. Thus the module belongs to N3.
If A is not of full rank, then k ⊆ kerA, such that we have the exact sequence:

0→ S∗∞ →Mn → L→ 0

explicitly given by:
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0 00 Bk

k kn kn−1

k kn kn−1

i p

pi

where i is the inclusion, p is the projection onto the quotient spaces of smaller
dimension, and Bk ' 1k.
By the induction hypothesis, the module

L = (kn−1, kn−1, A′, B′)

is either indecomposable or on the form of Theorem 2.6. Hence,

L '
(
km1 , km1+1,

(
im1

0

)
,
(

0
im1

))
⊕ · · · ⊕

(
kmr , kmr+1,

(
imr

0

)
,
(

0
imr

))
⊕ (kn1+1, kn1 , (in1 0), (0 in1))⊕ · · · ⊕ (kns+1, kns , (ins 0), (0 ins))

⊕ (kl1 , kl1 , il1 , JB
λ1

l1
)⊕ · · · ⊕ (klt , klt , ilt , JB

λt
lt

), r, s, t ∈ N,
λt ∈ k ∪ {∞}

.
Here

r∑
i=1

mi =

s∑
j=1

nj ,

as the vector spaces have the same dimension.
As

E((km1 , km1+1,
(
im1

0

)
,
(

0
im1

)
), (k, k, 0, 1)) = 0,

and
E((kli , kli , Ili , JB

λi
li

), (k, k, 0, 1)) = 0,∀λi 6=∞,
any such summands on the form of N2, or N3 with eigenvalues λi 6= ∞ would
make the initial short sequence split, by Proposition 1.7, and hence,
Mn ' L⊕ (k, k, 0, 1), which is a direct sum on the form of theorem 2.6.

By this point it has been shown that the module Mn is either on the form
of Theorem 2.6, or it is indecomposable, and

L = (ks1 , ks1 , JB0
s1 , is1)⊕ · · · ⊕ (kst , kst , JB0

st , ist).

Assume that the module Mn is indecomposable. Thus, we may write the
exact sequence explicitly by:
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0 00 1

k kn ks1

k kn ks1
A B

kst

kst
i p

JB0
s1

is1 JB0
st

ist
pi

⊕
· · ·

⊕
As each isu is of full rank for all u ∈ {1, ..., t}, and 1 is of full rank, this

implies that ker(⊕tu=1siu) = 0, ker 1 = 0, hence ker B = 0. Thus, as B is of full
rank, we may apply a change of basis in kn, such that

Mn ' (kn, kn, B−1A, I),

where B−1A may be conjugated to be on the Jordan canonical form by a si-
multaneous change of basis of V1 and V2. This Jordan canonical form can not
contain more than one Jordan block, as Mn is assumed to be indecomposable,
and hence, the Jordan canonical form of B−1A must be the single Jordan block
with eigenvalue λ = 0, as the matrix B−1A would otherwise be of full rank, and
it is assumed that ker A 6= 0. Thus, the indecomposable matrix M is on the
form of N3. A similar approach will yield the remaining modules of the class
N3 by assuming that B is not of full rank.
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Chapter 3

Systems of linear
differential equations

In this chapter, we use the decomposition of representations of the 2-Kronecker
quiver, Q over an algebraically closed field, k, by theorem 2.6 to try to find a
way to make it easier to solve systems of linear differential equations.

3.1 Systems of differential equations

A system of homogenous linear differential equations are systems on the form
of equation 3.1.

d

dt
x = Ax (3.1)

For a system on this form, obtaining the solutions of the system is pretty
straightforward, see for instance [4, p. 164-168]. However, the initial system
may not be as well behaved. Consider the system in equation 3.2.

Ax = Bẋ (3.2)

A and B are of the same dimension, m × n, but otherwise, general matrices
without any initial restrictions, thus, this system seems too general to be easily
solved. Nevertheless, there are are some ways of manipulating A and B which
will make us able to put the matrices on some very specific forms.

43
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Proposition 3.1. Let A and B be m × n-matrices. Let P be an invertible
m×m-matrix. Then solving the system

Ax = Bẋ (3.3)

is equivalent to solving the system

PAx = PBẋ. (3.4)

Proof: If equation 3.3 has a solution, the same solution will still solve the system
when applying the same invertible matrix on both sides of the equation. If
equation 3.4 has a solution, as P is invertible, we may apply the same invertible
matrix, P−1, to both sides of the equation while maintaining the same solution,
hence:

P−1PAx = P−1PBẋ⇒ Ax = Bẋ

and thus, equation 3.3 has a solution.

Proposition 3.2. Let A and B be m × n-matrices. Let Q be an invertible
n× n-matrix. Then solving the system

Ax = Bẋ (3.5)

is equivalent to solving the system

AQy = BQẏ. (3.6)

Proof: For any matrix M, we have that differentiating a vector, x, and then
applying the matrix is the same as applying the matrix and then differentiating,
Mẋ = ˙(Mx). Let Q be an invertible n× n matrix, and let A and B be m× n-
matrices. The following systems are thus equivalent:

Ax = Bẋ, (3.7)

AQQ−1x = BQQ−1ẋ,

AQQ−1x = BQ ˙(Q−1x),

AQy = BQẏ. (3.8)

The last system is obtained by the substitution x = Qy, and hence, we have
solutions to the system of equation 3.6 if and only if we have solutions to the
system of equation 3.5. The matrix describing the relationship between x and
y is an invertible matrix, which is an isomorphism, thus the solutions for x are
isomorphic to the solutions for y.
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Proposition 3.3. Let A and B be linear transformations from kn to km. Then
the solutions to the system

Ax = Bẋ

is independent of the choice of basis for kn and km.

Proof: This follows immediately from proposition 3.1 and proposition 3.2, as
a change of basis in kl corresponds to multiplication by an invertible
l × l-matrix.

Remark. Let A and B be the matrices in a system on the form of equation 3.2.
As the solutions of a system is independent of the choice of basis, we may change
our bases to obtain the matrices A′ and B′ on very specific forms, and solve
the system given by these matrices instead. This is an interesting approach in
theory, although actually finding the changes of bases required may be difficult
in practice.

3.2 Matrix decomposition

Definition. Let A and B be m× n-matrices describing linear transformations
from a vector space kn to a vector space km. The matrices are simultaneously
decomposable if there exists a change of bases in kn and km such that we may
write A ' A1⊕A2 and B ' B1⊕B2, where Ai and Bi are both mi×ni-matrices
for i ∈ {1, 2}.

Remark. A direct sum of matrices, A = A1 ⊕ A2 is a block diagonal matrix
such that:

A =

(
A1 0
0 A2

)
Remark. Let A be a linear transformation between vector spaces V1 and V2.
For the remainder of this chapter, we will use the terminology that a pair of
matrices (A,B) contains a summand (A1,B1) to describe that A and B are
simultaneously decomposable in such a way that A1 is a summand of A, and
B1 is a summand of B.

Let A and B be m × n-matrices, that is, linear maps from a vector space
kn to a vector space km. Now, the 4-tuple (kn, km, A,B) corresponds to a
representation of the quiver Q over a field k, and hence, this representation is
on the form given by theorem 2.6. As this is the case, we see that the pair of
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matrices (A,B) contains a finite number of summands, each summand being
an element in one of three classes D1, D2 or D3:

D1 = {(in 0), (0 in)}, n ∈ N
D2 = {

(
im
0

)
,
(

0
im

)
},m ∈ N

D3 = {il, JBλl }, l ∈ N, λ ∈ k ∪ {∞},

where λ =∞ corresponds to the pair JB0
l , il.

In other words, there exists a way to simultaneously decompose A and B, such
that instead of solving the system

Ax = Bẋ,

we can choose to solve a finite number of systems on the forms:

(in 0)xn = (0 in)ẋn, n ∈ N,(
im
0

)
xm =

(
0
im

)
ẋm,m ∈ N,

ilxl = JBλl ẋl, l ∈ N.

Here, xi denotes the vector of unknowns of dimension i × 1, ∀i ∈ N. We will
consider what happens to the partial systems containing each of these classes
of summands in order to get information about the general system.

3.3 Preliminary considerations

Let (A,B) be a pair of m× n-matrices.

1. If n > m, the pair of matrices must contain direct summands in the class
D1.

2. If m > n, the pair of matrices must contain direct summands in the class
D2.

Thus, if we show that one of these summands yields systems that are unsolveable
or have infinitely many solutions, the same will be the case for any pair of
matrices containing such a summand.
For the case m = n, there are three different alternatives:

a) The pair of matrices may be written as a direct sum of an equal number
of summands in the classes D1 and D2.
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b) The pair of matrices may be written as a direct sum of summands in the
class D3 alone.

c) The pair of matrices may be written as a direct sum of an equal number
of summands in the classes D1 and D2, and summands in the class D3.

As either one of these may be the case, the fact that the matrices are square
matrices does not provide specific information about the summands of the pair
of matrices.

3.4 Direct summand in the class D1

The direct summands in the first class, D1, corresponding to modules on the
form of class N1, yields systems of infinitely many solutions, as information
about one of the unknows are lost due to the matrices having rank less than
the dimension of the codomain. We can see this by solving the system for a
summand in the class D1 explicitly:

Ax = Bẋ⇒
(
in 0

)


x1

x2

...
xn+1

 =
(
0 in

)


x′1
x′2
...

x′n+1

⇒

x1

x2

...
xn

 =


x′2
x′3
...

x′n+1


⇒ System dependent upon unknown xn+1

⇒ Infinitely many solutions to the system. No information about xn+1.

Thus, if the initial pair of matrices contains direct summands corresponding to
the class N1, we can not have a uniquely determined solution to any initial value
problem on this form.

3.5 Direct summand in the class D2

Direct summands in the second class, D2 yields only trivial solutions, as

Ax = Bẋ⇒
(
in
0

)
x1

x2

...
xn

 =

(
0
in

)
x′1
x′2
...
x′n
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⇒


x1

x2

...
xn
0

 =


0
x′1
...

x′n−1

x′n

⇒ x = ~0

Hence, the summands in this class yield only trivial solutions to their part of
the differential equation.

3.6 Direct summand in the class D3

The third class of direct summands, summands in the class D3, gives us com-
pletely determined systems for any eigenvalue, λ ∈ k \ {0}.

inx =

 λ 1 0 ··· 0
0 λ 1 ··· 0
...

...
. . .

...
0 0 0 ··· 1
0 0 0 ··· λ

 ẋ⇒


x1

...
xn−1

xn

 =


λx′1 + x′2

...
λx′n−1 + x′n

λx′n



x =


C1t

n−1eλt + C2t
n−2eλt + · · ·+ Cne

λt

C2t
n−2eλt + C3t

n−3eλt + · · ·+ Cne
λt

...
Cn−1te

λt + Cne
λt

Cne
λt


Here, the coefficients Ci for i ∈ {1, ..., n} corresponds to solutions of initial value
problems.
For the eigenvalue λ = 0, the system ”shifts” the position of the derivatives, such
as for summands in the class D1, except for the last coordinate, which instead
of an unknown becomes zero, and the solutions become the trivial solution.

inx =

 0 1 0 ··· 0
0 0 1 ··· 0
...

...
. . .

...
0 0 0 ··· 1
0 0 0 ··· 0

 ẋ⇒


x1

...
xn−1

xn

 =


x′2
...
x′n
0

⇒ x = ~0.
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For the eigenvalue λ = ∞, all the information available is that every value is

dependent upon an unknown, x1, where x
(n)
1 = 0.

 0 1 0 ··· 0
0 0 1 ··· 0
...

...
. . .

...
0 0 0 ··· 1
0 0 0 ··· 0

x = inẋ⇒


x2

...
xn
0

 =


x′1
...

x′n−1

x′n


⇒ xn is a polynomial of degree at most n− 1.

x =


a1

a1x+ a2

...
a1x

n−1 + · · ·+ an−1x+ an


However, even as we see that the summands in the class D3 of the system is
completely solveable in theory, this approach assumes that we are able to find
the decomposition of the initial pair of matrices such that we find all summands
in the class D3. This is the same as assuming that we are able to put an arbitrary
matrix, M, on Jordan canonical form.

3.6.1 Rational canonical form

In order to obtain a Jordan canonical form of a matrix, M, we must be able to
find it’s eigenvalues, which may be very hard in principle. When dealing with
pairs of matrices, (A,B), containing summands in the class D3, we may use this
information to construct another kind of simultaneous decomposition of A and
B. As the pair (A,B) contains a summand in the class D3, we know that there
exists directs summands A′ in A and B′ in B, such that A′ and B′ are two
square matrices. We also know that at least one of A′ and B′ is of full rank.

Assuming B′ is of full rank

Assume B′ is of full rank. Then solving the system

A′x = B′ẋ

is the same as solving the system

A′′x = B′′ẋ,
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where A′′ and B′′ are matrices such that B′′ is on the form of an identity matrix,
and matrix A′′ is the rational canonical form of A′.1 By this construction, we
avoid the problem of obtaining a matrix on the form of a Jordan block. As the
rational canonical form is obtained through conjugation by a pair of matrices
M, M−1, the change of basis required to put A′ in the rational canonical form
will not distort the identity matrix, as the identity matrix is preserved under
conjugation. Assume that the minimal polynomial m(x) of A′, is equal to
the characteristic polynomial f(x) of A′. When this is the case, the rational
canonical form is in the form of the companion matrix of f(x). Thus, we get
the system of linear differential equations as follows:

0 0 0 ··· 0 −a0
1 0 0 ··· 0 −a1
0 1 0 ··· 0 −a2
...

...
. . .

...
...

0 0 0 ··· 1 −an−1

x = inẋ⇒


−a0xn

x1 − a1xn
...

xn−1 − an−1xn

 =


x′1
x′2
...
x′n


This gives the recursive relations:

xn−1 = an−1xn + x′n

⇒ xn−2 = an−2xn + x′n−1 = an−2xn + an−1x
′
n + x′′n

x =


x

(n−1)
n +

n−1∑
i=1

an−ix
(n−1−i)
n

...
an−1xn + x′n

xn


Considering x1 in this way, we get:

x′1 = −a0xn =
d

dt

(
x(n−1)
n +

n−1∑
i=1

an−ix
(n−1−i)
n

)
Which shows that if a0 = 0, xn is constant, and this corresponds to the solutions
of the system with summands in the class D3 where λ =∞. If a0 6= 0, 0 is not
a root in the characteristic polynomial of A′, and thus, A′ is of full rank, as the
eigenvalue of the Jordan block corresponding to A′ is non-zero. If this is the
case, these solutions are included in the solutions obtained in the next part.

1The definition of the rational canonical form of a matrix is omitted in this thesis, but the
reader is referred to [1] for the definition used in this section.
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Assuming A′ is of full rank

Assume instead that A′ is of full rank. Now a change of basis in the vector
spaces gives us a matrix A′′ which is an identity matrix, and a matrix B′′ which
is the rational canonical form of B′. By assuming that the minimal polynomial
of B′ is equal to the characteristic polynomial of B′, we get the system:

inx =


0 0 0 ··· 0 −a0
1 0 0 ··· 0 −a1
0 1 0 ··· 0 −a2
...

...
. . .

...
...

0 0 0 ··· 1 −an−1

 ẋ⇒


x1

x2

...
xn

 =


−a0x

′
n

x′1 − a1x
′
n

...
x′n−1 − an−1x

′
n


⇒ xj = −

j−1∑
i=0

aix
(j−i)
n

⇒ xn = −an−1x
′
n −

n−2∑
i=0

aix
(n−i−2)
n

If a0 = 0, the characteristic polynomial has a root λ = 0, and as it is possible to
put B′ on the form of a Jordan block, the characteristic polynomial of B′ has
exactly one root. This implies that ai = 0 for all i ∈ {1, ..., n−1}, and thus, this
yields only trivial solutions to the system, corresponding to summands in D3

with eigenvalue λ = 0. If a0 6= 0, the recursive formula given, yields solutions
of the form:

⇒ xj =

j∑
i=0

Cit
(n−i)eγt

But as these solutions are isomorphic to the solutions given by solving the
system with B′′ as a Jordan block, where λ ∈ k \ {0}, we deduce that finding
the unknown, γ, corresponds to finding the eigenvalue of the Jordan block.
Finding the solutions of the rational canonical form is equivalent to finding the
eigenvalue of the Jordan block, and we have not managed to reduce the problem
further.

Remark. Here, we assumed that the minimal polynomial was equal to the char-
acteristic polynomial of the matrix in order to keep our computations simple.
However, if the characteristic polynomial is not equal to the minimal polyno-
mial, we obtain a block diagonal matrix which have blocks of the same form as
the one we just computed. In this case, we would by the same reasoning de-
duce that solving the system corresponds to finding the eigenvalue of the Jordan
block.
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3.7 Final remarks

We have seen that the representations over the 2-Kronecker quiver is intimately
related to the problem of decomposing a general system of linear differential
equations. However, this approach is only feasible in principle, as obtaining a
simultaneous decomposition of a pair of matrices is a highly non-trivial task in
itself. Even if we were able to find the number of summands on the given form,
and their dimensions, solving the system we are left with is equivalent to finding
the eigenvalues of arbitrary quadratic matrices, which in turn is equivalent to
finding all roots of the characteristic polynomial of an arbitrary matrix. So
in conclusion, the connection discovered between solving systems of differential
equations and the representations of the 2-Kronecker quiver, though interesting
and somewhat surprising, does not help us solve the systems of linear equations
in general, as finding the roots of a general polynomial of degree higher than or
equal to 5 is not possible, by the Abel-Ruffini theorem, see [3, p. 470].
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