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PREFACE
This doktor ingenier thesis consists of 3 separate parts:

- Part 1I: Reliability Testing and Deterioration Measurements-

General Theory.
- Part I1: Deterioration of Hydraulic Control Valves
- Part III: Heat Ageing of Elastomer Foil

The three parts I - III have been edited to make it possible to read one
part without reading the others. Note that most of the references are
included in part I, while Part II and Part III include only literature
direct comnected to those parts. Each part includes a list of contents
for that part only. Part I, which includes most of the general theory,

also has a list of symbols and abbreviations.

The tople area for my doktor ingenier study has been "Statistical
Methods in Accelerated Life Testing (ALT)", Within this area, "Accele-
rated Life Testing Based on Deterioration Measurements" was chosen as
working title for the thesis. However, several of the main results in
the thesis are not only directed towards accelerated life testing, but
rather towards wider parts of a reliability management programmes. This
is especially true for the acceptance test procedure developed in Part
II. The title "Reliability Testing Based on Deterioration Measurements"
was felt to be more adequate for the thesis., Still, most of the emphasis

has been laid on ALT applications.

The study has been carried out at the Norwegian Institute of Technology,
Department of Mathematical Statistics (Norges Tekniske Hegskole,
Institutt for Matematisk Statistikk) from October 1984 to July 19388,
Professor Emil Spjetvoll has been major research advisor (hovedfaglarer)

for the study.

Before and in parallel with the doktor ingenisr study, I have partici-
pated in several projects including accelerated life testing (ALT) at

SINTEF (Stiftelsen for Industriell og Teknisk Forskning ved Norges
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Tekniske Hegskole - The Foundation for Industrial Research at the

Norwegian Institute of Technology). The projects including ALT are:

- Mechanical Reliability, 1982 - 1985. Sponsor: NINF - The Royal
Norwegian GCouncil £for Scientific and Technical Research. VF-

Committee.

- SERA - Subsea Equipment Reliability and Availability, 1985 - 1988,
Sponsor: NINF - The Royal Norwegian Council for Scientific and

Technical Research, Sikkerhet og Beredskapskomitéen.

- Reliability of Subsea Gate Valves. Phase I, II, and III, 1984-
1988. Sponsor: Norske Shell, Stateil, Hydro.

- Subsea Control Valves, Accelerated Life Testing. Phase I and II,
1985 - 1986. Sponsor: Saga Petroleum.

- Accelerated Life Testing of Pilot Valves, 1986 - 1987. Sponsor:

Statoil,

The background and experience provided through these studies has been
important during the work on the thesis. Some results from the NINF
projects have been included in the thesis. Although no results from the
industry projects have been included in the thesis, they have provided
practical insight during the study. Vice versa, work performed as pért

of the doktor ingenier study, has been beneficial to these projects.

During the study, I received a university scholarship at the Norwegian
Institute of Technology for 2 1/2 years. For the rest of the time, I
have been employed as research scientist at SINTEF, Division of Safety
and Reliability. Further, NINF provided a direct support of NOK 50 000, -
to the doktor ingenier study in 1988, through the SERA research

programme.
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Among those who have contributed to the technical contents of the study,

I particularly wish to thank:

- Division Manager Marvin Rausand at SINTEF, Division of Safety and
Reliagbility. He initiated a major part of the activities on ALT at
SINTEF. Further, he contributed to the initiation of thig Doktor

ingenier study,

- Professor Emil Spjstvoll, for interesting and inspiring guidance

during the study.

- Norges Tekniske Universitetsbibliotek (NTUB), for providing
professional and efficient library services which are necessary to

carry out a study like this one.

Trondheim, 26 July 1988,

Stian Lydersen
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THEORY
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ABSTRACT

In traditional reliability life testing and accelerated life testing,
usually only the failure mode and the lifetime upon failure or censoring,
are recorded. The information obtained from such testing may be signifi-
cantly improved by also recording one or more measures of deterioration,
such as wear depth, crack length, leakage rate, etc. Failure occurs when
a measure of deterioration, or a combination of them, reach a critical
value. This approach calls for refined reliability models and estimation

technigues.

Established deterministic models for some physical deterioration mechan-
isms are described. Alternative approaches for stochastic models are
studied, such as cumulative stochastic processes, Wiener processes,
regression models with random coefficients, Wiener processes with random
drift, and the Bernstein distribution and related models. Special
attention is attached to models where a parameter set in the stochastic
process is considered as a stochastic variable with one realization per
specimen. Maximum likelihood estimators are studied and compared for the

Wiener process model, and the Wiener process with random drift.




ii

Part I



Part I iii

Contents Part I

Page
ABSTRAGCT . . . o o e e e e e e e e e e e e s i
LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . v v v v . . v
ALPHANUMERIC SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . v
OTHER SYMBOLS AND NOTATION . . . . . . . . . « + v v v . « . . wii
SIMMARY AND CONCIUSTIONS . . . . & & v v v v e e e e e e e e e e 1
1. INTRODUCTION .
1.1 RELTABILITY TESTING AND ACCELERATED LIFE TESTING .
1.2 DEFINITION OF BASIC CONCEPTS . . . . . . . . . « « . . . 10
1.3 DETERIORATION MEASUREMENTS . . . . . . « v v w v v v . . 15
2. DETERIORATION AND FATLURE MODELLING . . . . . . . . v o« « . . 17
2.1 STOCHASTIC MCDELLING INCORPORATING DETERIORATION AND
FATLURE . . . . . & . o o v e e v e e e e e e e e e e 17
2.2 DETERIORATION MODELS WITH KILLING RATE ., . . . . . . . . 21
2.2.1 General description . . . . . . . . . . . . . .. 21
2.2.2 A Shot-Nolse Model . . . . . . . . . . . . . . .. 23
2.2.3 Kiliing Rate Without s Failure Limit . . . . . . . 24
3. DETERMINISTIC DETERICRATION MODELS . . . . . . . .« .« « . v .. 25
3.1 INTRODUCTION . . . . . . . . . v v v o v e o e e, 25
3.2 WEAR . . . . . . .o e e e e s 25
3.3 FATIGUE CRACK GROWTH . . . . . . . . . . . .« « .« « v .. 26
3.4 CORROSION . . . . . . . v e v e e e e e e e e e 30
3.5 CHEMICAL DEGRADATION . . . . . . . .+ v v v v v v v v .. 35
3.6 _CONGLUDING REMARKS . . . . . . . v « v v v v v v o s 36
4, STOCHASTIC DETERTORATION MODELS . . . . . . . o v o« v v v .. 38
4.1 INTRODUCTION . . . . . v v e v v e e e e e e e e e, 38
4.2 CUMULATIVE STOCHASTIC PROCESSES . . . . . . . « « v . . 45
4.2.1 Bivariate Renewal Processes . . . . . « .« « . . . 45
4.2.2 Polsson processes . . . . . . . . . . . . . . .. 47

4.2,3 B-models . . . . . . . . . . . 49




iv Part I

4.3 WIENER PROCESSES . . . . . . . . . . . . . . .« . ... 52
4.4  REGRESSION WITH RANDOM COEFFICIENTS ., . . . . . . . . . 60
4.5 WIENER PROCESS WITH RANDOM DRIFT . . . . . . . . . . . . 62
4.6 THE BERNSTEIN DISTRIBUTION AND RELATED MODELS . . . . . 68
5. ESTIMATION METHODS . . . . . . . . . . . . o o« . v v v v v . 70
5.1 INTRODUCTION . . . . . . . . . . « v v v v v v v v v o 70
3.2 ESTIMATION IN THE WIENER PROCESS/IG MODEL . . . . . . . 71
5.3 ESTIMATION IN THE WIENER PROCESS WITH RANDOM DRIFT . . . 74

REFERENGES . . . . . .« t « v v v v e e v e e e e e e e e e 80




Part I

LIST OF SYMBOLS AND ABBREVIATTONS

This list includes some of the symbols and abbreviations used in this

report. Symbols and abbreviations are also defined in the text at their

first appearance.

ALPHANUMERIC SYMBOLS AND ABBREVIATIONS

Symbol or abbreviation
ALT

BS

c.d.f.
de = (d¢,1, d¢,2, ---» de,n)’

D(t) = (Dy(e), Dp(t), ..., Dp(t))’

F(t)

f(r)

(%)

h(D(t))

= h((Dy(e), Dy(t), < Dr(®22 ")

Meaning
Accelerated life testing

Birnbaum-Saunders distribution.
The c¢.d.f. of the BS distribution
with parameters {(a,8) is

ro - o L [yF yE) ]

Cumulative distribution function.
The c¢.d.£f. F for a stochastic
variable T is defined as

F(t) = P(T = t).

Critical deteriority walues for
occurrence of failure.

Deteriority wvector at time t.

Cumulative distribution function
(c.d.£.)
Probability density function
(p.d.£.)

-a
f(t) = th(t)
C.d.f. for - the standard normal

distribution, N{(0,1),

h:4
def n_ 1 19
3(x) = [FE=exp(-3tf)dt
OJZﬂ 2

Increasing function of the
deteriority  vector, indicating
when failure occurs.
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Symbol or abbreviation

hC
he = (hE,hZ,... ,h5)"

()

1G(§,v)

k()
log(-)

logi1o()

m(t) = (my(t), mp(t), ..., mu(E))’

My, oo Mg
MLE

N(p,02)

R(t)

X = (x1, X2, ..., Xp)'
Y = Llog(T)

z(")

Part I

Meaning

Critical wvalue for occurrence of
failure.

Critical wvalues for occurrence of
failure modes Myp,... M.

The indicator funetion. I(A)
equals 1 (0) if thé event A is
true (false).

Inverse Gaussian distribution with

parameters (§,v). The probability
density is

1 (1-6¢)2
g(t) = ————— exp | - —
J2ny t3/2 vt

The killing rate, as defined in
the model in Section 2.2.1,

Logarithm with base e = 2.71828...
(natural logarithm)

Logarithm with base 10

Deterioration vector, modelled as
a deterministic process.

Failure modes.
Maximum Likelihood Estimator(s)

Normal distribution with mean u
and variance o<.

Survivoer function or survival

probability,
R(t) = P(T > t) = 1 - F(t)

Lifetime of a unit upon failure or
censoring

Stressors
Log lifetime
Failure rate

f(r)

2(8) = 1T %o
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OTHER SYMBOLS AND NOTATION

A vertical line, [, is used in the usual way in conditional proba-

bilities, distributions etc. The notation
Xly ~ N(a(y), b(»)?),

for example, means that the conditional distribution of X given Y=y is

normal with mean a(y) and variance b(y)z.

An underlined symbol denotes a vector, for example,

X = (%1, X2, ..., ¥p)'.
For two vectors a = (a1, ..., ap)’' and b = (b1, ..., by), the notation
a4 <= b means that aj < bj for i = 1, ..., n.

In some cases, bold types are used to denote matrices, such as A below.

The transpose of a matrix is denoted by an apostrophe. For example, if

ai] aig ... aip
A = azi azz a2m ,
anl an2 PR amn_‘
then
[ a1 a1 ... apy |
Al = aisz az? an?

L @lm @2m - -+ Enpn J
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SUMMARY AND CONCLUSIONS

A number of today's technologies require extremely high component relia-
bility. It is often necessary to perform reliability testing before
choosging components and setting them into operation. The testing may be
performed under simulated normal use conditions, or as accelerated life
testing (ALT). The latter 1is achieved by testing the item under more
severe stresses than those encountered during normal use. In this way,
failures may occur during a realistic testing time. Test results are
extrapolated, to estimate the reliability under normal use conditions.
Chapter 1 of this report gives a short introduction to reliability

testing and ALT,

From a traditional reliability point of wview, a component is assumed to
have two states - functioning or failed, However, many component types
deteriorate gradually. Associated with the failure modes, there may be
one or more physical measures describing the degree of deterioration,

such as:

- Wear depth

-~ Crack length(s)

- Leakage rate

- Degree of corrosive attack

- Material properties, such as: Mass loss, elasticity, compressibi-

lity, fracture strength, etec.

The deterioration may, thus, be described in terms of some (possibly

vector valued) stochastic process, i.e.
D(t) = (D1(t), Da(e), ..., DR(L))’. (1}

Let T denote the lifetime for an observed specimen, and let M denote the
failure mode if it failed at time T, M = O denotes cemnsoring. In the

traditional approach, only

T, M (2)
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would be recorded as outcome of the test, and estimates would be based on
these values. In an extended approach, the deterioration vector at T may
also be recorded. That is, the information obtained for each specimen

would be
T, M, Di(T), Da(T), ..., Dy(T). (3)

Obviously, (3) may contain much more information than (2). Depending on
the component type, it may also be possible to measure one or more of the
deteriorations during the testing before it fails or is removed from the

test,

In the case of ALT, the stress levels for each specimen is recorded as a

(vector of) stressor(s) X.

If only one deteriovatiom is vrelevant £for a specific £failure mode,
failure may occur when D(t) exceeds some critical wvalue d,. This is

illustrated in Figure 1.

. . Two 'observed’ Expected Quantiles of
Deterioration processes deterioration the distribution

A~ \

) i
/ .

Deterioration
probability
distribution
at time ¢

E(D(Y)) //_/ } )

> time

o]
- T
-
.~

The ‘observed’
times to foilure

Figure 1. A one-dimensional deterioration process leading to failure.
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Generally, failure may be said to occcur if

h(D(t)) > hg, (4)

where

h(D(t)) = h(D1(t),Pa(t), ... ,Du(t))} (5

is a given function increasing in each argument. The quantity h; is a

critical value corresponding to the failure mode(s) considered,

Some authors propose to include the possibility of failure also before
the critical wvalue is reached (lemoine and Wenocur, 1985, Lemoine and
Wenocur, 1986, Giglmayr, 1987). In these models, the probability that an
item which is functioning at time t with D(t) = d, will fail within the

time interwval (t, t+At], is

P(T = t+AL] {((T > £)N(D(Lt) = d)}) = k(d) At + o(AL), (6)
where
At
1im 2 - 0,
Ats0 B

The function k(d) is called the killing rate. If the process D(t) is
deterministic, then the killing rate at D(t) equals the failure rate at
t. The present report mainly discusses deterioration models where Failure

occurs only when the critical value is reached.

Systematic use of reliability testing including deterioration measure-
ments seems to have been little used, except for modelling for fatigue
crack failure, and a few other examples. Basic ideas for reliability

modelling based on deterioration measurements are presented in Chapter 2.

In many engineering disciplines, equations for physical deterioration

processes have been established. Generally, these equations describe the




4 Part I

deterioration as some deterministic process m(t,x). That is, for a given
stressor X, then m{t,x) is a function of t which predicts the exact
deterioration at time t. In Chapter 3 of this report, mechanical wear
between two surfaces, fatigue crack growth, corrosion, and chemical
ageing are discussed from this viewpoint. The deterministic equatiom for
m{t,x) is often given in terms of the deterioration rate, which is the
derivative of m(t,x) with respect to t. Table 1 summarizes some models
which are discussed in Chapter 3. As seen in Table 1, in many of the

models the deterioration rate is independent of t.

Table 1. Deterministic deterioration models considered in this report.

Deterioration Deterioration Stressors included
mechanism am{t,x)
rate ——pm———
at
Wear depth, koxixsg ®] = average sliding
mechanical wear length per unit time
between two surfaces Xp = pressure between surfaces

Fatigue crack length kOAK(g,m(t,g))kl X includes tensile stress and
torsion. The stress intensity
factor AK depends on x, and, to
some extent, on m(t,X).

General corrosion kg exp(ky/x1 xj = absolute temperature

on metal in liquid + koxp/x1) X9 = oxygen concentration in
the liquid

Arrhenius law for ko exp(-ki/%1) X1 = absolute temperature

chemical degradation

Eyring law for X1 ko exp(-ky1/x1) X1 = absolute temperature
chemical degradation

Generalized Eyring law =x1 kg exp(-ky1/x1] X1 = absolute temperature
for chemical + koxg + kaxo/X1) X9 = a non-thermal stressor,
degradation e.g. voltage

Models for the stochastic nature of D(t) are discussed in Chapter 4. At
least on the macroscopic level, it is usually most natural to consider
processes which are continucus both in time and state space. Other

authors have used the theory of martingales to study the stochastic
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nature of D(t). Further, deterministic models of deterioration mechanisms
are frequently given in terms of differential equations. Hence, the
theory of stochastic differeﬁtial equations could prove useful. In this
report, however, an approach based on the more basic theory of stochastic

processes is used.

Section 4.2 covers some classes of cumulative stochastic processes, that
is, processes where always D(tp) = D(t3) if tg = t9. The class of
cumulative stochastic processes suggested by Pieper and Tiedge (1983) is

discussed in Section 4.2.1. In their model class, the item is exposed to

"shocks" at the points in time X1, X1 + X9, ... . The shocks cause the
deterioration to iIncrease with Yy, Yo, ..., respectively. The random
vectors (X, Y1), (X9, Y9), ..., are assumed independent, identically

distributed, while X; and Y; may be stochastically dependent.

Discrete models are especially interesting when they may be used as
approximations for continuous processes. The Poisson process has been
studied from this viewpoint in Section 4.2.2. It has not been found
suited for approximations to continuous deteriorations processes. Such
models, give a coefficient of wvariation for the time to failure distri-

bution which is far too small for practical applications.

The theory of Markov processes is attractive from its mathematical
convenience. For example, the class of "B-models" suggested by Bogdanoff
and Kozin (1985) belong to the class of Markov processes. They are
cumulative stochastic processes where the transition matrix is allowed to
be time- and state dependent. The basic features of B-models are

summarized in Section 4.2.3.

The Wiener processes are a mathematically convenient class of continuous
Markov processes. In a Wiener process with drift u and infinitesimal
variance 62, the increment D(ty)-D(t]) over the time interval (to,t1)
is assumed normally distributed with mean u and variance az(tz-tl). In
this case, the time to first reach a fixed value d, is inverse Gaussian
(IG) distributed. The Wiener process and corresponding IG distribution
are described with some generalizations in Section 4.3. Not only are

these models important as such, but they may be extended to a model class
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where the drift and, possibly other parameters, have different values for

each specimen.

Although there are situations where Markov processes provide a good
framework for stochastic deterioration processes, there are cases where

v mT nyrovids 2 arcantahla degerintion
processes 0 provide sn acceptable degerl ption,

reasons are mentioned in this report:

First, a complete description of the "state"” of a component at time t
would usually require a large number of physical measures. Some of these
measures influence the deterioration rate with respect to other measures.
If only one, or a few, deteriorations are included in D(t), then D(t)

cannot be expected to possess the Markov property.

The second reason is connected to an underlying deterministic model
m(t,x), which describes some "typical path", for example the expectation,
of D(t). The model for m(t,x) contains a set of parameters, say,-
k = (kg, k1) as in Table 1. In some cases, the parameter vector k is seen
to differ significantly from specimen to specimen, even for specimens
from the same production lot. Satisfactory models for a number of
situations are obtained by considering k as a stochastic vector with one
(not directly observable) realization per specimen. This has been the
case for leakage through control wvalves, fatigue crack growth in an
aluminum alloy and in steel, and accelerated life testing of metallic
layer resistors at elevated temperatures. Several of these cases have
been modelled assuming Markov processes conditionally given k. However,

unconditionally, such models are mot Markov processes.

In Section 4.5, a Wiener process model with random drift is studied. That
is, conditionally given the drift parameter u, then D(t) is a Wiener
process, and the time to failure (first crossing of d;) is conditionally

inverse Gaussian distributed.

Although regression models with random coefficients do not describe the
path of D(t), these models do provide useful models for the measurements
of D(t) at a limited number of t values. A survey of such models is given

in Section 4.4.
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If D(t) is assumed to follow a deterministic function conditionally given
k, then the Bernstein life distribution and related models described in
Section 4.6. evolve. These models can not be used to model measurements

of D(t) if it is measured at more than one point in time per specimen.

In Chapter 5, maximum likelihood estimators (MLE) are derived for two

models:

i) The Wiener process / inverse Gaussian model.

ii) The Wiener process with random drift. In this model, the drift
parameter p is assumed to follow a normal distribution with mean 4
and vavriance A, truncated at 0. Conditionally given u, then D{t) is
assumed to follow a Wiener process with drift p and infinitesimal

variance o2.
MLE are derived for the case when, for each specimen, either the failure
time tj, or a cemsored lifetime tj with corresponding deteriority dj, is

recorded,

In the first model, the MLE for u is found to be

fir= , (7

where all sums ave taken over i=1,...,n.

In the second model, the maximum likelihood equations can not be solved
explicitly. The MLE must be obtained by numerical methods for each given

data set., The MLE for ¢ is approximately equal to

dj
E E
N Ati + 02
§ = t1 ) (8)
=
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where 3 and 32 are the MLE for A and 02, respectively. The estimator (8)

may also be written in the form

. 2vi(di/ti)

where
ti
V) =, i=1, 2, ..., n.
ati -+ 3’2

In the first and second model, E(D(t)) equals ut and #t, respectively. In
this respect, both (7) and (9) are estimators for E(D(t))/t.

If the ti's are all equal, it is not possible to estimate both A and a2,

If the ti's are not equal, most weight in (9) is assigned to the (di/ti)
with highest tj. This is natural, since the data with higher t; contain

more information on the unobservable pj than the data with shorter tj.
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1. INTRODUGTION

1.1 RELIABILITY TESTING AND ACCELERATED LIFE TESTING

A number of today's technologies require extremely high component relia-
bility. This especially applies to systems where modest component
reliability cannot be compensated for by extended maintenance. Examples
of such systems are aerospace vehicles and subsea production systems for

oil and gas. Before setting them into operation, it may be required to:

a) Compare alternatives to identify which is best.

b) Verify that specified reliability requirements are met.
c) Fredict the reliability

d) Identify weak point in design which need improvement.

Typically, the tasks above are included in the reliability management
programme, in the cases where such a programme has been established. In
order to fulfill tasks like a) to d) above, knowledge may be obtained

from four sources;

i) Field performance data: Reliability experience from identical or
comparable equipment types, under identical or comparable opera-

tional and environmental conditions.

ii) Mechanical evaluations of the equipment types in question, using
"engineering judgment” to make statements on expected reliability

performance.

iii) Acceptance tests for the items to be deployed. These are typlcally
rather simple, non-destructive function tests. Only the items who

pass the test are deployed, the rest are "thrown away".
iv) More extensive tests, like accelerated life tests (ALT).
If enough relevant field performance data are available, this is the

best, and perhaps the cheapest, information source. In many cases,

available and relevant field performance data is rather limited. Mechani-
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cal evaluations and acceptance tests do mnot always provide enough
supplementary information. In these cases, some SOrt of reliability
testing seems to be the only feasible approach. Reliability testing may
be performed under simulated normal use conditions, or as accelerated
life testing (ALT). The latter is achieved by testing the item under more
severe stresses than those encoun d during normal use. In this way,
failures may occur during a realistic testing time. Test results are
extrapolated, to estimate the reliability under normal use conditions. As

a result, ALT may provide knowledge that is not obtainable in any other

way within realistic time schedules, to give a basis for decisions.

Cohen & Al (1987) describe how to establish a comprehensive reliability
programme for new products, bearing integrated circuits in mind. ALT
constitutes a major part of their suggested programme. However, their
scheme includes testing of a large number, say 1000, compoments. This is
only possible where the components themselves, as well as the tests, are
rather cheap, such as the case is for many integrated circuits. Lydersen
and Rausand (1987) describe a systematic procedure for carrying out ALT
programmes, including all available information in the test planning and
evaluation of test results. Their procedure is primarily intenmded for
more complex types of equipment, or equipment where a large number of

tests is mot possible in practice.

More comprehensive surveys of ALT methods and models are found in the
literature study preceding this thesis (Lydersen, 1986), and in an
article by Ahmad and Sheikh (1983). The latter also includes a compre-
hensive lists of references, but, surprisingly, does not mention the

proportional hazards model class suggested by Cox (1972).

i.2 DEFINITION OF BASIC CONCEPIS

This section defines some basic concepts of reliability theory and
accelerated life testing. Readers who are familiar with these concepts,
may skip the section. For a more thorough treatment, see e.g. Lydersen

(1986).
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Generally, the rellability of an item may be defined as (British Standard
BS 4778):

"the ability to perform a required function under stated

conditions for a stated perlod of time."

Let T be the time to failure for the item in question. This is the time
from it is activated in service until the first time it is unable to
perform the required function as stated in the definition. The time T is
considered as a stochastic variable. Quantitatively, the reliability may

be expressed in several ways, in terms of:

- The probability distribution F(t), also called the life distri-
bution function. This is the probability that the item fails before

time t:
F(t) = P(T = t) (1.2.1)

- The survivor function R(t), also called survival probability or
reliability. This is the probability that the item will not fail

before time t:
R(t) = P(T > t) (1.2.2)

- The failure rate z(t). Consider an item with age t, which is
functioning. The probability that it fails within a small time

interval At, is approximately z(t)-At:
P(T = t+At | T > t) = z(t) At (1.2.3)
The formal definition of z(t) is

z(t) = lim Pt <T=<t+ At | T> t).

At=0 t

(1.2.4)
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Alternatively, it may be written

() fir)
28 = roy "1 - FCO)

d
- 21 reo), (1.2.5)

where £(t) = F'(t),
- The availability A(t). This is the probability that the item is
functioning as demanded at time t. For items that are not repaired

or replaced, A(t) = R(t).

- The expected lifetime (Mean Time to Failure, MITF):

MITF = E(T) = [tf(t)dt = [R(t)dt. (1.2.6)
0 0

Other gquantities or functionals of F(t) may alsc be of interest. For
example, consider an item which 1is suppposed to be operating for a
specific mission, and then to be condemned. In this case, the probability
of surviving the specified mission time will be the main quantity of

interest.

When ALT is performed, it is usually assumed that the life distribution
function, F(t), belongs to some parametric class of distributions. That
is, the distribution function is assumed to be of the form

P(T = t) = F(t;8), (1.2.7)

where

v
o

iw (81: 02; e ey 9]‘_‘)" r (1.2.8)

is (are) unknown parameter(s). Generally, the life distribution depends

on a number of envirommental and operational factors, such as
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X1 = temperature

X9 = pressure

ete.

These wvalues of factors are commonly referred to as stressors. The

relevant stressors will be denoted
X = (X1, X9, ..., xp)'. (1.2.9)

The life distribution is usually assumed to belong to the same distri-
bution class (1.2.7) when the stressors have different values. That is,

the life distribution at stressor level x is assumed to be of the form
P(T = t) = F(t;4(x)), (1.2.10)
where
£(x) = (81(8), 02(8), ..., 0p(x))', (1.2.1L)

as long as x is within the region where (1.2.10) gives a good enough
approximation to reality. The functions F(') and/or 4(') in (1.2.10) may

include one or more parameters to be estimated.

The relation between the stressors and the life distribution function may
be expressed iIn numerous ways. In most practical applications, this
relation is modelled with an accelerated time model or a proportional

hazards model.

Accelerated time models may be defined as follows: Let the lifetime
distribution under normal operating conditions, that is, X=X, be denoted
Fo(t). In general, an accelerated time model may then be written on the

form

F(t;x) = Fo(at), (1.2.12)
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where
a = a(xr) (1.2.13)

is commonly referred to as the acceleration factor. For example, the
frequently used location-scale models for log-lifetime constitute a

subclass of accelerated time models (Lydersen, 1986).

Proportional hazards (PH) models may be defined in terms of the failure

rate:
z(t;x) = zg(t) h(x). (1.2.14)

Equivalently, the class may be defined in terms of the survival proba-

bility:

R(t:x) = Ro(e) (& (1.2.15)

The functions zg(-) or Rp('), and/or h('), may include one or more

parameters to be estimated.

An important subclass of the PH models are the so-called Cox-models (Cox,

1972), in which

P
h(x) = exp(8-x) = exp( 2 Bixj). (1.2.16)
i=1

An attractive property of the Cox models is the existence of methods for
estimation and inferences on the parameters g without assuming any
special distribution class for zg(t) or RO(E). For some extensions and
further properties of the Cox models, see Lydersen (1986) and references

therein, or Cox and QOakes (1984),

The accelerated time models and the proportional hazards models are
conceptually different. They colincide if, and only if, the lifetime
distribution belongs to the two-parameter Weibull type (Newby, 1988,
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Solomon, 1984). The effect of erroneously specifying one of these models

if the other is in fact true, is studied by Solomon (1984).

1.3 DETERICRATION MEASUREMENTS

Usually, times to failure or censored lifetimes is the only utilized
outcome of field performance or laboratory tests, when reliability is to
be estimated. In many cases, however, there exist one or more physical
measures describing the degree of deterioration. Adding such measurements
to the recoxrded data, increases the available information significantly.
This is especially true iIn cases where ALT is performed. In these cases,
existing lifetime data are usually scarce, testing "many" specimens may
be too expensive, and there are several other sources of uncertainty

{Lydersen, 1986, Lydérsen and Rausand, 1987).

According to the literature on ALT, the approach including deterioration
measurements seems to have been little used, except for modelling for
fatigue crack failure, see e.g. Birnbaum and Saunders (1969) or Saunders
(1975). The total crack length is then set equal to crack increments
resulting from individual stress cycles. Fatigue failure occurs when
accumulated crack length exceeds a critical length. Some rather straight-
forward analyses of ALT including deterioration measurements for other
failure mechanisms have been performed by Nelson (198l) and Maskalick
(1975). These are further commented in Lydersen (1986). Heat ageing of
elastomer materials seems to be a fruitful application for ALT including
deterioration measurements. This is commented towards the end of Section
2.1. In part II of this thesis, data from an ageing experiment (Renolen,

1979) is analyzed using this approach.

A recent book by Bogdanoff and Kozin (1985) proposes a class of proba-
bilistic models for cumulative damage. Thelr main ideas will be discussed
later in this report. Failure modelling including deterioration in one
dimension has been discussed by Gertsbakh and Kordonsky (1969). Some of
the fundamental principles presented in Chapter 2 in this report were

presented by this author in Lydersen (1986) and in Lydersen and Rausand
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(1987). A few similar ideas have been presented, independent of this
author, by Knezevic (1987).

A recent article on statistical methods for reliability improvement

(Amster and Hooper, 1986, p 73), states that there appear to be at least

two fruitful directions for Ffurure reliability techmology in order to
build high reliability into products in a cost-effective way. The first
involves a closer coupling between the physics of failure and reliability

models. The second concerns measured degradation data.

The working title of the present thesis was "Accelerated life testing
based on deterioration measurements". The area seems to have Important
practical applications. The choice of topic was further influenced by the
fact that this author has taken part in several practical ALT projects
where this kind of modelling seemed fruitful. These projects include ALT
of subsea gate valves (Rausand & Al, 1985, Orjasater & Al, 1986, Orija-
sater & Al, 1987, and @rjasater & Al, 1988), subsea control wvalves
(Kielland & Al, 1985, Lydersen & Al, 1986), and pilot wvalves (Lydersen &
Al, 1987).

The basic theoretical framework for accelerated testing based on
deterioration measurements iz defined and described in Chapter 2., Lemoine
and Wenocur (1985) suggest an approach for failure modelling similar to
the one presented here., Their model, with some special cases, is
described and commented in Section 2.2. Chapter 3 gives examples of how
the deterministic part of the deterioration processes may be modelled.
Chapter 4 concerns how to extend these the deterministic models into
gtochastic models, and in Chapter 5, estimation methods for some special
cases are discussed. In Part II and III of this thesis, the models ané
methods are applied to practical ALT results of elastomer foil and

control valves, respectively.
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2. DETERTORATION AND FATLURE MODELLING

2.1 STOCHASTIC MODELLING INCORPORATING DETERIORATION AND FAILURE

Usually, ALT modelling has been concerned with components with two states
- functioning or failed. However, many components deteriorate gradually.
A refined model may incorporate this fact. Associated with the failure
modes, there may be one or more physical measures describing the degree

of deterioration. Such measures may be:

- Wear depth

- Crack length(s)

- Leakage rate

- Degree of corrosive attack

- Material properties, such as: Mass loss, elastiecity, compressibi-

lity, fracture strength, ete.

The deterioration may, thus, be described in terms of some (possibly

vector valued) stochastic process, i.e.

B(t) = (D1(t), Dp(r), ... ,Dp(t))’. (2.1.1)

D(t) will be referred to as the deteriority vector at time t, and its

entries will be referred to as deteriorities.

In many practical cases, the deteriority vector represents a state of
cumulative damage. In many physical deterioration processes, damage will
not recover once it has occurred. This implies that the deteriorities
become non-decreasing functions of time. Still, a series of measured
values may show some jumps due to measurement errors. A measured value

M(t) for the deterioration may be modelled as

M(t) = D(t) + g, (2.1.2)

where D(t) is the true value at the time when measuring, and ¢ is a

random error which can take both positive and negative wvalues. Except
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otherwise is stated, we shall assume that ¢ is of negligible magnitude

and consider only DB(t)}.

There are also examples of deterioration processes where even the true
deterioration D(t) may show temporary improvements. An example, with a
plausible explanation, is provided in Paxt IT of this thesis. We shall,
however, assume that the deteriorities are non-decresaing functions

unless otherwise is stated.

Looking at the one-dimensional case, h=l, failure may be said to occur
when D(t) exceeds some critical walue d,. This is illustrated in Figure

2.1.1.

In the general case, the initial deteriority D(0) may be a random
variable. The random nature of D{0) is generated by wvariable manu-
facturing, quality control, deterioration before setting the item into

service, and so forth.

. . Two 'observed' Expected Quantiles of
Deterioration processes deterioration the distribution

~ \

5 )
=4

de

Deteriorotion
probability
distribution
at time t

e

0 4 > time

The ‘observed’
times to failure

Figure 2.1.1. A one-dimensional deterioration process leading to failure,
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In the multidimensional case, d. may be viewed upon as some vector:
de = ( de 1, de,2, -+ sdg,n )’ (2.1.3)

In a simple model, failure may be sald to occur as soon as at least one

of the crit;cal values is exceeded, that is,
Di(t) > dc,i for at least one i, i=1,2,...,h. (2.1.4)

Note that in one sense, (2.1.4) only considers one Dj at a time: Failure
occurs when Di(t) > dc,i: no matter what the other deteriorities are, as
long as they are less than their respective critical values. This may be
a too simple model for failure occurrence. For example, a critical
leakage in a valve may occur if some combination of wear depths at
several places, packing material deterioration etc. becomes critical.

Generally, failure may be said to occur if

h(R(E)) > b, (2.1.5)
where

h{D(t)) = h(Dy(t),Do(t), ... ,Dr(E)) (2.1.6)

is increasing In each argument. The quantity h, is a ecritical wvalue

corresponding to the failure mode(s) considered.
The model (2.1.4) is a special case of (2.1.6). Assume that (2.1.4)
holds. Let h{(D(t)) = max( Dl(t)/dc,l: cees Dh(t)/dc,h ). This means that

failure occurs when h(R(t))>1l, which is (2.1.6) with hgy=1.

These models may easily be extended to the case with several failure

modes, say Mp,... M. Failure mode Mj may then be said to occur if

him(e)) > ni. (2.1.7)
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Another generalization may allow d,, or hc-(h%,hg,...,hg)', to have
different values for each specimen. That is, d., or h., is considered to

be stochastic.

The deteriority wvector D(t) represents a state description in which
inereasing values of its entries represent a reduction in state quality.
In some practical situations, 1t is more logical or convenient to use
state measures where high values correspond to high quality, for example
tread depth on an automobile tyre. This represents mo practical restric-
tion. The ideas presented above still apply, with the appropriate changes

in sign.

It should be noted that the moét models and estimation methods for ALT,
only include the failure or censor time for each unit tested (Lydersen,
1986). In many situations, a laboratory test may yleld much more infor-
mation. Viewing the deterioration as a vector of physical measures, these
values may provide useful information in addition to the mere lifetimes.
Instead of recording only the mere lifetimes, the deteriority vectors at
failure or censoring may be recorded. Let T denote the failure time or
censored lifetime for an item. Further, let M denote the failure mode if
the item fails at T, M=0 denotes censoring. In the "conventional"

procedure, only
T, M (2.1.8)

would be recorded, and estimates would be based on these values. In the
extended procedure indicated here, one would also record the deteriority
wvector at failure or censoring. That is, the information recorded for

each test item would be
T, M, D1(T),D2(T),... ,D(T). (2.1.9)

Obviously, (2.1.9) may contain much more information than (2.1.8).
Depending on the item to be tested, it may even be possible to measure
one or more of the deteriorities during the testing, before failure or

censoring. If this is the case, (2.1.9) may be extended to include one or
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more of the components of D(t) for some t values between 0 and T. In some

situations, not all deteriorities can be measured after failure.

Heat ageing of polymeric materials provides an example where a deteriori-
ty vector is measured., On the basis of deformation kinetics, the
Arrhenius model may be shown to hold for this situation, see e.g. Valanis
and FPeng (1%82) or Peng (1585). Heat ageing of such materials are

typically performed in the following way, see e.g. Renolen (1975):

A large number of specimens are kept at various temperatures. At some
instants, some of them are taken out and tested destructively. Properties
such as elasticity, fracture length, relative mass change, etc, are
measured. A packing may, for example, be said to be in a failed state if
its fracture length is less than a defined wvalue. Data for time to
failure seem to fit well with the Arrhenius model (Renolen, 1975).
However, estimation methods including the whole deteriority vector do not
seem to have been used. In Part II1 of this thesis, test results from

heat ageing of elastomer foil (Renolen, 1979) are analyzed in this way.

The approach outlined here calls for refined estimation techniques,
incorporating the deterioration vector for the items tested. In the

literature on ALT, such refined techniques have not been much discussed.

2.2 DETERIORATION MODELS WITH KILLING RATE

2.2.1 General desceription

Lemoine and Wenocur (1985) suggest an approach for failure modelling
similar to the one presented above. One of their models and some related
models will be briefly described in terms of the terminology used in this

report, and commented,

In their article, Lemoine and Wenocur (1985) consider a one-dimensional

deterioration process D{t). Associated with each state d there is a
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killing rate k(d), defined as follows: Assume that the unit is function-

ing at time t, with deterioration d. The killing rate is defined as

P(T < t+At | D(t)=d n T > t)
At

k(d) = lim (2.2.1)

At-+0

Note the analogy between the killing rate, as defined above, and the
failure rate. Actually, if the wear process is deterministic, i.e. given
as a function d(t), the failure rate at time t equals the killing rate at

state}d(t):
z(t) = kfd(t)] (2.2.2)

Further, Lemoine and Wenocur (1985) assume the possibility of a critiecal

value do, such that the unit is certain to fail when D(-) passes d..

For example, consider the thickness of tread on a tyre. The killing rate
is associated with tread thickness d. The tyre is condemned when the
tread passes below some safe level d,. It may also fail before that time,
if it encounters i.e. a sharp piece of road surface. The killing rate

k(d) in this example 1s an increasing function of d.

Let 7 denote the time of first passage of the D process to d,. The

probability of surviving beyond time t is given by

t
P(T > t) = E(exp{-[k[D(u)]du) I{r > t}), (2.2.3)
0

where the expectation is taken over the distribution of D(:). The
function I(:) is the indicator function, I(A) is 1 (0) if A is true
{(false). -

The failure model described above, will be referred to as the Lemoine-
Wenocur modél. This model may be generalized to multidimensional deterio-
ration processes D(t), with an associated killing rate k(d). In this
generalization, failure will occur at the first shock in the "killing

rate" process, or when D(t) reaches a critical level, whichever occurs
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first. The critical level for D(t) may be defined in terms of (2.1.4) or
(2.1.5).

If the killing rate and the distribution of the process D(') are given,
it is of interest to perform the integration and find the expectation in

(2.2.3). This is not necessarily a straight-forward matter.

Section 2.2.2 and Section 2.2.3 below each describe a subclass of the

Lemoime-Wenocur model, with references.

2.2.2 A Shot-Noise Model

Solutions for (2.2.3) are given for some special cases by Lemoine and
Wenocur (1986). The cases given in Lemoine and Wenocur (1986) include a
special form of the deterioration process D('): The specimen is subjected
to shots or jolts according to a homogeneous or non-homogeneous Poisson
process. Jolt number n occurs at time t,, has size J,, and is assumed
independent of the history up to tp. Its contribution to the deteriority
at time utty, 1s Jph{(u), where h is a non-negative function which vanishes

on (-«,0) and tends to 0 as t - =, for example

-au

e ifu=0; a>0
h(u) = (2.2.4)
0 if u > 0.
This gives
<0
D(t) = = Jph(t-ty) (2.2.5)
n=1

These assumptions imply that the damage caused by the jolt will recover
completely in time. Lemione and Wenocur (1986) comment that this may be a
reasonable model class in some medical applications, where D(t) repre-

sents the "state" of a patient.
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2.2,3 Killing Rate Without a Failure Limit

Giglmayxr (1987) treats the Lemoine-Wenodur model type for the case where
no limit d; exists. That is, an item can only fail from the first shock

in the "killing rate process". His two main assumptions are:
i) The deterioration process D(t) is either

- a step-function following a Poisson process, possibly with

time- and state- dependent rate of occurrences,

or,

- a Gaussian diffusion process, where infinitesimal mean and
variance are allowed be time- and state- dependent. (Such

processes are briefly described in Chapter 4 of this report.)
ii) The killing rate is allowed be time- and state dependent.

Giglmayr (1987) does not refer to Lemoine and Wenocur (1985), and the two
articles seem to have been written independent of each other. Giglmayr
(1987) presents the general mathematical framework for his model classes,
including integro differential equations and partial differential

equations for transition probabilities and other quantities of interest.
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3. DETERMINTSTIC DETERTORATION MODELS

3.1 INTRODUCGTION

The deterioration process D(t) in the extended model outlined in Chapter
2 is a stochastic process. It is instructive to start by looking at some

deterministic deterioration process,
n(t,x) = (m(t,x), mp(t,x), ..., mp(t,x))’ (3.1.1)

That is, for a given stressor x, then m(t,x) is a Ffunction of t which

predicts the exact deterioration at time t.

Often, m(t,x) may be given implicitly, in terms of a differential
equation. For simplicity, consider the one-dimensional case, h=1, and a

first order differential equation:
m' () = £(x,t,m(t)) (3.1.2)

The function £(') may also include one or more unknown parameters, to be

estimated in a given situation.

From a physical point of view, many deterioration processes are initially
modelled in terms of deterministic models. That is, the functional form
of m(t,x) is determined. The function may be given explicitly, or in
terms of a differential equation. Some examples are given below. After-

wards, a stochastic model for D{t) may be built around m(t,x).

3.2 WEAR

In this section, mechanical wear between two surfaces sliding against
each other is considered. Experts distinguish between several wear
mechanisms. These are two-body and three-body wear, together with
adhesive, abrasive and other types. Experience shows that the wear depth

is proportional to the total sliding lengths and to the pressure between
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the two surfaces. This model holds 1f the pressure is helow certain
limits, above which the wear tends to increase more than proportionally

with the pressure. In the proportional region, one may thus write
n'(t) = k1p, (3.2.1)

where k is a constant depending on surface £inish, material types, ete, 1
is average sliding length per unit time, and p is pressure between the

surfaces.

3.3 FATIGUE CRACK GROWTH

Fatigue failure in a metal part may occur when it is exposed to a series
of stress cycles or oscillations. Each stress cycle is below the fracture
strength limit for the part or the construction. The large number of
repetitions cause an accumulation of microscopic crack increments, and
finally, fracture. Typical number of oscillations to failure are in the

range 103 to 1010 (Haagensen, 1973).

A erack increment during a stress cycle results from broken atomic
bounds, such that new surfaces are created. For each osecillation with
high enough stress, there will be some increment in crack size on atemic

level. This is illustrated in Figure 3.3.1.
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Figure 3.3.1. Fatigue crack growth, where W, is the total crack length
after n cycles, and Y, 1Is the crack increment caused by cycle

number n.

Three stages of fatigue crack growth are distinguished: Initiation, crack
propagation, and final fracture. Initiation is the time until an observ-
able crack has developed. The duration of thig stage is, to some extent,
a matter of definition, depending on the observation method, for example

how good the microscope is.

Initiation usually goes faster in notched specimens than in un-notched
specimens (i.e. with a smooth surface). A notch may e.g. be a weld, a

narrowing, or a thickening, causing high stress concentrations around it.

The second stage is called the crack propagation stage, or the growth
stage. The crack is growing more or less regularly, as indicated in
Figure 3.3.1. Crack propagation continues until the remaining thickness

is too small to resist the stress cycles, and final fracture occurs.

The lifetime of a specimen equals the sum of crack initiation time and
crack propagation time. Final fracture normally takes negligible time
compared to these. The fraction of the lifetime consumed by the initi-

ation depends on several factors: The specimen shape, material, and the
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stress cycles history. Usually, crack initiation gives the largest
contribution to the total failure time. If the stress cycles amplitude is
so small that a relatively long lifetime is expected, initiation may last
several times as long as crack propagation (see e.g. Haagensen, 1973,

P 8). This is also experienced for fatigue tests on smooth specimens,

Crack length as a function of time is illustrated in Figure 3.3.2, for
two situations. In the crack propagation phase, the crack growth rate

approximately follows Paris' Law:

dm(t
dt

- C(a)™, (3.3.1)
where AK is the stress intensity factor, and C and m are material
constants. Paris’ Law was first suggested by Paris (Paris and Erdogan,
1963), and is described in most textbooks on metal fatigue, see i.e.
Fuchs and Stephens (1980). The stress intensity factor 4K is a function
of tensile stress and torsion, and of the specimen shape. Hence, AK is
also a function of the crack length. However, for some combinations of
geometry and material, AK is approximately independent of crack length

before fracture,
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Figure 3.3.2, Crack length as a function of time (number of stress
cycles). Small stress cycle amplitude or smooth specimen (a) and

large stress cycle amplitude or notched specimen (b).

The lognormal distribution is freguently to describe time to fatigue
failure. It agrees well with empirical data, and is computationally
convenient. Birnbaum-Saunders distribution (see Chapter 4) for the
propagation phase may be derived from rather general assumptions on the
crack growth process. Both these distributions belong to the so-called ¢-

normal family (Saunders, 1975):

x

ﬁ)l. (3.3.2)

P(T = t) = @[l (

where @ > 0 and g > 0 are parameters, and & is a twice differentiable

function on (0,») such that ¢’ > 0 and

§() = -£(t), for all & > 0. (3.3.3)
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Saunders (1975) sets Ty, T and T3 equal to initiation time, propagation
time and time for final fracture, respectively. He shows that if Ty, Ts,
T3 are independent, {-normal with the same £ and possibly different

parameters, then their sum is approximately £-normal, possibly with a

R8-S LM FE - B~ ) 8 Y

3.4 CORROSION

Corrosion may be influenced by several mechanisms, resulting in different
corrosion types according to the look of the corrosion attack, The

following electrochemical corrosion forms may be defined (Bardal, 1985):

1) Uniform (general) corrosion

2) Galvanic or two metal corrosion

3} Thermogalvanic corrosion

4) Crevice corrosion and deposit corrosion
5) Pitting, pitting corrosion

6) Intergranular corrosion

7) Selective attack, selective leaching
8) Erosion corrosion

9) (Cavitation corrosion

10) Fretting corrosion
11) Stress corrosion cracking

12) Corrosion fatigue

The terms used for these corrosion types are according to Fontana and
Green (1967), and Treseder (1980). The rest of this section has, to some

extent, been based on Bardal (1985).

General corrosion causes an approximately uniform corrosion depth, as
illustrated in Figure 3.4.1. The relationship between corresion current
density and corrosion rate (corrosion depth increment per time unit) is

given by:



Part I 31
AS Leorr | M (3.4.1)
At z +F +p , T
where
AS )
o = corrosion rate
AS = average corrosion depth increment during time At
iecorr = corrosion current density
M = metal mole mass
z = number of electrons per metal atom, according to the
reaction equation
F = Faraday’s constant = 96 485 As

metal density (mass per volume)

\V4 initial surface _>L

AS

.

Figure 3.

4.1.:

General (uniform) corrosion.
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General corrosion type may be dominating if these conditions are present:
1) Electrochemical corrosion is the only deterioration process.

2) Anodic and cathodic reactions oceur on the entire surface, but not

at the same place at the same time.

3) There are no significant concentration gradients in the electreolyte
along the metal surface, and the metal is homogeneous.

Potential, mectal reaction

B .

[G SHE] - — oxygen reaction
¥
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Figure 3.4.2.,: Relationship between the metal surface potential and
current density. The given E - i wvalues are typical for ironm in

water. The potential is given with reference to the standard

hydrogen electrode (SHE).
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Figure 3.4.2 shows a typical relationship between the current density,
and the metal surface potential. If E < E,, immunity is present, that
is, virtually no corrosion will take place. For E; < E < Epagqq, the

current density is given by

e

E = Eg + bg-logig 1’6 (3.4.2)

where b, is the so called tafel gradient for the actual metal/environment
combination, and iy corresponds to Eg (see Figure 3.4.2). The tafel

gradient is given by

_2.303 - RT

a zF (3.4.3)

b

where R is the gas constant, T is absolute temperature, and a is deter-
mined by the energy barrier to be exceeded by the reaction. Typical
values of by around 20°C are 0.05 - 0.15 V/decade.

E; is called the activation potential, and is slightly more positive than
Epags. For E between E, and Epites the metal is passive. That is, the
corrosion products form an oxide film closely connected to the metal
structure, Such films prevent metal ions from passing through. The
corrosion rate is relatively low and independent of the potential, If E

exceeds Epitt. pitting corrosion will take place.

At a laboratery test, the metal surface potential may be regulated by
means of a potentiostate. In other situations, the potential will
stabilize at an equilibrium between the anodic reaction(s) as described,
and the cathodic reaction(s). A common cathodic reaction is oxygen reduc-

tion,
09 + 4H'Y + 4e” -+ 2H0. (3.4.4)

The E - 1 relationship for this reaction depends on a number of factors,

If the oxygen concentration in the electrolyte 1s high enough, oxygen
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transport towards the metal surface will not limit the reaction rate.

Under these conditions, the E - i relationship is analogue to (3.4.2):

ix
Ep = Eg,x - br-logig 1o 1 (3.4.5)

This relationship is shown in Figure 3.4.2 for two concentrations
¢} < cg, along with the corrosion current densities i and i at these

conditions.

Let m(t) denote the average corrosion depth at time t. We shall derive a
relationship between the corrosion rate m'{t) and the two stressors
temperature and oxygen concentration, for the situation where equations

(3.4.2) and (3.4.5) are wvalid. The potential and current density stabi-

lize such that the potential for the two reactions equal:

i i
Eg,x - bk logip IB‘; = Ep + by logip EE_; (3.4.6)

»

Solving this equation for logjg i yields
. 1 . .
logig i = b.+b [(Egk-Eg) + by logip ig a + by legig ig ] (3.4.7)
a k » E

For a range of oxygen concentrations, Eg x may be considered as an
approximately linear function of the concentration c. Since Eg is
independent of c, we may write

Eg,x - Ep = ki + kge, (3.4.8)

where kj and ks are constants. Further, b, and bj are proportional to T

according to (3.4.3), such that
by = byT {3.4.9)

by = byT (3.4.10)
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Inserting (3.4.8) to (3.4.10) into (3.4.7) gives

k1 + koc by ba
logig i = (b1+bo) T + bytby logip i0,a + by+by logip ig,x (3.4.11)

d ] H 11N A A e -~ i o A T T -
Only the first term in (3.4.11) depends on ¢ or T, the rest are con-

stants. The corrosion rate, here denoted m’(t), is proportiomal to i,
according to (3.4.1). Using this fact, and by redefining and combining

some constants in (3.4.11), the following expression is obtained:

m’(t) = Kq exp(Ky/T + Kzc/T) (3.4.12)

3.5 CHEMICAL DEGRADATION

The Arrhenius and Eyring models are widely used for the reaction rate of
chemical degradation processes. The reaction rate is given as a function
of temperature, or as a function of temperature and a nom-thermal
stressor in the generalized Eyring model. These models may be written as

follows, noting that other equivalent parametrizations are also en-

countered;
Arrhenius model:

m'(t) = A exp(-B/8), (3.5.1)
Eyring model:

m’'(t) = § exp(A-B/8), (3.5.2)
Generalized Eyring model:

m'(t) = § A exp(-B/8) exp(CV + V/8). (3.5.3)
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In the equations above,

m’{t) 1is the reaction rate,
# 1is the absolute temperature,
V 1is a non-thermal stressor, e.g. voltage

A>0, B>0, and C are constants,

3.6 CONCLUDING REMARKS

In the preceding sections, deterministic models of the type

m’(t) = £(x,t,m(t)) (3.6.1)

have been studied for some physical deterioration processes. Most of the
models considered so far, are rather simple. Except for the fatigue crack
growth model illustrated in Figure 3.3.2, we have been looking at models
where the right hand side of (3.6.1) depends on x only, as long as x is
within certain limits, That is, in these simple models, (3.1.2) reduces

to

m' (t) = £(x). (3.6.2)

The functional forms of the simple models from the preceding sections may

be summarized as follows:

Mechanism/model Functional form

Wear f(x) = kxq (3.6.3)
Corrosion f(x) = ko exp(ky/xq + koxa/x1) (3.6.4)
Arrhenius f(x) = kg exp(-ki/x1) {3.6.5)
Eyring f(x) = x1 ko exp(-ki/x1) {3.6.6)

Generalized Eyring £(x) = x1 kg exp(-ki/x1 + koxg + kaxo/x7). (3.6.7)



Part I 37
The model (3.6.3) is a special case of the model class

f(g) = ﬂoxlxz...xp. (3.6.8)
The models (3.6.4) and (3.6.5) belong to the model class

P
£Gx) = o exp( 3 pixi ) = fo exp(8), (3.6.9)
lz

where obvious transformations of the stressors have been made. Similarly,

(3.6.6) and (3.6.7) may be written on the form
E(x) = Bg x1 exp(8-X). (3.6.10)

Note that (3.6.9%9) is equivalent to

£x) = fo 17t v2P2 ... 3PP, (3.6.11)
where

yi = log(xi).

Thus, (3.6.8) is a special case of (3.6.9), with fi = 1 for i = 1.
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4. STOCHASTIC DETERIQRATION MODELS

4.1 INTRODUCTION

So far, little has been salid about the stochastic medelling of the
deterioration process D(t). From now on, D{(t) will be considered as a
stochastic process. Probability models for stochastic processes may,
generally, be rather complex. Such a model must not only describe the
probability distribution of D(t) Ffor all separate t = 0, but alsc joint
distributions for times tj3, to, ... . For example, a model must be able
to desexibe the probability distribution of D(t), given the history up to
some point in time u =< t. This is the conditional probability distri-

bution
P(D(t) =d | D(s) = d(s), 0 =s=<u), t>u (4.1.1)

We shall use the notation D(t) < d in the meaning that each component
of the wvector D(t) is less than or equal to the corresponding component

of the vector d, that is,

def h
{(D(E) =d} = ( n Dj(t) =dg ) . (4.1.2)
]

I1llustrating this in the one-dimensional case, two possible histories
both leading to the value Dj(u)=dy at time u, are shown in the upper part
of Figure 4.1.1. In the general case, the probability distribution of
D(t) for t > u, given these two histories, may be different. For example,
in the upper part of Figure 4.1.1, it seems natural to expect case (a) to

deteriorate more slowly than case (b) from time u on.
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Figure 4.1.1. Two possible histories for a stochastic process D('), both
leading to the wvalue d of D1(u) at time u, For example, D1(*) may
represent the wear depth of an automdbile tyre, and Dy(*) may

represent the degree at which the wheel is out of balance.

The theory of martingales has been épplied to describe the stochastic
nature of D(t). For a survey, see e.g. Andersen and Borgan (1984).
Further, deterministic models of deterioration mechanisms are frequently
given in terms of differential equations. Hence, the theory of stochastic
differential equations could be used here. For an introduction to this
theory, see e.g. Oksendal (1985). We shall, however, use an approach

‘based on the more basic theory of stochastic processes.
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Modelling is significantly easier within the Markov class of stochastic
processes. A stochastic process is said to be a Markov process, or have
the Markov property, 1f, given the history up to time u, the distribution
at time t > u depends only on D{u), and not on D(s) for s < u. That is,
if we know the state at time u, the history up to time u gives no extra

information about future behaviour.

In a Markov process, the conditional distribution (4.1.1) depends on the
history up to time u through the state at time u omly. That is, there

exists some function G(t,u,d,e) for usgt such that

I

G(t;unésg? = P( D(t) = | D(u) = e )

= P(D(t) =d | {(D(w) =egnD(s) =d(s), 0=s=xuj)

v

for all D(s), t =z u=0. (4.1.3)
The Markov property gives considerable convenience in modelling and esti-
mation. It should be noted, however, that the Markov property is not an
acceptable approximation to assume for all physical deterioration
processes. We shall mention two important reasons occurring in practical

applications.

The first reason that Markov models may be inadequate, is illustrated by
the process Dl(;) in Figure 4.1.1: It seems like item (a) has undergone a
gradual, steady deterioration, while the history of item (b) indicates
that it may have received some kind of "shock" prior to time u, causing
the deterioration to speed up. One would expect item (b) to deteriorate
faster that item (a), also after time u, This example rises an inte-
resting issue. Clearly, in this situation, the deteriority state D1 (u)=d
does mnot tell us everything about the item state at time u. It is
possible, at least theoretically, that the deterioration process may have
the Markov property if one or more extra deteriorities are measured in
addition to the one shown in the upper part of Figure 4.1.1. For example,
let D1(-) represent the wear depth of an automobile tyre, and let Do(*)
represent the degree at which the wheel is out of balance. If Dy(t) is
"large", D7(*) will tend to increase more rapidly. This example is

illustrated in Figure 4.1.1. In this example, it may be sensible to use a
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Markov model for D(t) = (Dy(t), Do(t)), even though Dj(t) is clearly mot

a Markov process.

Another reason that Markov models sometimes are inadequate, may be illu-
strated by the data set from Part II of this thesis. Figure 4.1.2 shows
the leakage development for 5 control valves, from Part II. The 1éakage
as function of time follows an approximately linear trend for each valve,
but the coefficients for this lines is significantly different between
the valves. A satisfactory explanation is obtained by considering the
coefficients of the straight line as an unobservable quantity for each
valve, as discussed in detail in Part II of this thesis. Hence, the
leakage development is mnot a Markov process: If a certain point
(t; dy(t)) was reached from a rather low initial wvalue d(0), the deterio-
ration from this point on is expected to continue at a rather high rate.
On the other side, if this point was reached from a rather high initial
value and through a low rate, the deterioration is expected to continue
at a low rate. Hence, the expected future does mnot only depend on the
point (t, d1(t)), but on the history up to that point. This implies that

the process is not Markov.
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Figure 4.1.2: Leakage through in closed position for 5 control valves, as

function of time (number of cycles operated). From Part II of this

thesis.
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Similar phenomena as for these valves seem to be present for other
physical deterioration mechanisms, on several types of components.
Especially, this seems to be so for fatigue crack growth in metals.

a da/dN is given by
log(da/dN) = log(C) + m-AK, (4.1.4)

where AK 1is the stress intensity factor, and C and m are material
congtants, Both theory end empirical results establish equation (4.1.4)
as a good approximgtion to reality, as long as AK is within specified
limits. Paris' law is also treated in Section 3.3.

Virkler & al (1979) report crack growth measuremnts on 68 specimens of
2024-T3 aluminum alloy. On each specimen, an initial crack length of 9.0
mm was produced. The number of stress cycles needed to rach crack lengths
of a =29, 9.2, 9.4, ..., 36,2, 36.6, ..., 44.2, 45.0, ..., 49.8 mm were
measured. This gave 163 increment values per specimen. The original data
are depicted in Figure 4.1.3, This seems to have become a "classical®
data set on fatigue crack growth, and has subsequently been studied by
several authors. Virkler & al (1979), Bogdanoff and Kozin (1985), Oritz
(1986), and Ditlevsen and QOlesen (1986) all use different stochastic
models based on (4.1.4), It seems that Ditlevsen and Olesen (1986) were
the first to find a model giving a satisfactory description of the
scatter between the specimens. Their basic model was a stochastic
extension of (4.1.4), where the set of parameter in the models was
considered a stochastic vector with one (not direct observable) value per

specimen,

Hudak & al (1978) report data set similar to the Virkler data. The Hudak
data have also been studied by several authors, e.g. Bogdanoff and Kozin
(1985) . However, a satisfactory model does not seem to have been applied,
Probably, the type of model proposad by Ditlevsen and Olesen (1986) would
also provide a satisfactory fit to the Hudak data.
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Figure 4.1.3: The Virkler & al (1979) fatigue crack length measurements.
Crack length (a) as function of number of cycles (n). (Figure from

Bodganoff and Kozin, 1985.)
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Figure 4.1.4: The Hudak & al (1978) fatigue crack length measurements,
Crack length (a) as function of number of cycles (n). (Figure from

Bodganoff and Kozin, 1985.)
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Orjasater & al (1983) report crack growth rate measurements on 16
specimens from one steel plate, with 4 specimens tested at each of 4
different laboratories. Narbuvell (1987) treat these data using the
theory of stochastic regression coeffilcients. The coefficients (C, m) in

equation (4.1.4) were found to differ significantly between the speci-

mens, even for specimens tested within the same laboratory,

Iuculano and Zanini (1986) report testing of metallic layer resistors.
They use the Arrhenius model, but with an individual wvalue of B for each

specimen. The Arrhenius model is defined in Section 3.5.

The preceding examples reveal one weakness of the Markov models: They do
not Incorporate the individual ability to withstand deterioration, which
may vary from specimen to specimen. For example, the expectad deterior-

ation of metallic parts may depend on physical properties such as:

- material composition
- pores or inclusions
- surface treatment

- lubrication

- ete.

Cox and Miller (1975) divide stochastic processes into four cases:

s
T

discrete time, discrete state space

discrete time, continuous state space

h
=t
S

continuous time, discrete state space

[N
e
[ ]
A

iv) continuous time, continuous state space

In practically all applications, it seems natural to view the deteriora-
tion as continuous both in time and state on the macroscopic level.
However, the cases i) to iii) may prove useful both as approximations to
the continuous case, and may also provide a basis for developing a
continuous model as a limiting case. Such cases are discussed from this
point of view in Sections 4.2, Twe special cases of iv) will be discussed
in sections 4.3 and 4.5, namely Wiener processes and Wiener processes
with random starting point and drift. Section 4.5 treats linear reg-

ression with random coefficients, which also seems useful in deteriora-
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tion data analysis. Finally, Section 4.6 covers the Bernstein life

distribution and related models.

4.2 CUMULATIVE STOCHASTIC PROGESSES

This section concerns a number of model classes for stochastic processes
with one property in common: They all non-decreasing in time. That is, if
t] < tg, them D(t]) = D(ts). Further, all these models are discrete in
time or state space. The section is divided into 4 subsections, each

covering one model class. Not all of these model classes are disjoint,

4.2.1 Bivariate Renewal Processes

Pieper and Tiedge (1983) define a class of cumulative stochastic pro-

cesses in the following way: Let
{Zp, Yp)s n =1, 2, ...} (4.2.1)

be a bivariate renewal process, that is, a sequence of non-negative,
independent, identically distributed bivariate random variables. Further,

define the counting process N(t) as

n
N(t) = max(n: T X; < t) (4.2.2)
i=1

Assume that an item is set into service at time £t = 0, and that the
initial value of the deterioratiom is D(0) = Yp. The distribution of ¥y
is not (necessarily) the same as the distribution of ¥;, i = 1. At the
points in time Xy, X1 + X2, ...., the item is exposed to a "shock"
causing the deterioration to increase with the quantity Yy, Yo, ...,

respectively. The state of deterioration at time t is thus

N(t)
D(t) = = Yj. (4.2.3)
i=0
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The model 1s illustrated in Figure 4.2.1. The time interval between
"shocks™ number i-1 and i is Xj, and “shock” number i causes the deterio-

ration increment Yj.

X;, and let Y; be the deterioration increment during working cycle number
i. In this case, the deterioration increment may tend to be higher during
longer working cycles. Hence, it 1is mnatural to allow for dependence

between X; and Yj.

- D(t)
N

NN

Figure 4.2.1: A class of cumulative stochastic processes suggested by
Pieper and Tiedge (1983)

In general, the distribution of (X;, Y;) is given by

P((Zf = xn(¥1 = y)) = G(r,y). (4.2.4)
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Note that the Poisson process with constant intensity A evolves as a

special case by setting

G(x,y) = (1 - e %) I(y = 1) (4.2.5)
where
1 if y=2 1
I(yz1l) = (4.2.6)
0 if y<1

is the indicator function. One of the elementary model classes for
fatigue crack also turns out as a special case: In these model classes,
the crack increments in each stress cycle are assumed independent,
identically distributed. Let tg be the duration of each cycle, and let

Fy(y) be the probability distribution of one crack increment. Then,
G(x,y) = I(x = tg) Fy(y). (4.2.7)

Some results for the gemeral model (4.2.1) - (4.2.4) are given in Pieper
and Tiedge (1983) and In references therein. These include general

results, asymptotic results, and results for a few special cases.

4.2.2 Poisson processes

Gonsider the following random shock model: Assume that the unit receives
"shocks" according te a Poisson process with intensity X, and that
failure occurs after exactly r shocks. The lifetime of such a unit equals
the sum of r independent, identically exponentially distributed vari-
ables. It follows that the lifetime is gamma distributed with parameters

A and r, that is, the ﬁrobability density is

£(t) = P?r) Oyl o7At (4.2.8)
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The expected time to failure is

E(T) = Air, (4.2.9)
and the variance is

Var(T) = A2r. (4.2.10)
The critical deterioration is d,, that is, failure occurs at the instant

when D(t) reaches the value d,. Each shock causes D(t) to increase with

the quantity d,/r. This is illustrated in Figure 4.2.2.

D (&) “E(D{t))

o1

d /r

N
t

Q
E I

Figure 4.2.2. A random shock model for the deterioration process.

The coefficient of variation for a wariable T is defined as

sD(T) _ [Tax (D)
ST =gy < TR (4.2.11)
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In the gamma distribution (4.2.8), the coefficient of variation is

Jral
Cr = Lax (T) = d = [l/r, {(4.2.12)

E(T) A

which implies that
r = (1/Cp)2. (4.2.13)

If the Poisson process model should be used an approximation to con-
tinuous deterioration, it would require a rather "large" value of r.
However, experience shows that lifetime distributions wusually have a
coefficient of wvariation in the size of order 1. In many practical
situations, Cr > 1, and Cyr is seldom much less than about 0.5. Since
re {1,2,3,...}, the model cannot be used when Cr > 1. Further, Cp 2 0.5
implies r £ 4, making the path of D(t) very far from a continuous path.
Hence, the above model is hardly suitable as an approximation to con-

tinuously increasing deteriorationm.

4.2.3 B-models

In their book "Probabilistic Models of Cumulative Damage", Bogdanoff and
Kozin (1983) discuss what they call B-models of cumulative damage. A

basic version of the B-model is based on these assumptions (Bogdanoff and

Kozin, 1985, pp 72 - 74):
1. There is a repetitive constant severity duty cycle (DG).

2. Damage states are discrete and labelled 1, 2, ..., b. State b is

the state of failure.

3. Damage in a DC depends only on that DC and on the state of damage
at the start of that DC. That is, the damage process possesses the

Markov property.
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4. Damage can only increase in a DC from the state occupied at the

start of that DC to the state of one unit higher.
3. The state at time 0 may vary between specimens, due to manufac-

turing standards, quality contrel, and so on. This is described in

terme of a probability distribution over the states 1, 2 b-1.

LA 110 L v wy

The initial probability distribution is given by the 1xb row vector

Po ™~ (71, m3, ..., "1, O). (4.2.14)
The probability that the state after a DC is higher than at the start of
the DG, may, generally, depend on the state at the start of the DC. These
probabilities are denoted

Pj = P(Remain in state j | Initially in state j) (4.2.15)
and

q; = 1- Pj = P(Go to state j+1 | Initially in state j). (4.2.16)

The transition matrix for the Markov process is

p1 91 0 0O ... O 0 ]
0 p2 g2 0 ... O 0
0 0 p3 g3 ... O 0
P = . (4.2.17)
0 0 0 0 ... pPp-19%-1
.0 0 0 0 0 1]

Using one of the elementary results from Markov processes (see e.g. Cox
and Miller, 1965), the state at time t, that is, after t duty cycles, is

seen to have probability distribution

Pt = poP¥. (4.2.18)
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A number of extensions of the basic B-model (assumptions 1 - 5) are given

by Bogdanoff and Kozin (1985). These extensions include:

- Periodic inspections with replacement or repailr, possibly with

imperfect inspection.

- Positive probability for jumps of size more than 1 (multiple jump

models) .
- B-models in continuous time,

- Non-stationarity in time, i.e. the transition matrix P or related

quantities depend on time.

All the extensions studied by Bogdanoff and Kozin (1985) have two

properties in common:
i) The Markov property.

ii) Zero probability of negative jumps, except upon repair or replace-

ment.

The B-models suggested by Bogdanoff and Kozin (1985) have been discussed
and compared to alternative models by a number of authors, see i.e.
Sobczyk (1986), Newby (1987a), and Newby (1987b). These authors consider

the models primarily in connection with fatigue crack growth.
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4.3 WIENER PROCESSES

The Wiener process represents a model class which may prove useful in
modelling D(t). The process D(t) is said to be a Wiener process with

drift parameter p and variance parameter ot if
D(tp) - D(t1) ~ N( p(tp-ty), o2(ty-t1) ) (4.3.1)

for all tj<ty, and increments In D(t) over disjoint intervals are
independent (See e.g. Cox and Miller, 1965). In the literature, many
authors wuse the term Brownian motion in the same meaning as Wiener

process.

Simulated realizations of Wiener process for some values of p and o are
shown in Figures 4.3.1 to 4.3.3, The Wiener process has one feature
which, at least theoretically, does not agree with a model for deteriora-
tion: The increment in D(t), given by (4.3.1), has a positive probability
of obtaining negaﬁive values. This is clearly seen in Figure 4.3.1, and
to some extent in Figure 4.3.2. The processes D(t) given in these fipgures
are seen to be decreasing over some intervals. For the simulated Wiener
processes Iin Figure 4.3.3, the negative increments are "fewer"™ and
smaller than in the two preceding figures. On the other hand, the
coefficient of wvariation for the lifetime distribution in this figure
seems too small for almost all practical lifetime distributions. (See the

discussion at the end of Section 4.2.2.)

However, the existence of negative increments does not necessarily
exclude the Wiener process as an acceptable approximation for a mumber of
deterioration processes. Also, there exist examples where a temporary
improvement (decrase in D(t)) seems plausible. For example, see the

discussion on the valve leakage data in Part IT of this thesis.
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D(t)

Figure 4.3.1. Simulated Wiener processes with ¢ = 0.3u.

D(t)
A

Figure 4.3.2. Simulated Wiener processes with o = 0.1lu.
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Figure 4.3.3. Simulated Wiener processes with ¢ = 0.03p.

If failure occurs when D(t) first reaches the wvalue d,, the failure time

equals

T =dinf { t : D(t) = d. ). (4.3.2)

It can be shown (see e.g, Cox and Miller, 1965) that T has the inverse

Gaussian distribution (IG), and has probability density

d. 1 (de-pt)?
g(t) = exp | - ——/—— (4.3.3)
o/2xn 3/2 202t
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Birnbaum-Saunders fatigue-life distribution is obtained simply by setting

FPp(t) = P(D(t) = t). That is, one sets

P(T =< t) = P( D(t) = d; )
f dc'!—‘t ]
-1-23| |
[ o/t ]
d
-3 [ % [ uJE - 7% ] ] (4.3.4)

Equation (4.3.4) is the cumulative distribution funetion in Birnbaum-

Saunders distribution, which is better known in the form

s -0 [L(fE ) ]

where

a = o/fud,
B = do/b.

The expectation and variance in Birmbaum-Saunders distribution are

2
E(T) = A(L + 57

and
Var(T) = o282(1 + %a2).

In terms of the parvametrization in (4.3.4), the mean and variance are

de 10’2
E(T) = — 1+*2‘—--

& #de

and
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Birnbaum-Saunders distribution (BS) is widely used in analysis of fatigue
failure data. The BS model can be viewed as an approximation to the IG
model. Although the difference between the models is negligible when
$ >> g, there is mno need to make this approximation, since the IG
distribution is even simpler to work with than the BS distribution
(Bhattacharyya and Fries, 1982). For a thorogh comparison between these
distributions from a cumulative damage point of view, see Desmond (1987),
who also gives an extensive list of references. Barry & al (1986) and
Barrxy & al (1987) compare the IG and lognormal time to failure distri-
butions for integrated circuit devices. In the Ditlevsen and Olesen
(1986) analysis of the Virkler & al (1979) fatigue life data, the IG life
distribution fits well to the measured data, within a total model similar
to the Wiener process. The first passage problem for the Wiener process

is also studied by Ditlevsen (1986).

The inverse Gaussian distribution is sometimes referred to in the

probabliity density form

«

1 (1-6t)2
g(t) = —————— exp | - ————0 | , (4.3.6)
J2ry t3/2 vt

and denoted IG(5,v). The correspondence between the parametrizations in

(4.3.3) and (4.3.6) are given by
RS az/dc2

and
§ = p/ds.

In the notation of (4.3.6), the cumulative probability distribution is
given by (Shuster, 1968)

1) -@[ij-—;—-;—l] - exp[;z‘i] q,[., jﬁl] , (4.3.7)
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where &(°) denotes the standard normal distribution function. The mean
and variance are 1/5 and u/63, respectively. In terms of the parametri-

zation in (4.3.3), the mean and variance is thus

E(T) = do/u3 (4.3.8)
and

Var(T) = o2d./p. (4.3.9)

In the case of Wiener-processes in more than one dimension, the first

passage problem is much more complex (Iyengar, 1985). Assume that

B{t) = (D3(t), ..., Dp(t))’

is a h-dimensional Wiener process. (See i.e. Iyengar, 1985, for a defini-

tion.) Let

de = (dc,l: dc,2= e dc,h)'

be the critical deteriority values for occurrence of failure (see Chapter

2). That is, the item fails as soon as Dj(t) reaches de, i for at least

one L =1, 2, ..., h. The time of failure may be written as

T = min{Ty, To, ..., Tnp}, (4.3.10)
where

Ti = inf( t : Di(t) = d; 1 ), i=1,2, ..., h. (4.3.10)

For the two dimensional case, the joint probability distribution of
(T1, T2) has been studied by Iyengar (1985), including Wiener process
with drift. The article also includes some further references on the

subject,

Below, two generalizations of the one-dimensional Wiener process (4.3.1)

are included for the sake of completeness. The first generalization is
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found in lemoine and Wenocur (1985), and the second in Barndorff-Nielsen

& al (1978),

Generalization 1

Let g(-) be an arbitrary strictly increasing function on [0,x) with
continuous second derivative and with g(0)=0. Set D{(t)=g[oU(t) - ut],
where p>0 and ¢>0, and U(') is a standard Wiener process, that is, a
Wiener process having drift parameter 0 and variance parameter 1. Now,

set

o(d) = og'[g"1(D)], (4.3.12)
d 4

g(d) = g U(S)ds, (4.3.13)

2(d) = a(d) [ »ﬁ + %a'(d) }. (4.3.14)

Consider the diffusion process on [0,=«) with infinitesimal drift and
variance parameters p(d) and o(d) so defined. Let dp be the starting
point of the process. Then the first hitting time to level 0 has the
IG(6,») distribution with parameters 6=p/[08(dg)] and w=1/[6(dg)]2

(Lemcine and Wenocur, 1985),

Generalization 2.

The generalized inverse Gaussian distribution is defined by the proba-

bility density

a/2 ) -1
f(t) = '2%% c® L exp [ - 1_3_1:_2-%-_92 ] (4.3.15)



Part I 59

Here, Ky( ) is the modified Bessel function of the third kind and with
index a (Abramowitz and Stegun, 1965). The domain of wvariation for the

parameters (a,b,c) is

a>0, b=z=0, c>0;
a=0, b>0, e¢>0
a=<?o, b >0, c=0,

This class of distributions includes the inverse Gaussian distribution.
It is readily shown that the generalized inverse Gaussian distribution
with parameters (-1/2,b,c) is identical to the IG(§,v) with v=l/b and

§=/c/b.

Following Barndorff-Nielsen & al (1978), the first hitting time distri-
bution for a rather general class of diffusion processes may be derived

as follows:

Let o be a positive and differentiable function defined on the interval

(0,=). Set

x
8(x) = [ JI/[a(w)] du, (4.3.16)
0

and suppose that # satisfies the conditioms

f(x) <=, 0 <<= (£.3.17)
and

G (o) = o, (4.3.18)

Furthermore, let S be defined on (0,=) by

2 - 1 JTK, .18 (x)ST) 1 4
B(x) = <Ja(x) IO R /) oy e (4.3.19)

for ¥ > 0 and A £ 0, and by the limiting value of this expression, i.e.
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B(x) = Jal®) 2’;5’2}3 + —} E—ia(x), (4.3.20)

for * = 0 and A < 0, In the special case of A = -1/2, the expressions

(4.3.19) and (4.3.20) for B take the particularly simple form
(x) = -[Ta(Ey + = Sa(x) (4.3.21)
A(x - 4 ax® 3.

Consider a time-homogeneous diffusion process x(t) with state space [0,=)
and such that the process has infinitesimal wvariance a(x) and infinite-
simal mean B(x), specified as above. Let xg > 0 be the initial position
of the process. Then, the first hitting time of 0 follows the generalized
inverse Gaussian distribution with parameters (A,Hz(xo),W). Here, X =< 0,

and #(xg) is given by (4.3.16).

4.4 REGRESSION WITH RANDOM COEFFICIENTS

In terms of a simple linear model, the expected wear depth at time t may
be E(D(t)) = pg + p(x)t, for a given stressor X. As mentionmed in Section
4,1, there are practical cases where it seems natural to let (pp, u(x))
have one wvalue for each specimen. That 1is, consider (pg, p(x)) as a
stochastic wvariable. For a given specimen, the wvalue of (ug, p(x)) is
unknown and cannct be direct observed. Such a model is also discussed and

fitted to the wvalve leakage data in Part II of this thesis.

In this section, we shall confine ourselves to models where (the expec-
tation of) p is a linear function of x. Not only do such linear models
occur in many practical situations, but the results for simple models can

hopéfully also give indications on how non-linear models behave.

A review of random regression coefficients models is given e.g. by
Spjetvoll (1977). For the sake of completeness, some of these models are

summarized below, adapted to our situation and with our terminology.
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Consider first the general regression model

D(tij) = Bogj + Arijwlij + .- + Bpijupij + eij,
i=1, ..., nj, =1, ..., r. (4.4.1)

Here, D(tij) is the result of the i'th deterioration measurement on
specimen number j. The so-called independent wvariables Uhij are assumed
to be fixed. They are known functions of the stressor x; and the time
tij for example Ulij = Xitij for a one-dimensional x. The regression

coefficients fpjj are random variables with

E(Bhij) = bn (4.4.2)

and

Cov(Pnij, Bxij) = Mhk- (4.4.3)

Two 5hij with different values of the pair (i,j) are independent. We
denote the covariance matrix of (ﬂOij, ces ﬂpij) by A. The error terms
ejj are assumed to be independent with expectation 0 and variance o2,

They are also assumed to be independent of the ﬁhij-
In the literature, several special cases of this type of model have been

studied. In these special cases, one or more of these assumptions are

made ;

Poij = Pojs ---» Bpij = Ppj

i=1, ..., nj, i=1, ..., r. (&4.4.4)
Ulij = Yl, ..., Upjj = Up {(4.4.6)
A is diagonal. (&.4.7)

For a survey of these studies, see Spjetvoll (1977), where the problem of
estimating the mean regression coefficients (4.4.2) and the covariance

matrix of these coefficients (4.4,.3) is treated.
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4,53  WIENER PROCESS WITH RANDOM DRIFT

This section discusses a Wiener process model where the drift parameter u
is a random wvariable with one value for each specimen., A similar,
extended model of this kind is also discussed and fitted to data on wvalve

leakage in Part II of this thesis.
Agsume that pg has some distribution Fp(p), and that given p, then D(t]u)
is a Wiener process with drift parameter p and variance parameter o2,
This implies that

D(E) | B~ N(ut, o%t) (4.5.1)
Note that D(t) | 4 has the same distribution as

pt + oftU, (4.5.2)

where U ~ N{0,1).

This model is very convenient from a mathematical point of view if 4

itself is assumed to have a normal distribution, say,
p o~ N(8,A). (4.5.3)

It follows from (4.5.2) and (4.5.3) that unconditiomnally, D(t) has the

same distribution as
(6 + XUt + oftUy, (4.5.4)

where Uy, Up are independent and N(0,1). From (4.5.4) it is readily seen
that

D(t) - N(ft, rtZ + o2t ). (4.5.5)
To investigate this model further, we shall find the probability distri-

bution of D(tp) given D(ty) = di, where te > t1 > 0. For simplicity, we
use the notation Di = D(t1) and Dy = D(tg). '



Part T 63

Conditionally given g, then Dy and (Dp - D7) are independent with
distributions

Dy|p ~ N(uty, otp)

(Dg - D) lp ~ N(u(tp - £1), o2(ty - £1) )

The conditional joint probability demsity of (Dy, (Do - D1)) |z is thus

1
2n a? JE1(ty - £1)

f(dy,(dy ~ dy)) =

{ 1(dy - pepd? 1 [(dg - d1) - p(tp - tp)]12 }
expy - — ———————— . - . (4.5.6)

2 02t1 2 02(t2 - t1)

The transformation

o] 7 o]

has a Jacobian matrix with determinant 1. It follows that the conditional
joint distribution of (D1, Do)ip is given by the same expression
(4.5.6), and that it is a binormal distribution. A binormal distribution
may be identified in terms of the five parameters E(Di|p), Var(Di|p), 1 =
1,2, and the correlation coefficient p(D1,Do|p). The first four para-

meters are given by (4.5.1) as

E(Dj|p) = pt;, 1 =1, 2, (4.5.7)
and

Var(Dy|p) = o?t;, i =1, 2. (4.5.8)

The correlation coefficient may be found by rearranging (4.5.6). However,

it is more easily found from the general identity

Var(Dy + Dp|p) = Var(Difu) + Var(Dp|p) + 2Cov(D1,Do|p).
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This gives

Cov(Dy,Do|u) = %[Var((Dl + Do) |p) = Var(Dq|{u) - Var(Dg|u)]

1y = Tar{Dalmudl
177 (LR WA

214
Since Dy and Dy - D are independent given g, this becomes:

Cov(Dy,Dp|s) = F14Var(Dy|s) + Var((Dy - D1)|a)
- Var(Dylp) - Var(Dg|u)]

- 2[3Var(Dy|p) - Var(Dylw) + Var((Dz - D1)|w)]

= %[302t1 - 02t2 + 02(t2 -~ t1)]

- a2t

1-

The correlation coefficient is

Cov(D1,Do | u)
p(Dy,Dofu) = - Jti/tp . (4.5.9)
JVar(Di|p) Var(Dy|p)

Generally, the binormal probability density is given by

£ . (x1,%p) = - ~
X1.%9 2‘17010‘2(1—,02)1/2
1 (x1 - 31)2 (x1 - 1) (xp - mp)  (x9 - pp)?
‘expy - - 2p + .
2(1 - pz) 012 109 022
{(4.5.10)

where

E(X;) = pg, Var(¥j) =ogy, 1=1, 2,
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and

Cov(Xy1, X9)
p o=
102

The conditional distribution for (Dy,Dg)|p is found by entering (4.5.7),

(4.5.8), and (4.5.9) into (4.5.10). The unconditional distribution of

(D1.D9) may be found from

£(dy,dp) = [ £(dy,dp|p) £,(8) dp. (4.5.11)

-
By inserting the appropriate expressions into (4.5.11), it is readily
seen that it is a binormal density. It is straightforward, but however
rather cumbersome, to calculate the parameters in this distribution by

working further on (4.5.11). It is easier, and more instructive, to use

known results from Bayesian statistics to derive the distribution of Dj

given Dq = dj.

To summarize our model, u is a stochastic wvariable with "prior" distri-

bution given by (4.5.3):
@~ N(8,x).
Given p = u, then D(t) has the distribution given by (4.3.1):
D(t) | p ~ N(ut, o2t),
or, equivalent, D(t}/t given p has the distribution
D(E)/E | u ~ N(p, o2/t). (4.5.12)
The unconditional distribution of D(t)/t is found direct from (4.5.3) as
D(E)/t ~ N(8, A.+ o2/t ). (4.5.13)

Now, let the observation D(tj) = dj, or equivalent, D(t1)/ty = d1/ty, be

given., The posterior distribution of u is found by direct application of
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the results Bayesian estimation in the normal distribution with a normal

prior on the mean (See e.g. Lehmanm, 1983, example 4.1.3):
B | d1 ~ N(f1, A1) (4.5.14)
where

(d1/t1)/Var(Dy/t1) + E(p)/Var(p)

g1 =
1/Var(Dy1/ty) + 1/Var(u)

(d1/t1)/Co2/t1) + /2

1/(0%/t1) + 1/A

1/(e?%/t1) 1/x
- di/t1 + 8 (4.5.15)

1/¢a2/e1) + 1/x 1/(02/e1) + 1/A

and
AL = [1/Var(Di/e1) + L/Var(u)] *
2 -1
- [1/(e%/¢1) + 1] (4.5.16)

We shall make two observations at this point:

i) The posterior mean §7 is a weighted average between the prior mean

# and the "empirical" mean dj/tj.
ii) The posterior variance A is less than the prior variance X.

It follows from the basic property (4.3.1) of the Wiener process that
given p, then the distribution of B(ts) - D(t1) given D(t1) = dy is

D(tg) - d1 | & =~ N( p(tp-ty), o2(tp-ty) ) (4.5.17)

The posterior distribution of u given di may now be used as an adjusted

prior on pldy:

pldy - N(81, Ap) (4.5.18)
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Using (4.5.17) and (4.5.18), it follows from (4.5.5) that given d1 and

unconditionaily on u, then

D(ty) - d1 =~ N( 1(tp - t1), Ap(ty - t1)2 + a2(ty - €1) ).
(4.5.19)

The distribution of D(t), and the distribution of D(t) |D(t1)=d; for t>tq,

are illustrated in Figure 4.5.1.

1.4 -
/// E(D(t)ID(c‘}-dQ

— E(D(£))

Figure &.5.1: The distributions for D(t) and D(t)|D(t1)=dy, illustrated
in terms of their expectation (solid 1line) and expectation *

standard deviation (dotted lines). The illustration is an example
with the values #=0.7, /A=0.3, o=0.1, t1=0.3, dy=0.45.
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4.6 THE BERNSTEIN DISTRIBUTION AND RELATED MODELS

A general class of wear models discussed by Pieper and Tiedge (1983) and

references therein, may be written on the form

D(t) = po + p1
In this expression, D(t) is wear depth at time t, pg is initial wear
depth, i.e. D(0), p1 is a quantity characterizing wear rate, and a > 0 is
a parameter. The wvector g = (ug, #1)’' 1Is a stochastic vector with one
realization per specimen. Conditionally given g, the wear process is
assumed to follow the deterministic equation (4.6.1). Failure occurs when

D(t) reaches the critical limit d,. The lifetime distribution is given by

Fp(t) = P(T < t)
= P(D(t) = d,)
= Plug + p1t? = t) (4.6.2)

Assume, now, that up and u1 are independent and normally -distributed.
Under these assumptions, Gertsbakh and Kordonsky (1969) have shown that

the distribution function is given by

fg + 81t% - dg
Fr(t) = & 7

, ~ =< t<o, (4.6.3)
Ag + Art2e

where

89 = E(sg), Ao = Var(ug),
81 = E(p1), A1 = Var(pp).

If a = 1, the distribution is known as the Bernstein distribution. The
Bernstein distribution function is usually referred to in the form (see

e.g. Sheikh, Ahmad and Mirza, 1983)

t-c¢

Fp(t) = Q[ 7**3*-; ], =<t <o, (4.6.4)
£- 4

(54
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with obvious parameter changes from (4.6.3). When the initial wvalue is
zero (i.e. D(0) = up = 0), the distribution reduces to a two-parameter
Bernstein distribution, also known as the alpha distribution. Usually the
alpha distribution is truncated at zero, and the distribution function is

referred to in the form

-~

1 i e
FIE) = 575 ‘I’lJE'J&tJ’ € > 0. (4.6.5)

Now, consider a normal distribution with mean §q1 and variance Ay trun-

cated at 0. That is, let U be distributed according to

t -8
1

Then, T = 1/U is alpha distributed according to (4.6.5), with a =
Var(U)/[E(U)2] and ¢ = 1/E(U). Ahmad and Sheikh (1985) refer to (4.6.5)
as the "inverted normal distribution”. This name can be somewhat mis-
leading, since the alpha distribution does not coincide with the Inverse

Gaussian distribution (see equation 4.3.4 in Section 4.3).

If Ja < 0.35, then 1/8(41//A1]) = 1, and the factor 1/3(f1//A1) is

often omitted in the distribution function and the probability density.

Estimation methods for the parameters in the alpha distribution are given
by Johnson and Kotz (1970), Ahmad and Sheikh (1984), and Salwvia (1985).
.Renewal analysis with the distribution is discussed by Sheikh, Ahmad and
Mizra (1983),

The model seems usatisfactory when D(t) is measured for several t values
per specimen, since it assumes the behaviour of D(t) given g to be
deterministic. In these cases, the model classes discussed in Sections
4.4 and 4.5 are more adequate. However, the failure probability for the
valves treated in part III of this thesis turns out to be similar to

(4.6.2) in one of the models discussed (Part II, Section 5.2).
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5, ESTIMATION METHODS

5.1 INTRODUCTION

In this chapter, estimation methods within two of the established models

iven, the Wiener process/TIC madel, zand the Wiener process with

random drift., Methods for regression in the IG model will not be given

here, but some results are given by Whitmore (1980, 1983).

The observations are assumed to be of the following type: For each
observed specimen, only the failure time, or a censored lifetime with
corresponding deteriority dj, is recorded. A failure time is the (first)
time the deteriority reaches the critical wvalue d.. In the case of a
censored lifetime, the lifetime tj at cemsoring, and the deteriority d;

at that time, dj = D(tj), are recorded.

The probability demsity functions for the lifetime T and the deteriority

D(t) at time t are denoted

£1(t;de,8) = $oB(T < €50 (5.1.1)
and

£p(d5t,8) = S32(D(E) = dst,0), (5.1.2)
respectively. Let the observations be labeled such that ¢, ..., tf are
failure times, and (tfy1, dfy1), ..., (tn, dp) are censored lifetimes

with corresponding deteriority. Assuming independence between the obser-
vations, and given that failure times are recorded for f of the &peci-
mens, the joint probability density for the observed outcome may be
written

£y, ..., tf, te1s dE41, -y tps dpide,f)

-

£ n
= | I f£p(ei;de,d) |-| O fpldg;ey,f8) |. (5.1.3)
11 fmf4l
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In Section 5.2 and 5.3, the likelihood will be based on (5.1.3),

In Part II of the thesis, some estimation methods for the Wiener process
with random starting point and drift are studied. This is done using the
theory of regression with random coefficients. Further, in Part II, the
observations of another type. The deteriority is measured at several
points in time on each specimen, also above the critical value d, which

defines failure in the relevant application.

5.2 ESTIMATION IN THE WIENER PROCESS/IG MODEL

Here, we shall consider the situation where a total of n items are tested
under identical conditions. For each failed item, the failure time is
observed. This iIs the time when D(t) first reaches ds, and is assumed to
be IG distributed according to (4.3.3). For censored lifetimes, the value
of D(t) at the censoring time are observed. According to the definition
of the Wiener process in Section 4.3, D(t) is assumed to be normally
distributed with mean pt and variance o2t. The joint probability density

for the observations is given by

f(tl, LEEIE tfl tf—l-l: df+1s LI ] tn’ d'n; B, T, dc)
£ de (de-pti)?
- - exp| - —— |-
i=1 o/2n ti3/2 202ti
ol 1 (di-#ti)2
I exp| - —— (5.2.10)
i=f+1 o2 202ti
where the observations are labelled such that t1,...,tf represent failure
times, and tfyy,...,tn represent censored lifetimes. The observed values
of D(t) at the censoring times are denoted dfy1,...,dn, respectively. The

probability density (5.2.1) may be written as
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f(tl, LI} tfs tf-{-}_r d'f+1l ey tnl d“n; s, 0, dc)
£
dC
S -

(2my/2 o0 qa1

~ - - . . . . M B TN
| | 1 £ (da-uty)“ n (di-pty)= |1
expy — | — I — + 5 — {5.2.2)
202 =1 tg i=f+l  tg

We shall distinguish between two cases:

i) de is a known constant.

ii) d. is a parameter to be estimated.

In both cases, u and ¢ are parameters to be estimated.

A parametric family of distributions 1s said to form an exponential

family if the density may be written on the form

s
£(t;8) = h(t) exp [ 2 ni(8)-84(L) - B(4) ] (5.2.3)
i=1
The statistic S = (S1, ..., Sg) is sufficient for estimating the para-

meters f§, see e.g. Lehmann (1983). The density (5.2.2) is easily seen to
be an exponential family by writing the exponential function part of it

on the form

1 £ 1 pa diz n n
expd - —— | 4.2 E — +3T —— . 2fud; - 28 %  dj + 2 B g4},
202 i=1 tj i=f+l tg imft] i=1

(5.2.4)
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Sufficient statistics are:

Case 1):
n dl2 n n
Z— , Z d;, Tty _ (5.2.5)
{ i=1 ty =] i=1
Case 1i):
£ 1 n diz n n
y —, % =, Zd , I tj (5.2.8)
i=1 ty i=1 t3 i=1 =]
In (5.2.5), the notation dj=d. has been used for i=1,...,f.

In the following, we shall confine to case i), that is, assume d, to be a

known constant. The log likelihood based on (5.2.2) is readily seen to be

n 9 1 B (di-pti)z
L=0C - > log{c<) - 5;2 151 —*~?§T———- (5.2.7)

where the constant C is not a function of the parameters u and o. Maximum
likelihood estimates (MLE) are found by straightforward calculations, to
be

Z d;
b= (5.2.8)
oty
and
(ds-ptg)?
52 = ﬁ b3
ti
d.
-]-‘- i A 3_-. a2 l
- . z o - 24 0 Zd; +p a 2ty , (5.2.9)
i

where all sums are taken over i=1,...,n.



74 Part I
5.3 ESTIMATION IN THE WIENER PROCESS WITH RANDOM DRIFT

Consider a Wiemer process with random drift, that is, the drift parameter
p# is a stochastic variable with one realization per specimen. Given u,
then D(t) i1s a Wiener process with drift p and infinitesimal variance g2.

Especially, given u, then
D(E)|p ~ Npt, o?t). (5.3.1)

Let T be the time until D(t) first reaches d.. As mentioned in Section

4.3, given p > 0, then T is IG distributed with probability density

de 1 (dg-pt) %
glt|p) = exp| - —— |, t > 0, (5.3.2)
o/2Zx t3/2 202t

A mathematically convenient prior distribution for u is the normal
distribution. However, there are cases where estimated parameters in the
normal distribution give a non-negligible probability for the impossible
event p < 0 (Part II of the thesis). Here, we shall remedy this problem
by using a normal distribution truncated at 0, that is, 4 is assumed to

have the probability density

2
-% o =0 }, g >0, (5.3.3)

£f,(u) = L -1 ex [
# ®(4//%)y Jox /X °FP ]\

The unconditional density of T is given by
=
£p(e) = [ gt £u(u) dn (5.3.4)
0

Inserting (5.3.2) and (5.3.3) into (5.3.4), carrying out the cumbersome,

but straightforward integration, yields
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1 de (dg - 0t)2
fr(e) = exp| - ————

8¢9/J%) /77 /% e 4 o2 20t + o2)

[ (Adg + f2)
- B : (5.3.5)
Yt + 02)202

Given g, then the distribution of D(t) is N(4t, azt). The unconditional

distribution of D(t) is
ey (D = g ey uldlm) £ulp) du (5.3.6)

Inserting the N(4t, azt) probability density and (5.3.3) into (5.3.6)
yields

1 . 1 (d - ot)2
Eyey (D = exp| -

36//%) J2n Yeoe + a2) 2e(At + o2)

. (Ad + 802)
C B ) (5.3.7)
J(At + a2)202)
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The joint probability density for the observations is given by
£(ty, ..., tf, tFe1, df4ls .-y tpy dns 8, X, o, dp)
£ 1 de [ (dc'ﬁti)z ]
-1 exp| - ®(yi)
=1 8(yq) J77 132 aey + 02 | 202t; |
n 1 de (dc-0t1)?2
I 7 exp| - —— | ®(y3)
i=f+1 3(yg) J27 Yt3(0t; + o2) 202t
-n £ -n/2 £ 1
= 2(yo) " & (2m) S
iml L
n 1 (de-0t4)2
L exp{ - —— | ®(y1),  (5.3.8)
i=f+1 Yt (At + o2) 20%¢;
where
yo = 8//%, (5.3.9)
and
Adi + fo2
¥yi = y 1=1,2, ..., n (5.3.10)
(Aty + a2)252)
As In Section 5.2, the observations are labelled such that t1,...,t¢
represent failure times, and Efyls ..., represent censored lifetimes.
The observed values of D(t) at the censor times are denoted dgyj,...,dp,,

respectively, and the notation d, = d; for i = £+1, ..., n has been used.
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As is the preceding section, we shall confine to the case where d, is
assumed to be a known constant. The log likelihood based on (5.3.8) is

readily seen to be

1 ; (g - #ep)?

L = C-% 5 log(Atj + ¢2) - =3 X (5.3.11)
2 2 A
CilALy + o7)

- n log ®(8//X) + & log @(yi)

where the constant € is not a function of the parameters §, )\, and az, i

is given by (5.3.10), and all the sums are taken over i = 1, 2, ..., n.

If yo = 6//X is large enough, then 2(yo) is close enough to 1 to be neg-

lected. For example, yg = 3 implies
0.9987 = &(yg) < 1.

In these cases, the values of y; are usually also large enough to make
$(y4i) near enough 1 to be neglected. Note, however, that if t; is large
and di is small, this needs not be the case. Hence, care must be taken if
at least onme of the pairs (tj, dj) contains relatively large and small
values, respectively. We shall find approximate equations for the MLE by
setting these ®-functions equal to 1. In practice, the estimates obtained
this way should be inserted in the appropriate expressions to check
whether they really are approximately 1. The approximate log likelihood
obtained by setting these &-functions equal to 1, is

(d; - 6t4)?

(5.3.12)

L = C - % % log(Aty + o2) - % =

t; (At; + 02)
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The derivatives of L in (5.3.12) with respect to the parameters are:

% - N — - N — (5.3.13)
Aty + o? Aty + o2
= 7 !.I.l.-A\2
i (e = veis
% “n%E____ +%zmmumm3, (5.3.14)
Aty + a2 (Aty + 02)
. . 1 L (@ - oep?
~oL -y +53 5 - (5.3.15)
6(02) Aty + o2 ty(aty + 02)

The MLE may be found by setting (5.3.13), (5.3.14), and (5.3.15) equal to
0. However, these equations cannot be solved analytically for any of the
parameters. Numerical methods must used to find the MLE if a data set is
given. We shall not go any further on this matter here, except for noting

that the first equation yields

dj
E ~
Aty +

9>

@ >
I

1 (5.3.16)
2 A
At; +

Q >

where X and o2 are the MLE for X and a2, respectively. The estimator for
6 may, thus, be written as a weighted average of the "empirical slopes”

d;/t; per specimen:

Zvi(di/ty)
f = "—"EGE““"" (5.3.17)
where
=1
vy = , i=1, 2, , Tt
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For the limiting case when 0240, all the weights v; are equal, and the

expression (5.3.17) reduces to
A l 8
§ = nz(di/ti). (5.3.18)

In the limiting case when A+0, or if all t;'s are equal, the expression

(5.3.17) reduces to

A 2di
g = Fep (5.3.19)

which 1is identical to the MLE for p in the Wiener process/IG model
{(Section 5.2, equation 5.2.8). This is natural, since the model reduces

to the Wiener process/IG model if A~0.

If the tj's are not equal, which they need te be if it shall be possible
te estimate both A and ¢2: most weight in (5.3.17) 1s assigned to the
data with highest tj. This is natural, since the data with higher tj

contain more information on the unobservable pg; than the data with

shorter tj.
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ABSTRACT

In an accelerated life testing (ALT) of solenoid operated, hydraulie
control valves, leakage through the valves as function of operational

cycles was measured. The results are analyzed in this report.

The expected leakage through valve number j at time t is modelled as
E(Dj(t)[g) = po + u3t, where y is considered as a stochastic vector with
one realization per specimen. Two alternative models are applied, a
linear regression model with random coefficients, and a Wiener process
with random starting point and drift. Valve reliability has been
estimated in terms of failure probability, and in terms of the proba-
bility distribution for D(t). The two models are compared both in

general, and with respect to the particular data on valve leakage.

Acceptance testing of valves may be performed as follows: Measure the
leakage through new valves, after they have gone through a number of
cycles. Valves with good enough predicted future reliability are taken
into use, the rest are discharged. A class of linear acceptance criteria
for this situation has been derived, as well as a more general procedure

for determining the approximately best among linear criteria.
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SUMMARY AND GCONCLUSIONS

Accelerated life testing (ALT) of solenoid operated, hydraulic control
valves was carried out at SINTEF, Division of Machine Design in 1985-
1986. This was performed as part of the NINF-sponsored SERA project and
two projects sponsored by industry. In one of the test series, leakage
through the wvalves in closed position was measured as function of the
number of operational cycles. This test series included 5 valves, using
particle contamination level ISO 19/16 in the hydraulic fluid. This is
just above working conditions for "coarse hydraulic equipment". The
purpose of the test series was to study wear deterioration. A descrip-

tion of the test programme is given in Chapter 1.

The laboratory test results are given in Chapter 2. The measurements are
shown graphically in Figure 1. Unfortunately, no repeated measurements
were performed on the same valve at the same points in time. According
to the laboratory personnel who carried out the measurements, the

accuracy is of the size of order * 1 ml/min.
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Figure 1: Leakage through the valves in closed positions for the 5

valves A - E, as function of time (number of valve cycles).
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The measurements for each valve lie near a strajght line. Let Dij denote
the i-th leakage measurement, on valve number j, taken at time tij- The

following model was used for the expectation of Dij:

E(Dij) = uoj + f"ljtij' (L

The coefficients By - (POjs plj)’ clearly seem to have different values
for each valve. This has been confirmed by studying confidence regions
for the parameters L5, j =1, ..., 5. We consider these 5 sets of

coefficients as realizations of a stochastic vector .

Two models have been fitted to the wvalve leakage measurements. Model 1

is a random coefficient regression model
Dij = B0j *t B1jtij + eij, (2)

with the error terms ejj independent, normally distributed with mean 0

and variance 02.

Model 2 is a Wiener process with random starting point BQj, and random
drifc #1j, and Iinfinitesimal variance o2, This implies that, condition-
ally given By = (poj, ﬂlj)s the distribution of Dij - (#Oj + pljtij)

is assumed normal with mean 0 and variance aztij.

Both the "true leakages" and some measurement error contribute to the

measured values Dij:
Dij = "true leakage" 4+ measurement error (3>

It would seem plausible to assume Model 2 for "true leakage", and assume
the measurement errors as independent, identically distributed with mean
0. However, we have not entered the problem of splitting up the measured
values Dij into the two components (3). Model 1 or Model 2 are simply
regarded as models of the measured values Dij. Both models seem to agree
with the data, Model 1 somewhat better than Model 2. The models are

defined in more detail in Chapter 3.
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In Chapter 4, estimators for the parameters are derived. In both models,

the mean and variance-covariance matrix of p = (pg, p1)’ are denoted

80
Eg) = 4 = [ } (4)
91
and
A00 A0l
Vig) = A = (5)
A10 A1l

where X9 = Api. If 2 1is assumed binormally distributed, uniformly
minimum wvariance unbiased (UMVU) estimators ﬁ , R, and 32 are found in
the literature (see e.g. Spjetvoll, 1977). In Model 2, the data were
transformed, in order to obtain the conditionally independent, homo-
scedastic observations required for these UMVU estimators, Parvameters
estimates obtained for the wvalve leakage data using these assumptions
and estimators, gave a probability P(p]_j < 0) too high to be mnegligible,
The events Boj < 0 and B1j < 0 are considered as physically impossible,
To obtain a model agreeing better with the physical processes taking

place, (log(poj), log(,ulj)) was assumed to be binormally distributed

with
B - (6)
log{ni) vi
and
{ log(ng) } { 00 7ol ]
- v - . (7)
log(p1) 701 T11 )

Undexr these assumptions, the entries in the expectation and variance-

covariance matrix of g are:

1 .
61 = E(pg) = exp(vy + "é‘rii), i=20,1, (8)
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Aii = Var(pi) = exp(2vi)[exp(2r4y) - exp(ryi)], 1 =0, 1, (9)
1 L
AplL = exp(yqg + vy + 5700 + 21'11) [exp(rp1) - 1]. (10)

Estimators for the parameters in (6) and (7) were obtained by solving
{8} to (i0) for wvg, v1, 700, T11l, 70l in terms of 4§, A, and inserting

A ~
the UMVU estimators 4 and A.

The reliability of this type of valve, with respect to the failure mode
"leakage through the wvalve in closed position", has been estimated for
the given conditions in Chapter 5. Reliability has been estimated in

terms of two quantities:

- The time to failure distribution, where failure is defined to be
the time when the leakage exceeds some critical value d,. In this
report, estimation has been carried out for d, = 100 ml/min to
illustrate the procedure. Actually, the tolerance limit d. depends

on the application of the valve.

- The leakage distribution at time t. In this report, the expecta-
tion and variance of this distribution has been studied as
function of t. The most interesting point in time is when the
valve is expected to be most worn. This 1s at the end of the
planned working life of the wvalve, time tp,y. The value of thax
depends on the application. The leakage distribution has been

studied in more detail for the value tp,y = 13908 cycles.

With the estimated parameter values, a very close approximation to the

distribution of time to failure, T, was found for Model 1:

Log(de) - [log(a) - Flog(b%/a + 1)]

P(T < £) = 1 - &¢ ), (11)

og2/a2 + 1)
where

a = E(D(t)) = 8g + 81t
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and
b2 = Var(D(t)) = AOO + 2t.101 + tz}kll -+ 0'2.

Similar approximations may be found for the time to failure distribution

using Model 2. This has not been carried out in detail in this report.

In Chapter 6, the obtained results were used to study acceptance testing
with respect to leakage deterioration. Such acceptance testing may be

performed in alternative ways, such as:

i) Measure the leakage through the new valves, D(0). Discharge the

valves with initial leakage above a given limit.

ii) Measure the leakage through new valves, D(0), and after a given
number of c¢ycles, D(t1). Discharge the valves with lowest

predicted future reliability.

ili) As alternative ii), but in addition with measurements at one or

more intermediate points in time between 0 and tj.

In alternative 1), the obvious acceptance criterion is () = &k,
determined by the critical wvalue k. For alternative ii) and iii), an

acceptance criterion may be written on the form
£(D(O), ..., D(t1)) =k, (12)

and is determined by the function £ and the critical wvalue k. An
acceptance criterion is said teo be linear if the funetion £ is linear in
DY, ..., D(tl).'The class of linear acceptance criteria for alterna-

tive 1i) is derived in Section 6.2, and may be written on the form
aD(0) + D(t1) = k, -l <a<i, (13)

The values of a and k determine the proportion of the valves that will

be accepted, and the relative weight to put on D(0) and D{t1).
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In Section 6.3, a general procedure for determining the weights in
linear acceptance criteria for case ii) and iii) has been developed. It

is partly based on results from multivariate normal distribution theotry.

This procedure has been investigated, using estimated parameters from
Model 1. Comparisons with Monte Carle simulated distribution of D in
Model 1 indicated that the obtained acceptance criterion was very close

to optimal, even though the distribution of D was far from multinormal.

One word of precaution is appropriate here: The observations D(t) at
time t = 0 seem to agree slightly less with the models than D(t) for
t > 0, This is quite plausible, since mechanical components often have a
burn-in phase with different performance than the rest of their life. In
general, one ought to use an acceptance criterion with less weight on

b(0), than the weight obtained with the procedure based on the model,
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1. INTRODUCTION

1.1 BACKGROUND

As part of the SERA project, accelerated life testing (ALT) of solenoid
operated, hydraulic control wvalves was carried out at SINTEF, Division
of Machine Design in 1986. More extensive ALT of the same type of wvalves
was carried out later in 1986 and 1987 on a contract for an oil company.
These tests, with results, are described in Kielland & al (1986) and
Lydersen & al (1987).

In this report, the leakage measurements from one of the test series
pexformed in the SERA project are analyzed according to the ideas

presented in Part I of the thesis.

The rest of the introductory chapter describes the test specimen and the

test programme.

1.2 OBJECTIVES OF THE TEST PROGRAMME

The main objective of the test programmes was to extend knowledge on ALT
and modelling. There seemed to be a lack of knowledge both concerning
modelling of failure mechanisms, and how to carry out the practical
testing. To obtain data on ALT on mechanical components and to get a
practical example, it was decided to perform a series of laboratory

accelerated life tests on mechanical components.

Directional control wvalves are critical parts of all subsea control
systems used with offshore petroleum exploration and production., As a
consequence, ALT of such components seem to have increasing importance

in the vyears to come,

Directional control wvalves especially made for subsea application are
very expensive., It was decided to perform testing on ordinary direc-
tional control wvalves used in onshore industries. This choice of

component was due to:
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The chosen valves are similar to the valves used in subsea oil and

gas production sites.

Limited knowledge was available on the complex and interacting

deterioration mechanisms present in such components.

The experience gained in this project would be useful in other

on-going and future industry sponsored projects,

Operational experience with such wvalves indicated that failures

are anticipated to occur during a reasonable test time.

The chosen component was cheap enough to allow a reasonable number

of valves to be tested within limited budgets.

DESCRIPTION OF VALVES

section gives a description of the selected hydraulic contxol

valve. A general description of hydraulic control valves used in subsea

control systems is also given.

The Tested Valve Type

A valve type was selected for testing according to these conditions:

The wvalve type is similar to wvalves .used in subsea control

systems.

The valve type is ordinary stock line.

The valve is so cheap that a large number of wvalves may be tested,
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- It is possible to test other types of wvalves without re-building

the test rig.

The selected wvalve make/type was Parker D 1 VW, This is a solenoid
operated, &4-way 2-position hydraulic directional control wvalve. Here,
the wvalve is described as it was used in the test., There are also

alternative applications of the wvalve.

Figure 1.3.1 shows the hydraulic symbol for a 4-way 2-position hydraulic
directional control valve. Hydraulic component symbols may be studied in
IS0 standard 1219-1976 and 1in Norsk Standard 1422, The wvalve has 4

ports:
P = Pressure port
R = Return port’
A and B = Function ports
During the test programme, port A was plugged.
The two rectangles of Figure 1.3.1 show the two possible positions of

the valve. The right rectangle represents the "closed" position of the

valve. In this position, there is a passage from P to A and from B to R.

B

=
jo]

A
va TM\
P R

-
el

Figure 1.3.1. 4-way, 2-position directional solenoid valve

If hydraulic pressure is present on the B-port of the wvalve, the
pressure will be bled off when the valve is in the "closed" position.

Port A is plugged. This means that even though there is a passage from P
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to A, the pressure port P is closed in this position. The Ffunction of

the valve in "closed" position is illustrated in Figure 1.3.2.

"closed" "open”

Figure 1.3.2. The valve in "closed" and "open“.position.

In "open" position, represented by the left rectangle in Figure 1.3.1,
the passage from P to B is open. The passage from A to R is also open,
but since A is plugged, R is virtually closed. The function of the valve

in "open" position is illustrated in Figure 1.3.2.

The valve is operated by electric signals. The sealing principle is a
piston with O-rings. The piston is operated by the solenoid. The Parker

D 1 VW valve is shown in Figure 1.3.3.
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Figure 1.3.3. The Parker D 1 VW wvalve.

The wvalve. 1is direct operated by a solencid, which is also shown in
Figure 1.3.3. The solenoid is an integrated part of the directional
control valve. When current is applied to the coil, the steel plunger is
moved towards the piston of the wvalve. The steel plunger will cause a
movement of the piston. When the current is switched off, the magnetic
field of the coil will be de-energized. The return spring in the other
end of the piston will force the piston and the steel plunger back to

their initial positions.

The valve may also be operated manually. This is done by means of the

small piston and the return spring seen in Figure 1.3.3.

The electric parts of the solenoid are physically separated from the
rest of the wvalve. The mechanical parts, on the other hand, are sur-
rounded by oil. The purpose is lubrication, and to soften the movement

of the steel plunger.
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Subsea Control Valwves

Different types of hydraulie control wvalves are used in subsea control
systems. The principles of some of these valves are the same as for
valves used onshore. Valves similar to the one tested in this project,
also are found in subsea control systems. In 1985 - 1986, SINTEF
performed ALT of subsea directional control and shuttle valves for an

0il company (Kielland & al, 1985, Lydersen & al, 1986).

Subsea control valves are generally more expensive than control valves
used onshore. This is mainly due to the high quality demands for

equipment to be situated on the seabed without maintenance for several

years,

The main differences between subsea and onshore applications, are the

quality, the working conditiong, and the environment.

In subsea control systems, the hydraulic control valves are normally
located in an oil-filled "pod". The subsea control module will experi-
ence amn outer pressure on the seabed, The pressure of the closed unit
filled with oil is equalized to the sea water pressure. The temperature

on the seabed is approximately 5°C.

1.4 VALVE TEST PROGRAMME

The Complete Test Programme

During the SERA project and the subsequent testing mentioned at the
start of this chapter, a number of test series on this valve type were
performed. Prior to these tests, the most important failure modes and
stressors were identified (Kielland & al, 1986). It was decided to study

the effect of these stressors during the tests:
- Contamination level in the hydraulic fluid

- Duration of idle periods between valve operations
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- Valve age, that is, the performance of new wvalves wversus used

{somewhat worn) valves.

A total of 25 wvalves were tested, in 7 test series with different levels
on these stressors. During some of the test series, one or more of these

properties were measured:

- Leakage through the valve in closed position

- Current needed to operate the solenoid

- Voltage needed to operate the solenoid

- If the valve did not operate at first trial, the number of trials

until success,

After testing, the valves were disassembled and inspected.

The Test Series Analvzed in the Present Report

Among the results from this test programme, the leakage measurements
from one of the test series is particularly interesting iIn connection
with the topic of this thesis. These measurements are subject of further

analysis in the present report.

The test series in question was started with new valves. The contami-
nation level was ISC 19/16, which is just above working conditions for
"coarse hydraulic equipment”. The wvalves were operated every 5 minutes,
that is, performing one cycle per 5 minutes. The purpose of the test
series was to study wear deterioration. The contamination level changed
during the run, mainly due to crushing of larger particles into smaller
ones. For this reason, the test was stopped every 2500 cycles, and the
contamination was renewed, to ensure an approximately constant level.

Valve leakage measurements are given in Chapter 2.
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2, LABORATORY TEST RESULTS
2.1 LEAKAGE MEASUREMENTS

Table 2.1.1 shows leakage measurements from the test of 5 hydraulic
control valves described in Chapter 1. The leakage through the valve in
closed position was measured at certain peoints in time. Here, time 1is
the number of cycles undertaken by the wvalve, and not clock time.

Graphical displays of the data are given in Figure 2.1.1 to 2.1.3.

Table 2.1.1: Measured leakage through the wvalves In closed positions,

ml/min. Contamination level IS0 19/16 (High contamination level).

Valve Accumulated number of cycles

no.
0 2500 5000 7500 10584 13756 16408

A 9.2 13.8 14.4 16.0 15.7 20 22
B 19.6 20.0 26.0 3L.2 42 48 58
c 22.0 50.4 58.0 82.0 105 120 148
D 18.0 25.2 24.4 30.0 36.8 40 56
E 11.6 17.2 20.4 25.6 30 36 46
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2.2

Logarithm of relative increment in 1leakage in closed
positions, ml/min, for the 5 wvalves A - E. That is, each point in
this figure gives the slope of the corresponding line segment in

Figure 2.1.2.

SUPPLEMENTARY TNFORMATION AND GCOMMENTS

Some additional remarks to the data set are appropriate:

1)

e
[
S

No repeated measurements on the same valve at the same points in
time were performed to assess the accuracy of the measuring
method. However, according to the laboratory persomnel who carried
out the measurements,

That is,

the accuracy is of the size of order * 1

ml/min. if the "true" leakage is d ml/min, then most

measurements would be in the range d * 1 ml/min if repeated

measurenents had been performed,

The data set is a part of a valve test programme performed at

SINTEF, Division of Machine Design, in 1987. After the test
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mentioned here, valves A - E were cycled under other conditions.
However, ﬁalve C broke down after a short time. The valves were
disassembled. A small fabrication defect at the sealing area on
valve C was detected. This defect seems to be the main cause of

the rapid deterioration of valve C.

iii) The data set Includes cases where the measured leakage decreases
(valve A from 7500 to 10584 cycles, and valve D from 2500 to 5000
cycles). Other parts of the valve test programme also revealed
cases with valve leakage temporarily decreasing significantly more
than the measurement error. Hence, such a decrease may reflect a
"true" decrease in leakage, even if 1t is within the measurement

error.

A plausible explanation for this phenomenon is sand or other

contamination temporarily blocking part of the leakage passage.
The plot of leakage on a linear scale (Figure 2.1.1) seems to indicate:

- The leakage of each individual valve seems to follow an approxi-
mately linear trend in time. That is, for each individual wvalve,
the leakage measurements lie near a straight line. However, the

axis Iintercept and the slope seems to vary from valve to wvalve,

The plot of leakage on a logarithmic scale (Figure 2.1.2) seems to

indicate:

- The log leakage of each Individual wvalve seems to follow an
approximately linear trend in time, except for the first interval
(0 - 2500 cycles), where there seems to be a significantly higher
increase in log leakage. That is, for each individual valve, the
log leakage measurements above 2500 cycles lie near a straight
line. The axis intercept of these lines seems to vary from valve
to valve, but the slopes need not have significant differences,
The slopes of each line segment from Figure 2.1.2 are given in

Figure 2.1.3.
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3. STOCHASTIC DETERTORATION MODELS
3.1 INTRODUCTION

Figure 2.1.1 shows that the leakage of each iIndividual valve seems to
follow an approximately linear trend in time. A reasonable model for the

expected leakage on wvalve mumber j seems to be
E(Dj(t)) = poj + p1jt, (3.1.1)

where Dj(t) denotes the measured leakage at time t. The coefficients
Ly = (poj, Plj)' clearly seem to have different values for each wvalve.
We shall consider the gj's as realizations of a stochastic vector u.
Note that the gj’s are not explicitly observed, but the measured values
of Dij give information about the £y's. The different #3's are assumed

to be stochastically independent, with mean

E(u) = 8 (3.1.2)

and variance-covariance matrix

200 Aoi ] G513

V{g) = A = {
210 A1l

Selecting a binormal distribution for 3 makes modelling and estimation

convenient. However, the binormal distribution assigns positive proba-

bility density to all pairs of real values B3 including those with one

or two negative values. This may cause two problems:

i) A megative value of BOjHHL for some t implies that the expected
leakage D(t) is negative, which is physically impossible. If D(t)
is taken to represent log leakage instead of leakage, this is no

problem, since exp(D(t)) is always positive.

e
e
S

A mnegative wvalue of B13 implies that the expected leakage de-
creases with time. It does not seem plausible that this should
occur in practice. Even if the estimated probability of a negative

K13 is negligible for some practical purposes, great care must be
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taken: For example, if Model 2 below is assumed, any nonzero
probability of mnegative #1j implies that the expected time to

exceed any critical leakage d, would be infinitely large.

Figure 2.1.2 shows that the log leakage of each individual valve seems

to follow an approximately linear trend in time, except for the Ffirst

=
5 (]

et
£t
e

g Dj(t) denote the logarithm
of measured leakage, (3.1.1) may provide an alternative, reasonable
model for the log leakage measurments, except those at t = 0 cycles,
Excluding the measurements on uncycled valves from the linear model is
not unreasonable: Many types of mechanical equipment experience a run-in

phase with different performance from the most useful period.

Generally, fitting log leakage to the model may seem more attractive
than fitting leakage: Choosing a normal distribution for leakage implies
positive probabilities for mnegative leakages. This needs not be a
practical problem if these probabilities are small enough to be negli-
gible. On the other side, any probability distribﬁtion for log leakage

will assign positive probability only to positive leakage.

The linear model on leakage states that for a given valve, the expected
increment In leakage is the same over all time intervals with equal
length. On the other side, the linear model omn log leakapge states that
expected relative increment in leakage is the same for all time inter-
vals with equal length. That is, the rate of increase in leakage is
approximately proportional to the leakage at the beginning of the

interval,

Two stochastic models will be fitted to the data set:

L) A random coefficient regression model (Model 1)

2) A Wiener process with random drift (Model 2).

Both models will be fitted to the leakage data. The two models are more

accurately defined below, followed by a discussion concerning choice of

model in Section 3.5.
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3.2  NOTATION

First, let us summarize the structure of data set and introduce some
common notation: Let Dj; denote the i-th leakage measurement, ox log
leakage measurement, on valve number j, at time tij. A total of r valves
are included in the test. For each valve j, the measurements were taken

at n points in time, 1§, +-vs Enj-

In our data set, r = 5 and n = 7. When the model is fitted to Djj = log
leakage, the measurements at t = 0 cycles will be taken out, leaving

n==6.

Not only has the same number of measurements been taken for each valve,

but the valves were measured at the the same points in time:
tij = 1, ..., tpj = tn, for j =1, ..., r.

This fact simplifies estimation significantly.

3.3 DEFINITION OF MODEL 1
This is a random coefficient regression model on the form
Djj = poj + K1jtij + eij (3.3.1)

The error terms ejj are assumed to be.independent, identically distri-
buted with mean 0. We shall further assume the error terms to be

normally distributed,
eij - N(0,02). (3.3.2)

In the random coefficient regression model, we shall assume the obser-
vations to be conditionally independent within each wvalve: Given

By = <#Ojs plj)’, then Dilj and Dizj are independent for all i = ij.
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The ejj are assumed independent of each other, and of the

gy = (#0j, B13)"-

3.4 DEFINITION OF MODEL 2

In the Wiener process with random drift, we shall still assume (3.1.1)
to hold. But the distribution is now assumed to be (see e.g. Cox and

Miller, 1965)
Dij = moj + K1jtij + o/tijUiy, - (3.4.1)

with the Uij's N{(0,1). The Iincrements in D within each valve are assumed
conditionally independent: Given &y = (poj, “lj)' and any four time
points such that t1j = tgj = t35 S tyy, then (D2j - Dlj) and (DAj - D3j)
are independent. Actually, this is a Wiener process with random drift
A1 and random starting point K03 (y-axis intercept). The Uij are

assumed independent of each other, and of the by = (poj, Plj)'-

3.5 CHOICE OF MODEL

Generally, the choice of a stochastic model in this situation, and
similar situation, may depend on one or more criteria. The model ought

to:

i) agree with our prior knowledge of the physical phenomenon,
ii) agree with data set (fit to the data),

iii) have mathematical / computational convenience,

Some reflections concerning these criteria and our data set are given

below,
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Both the "true leakages" and some measurement error contribute to the

measured values Djj:
Djj = "true leakage" + measurement error (3.5.1)

It seems plausible to consider the measurement errors as independent,
identically distributed with mean 0 (no systematic errors). Unfortunate-
ly, the leakage measurements do not include repeated measurements at the
same points in time, or close points in time. The time points
(0, 2500, ...) lie at approximately equidistant intervals, and the
agsessment of measurement error would have to stem from other infor-
mation sources. We shall not further enter the problem of splitting up
the measured values Dij into the two components (3.5.1), but note the

following reflections:

True leakage is considered stochastic, even if By - (poj, plj)' is
given. True leakage is assumed to follow a stochastic process with
positive drift. That is, the wvalves will tend to deteriorate, and not
stay at status quo or improve, in the long run. However, we assume a
positive probabllity of mnegative increment in D(t) over a finite
interval (cfr remark iii in Section 2.2). Both Model 1 and Model 2

assign positive probability to negative increment over finite intervals,

Both true leakage and measured leakage are always positive, since
leakage from a high pressure to a low pressure side is measured. Both
the proposed models allow positive probability for negative observation.
8till, such a model can be a good approximation of reality if this

probability is low.

The valves are comstructed such that a small leakage through the valve
in closed position should always be present. Erosive and abrasive wear
will gradually remove sealing material, and increase the leakage.
Sometimes, leakage may decrease temporarily due to sand deposits or
other contamination. On a macroscopic level, it seems appropriate to

consider the leakage development as a continuous process.

Based on these reflections, Model 2 may seem like the most attractive of

the two for true 1eakége, being a continuous stochastic process. From a
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theoretical point of view, the most attractive model would be a combined
model: This combined model would include Model 2 for the true leakage,
and assume the measurement errors to be independent, identically,
normally distributed. In this way, the overall model for the measured
leakage would include both Model 1 and Model 2 as limiting cases: Model
1 would be the limiting case if the variance of true leakage tends to

3 T 1 T4mi+3 I +ln P
zere, and Medel 2 would be the limiting case if the

tend to zero.

Model 1 may be more thought of as a model for the observations, than as
a model for the underlying true leakage process. Still, Model 1 may be a
goed enough approximation to reality. In our case, the time points
(0, 2500, ...) lie at approximately equidistant intervals. This fact

reduces one of the distinctions between Model 1 and Model 2:

Consider the measured leakage increment from time tij to time t(j41) j

on valve number j. In Model 1, this difference is given by

ADj; = (Boj + B1jt(i+l),j * o1U¢i+1),3) - (Boj + w1jtij + o1Uiy)
= p1jdtiy + o1(U(is1y,5 - Uij)

p1jhtiy + 01/2V45, (3.5.2)

where

ADij = D(i+1),j - Dij»
Atij = B(i+1),5 - Fij.

U¢i+l),j and Uiy are independent and standard normally distributed,
Vij = (U¢i+1),j - Uij)//2 1is standard normally distributed, and oy is

identical to ¢ in (3.3.2).
In Model 2, the difference is
ADjg = p1jAtiy + oa/Ati Wi, (3.5.3)

where W33 is standard normally distributed, and oo is identical to ¢ in
ij Yy 2

(3.4.1).
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If all the time increments Atij are equal, then the models (3.5.2) and
(3.5.3) for the measured leakage increments are on the same form, with
01/2 corresponding to Up/Aty;. Still, there is a difference: Condition-
ally given pu, all measured leakage increments ADij are independent in
Model 2. In Model 1, adjacent leakage increments are negatively corre-
lated due to the negative correlation between Vij and Vii41y,3
A more convenient, and better established, mathematical framework for
estimation and inferences seems to be present for Model 1 than for Model
2. That is, Model 1 seems to have better mathematical / computational

convenience than Model 2.

In this report, both models will be fitted to the leakage data.

3.6 APPLICATIONS TO OTHER FAILURE MECHANISMS

The rate of deterioration, with respect to leakage through the valve in
closed position, clearly seems to differ between the individual speci-
mens (valves). Similar phenomena are probably present for other physical
deterioration mechanisms, on different types of components, as described

below. This is more extensively treated in Part I of this thesis.

Regression with stochastic coefficients has recently been applied to
fatigue crack growth in steel. According to Paris’ law, the fatigue

crack growth rate da/dN is given by
log(da/dN) = log(C) + m'AK, (3.6.1)

where AK is the stress intensity factor, and C and m are material
constants. Both theory end empirical results establish equation (3.6.1)
as a good approximation to reality, as long as AK is within specified

limits,

Several independent authors have reported cases where (3.6.1) fits well
to the measurements per specimen, while the parameter set (C, m) wvaries

significantly between specimens. This is the case for the Ditlevsen and
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Olesen (1986) analysis of the Virkler & al (1979) data from an aluminum
alloy, and the Narbuvoll (1987) analysis of the Orjaszter & al (1985)
data from steel, Probably, the same theory would explain the variations
in the Hudak & al (1978) data.

Tuculano and Zanini (1986) report similar phenomena foxr chemical

degradation in metallic layer resistors.
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4., PARAMETER ESTIMATTION

4.1 INTRODUCTION

Tentatively, both models (Model 1 and Model 2) could be fitted to both
data sets {(leakage and log leakage). There are of 4 combinations of

L LE

model and data set:

Leakage Log leakage
Model 1 I I1I
Model 2 IT Iv

In the present section, initial estimates for model parameters will be
found for combinations I and III. Section 4.2 and 4.3 cover estimation
of parameters for the leakage data using Medel 1 and Model 2 (i.e.
combinations I and II1), respectively. Detailed estimation for the log
leakage data will not be performed in this report. The procedure would

be quite similar to the presentations in Section 4.2 and 4.3.

Whichever of these models is chosen, initial estimates for the para-
meters may be found by linear regression on the data for each valve

separately. Least squares estimators for Ly are given by

3 Z(ty - E)Dij
Bl - - (4.1.1)
=ty - ©)2

and

-] g

Hoj = nEDij - B1jt, (4.1.2)
where t = izti, and all sums are taken over i=1,2,...,n. The variance

around the regression line for valve number j may be estimated by

. 1o - -
65% = 77 2 (b1 - Ghog + Any©)1%, (4-1.3)

]
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The above estimators are unbiased if i3 is considered as a fixed

parameter set {not a stochastic vector) for each walve j. Further,

100(1-¢)% confidence intervals for B13, H0j> and aj2 are given by

1 .
ﬁlj * te/2 n-2 ; =7 &j’ (4.1.4)
’ Aty - t)
) Tes? /2
Bos F ot } — g3, (4.1.5)
J e/2,n-2 T t)2 3
and
[ B2 52 Bl g0 ], (4.1.6)
€/2,n-2 l-¢/2,n-2
respectively, where t is the upper e percentile of the Student t

distribution with v degrees of freedom, and z y is the upper e percen-

tile of the chi square distribution with v degrees of freedom. A

100(l-€)% confidence region for (uoj, Flj) is bounded by the ellipse

n Tt

ﬂ(lf‘o_-]‘f-‘o_-])2 + 2(Boj-#03) (B1j-#13) = t1 + (ioj-noj) E t12
i=1 i=l
=2 332 £, 9 n-2, (4.1.7)
where fE,Vl,V2 is the upper ¢ percentile of the Fisher distribution with

v1 and vy degrees of freedom.

Estimates and 90% confidence intervals computed using (4.1.1) - (4.1.6)
are given in Tables 4.1.1 and 4.1.2. Scatter diagrams of the estimates
are given in Figures 4.1.1 and 4.1.2, Figures 4.1.3 and 4.1.4 show 90%
confidence regions (4.1.7) for regression on leakage and log leakage,

respectively.

Figures 4.1.3 and 4.1.4 show that there are significant differences
between the valves, since several of the confidence regions far from

overlap each other. Even if the valve with seemingly most individual
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behaviour, wvalve €, is disregarded, some of the remaining valves have
confidence regions quite far apart, The distances from the confidence
region for valve A to the confidence regions for valves B, D, and E are
about 3 - 4 times the "width" of the confidence regions. This is the
case both for the leakage data (Figure 4.1.3), and the log leakage data
(Figure 4.1.4). The distances between the confidence regions are so
large compared to the size of the regions, that it is ummecessary to

carry out a formal overall significance test,.

There are no significant differences between the variances ajz. Actu-
ally, all of the one at a time 90% confidence intervals for ajz in Table

4.1.1 and 4.1.2, respectively, overlap each other.

In the remaining parts of this report, only leakage data (combinations I

and II) will be studied further.
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Table 4.1.1:

cbtained by least squares estimation.

Valve

Linear regression on leakage for each valve.

Estimates and 90% confidence intervals for parameters

£0j

10.51

(8.90, 12.12)

15.58

(12.29, 18.88)
25.60

(19.57, 31.63)
16.77

(11.84, 21.71)
11.17

(8.92, 13.42)

H1j
0.00067
{0.00051,

0.00243
(0.00209,

0.00729
(0.00666,

0.00203
(0.00152,

0.00195
(0.00172,

0.00084)

0.00277)

0.00791)

0.00254)

0.00218)

2
73

1.3242

(0.8902, 2.7602)

2.7082

(1.8202, 5.6462)

4.,9592

(3.3332, 10.3392)

4,0582

(2.7272, 8.4612)

1.8502

(1.2432, 3.8572)

Estimates

Table 4.1.2: Linear regression on log leakage for each valve.

obtained by least squares estimation.

Estimates

0.128882)

0.215162)

Valve  Estimates and 90% confidence intervals for parameters
: ] . 2
] £0j A1j 5
A 2.506 3.354-1079 0.061252
(2.401, 2.610) (2.355-107, 4.352-1073) (0.039772, 0.145292)
B 2.862 7.516-10°2 0.054342
(2.769, 2.955) (6.630-107°, 8.402-107°) (0.035282,
c 3.740 7.867-10°° 0.071452
(3.618, 3.862) (6.702-10°7, 9.032-10"3) (0.046392, 0.169472)
D 2.989 5,758-1079 0.090712
(2.834, 3.144) (4.279-1073, 7.237-10°3) (0.058892,
E 2.684 6.838-10°3 0.033722
(2.626, 2.742) (6.288-107°, 7.388-10") (0.021892, 0.079972)
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Figure 4.1.2: Scatter diagram of the estimates from Table 4.1.2,
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Figure 4.1.3: 90% confidence regions for the parameters, leakage.
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Figure 4.1.4: 90% confidence regions for the parameters, log leakage.
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4.2

ESTIMATION IN MODEL 1

Part IT

We shall assume g = {gg, p1)’' to be binormally distributed. Under these

assumptions, Model 1 has a total of 6 parameters:

E(po) = 90

E(pr) = 01
Var{ug) = Ago
Var(uy) - Al1
Cov(pp, mB1) = Apl

Var(eij) - Var(Dij[g) - o2

If ﬁoj, ﬁlj’ j=1,...,r, given by (4.1.1) and (4.1.2) had been obser-

vations, rather than estimators, the mnatural estimators for the first 5

parameters above would have been

A 1 -
E(pg) = T Z poj (4.2.1)
-1
A l r -
E(pr) = 2 2 p1j (4.2.2)
3=1
A l r A
Var(ug) = T.7 = (lgj - E(up))? (4.2.3)
j=1
A 1 r A
Var(u1) = 727 T (B1j - E(p))? (4.2.4)
j=1
A a r ~ A - A
Covlup,p1) =77 Z (poj - E(eod)(p1y - B(p1)). (4.2.5)
j=1
Since ﬁoj, ﬁljv j=1,...,r are estimators, we can mnot use (4.2.1)-

(4.2.5) direct, except possibly to obtain initial estimates.

Estimation methods for Model 1 are given, e.g., by Spjetvoll (1977). A

short survey of some random coefficients regression models is also given
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in Part I of this thesis. In our case, leakage was measured at the same

times for all wvalves, that is,
t]_j—tl, ...,tnj-tn, for j =1, ..., r.
In this situation, uniformly minimum variance unbiased (UMVU) estimators

are given by (Spjetvoll, 1977, Section 2.1). Actually, the estimatoxs
(4.2.1) and (4.2.2) for § are UMVU., The UMVU estimator for o? is given

by
A 1 r
o? = = T 42, - (4.2.6)
r .
j=1
where 532 is given by (4.1.3).

The estimator for the wvariance-covariance matrix given by (4.2.3) to
(4.2.5) 1is, however, biased., The UMVU estimators are obtained from
(4.2.3) to (4.2.5) if the matrix

o2 (x'x)-1 4.2.7)
where
1
1 t2
X = .. (4.2,8)
1 &y

is subtracted from

Var(ug) Cov{pg,x1)

Cov(pp,pr1)  Var(pyp)
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The matrix (X'X)'l is found to be

1., .2 T
(X'X)'l - — , (4.2.9)
Sty - £)2 < 1
where all sums are taken over i = 1, ..., n, and ¢t = ﬁzti. The UMVU

estimator for the variance-covariance matrix of p thus gives:

A 1 r - A A ztiz

200 =~ 7.1 _2 (ro5 - E(#o))z - g2 > (4.2.10)
j=1 n I(ty - t)

n r . . 1

=gz Gy - Baon? - 02 ————— (4.2.11)

11 r-1 . H1j M1 =5
j=1 o(ty - t)

o 1 L - A - A A _E

A1 =77 I (Boj - E(eo))(E1j - E(p)) + o2 T (4.2.12)
j=1 Z(ty - ©)

Numeric estimates

The data on valve leakage gives:
fg = 15.93
81 = 0.00287
Ao = 6.0492 - 4.70 = 5.6472
A11 = 0.002562 - 5.34-1077 = 0.002452
Ao = 0.0146 + 0.00040 = 0.0150
o2 = 3.272 '
In the above expressions for 300, 311, and 101, the last terms corres-
ponds to the last terms in (4.2.7) - (4.2.9), i.e. the term due to the

A
subtraction of the matrix o2 (X’X)'l, The correlation ceoefficient between

po and u) may be estimated as
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A

A A01

P 1.086.

AQ0A1L

Hence, the UMVU estimators lead to a correlation coefficient with

absolute value greater than one. Equivalent, the estimated variance-

> >

. . . .
covariance matrix A has 2z negative determinant, det(A) < 0. It should be

»

noted, however, that calculations not included here gave an approximate

90% confidence interval for p inecluding both 0 and 1.

As Input to some calculations and Monte Carlo simulations performed
later in this report, we need permissible estimates. In order to obtain
a positive definite estimate for A, R ought to be adjusted some way.
From a theoretical point of view, the "best" adjustment i1z perhaps to
use the "closest" positive semidefinite matrix, according to some norm
in the space of symmetrical 2x2 matrices. A simpler possibility is to

set ﬁ(uo,pl) equal to some value less than 1, and

A\ (4.2.13)

Cov(pg,n1) = P{rQ,M1) “A00 M11-

As an ad hoc procedure, we shall simply choose the value ﬁ(po,pl)BO.QQ

and

Covipg,n1) = plug,n1) YAgp Aq = 0.0137. (4.2.14)

A correlation coefficient near 1 implies that the estimates (ﬁoj, ﬁlj)

lie near some straight line

ﬁlj = B + ﬂlﬁoj, B1 > 0. (4.1.15)

This equation gives #1j as a monotonously increasing function of KO -
This is not unreasonable: The wvalue of 103 is the initial leakage, and
the value of ujj; is the valve's susceptibility to deteriorate in terms
of increase in leakage. An individual valve with inferior quality may be

expected to have high values for both ppj and u1j.
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Linear regression on the estimates (ﬁoj, ﬁlj), =1, ..., r, gives
g1 = -0.00349 + 0.,00040uq, (4.2.16)

with pg given in cycles'l, and p1 given in ml/min. Using (4.2.16), the

estimated expected wear depth becomes approximately

E(D(t)) = pp + p1t
= po + (-0.00349 + 0.00040pg)t (4.2.17)

The straight line (4.2.17) is shown in Figure 4.2.5, for several values
of pp. The continuations of ail the lines (4.2.17) pass through the
point (-1/By, -Bo/B1) = (-2502, 8.725). If pg < -Bo/B1, them (4.1.11)
implies p3 < 0, such as the lowest of the straight lines in Figure
4.2.5. As already pointed out, #1 < 0 does mnot harmonize with our
understanding of the physical processes taking place. Still, the model

may be useful if P(p1 < 0) is negligible for the practical purpose.
Assuming a bivariate normal distribution for (2o, B1), then

- B(u1)

B(h1 < 0) = &( e ).
v

ar(u7)

In our case, an estimate of this probability is

- ﬁ(nl)
A -0,00287
P(p1 < 0) = &( 7——-——Var(#l) ) = # 5700256 ) = 0-131

which is far from negligible.
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Expected leakage, E(D{t)), [ml/min]}
o
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Figure 4.2.5. Estimated E(D(t)) according to (&4.1.11), for several

values of pug.

4.3 ESTIMATION IN MODEL 2

We shall assume b = (ug, #1)' Tto be binormally distributed. Under these

assumptions, Model 1 has a total of 6 parameters:

E(pg) = 6o

E(uy) = 01

Var{ug) = Ago

Var(u1) = A1

Covipg, 1) = o1

(Var(Diyg - Digy | p13)1/(E1p5 - t1y3) = of

Note that in our data set, Dy1j is the measured leakage through valve j

after 0 cycles. Hence we have the observations
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Boj = Dlj’ j=-1, ..., r. (4.3.1)

Unbiased estimators for the expectation and variance of pg are given by

A 1 r
E(po) = . T boj (4.3.2)
31 -
and
A 1 r A
Var(ug) = 7.1 2 (Boj - E(po))z. (4.3.3)
j=1 :

Within each wvalve j, conditionally given #1j., then the n-1 leakage

differences (increments) are independent, normally distributed:

Dij - Di-1,5 | p1j =~ Nppjeg - £1.1), 02(tg - ti.1)) (4.3.4)

To make estimation easier, we transform these differences into wvariables

with equal wvariances (given plj):

Pij - Pi-1j 2,
Bly = NCppd(es - £5.1) , 0° ),
J(EL - ti.1)
j=1,...,t, i=2,...,n (4.3.5)
The model above may be written
Yij | w1y ~ Nsyyxi, o),  i=l,...,x; i=2,...,m, (4.3.6)
where
Dij - Di.1,3
J -+,
Yij = (4.3.7)
J(ti - t{.1)

and
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xj, = Jtg - t1.1). (4.3.8)

If each valve 1s considered separately, linear regression using the
model (4.3.6) give a set of estimators for pjy, ..., #1r. The formulae

obtained by least squares estimation in model (4.3.6) are given by

n

) iEZ Xi¥13

Hlj = n (4.3.9)
2 Xiz
=2

n
) 1 ’
552 = 23 RAL p1ixL)?. | (4.3.10)

Further, 100(1-¢)% confidence intervals for #1j and aj2 are given by

ﬁlj F te/2,n-2 7;&:; Ej (4.3.11)
and
[f—-;—z—&f, ZLQ—-ajz], (4.3.12)
e/2,n-2 1-¢/2,n-2
respectively, where te is the upper ¢ #ercentile of the Student t

distribution with v degrees of freedom, and z . is the upper ¢ percen-

H

tile of the chi square distribution with v degrees of freedom.

Results from least squares estimation is given in Table 4.3.1. A scatter
diagram of the points (POj, ﬁlj) is shown in Figure 4.3.1. Note that
this scatter diagram resembles the scatter diagram in Figure 3.1.1, as

we ought to expect from the similarities between Model 1 and 2.
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Table 4.3.1: Linear regression on each valve using (4.3.6). Estimates
obtained by least squares estimation. The observed wvalues of

#0j = D1j are also included.

Valve Initial leakage Estimates and 90% confidence intervals for
parameters

3 . w Dis s p

J H0j 1j B1j ;5

A 9.2 0.00078 0.037452

(0.00019, 0.00136) (0.02522, 0.07732)

B 19.6 0.00234 0.066772
(0.00129, 0.00339) (0.04492, 0.13792)

C 22.0 0.00768 0.171252
(0.00499, 0.01037) (0.11512, 0.35362)

D 18.0 0.00232 0.109802
: (0.00059, 0.00404) (0.07382, 0.22672)

E 11.6 0.00210 0.046192
(0.00137, 0.00282) (0.03102, 0.09542)

.Be8 | = c
.ees |
fia L
.04
E D B
.82 |
" A
B I 13 1 ] 1 1 1 1 ] ] 1 1 L ]
@ 9 2 ®
- n ™

Up

Figure 4.3.1: Scatter diagram of the points (poj, ﬁlj) from Table 4.3.1.




Part IT 41

If ﬁlj: j=1,...,n, had been observations, rather than estimators, the

natural estimators for E(uj)}, Var{g1), and Cov{(ug,u1) would have been

A 1 r
E(u) =3 = jj (4.3.13)
j=1

r

~ 1 - A

Var(s) = o7 B G - E(p1))? (4.3.14)
J-:

~ 1_ r A - A

Cov(po,p1) = 7.1 2 (poj - E(po))(p1j - E(u1)). (4.3.15)

j=1

Again, UMVU estimators are given by, e.g., (Spjetvoll, 1977, Section
2.1). To obtain unbiased estimators for Var(uq) and Cov{ug,e1), a term
corresponding to (4.2.7) in the Model 1 has to be subtracted. To £ind

this bias correcting term, we proceed as follows:

The model may be written in matrix form as

(Y15, «ovs Ynidlaj ~ Na( Xy , o2 4) (4.3.17)
where
S
0 X9
X = : : (4.3.18)
L 0 Xn |

uy = (po, p1)' (4.3.19)



42 Part IT

000 . 0
010 0
001 0
A = . . (4.3.20)
000 ... 1 ]
and Ylj - Dlj’ j=1, ..., r. It follows that the variance-covariance
matrix of Ej = (Ylj: Ce ey Yﬁj)' is given by

V(L) = V(Xgj + o4)
= V(Zuj) + V(a?a)
- X AX + o2 4 (4.3.21)
Least squares estimators ;j for kj are given as
5 = ('R Y (4.3.22)
Inserting (4.3.18) into (4.3.22) yields

R 1 0 Y]_J
5 = , (4.3.23)
0 1/Zx;2 S x4¥35
i i

1

which are the observations and least squares estimates already given in
(4.3.1) and (4.3.9). It follows from (4.3.22) and (4.3.21) that the

A
variance-covariance matrix of a3 is

V(;_j) - @I EAR +028) 3 x0)-L
=-A+02 XX xax xx)-L. ' (4.3.24)

Hence, the wvariable

T

Vo= Z (g - Wy - ), (4.3.25)
j=1

where
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has a 2-dimensional Wishart distribution with r-1 degrees of freedom and

variance-covariance matrix (4.3.24). It follows that an unbiased

1 r A .y A o A . _
Vo= T3 (- g - ow) - o (x'x)-lxax xx)-l. (4.3.26)
j=1
Above,
A r
52 - % = 552 (4.3.27)
3=1

is an unbiased estimator for ¢2, and &jZ is given by (4.3.10). Inserting
(4.3.18) and (4.3.20) into the last term in (4.3.26), reduces the term
to

0 0
o2 (4.3.28)
o
0 1/¢ = x42)
f=2

Hence, the estimators (4.3.3) for Agg and (4.3.15) for App are unbiased.
To obtain an ubiased estimator for i1, we simply subtract 32/2x12 from
(4.3,14). From (4.3.8) we see that

n
% x;2 =ty - t1. (4.3.29)
i=2

The complete set of estimators for Model 2 is, thus:

T
A 1
E(pg) = ; .El H03 (4.3.30)
Jﬂ
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A 1 r -~
E(p1) = r 2 Hlj (4.3.31)
j=1
A l T A
Var(ug) = - = (“Oj - E(po))z. (4.3.32)
i=1
Var(u) = == 3 (ips - BE(u2 - o2 —2 — (4.3.33)
R S ] Pt #1j H1 tn - €1 o
A 1 r A -~ A
Covipg,p1) = 727 Z (koj - E(wo))(s1j - E(p1)) (4.3.34)
j=1
A 1 r
0?2 = =% 5:2 (4.3.35)
T j
j=1

It can be shown that the above estimators are UMVU.

Numeric estimates
Using the above estimators, the data on valve leakage gives:

89 = 16.08

61 = 0.00304

Xog = 5.4442

11 = 0.002672 - 6.0180-10°7 = 0.002552
Aol = 0.00809

o2 = 0.099372

In the expression for XAjj, the last terms corresponds to ;2/(1:n - £1).

The correlation coefficient between pg and pq may be estimated as

A

A 201

p = 7_==r=- = 0,583,

AQ0A1LL
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A positive correlation tells us that the realizations of g = (ug, n1)

tend to lie near some straight line
#1 = Bo + Brro-
Fitting the straight line
B1j = Bo + B1itoj- (4.3.9)

to the points (fgi, #14), j=l, ..., ¥, using linear regression, gives
0j. #1j ] ) g

the least squares estimates for the regression line
p1 = -0.00284 + 0.00037ug. (4.3.10)

Above, ug is given in cycles‘l, and g1 is given in ml/min. The estimated

expectation of D(t) becomes approximately

E(D(t)) = po + pit
= pg + (~0.00284 + 0.00037pp) ¢, {(4.3.36)

which is similar to the straight line (4.2.17) obtained in the random

coefficient regression model.

As already pointed out, #1 < 0 does not harmonize with our under-
standing of the physical processes taking place, but the model may be
useful if P(uy < 0) is negligible for the practical purpose. Assuming a

bivariate normal distribution for (pg, p1), then

- E(u1)

P(py < 0) =<I>(7——-—-'->-

Var(py)

In Model 2, an estimate of this probability is

- ﬁ(ul)
A -0.00304
Plug < 0) = &( m— Y = B( 0.00255 3 0.117,

which is far from negligible.
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4.4 GCOMPARISON OF ESTIMATES IN MODEL 1 AND 2

The two models have already been compared with the prior knowledge of
the physical processes taking place and measurement methods in Section
3.5. In the present section, the parameter estimates obtained in the two

models are compared. These estimates are summarized in Table 4.4.1.

Table 4.4.1: Obtained estimates of the parameters.

Parameter Model 1 Model 2
80 15.93 16.08

81 0.00287 0.00304
200 5.6472 5.4442
A1 0.002452 0.002552
A1 0.01334 0.00809
o 3.2732 0.099372

Note that o2 represents the variance of the error term in Model 1, and
the infinitesimal wvariance in Model 2. Hence, the two estimates at the
bottom line in Table 4.4.1 are not comparable. The rest of the estimates
are as about as near each other as could be expected, considering the

similarities and differences between the models.

In both models, the variance terms o2 were tentatively estimated for
each valve separately in a fixed parameter regression model. This gave
the estimates Ejz, j=1,...,r shown in Table 4.2.1 and 4.3.1, respec-
tively. Confidence intervals were also calculated and listed in the same
tables. In Model 1 (Table 4.2.1), all the r 90% confidence intervals for
aj2 overlap each other. In Model 2, the 90% confidence interval for ojz
for Valve C lies above the intervals for Valves A and E, This gives an
indication that the transformed data (4.3.4) in Model 2 may not be
homoscedastic., Still, the distance between these intervals is rather
small compared to the length of the intervals. These confidence inter-
vals indicate that Model 1 fits the data somewhat better than Model 2.

However, we will not reject Model 2 for this reason.



Pare IT 47

If a model with estimated parameters shall harmonize with our under-
standing of the physical processes taking place, the probability
P{u1 < 0) should be O or approximately 0 for practical purposes. Using
the binormal distribution for g = (ugg, p1) and the obtained parameter
estimates, this probability has been estimated to 0.131 and 0.117 for
the two models, respectively. These probabiiities are not negligible in
the applications treated in the remaining chapters. A bivariate log-
normal model for p will be suggested in the mnext chapter and used

throughout the report, in order to aveid these difficulcies,
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5. RELTABTT.TTY ESTIMATION

The reliability of the component may be estimated for the given test
conditions. Reliability may be measured in terms of several quantities,

such as:

- The time to failure distribution, where failure is defined to be

the time when the leakage exceeds some critical value d,.

- The leakage distribution at time tp,y, where tp,y is the planmed

working life of the valve.

Section 5.1 suggests a revised probability model for the expectation of
D(t). Estimators and estimates are obtained for the parameters in the
revised model. In the remaining sections in this chapter, reliability in
terms of the above quantities is estimated in Model 1 and Model 2, and

the results are compared.

5.1 A REVISED MODEL FOR EXPECTED LEAKAGE

In both Model 1 and Model 2, the conditional distribution of D(t)

given g is normal, and

E(D(t)[e) = pg + mt.

For mathematical and computational comvenience, it would be desirable to
assume p to be binormally distributed. However, in practical cases this
may lead to estimated probability of P(s; < 0) that are too high to be
negligible, as the values 0.131 and 0.117 obtained in Chapter 4. Hence,
the binormal distribution model is not always a good enough approxi-
mation to reality, and another model must be sought for these cases. A
possible alternative is to assume (log(pg),log(p1))’ to be binormally

distributed, with
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E - . (5.1.1)
log(uy) v

and

o~
wn
b=
]
S

If (log(ug),log(uy1))’ 1is binormally distributed with expectation and
varilance-covariance matrix as given above, then ug and uj are log-

normally distributed with expectation and variance
L
§; = E(py) = exp(ry + 2Tii), i=~o0,1, (5.1.3)

and
Aji = Var(ui) = exp(2vi) [exp(2rig) - exp(ri{)], 1 = 0, 1. (5.1.4)

To express Cov{ug,p1) in terms of the parameters in (5.1.1) and (5.1.2),

we use the general identity

Cov(pg,p1) = E(por1) - E(eo)E(s1). (5.1.5)
Note that log{up) + log(p1) 1is normally distributed with

E(log(nrg) + log(p1)) = vp + v (5.1.6)
and

Var(log(ug) + log(u1)) = roo + 711 + 27071. (5.1.7)
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It follows that pugu1 = exp(log(up) + log(ui)) 1s lognormally distri-
buted, and

E(ugp1) = Ef{exp[log(ug) + log(up) 1)

= expl¥p + v +

~
~§
o
o]
4
=~
-
-
o
[+
=
=
jary
S
[
~~
L
}-J
o2
S

Inserting (5.1.3) and (5.1.8) into (5.1.5) gives

AgL = Cov(pg.p1)

‘ 1
= exp(vg + v1 + %TOO + Efll) [exp(rg1) - 11. (5.1.9)

Solving equatioms (5.1.3), (5.1.4), and (5.1.9) for wvq, v1, 700: 711.

701 in terms of 4, A gives:

Aif
T1; = log( ——5 +1), i=1, 2, (53.1.10)
1
1 .
vi = log(f§i) - pTils i=1, 2, (5.1.11)
1 x
701 = log(l + Xpjexp[-{vg + v + 2700 + 2?11)]}. (5.1.12)

Numerlic estimates

In Section 4.2, the following estimates were found for Model 1:

8g = 15.93

81 = 0.00287

Moo = 5.6472 (5.1.13)
A1 = 0.002452

Agy = 0.0137
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The wvalue of 301 given above has been adjusted to make det(;&) > 0,
Inserting these values in equations (5.1.10) to (5.1.12) gives

pg = 2.709
700 = 0.1184 = 0.34412
v = -6.127 (5.1.14)

711 = 0.5474 = 0.7399

701 = 0.2621

With the wvalues (5.1.13), the correlation coefficient for (pg, p1) is
0.0137/(5.647-0.00245) = 0.%9, The values (5.1.14) give as correlation
coefficient for (log(up),log(uy)):

p(log(ug),log(u)) = 0.2621/(0.3441-0.7399) = 1.030.

Hence, equations (5.1.10) to (5.1.12) do not always give permissible
values for wvg, vi, 700, 711, T0l. and the equations need to be adjus-
ted. This is quite plausible. Two variables Xj and Xy have correlation 1
if and only if there exist constants a > 0 and b such that X9 = aX7 + b
with probability 1. Let X; and X; be ﬁormally distributed with corre-
lation 1. This implies that Xy = a¥Xy + b, where a > 0, with probability
1. Then, the lognormally distributed variables Yj=log(X1) and Yo9=log{(Xj)
will lie on the curve Yy = Yiaeb, with probability 1. This is not a
straight line unless a=l, and hence, the correlation between Y7 and Yp

will be less than 1, unless a=l,.

As imput to calculations performed later in this report, we need

permissible parameter estimates. Using the same ad hoc procedure as in
A

Section 4.2, we shall simply adjust g1 such that the correlation

becomes (.99. That is, we set

701 = Yrpor11°0.99 = 0.2521.
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Hence, the complete set of estimated parameters for the distributien of

(Log(pp), log(uy)) becomes

vy = 2.709

00 = 0.1184 = 0.34412 .
vy = -6.127 (5.1.18)
711 = 0.5474 = 0,73992

ro1 = 0.2521

To obtain a wvalue XAg] corresponding to (5.1.18), these wvalues are

inserted into (5.1.9), giving
\o1 = 0.01311,
In Section 4.3, the following estimates were found for Model 2:

fg = 16.08

81 = 0.00304

Xoo = 5.4442 (5.1.19)
A1 = 0.002552

Ag1 = 0.00809

o2 = 0.099372

Inserting these values in equations (5.1.10) to (5.1.12) gives

vy = 2.723

700 = 0.32942

vy = -5.796 (5.1.20)
r11 = 0.72992

ro1 = 0.1194.

The values (5.1.20) give as correlation coefficient for

(log(uqg),log(u1)):

;(log(po),log(pl)) = 0,1194/(0.3294-0.7299) = 0.4965.
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5.2 VALVE RELTABILITY IN MODEL 1

Probability Distribution of D(t)

First, we shall study the probability distribution of D(t)} as a function
of ¢, and, as an example, assess it more closely for t = 13908 cycles.

In Model 1, D(t) may be written

D(t) = pg + p1t + oU

N
=11 t] + oU

= Tu + oU, (5.2.1)

where U ~ N(0,1) and is independent of u. Hence, the expectation and

variance of D(t) are given by
E(D(t)) = T E{u) + ¢ E(U)
- T g
= Jp + 41t (5.2.2)

and

Var(D(t)) = T V(g) T’ + o2 Var(U)

[ 200 X0l ] { 1 } )
= [ 1 t] : + g% Var(U)
A01 ALl €

= Agp + 2trgpl + tzlll + g2 (5.2.3)

For example, inserting t = 13908 and the estimated wvalues into (5.2.2)

and (5.2.3) gives
E(D(t)Y) = 15.93 + 13908-0.00287 = 55,84 (5.2.4)

and
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Var(D(t)) = 5.6472 + 2-13908-0.01334 + 139082-0.02452 + 3.272
= 31.89 + 371.07 + 1161.08 + 10.69"
w 1574.73 = 39,682 (5.2.5)

In many practical situations, other characteristics of the distribution
are of more Interest than the expectation and variance, such as the
probability of exceeding some value d,, or some percentile of the
disfribution. In our model, D(t) is a sum of one or two lognormally
distributed variables, and a normally distributed wvariable. In the
numerical example above, the lognormally distributed term tp] gives the
main part of the wvariance of D(t) for t=13%08. Hence, the distribution
of D(t) in this example should be "closer to" lognormal than to mnormal,
In fact, this is confirmed by normal and lognormal plots of Monte Carlo
simulated data. These plots are not included here, but show a reasonable
fit for the lognormal distribution. The lognormal distribution will be

used as an approximation below.

The Gram-Charlier and Edgeworth expansions (See e.g. Johnson & Kotz,
1970) give possible methods for finding better approximations to the
distributions of D(t). These expansions give approximations in terms of
the normal distributions, with corrective terms including skewness and
kurtosis of the approximated distributions. These expansions were
attempted on the distribution of D(t) in the example above. The results,
which are not included here, gave strange-behaving multimodal "cumu-
lative distributions”, not suited for approximating the distribution of
D¢t). This 1is probably due te the fact that the estimated distribution
of D¢t) has .skewness and kurtosis far outside the positive definite

regions for these expansions (Figure 2, Johmson and Kotz, 1970).

Using the lognormal distribution as an approximation, we may, for
example, estimate the probability P(D(13908) > 100). If D(t) is assumed
to be lognormally distributed with mean and wvariance (5.2.4) and
(5.2.5), then (5.1.10) and (5.1.11) give

39,682
Var(log(D(t))) = log( —— + 1) = 0.4088 = 0.63932
55,842

and
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E{log(D(t))) = log(55.84) - %-oqaoas ~ 3,8181.

Using the lognormal distribution as an approximation, we obtain

log(10 3.8181
3

P(D(13908) > 100) ~ 1 - @(to8{l00 - ) = 0.109.

Other approximate probabilities, and percentiles of the distribution,

may be obtained in a similar way.

Valve Fallure Probabillity

Actually, Model 1 is not a stochastic process giving continuous sample
paths. Hence, the time at which D(t) passes the critical wvalue d, is not

well defined. We shall define the failure probability for a wvalve by

Fr(t) = P(D(t) = do)
= P(pg + p1t + oU =< dg). {5.2.8)

In (5.2.6) the notation Fp(t) is used, even though (5.2.6) as defined is
not a lifetime distribution. However, Frp(t) has the same properties as a
lifetime distribution. The random wvector (log(ug), log(p1)) is bilog-
normally distributed according to the model, and U -~ N(0,1) is in-

dependent of (ug, #1). Since P(uy > 0) = 1, Fr(t) may be expressed as
Fp(t) = P((ug + oU - dao)/u1 = ©), {(5.2.7)
which is equal to the cumulative distribution funection for
W= (ug + oU - do)/ui- (5.2.8)

If ¢ = 0, and pg and py were independent, normally distributed, W would
have a Bernstein distribution (see Section 4.6 in Part I of this thesis,
and references therein). However, mneither of these is the case here, and

the distribution of W is not obtainable in a closed form. The cumulative
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distribution function for W, based on 2000 Monte Carlo simulated sets

(o, p1, U), is shown in Figure 5.2.1.

Alternatively, an approximation of the Fr(t) may be derived from the
distribution of D(t). As already mentioned, the distribution of D(t) is
not obtainable in a closed form. However, with the estimated parameter
values, as discussed above, D(t) was found to be approximately lognormal
distributed at t = 13908 cycles, and the lognormal approximation will
improve when t increases. We have already found that with d; = 100, then
P(T > 13908) = 0.891. That is, approximately 89.1% of the failures occur
for t > 13908 cycles, where the lognormal approximation is even better
than at t = 13908 cycles. Hence, it seems appropriate to use the

lognormal approximation for D(t) in (5.2.6). This gives

P(T = t) = P(D(t) > dg)
log(d;) - E(log(D(t)))
= 1 - & )
JUar(Tog(D(E)))
log(d.) - [log(a) - %log(bz/az + 1)]
=1 - & ), (5.2.9)

Y1og(b2/a2 + 1)
where

a = E(D(t)) = 4 + 41t
and

b2 = Var(D(t)) = Agg + 2thgy + t2Aq + oZ.
The distribution (5.2.9) is shown in Figure 5.2.1 for the estimated
parameter values. In fact, the distribution (5.2.9) agrees very well

with the Monte Carlo simulation based exact distribution. The two

functions are hardly distinguishable in the figure.
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Failure probability

O T T TSggEe T T Tegeea’ ' 'isdeer | ‘Zodbeo

Cycles

Figure 5.2.1. The failure probability P(D(t) > d.) for d, = 100 ml/min,
based on 2000 Monte Carlo simulations (step function), and the
lognormal approximation (5.2.9) (smooth curve). The two curves are

hardly distinguishable in the figure.
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5.3 VALVE RELIABILITY IN MODEL 2

The methods and calculations used if model 2 is assumed, are quite

similar to the preceding section.

Probabllity Distribution of D(t)

a
5
i
|

Again, we shall study the probability distribution of D(t) as a function
of t, and, as an example, assess it more closely for t = 13908 cycles.

In Model 2, D(t) may be written

D(EY = pug + pt + aft U
#0
=1 t]{ :l+aﬁU
#1

= Ty + o/t U, {(5.3.1)

where U ~ N(0,1) and is independent of x. The expectation and variance

of D(t) are given by

E(D(t)) = T E(g) + o/t E(U)
=T 4

"= fg + 81t (5.3.2)
and

Var(D(t)) = T V(g) T' + o2t Var(U)

A00 201 1 5
= [ 1 t] + ot Var(U)
A0l A1l t

= Agg + 2tipy + t2A11 + ot, (5.3.3)
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Inserting t = 13908 and the estimated values into (5.3.2) and (5.3.3)

gives
E(D(t)) = 16.08 + 0.00304-13908 = 58.36 (5.3.4)
and

Var(D(t)) = 5.4442 + 2-13908-0.00809 + 139082-0,002552
+ 0.099372-13908

= 29.63 4+ 255.03 4 1257.79 4 137.33
= 1649.80 = 40.622, (5.3.5)

Valve Failure Probability

The expressions for valve failure probability are somewhat different in
Model 2, than was the case for Model 1. The sample paths D(t) in Model 2
are continuous functions. Hence, the lifetime of a valve is well defined

in terms of the time T when D(t) first reaches the critical wvalue dg:

T=dinf { t : D(t) = dg }. (5.3.6)

Conditionally given u = (ug, p1)’', then D(t)|mg is a Wiener process with
starting point po and drift pq. The time for this Wiener process to
reach d, has the same distribution as the time for a Wiener process with
starting point 0 and the same drift to reach d, - pg. Hence, provided
that pg < d., the conditional life distribution given g is Linverse
Gaussian with cumulative distribution function (See Section 4.4 in Part

I of this thesis)

G(tlw) = @[ Bt ] + exp[ -3—] qa[ . ﬁ-‘}ﬁ-—l] , (5.3.7)

where

v = a2/(dg-np)?,
§ = p1/(de-po).



60 Part IT

On the other hand, the time to failure distribution may be defined
analogous to Birnbaum-Saunders distribution by setting (See Section 4.4

in Part I of this thesis)
P(T < t) = P( D(t) = d, ) (5.3.8)

This is also analogous to the definition of valve failure probability
given for Model 1 (Equation 5.2.6). In this case, provided that po < de,
the conditional 1life distribution is Birnbaum-Saunders with cumulative

distribution function

G(t|u) = @[% [‘/% - ‘/%‘] ] (5.3.9)

where

a = o//u1(de-po),
B = (dc-p0) /1.

Whichever of (5.3.6) or (5.3.8) is chosen, the unconditional 1life

distribution is given by

Fp(e) = [ G(elw) £,(u) dug dpg, (5.3.10)

where fp(g)' denotes the joint probability denmsity for g, and G{t|w)
is given by (5.3.7) or (5.3.9) depending on which approach is chosen. In
principle, the iIntegration in (5.3.10) iz taken over (0,0)x(0,=).
However, G(t|z) is not defined for pg > de in (5.3.7) or (5.3.9). Hence,
if P(pg > d;) is not negligible with the parameter estimates used, the
probability distribution for g should be truncated accordingly, and the
integration should be taken over (0,de)x(0,@). In any case, with the
chosen bivariate lognormal distribution for u, the integral cannot be
solved explicitly. In each practical case, the distribution of T must be
assessed by Monte Carlo simulations and/or approximations. This will not

be carried out any further in this report.
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5.4 VALVE RELIABILITY - MODEL 1 VERSUS MODEL 2

The estimated E(D(t)) and Var(D(t)) found above for t=13908 cycles are

summarized in Table 5.4.1., Estimates for E(D(t)) and Var(D{(t)) at

t=13756 cycles are also shown Iin the table, with approximate 90%

confidence intervals. Figure 5.3.1 shows E(D(t)) as function of t for

the two models, based on (5.2.3) and (5.3.3) with the estimated para-

meter values. The curves E(D(t))

(5.3.4) are also included,

+ /Var(D(t)) based on (5.2.4) and

Table 5.4.1, Some estimated values of E(D(t)) and Var(D(t)).

t = 13908 cycles,
estimates from the
preceding sections

t = 13756 cycles, based
on the measured values
at t = 13756 cycles

Model 1 Model 2 Estimate 1) Approximate 90%
confidence interval
E(D(t)) 55.84 58.36 52.8 (15.7, 89.9)
Var(D(t)) 39.682 40.622 38.932 (25.272, 92.392)
1) Obtained with the estimators
r
A e L
E(D(t)) = Df{t) = ; b} Dj(t)
j=1
and
~ A S 2
Var(D(t)) = Z [Ds{t) - D{(t)]=.
r-1, J
j=1
2) Assuming that Dy(t), ..., Dy(t) are normally distributed. In

fact they are only independent, identically, not normally distri-
buted. Hence, the obtained confidence intervals are only approxi-
mations.
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Figure 5.3.1. Estimated E(D(t)) and E(D(t)) * JVar(D(t)) for Model 1
(solid curves) and Model 2 (dotted curves).

Table 5.3.1 and Figure 5.3.1 show that the estimated E(D(t)) and
Var(D(t)) do not differ much betyeen the two models. Caleculations are
easier in Model 1 than in Modej 2. TFurther, as noted in Chapter 3,

Model 1 fits the valve leakage data somewhat better than Model 2.

In the last chapter, which COvers component acceptance testing, only

Model 1 will be considered in detail
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6. ACCEPTANCE TESTING
6.1 INTRODUCTION

In many applications of control wvalves, especially in subsea oil/gas
production sites, the cost of repairing or replacing a valve far exceeds
£ a wvalve. In these cases, valves are acceptance
tested, and only those satisfying vrather striet requirements are
installed. For example, the Underwater Manifold Centre (UMC) at the
Cormorant Field in the North Sea contains about 250 control wvalves.
During the acceptance testing, about 15% of the purchased control valves
were discharged, due to 1leakage or othér measurements being outside
given limits. All these valves were fully capable of performing their
function, but were discharged due to the risk that they could deterio-

rate rather fast,

The results obtained through the tests described in this report, may be
used as a basis for acceptance testing with respect to leakage
deterioration. Such acceptance testing may be performed in alternative

ways, such as:

i) Measure the leakage through the new wvalves, D(0). Discharge the

valves with initial leakage above a given limit.

ii) Measure the leakage through new valves, D(0), and also the leakage
after a given number of cycles, D(tj). Discharge the valves with

lowest predicted future reliability.

iii)y As alternative 1ii), but in addition with measurements at one or

more intermediate points in time between 0 and tj.

In alternative i), the obvious acceptance criterion is D(0) = k,
determined by a critical wvalue k. In alternatives ii) and iii), the
selection criteria are not so obvious, In Section 6.2 below, the class
of reasonable linear criteria for case ii) is derived. In Section 6.3, a
procedure for choosing the approximately "best" among the linear

criteria is developed and described.
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6.2 A CLASS OF LINEAR ACCEPTANCE CRITERIA

In this section, a class of linear acceptance ecriteria for case iid)

above 1s derived,

Assume that the reliability is measured in terms of the leakage distri-
bution at the end of the planned working life of the walve. If the
planned working life is tp,,, then a valve having passed this acceptance
test will have age t] + tpyy at the end of the working life. Any
acceptance criterion in alternative ii) may stated as to accept the

valve 1f

£(D(0),D(t1)) = k, (6.2.1)
where the function f and the constant k determine the criterion.
What sort of functions f give reasonable acceptance criteria? Gonsider
3 wvalves, with measured values og D(0) and D(tq1) as illustrated in
Figure 6.2.1. It seems quite obvious to give the following "ranking"® of
these wvalves:
i) Valve 1 seems better than valve 2,

ii) Valve 1 seems better than valve 3.

iii) It is not possible to rank Valve 2 and 3 relative to each other

without more information available.
Rewriting criterion (6.2.1) in terms-of another function f1 as
£1(b(0),D(t1)-D(0)) = k, (6.2.2)
statements i) and ii) above mean that f1 ought to be strictly increasing

in its first and second argument, respectively. Note that for a fixed

value of D(t1), f1 needs not be an increasing function of D(0).
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D(t)
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- %  Valve 1
th O Valve 2
C) () Valve 3
X
®
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Figure 6.2.1. Comparison of possible leakage measurements at time 0 and
t1.

For simplicity, we shall confihe ourselves to linear functions £, that
is, acceptance criteria of the type

a1D(0) + by[D(ty) -~ D(O)] = ¢, a; > 0, by > 0. (6.2.3)

This is equivalent to each of the criteria

asD(0) + [D(t1) - D(O)] = c9, ap > 0

(ap-1)D(0) + D(ty1) = cg,

as>0

abD(0) + D(t1) = ¢, a> -1. (6.2.4)

Since D(t7) is the measurement closest to t] + tpayx, 1t seems reasonable
to consider only criteria with more weight on D(ty) than on D(0). That

is, we consider only criteria with a < 1. Hence, the class of criteria
to consider becomes

aD{0) + D(t1) = ¢, -l <a<l,

(6.2.3)



66 Part IT

In order to obtain a better understanding of acceptance criterion
(6.2.5), it may be illustrated as follows: Plot the points (0,D(0)) and
(t1,D(t1)) in a coordinate system with linear axes. Draw the straight

line through these two points, This line has the equation

D(t1) - D(O)
d(t) = D(0) + o €. (6.2.6)

Let terit = t1/(a+l) and deoyir = ¢/(a+l). Then, criteriom (6.2.5) is

equivalent to

d(terie) = derits  terit > t1/2. (6.2.7)
This criterion is illustrated in Figure 6.2.2, Note that

a<0 & topig >t

a=0 & tepjp =t]

a>0 o t1/2 < tepir < t71.

In the example illustrated in Figure 6.2.2, a < 0, and torit > t1.

D(t). d(t)

Reject
valve
&crlt'
Accept N
/f
valve

X : measured leakage

a<0

4 t
, 2

1 tcrit

Figure 6.2.2. An example on the acceptance criterion given by Equation

(6.2.7). The valves with d(tepit) < tepit are accepted.
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6.3 & PROCEDURE FOR CHOOSING A LINEAR ACCEPTANCE CRITERION

In this section, a procedure is developed and described, for choosing
the approximately "best" among linear criteria like those described in
the previous section. First, the procedure is explained in detail for
the case where leakage is measured at two points in time. Secondly, this
procedure is performed for a numerical example, including some studies
of the "optimality" of the procedure. At the end, a scheme for the

procedure in a more general situation is given.

Application of Multinormal Distribution Results

Assume that the valve leakage D(0) and D(t1) is measured at time 0 and
t1. Based on these measurements, the wvalves with lowest predicted
leakage at time t] + tpgy will be accepted. For the valve population

considered, the following parameters are known (or have been estimated):
E(g) = &

AQ0 A01
. Vi{g) = A =

A10 A1l
Var(D(t)|g) = o2

First, fit a normal distribution to (log(ugp),log(ui)) wusing (5.1.10)
to (5.1.12). TIf the estimates give a correlation coefficient with
absolute value greater than 1, adjust them to make it less than 1. Now,
consider the probability distribution of the stochastic wvector (D(0),

D(t1), D(t1 + tpax)'. For convenience, we shall use the notation
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£2 = t1 + thax,
Dg = D(0},
D1 = D(t1),
Dy = D(tsp),

and

Do
D = DY | - (6.3.1)

Dy

In our model, we have

Do [ wo + oUp
Dy - o + p1ty + oUy
Ds | Bg + pite + oUsg
1 0 Ug
. M0
- 1 g + o Uy (6.3.2)
b1
L1 o8 Uz
= Tu 4+ ol,

where (log(pgp), log(p1)) is binormally distributed, and Ug, Uy, Us
are independent standard normally distributed and independent of p. From

(6.3.2), the expectation and variance-covariance matrix of D are found

to be:
1 0
N
E(D) = T E(ug) = 1 ¢ (6.3.3)
b1
1 to

and




Part IT 69
V(D) = V(Tu) + V(o)
= T V(g) T' + a2 I3

.

{ 200 Aol ] [ 111 }

= 1l + 0213
[ Aol Al J [ 0 ty t

L 1t J

A00+02 (Symmetric matrix)
= Ago+t1Aol Apg+2 t1A01+t12A11+02
Apottarpr  Apot(ti+tto)Apititaoryy A00+2t2A01+t22A11+02
(6.3.4)
We are interested in the conditional distribution of

(Do | Dp=dg, D1=d1). Each of the random variables Dg, Dq, and Dy equal
a sum of one or two lognormally distributed wvariables, and a normally
distributed wvariable. Hence, finding an explicit expression for the

distribution of (Dg | Dg=dg, Di=~d1) does not seem feasible.

Partition D and its variance-covariance matrix as follows:

=

D31
D = (6.3.5)

Dy
where
Dg
Dy = y Do = [ Do},
Dy
and
11y Tig
Var(D) = , (6.3.6)
I'pp To22

In (6.3.6), TI'y1 is the variance-covariance matrix of Dj, and is made

up of the wupper left 2x2 elements in (6.3.4). Further, I'pp is the
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variance of Dy, and Tjp = T1’ are the covariances between Dj and Dj,

which are the two first entries of the last row in (6.3.4).

If D was multinormally distributed with the expectation and wvariance-
covariance matrices given above, then conditional distribution of Do

given Dj=d; would be multinormal with mean and variance:
E(Dy | Di=d1) = E(D2) + TpiTy1-L(dy - E(D1)) (6.3.7)
Var(Dy | Di=d1y = T3 - T21l11 1Ty (6.3.8)
The above result is given i.e. in Mardia & al.(l979) p 63. However, D is
not multinormally distributed. Still, (6.3.7) and (6.3.8) may provide
reasonably'good approximations. In fact, (6.3.7) gives the best linear

predictor for Dy under squared error loss for all distributions, as seen

by the following argument:
Let § be any linear predictor for Dp, that is, let
§ = E(Do) + a'[D1 - E(DR1)] (6.3.9)

for some column vector a with the same dimension as Dj. The squared

prediction error is
L2 = (Dg - £)2
= (D2 - {E(D2) + a’[D1 - E(@1)]1}1)?
= ([Dg - E(D)] - a’[D; - E(@D2. (6.3.10)
The expected squared error loss is

E(L2) = VarDy - 2a'T'yy + a'Tqia. (6.3.11)

The derivative with respect to a, that is the vector of partial deriva-

tives with respect to the components of a, is

BELLD) . Laryy + 2ryga. (6.3.12)
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Setting (6.2.12) equal to the zero vector yields

a=r117Mp,
a’ = I'1oT1°L. (6.3.13)

-

Inserting (6.3.13) into (6.3.9) yields the right side of (6.3.7).

The
minimal expected squared prediction error is obtained by entering

(6.3.13) into (6.3.11), giving thHe right side of (6.3.8).

Inserting (6.3.3) and (6.3.4) into (6.3.6), and performing the required

matrix operations yields

80
E(D1) = (6.3.14)
fg + 61t1 )
E(Dp) = 4fdg + 81t9 (6.3.15)
and
rpafi1°t = (81, 821/83 (6.3.16)
where

g1 = t1%gor11 - €122 + t1tor012 - titadgod1l + tarore? + Aggol

2 2 2 2 2

82 = T1T2A00A11 - t1t2A01° + titgA110° + t1Ap1o” + t2Xp10° + Aggo

2 2 4 g%,

g3 = t12{A11(Agg + 02) - Ag12] + 2t1Ag102 + 2Agge

A Numerica xample

In Section 5.1, estimated parameters in the binormal distribution of
(log(ug),log(uy)) were calculated, and rgy = Cov{(log(uqg),log(p1)) was
adjusted to make the absolute value of the correlation less than 1. The

corresponding adjusted wvalue of Apy was obtained by inserting (4.1.17)
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and the rest of the parameters in (4.1.14) into (4.1.9), which gives
A0l = 0.01311. Hence, the set of basic parameters in the model becomes:

80 = 15.93

f1 = 0.00287
Agg = 5.6472
A11 = 0.002452
Agp = 0.01311

o2 = 3.2732

~~
h
(W]
—
~J
S

A

-~
Here, the notation fdg, #1, ..., is used instead of #dp, f#1, ..., for

convenience, even though strictly, they are estimates.

In oxder to get a feeling for how good the model and the approximations

are, we use two times for which we have observations:

t] = 2500
tp = 16408

Hence, we use the value tpg, = tp - t] = 13908 in the example. Inserting

these values into the appropriate equations above gives

E(Dg) = 15.93
E(Dy) = 23.105
E(Dy) = 63.02
rp1ly1! = [0.96748, 3.18144]

Hence,

E(D2|(Dg,D1)) = 63.02 + 0.96748(Dg - 15.93) + 3.18144(D7 - 23.105)
= 0.96748Dg + 3.18144D7 - 25.90
= aDg + bDy + c. (6.3.18)

"Accepting a valve if (6.3.18) does not exceed a given value, gives a
linear acceptance criterion agreeing with (6.2.5), since |0.96748| <

3.18144, Further, (5.3.5) and (6.3.8) give

Var(Dy) = 45,622




Part IT 73

and
Var(Dy|(dg,d1)) = 13.2942,

Table 6.3.1 gives the results when inserting the measured leakages of
the five wvalves into (6.3.18). These results agree well with the

measured leakages Dj.

Table 6.3.1. Conditional expectation of Dy from (6.3.18), and measured
values of Dj.

do d1  E(D2]{(dp,d1)) dg

9.2 13.8 26.90 22
19.6 20.0 56.69 58
22.0 50.4 155.73 148
19.0 25.2 71.69 56
11.6 17.2 40,05 46

Continuing this example, assume that this type of valves will be
accepted by the following criterion: The probability that the leakage
after 13908 cycles in use shall exceed 100 ml/min, must be lower than a

given, low probability «, say, a« = 0.0l. That is, we require that
P(D{13908) > 100) = w. (6.3.19)
For the given valve population, (5.2.5) gives Var(D(13908)) 39.682, and

100 - (15.93 + 0.00287-13908)
39.68

P(D(13908) > 100) = 1 - & )y = 0.132,

which does not satisfy (6.3.19) for "low" values of @. In order to meet
the requirement, the valves are tested and accepted as follows: Test the
valves for time t1=2500 cycles, and measure the leakage at times 0 and
t1. Find a criterion value c,, and accept only the valves with Dg=dg and

Di=d1 such that

E(Dy | dg,dy) = adg + bd] + ¢ 5 ¢4, {6.3.20)
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where Dgp = D(2500 + 13908), and a, b, and c are given in (6.3.18). The

criterion value c, is set such that

P(Dg > 100 | adg + bdy + ¢ = ¢p) = a. (6.3.21)
Now, we only want to accept valves with dp, dp such that

P(Dy > 100| (dg,d1) € Acceptance region) < a.
In the multivariate normal approximation, we have

E(Dp|dg,d1) = adg + bdj + c,
Var(Dg|dg,d1).= 13.2942,

and

100 - adp + bd] + ¢
P(Dg > 100(dg,d1) = 1 - &( 13.294 ) =

gives
adg + bdy + ¢ = 100 - 13.294u, (6.3.22)

where u, is the upper a percentile of the standard normal distribution.

Hence,
cg = 100 - 13.29u,. (6.3.23)

Using this acceptance criterion, the probability that a random valve

will be accepted, is

Cq - 63.02

W). (6.3.24)

Pa = P(aDg + BDy + ¢ 5 ¢,) = &

The normal distribution approximations used in (6.3,22) and (6.3.24) are
probably poorest near the distribution tail, i.e. for values of a near

0. Table 6.3.2 gives c, and p, for some values of a.
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Table 6.3.2. Some values of ¢, and p, calculated from (6.3.22) and
(6.3.24). Some results from Monte Carlo simulation of 2000 valves

are also given.

Based on the normal Results from Monte Carlo
distribution approximations simalations with acceptance

(6.3.22) and (6.3.24) limit ¢,

c Cor Pe P(Accept valve) P(D9>100}Accepted)
0.1 82,957 0.676 06.725 0.00344

0.05 78.131 0.635 0.694 0.00144

0.025 73.944 0.597 0.658 G.00076

0.01 69.078 0.555 0.616 0

0.005 65.755 0.525 0.586 0

0.001 58.922 0.462 0.523 0

In order to check how well the above results, based on the multivariate
normal distribution, agree with the model composed of lognormal and
normal distributions, 2000 valves were Monte Carlo simulated according
to thé model. Figure 6.3.1 shows a normal probability plot of the
distribution of Ds (leakage after 16408 cycles). It appears that the
distribution of Dy in this case differs significantly from the normal
distribution. This was expected, since Do = pg + pity + UZUZ, and the
main contribution to the variance of Dy comes from Var(ujty) n‘tzlll =
164082:0.002452 = 40.202. The coefficient u7 is lognormally distributed,
and Dy is approximately lognormally distributed. This has been confirmed
by a lognormal plot of the simulated values of Dj, not shown here. Since
the distribution of Dy differs significantly from the normal distri-
bution, we may also expect the distribution of Dg|(adptbdi+c) to differ
from the normal distribution. This may explain the relatively large

differences between p, and simulated P(Accept valve) in Table 6.3.2.
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20080 simulated valves
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Figure 6.3.1. Normal probability plot of the simulated distribution of
D9 (2000 simulations). The s0lid line shows the normal distri-
bution function with mean 63.02 and variance 45.702.

Further, note that in Table 6.3.2,

@ = P(Dg > 100 | adg + bdy + ¢ = ¢,)

is based on the multinormal distribution approximation, and
P(D2>100|Accepted) = P(Dg > 100 | adg + bdi + ¢ = ¢p)

is based on the Monte Carlo simulations. I order to compare the simu-

lation results to the normal approximation values, it would be inte-

resting to find the values of

P(Dg > 100 | adg + bdy + ¢ = ¢,)
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for the simulated valves, and compare them to the values of a in Table
6.3.2. However, this cannot be done directly. The wvariable
aDg + bD3 + ¢ is continuously distributed. Hence, we can hardly obtain
many simulations with adg + bd) + ¢ = ¢, for a given c¢,. However, i
is possible to get a rough feeling for the agreement hetween & and the
corresponding values for the simulated wvalves. From Table 6.3.2, we
should expect P(Dy > 100 | adyg + bdy + c¢) to be in the interval
(0.05, 0.1), or near this interval, for the valves with 78.131 < adg +
bdy + ¢ x 82.957. The detailed simulation results (not included here)
show that among 60 valves with 78.131 = adp + bd; + c < 82.957, 3 valves
had dp > 100. This gives an estimated probability equal to 3/60 = 0.05,

which agrees well with what we expected.

The distributions of Dy, and of Dg|{(dp,d1), are "in between" normal and
lognormal, but "closest to" the latter. Alternative computations of Pas
using lognormal instead of normal distribution, gave values about as
different from the simulated P(Acéept valve) as the ones given in Table

6.3.2, on the other side of P(Accept valve).

As derived in Section 6.2, a linear acceptance criterion for a valve

should be to accept the valve if
aDg + D1 = ¢, -1 <a<l, (6.3.25)

where the parameters a and c determine the criterion. The criterion used
above is of this type, with a = 0.96748/3.18144 = 0.30410. The accep-
tance limit ¢ determines the fraction of the valves to accept. Figure
6.3.2 shows P(D9>100|Accepted) as a function of P(Accept) for the
simulated valves. Note that P(Accept) is a strictly increasing function

of ¢,
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Figure 6.3.2: P(D9>100|Accepted) as a function of P(Accept) for the
simulated wvalves, with a wvalve acceptance criterion based on
0.30410Dg + D3. The dotted line shows the corresponding function
for a hypothetical, "perfect" criterion (6.3.26).

For the 2000 simulated valves, p, = P(D9>100) = 0.160. If a "perfect"
acceptance criterion had existed, we would, based on an observed set
(dg, d1), give a perfect prediction for whether Dy is above or below
100. Hence, for that "perfect” criterion, y = P(D9>100[Accepted) as a

function of B = P(Accept) would have been:

0 for 0 = A <1 - pg
¥(B) = (6.3.26)

B - (l-pg) forl-py=psl

The function 6.3.20 is also shown in Figure 6.3.2. The two functions are
so close that the derived acceptance criterion seem reasonably satis-

factory.
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The wvalue a = 0.30410 in (6.3.25) was derived as the best acceptance
criterion using multinormal distribution theory. Our model is not
multinormal, and another value may provide a better criterion. Several
values of a were tried out on the 2000 simulated valves. For each value
of a, we may define the function y(B) where § = P(Accept valve) and v =
ch wvalue of a, and
some of them are shown in Figure 6.3.3. If one criterion gives a
function y(#) below that of ancther criterion, the one with the lowest

v(B) values is better. Visual comparisons between these functions, and

the function for a = 0.30410, are summarized in Table 6.3.3.
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Figure 6.3.4: P(Dy>100|Accepted) as a function of P(Accept) for the

simulated walves,

aDg + D1, for some values of a.

with a valve acceptance criterion based on
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Table 6.3.3. Comparison between acceptance criteria based on aDg + Dy,
for several values of a, based on visual comparisons between

Figures 6.3.4 and 6.3.5.

a Compared to the criterion based on a = 0.30410
-0.8 Significantly worse

0 Perhaps slightly worse

0.1 Hardly any difference

0.30410 -

0.5 No difference is seen

1 Hardly any difference

Figure 6.3.4 and Table 6.3.3 tell us that even if a = 0,30410 may not
give the optimal linear criterion, hardly anything is gained by choosing
another value of é. In fact, hardly any difference was seen over a large
range for a, including the range from 0 to 1. This is probably due to
the model structure (6.3.2) of D, and the parameter wvalues used: If
Dq=dy 1is known, then the wvalue of Dg=dp will not provide much more
information on Dg. In other words, the conditional distribution of
Dy |D1=d) probably does not differ much from the conditional distribution
of Dg|(dp,dy).

It is probably correct to draw this conclusion even further, at least
for the model and parameter wvalues wused: It seems likely that the
criterion will not improve much, if anything at all, if it is changed to
a non-linear criterion "not very far away" from 0.30410Dg + Dj. Since a
possibly optimal, non-linear acceptance criterion probably will not be
"very far" away from the best linear criterion, not much is gained by

looking at non-linear criteria.

The above conclusion is not necessarily the true for other parameter

values.
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A General Algorithm for the Procedure

The multinormal distribution approach may also be used when leakage is

measured at more than peints in time. It may be generalized as follows:

1)

2)

3

4)

Find the expectation and the variance-covariance matrix of

.Q - (D(O): L] D(tl)) D(tmax))-

Calculate the conditional expectation and variance
D{tpmax) | (P(0), ..., D(t1)), as 1if D had been multinormally
distributed. This is performed by straightforward matrix multipli-
cations, using results from multivariate analysis. The conditional
expectation is some linear function of D(0), ..., D{(ty), say,

agb(0) + ... + ai1D(ty).

The distribution of D(t) for t=0 may agree less well with the
model than for t > 0. In order to reduce the effect of this model
discrepancy, modify agD(0) + ... + ajD(t1) by reducing reduce

the (absolute wvalue) of agp.

The criterion is to accept the valve if agD(0) + ... + aD(ty) =
k, where k is the critical wvalue. The critical wvalue k may be
found using results based on the multinormal distribution assump-
tion, or better, based on Monte Carlo simulations from the true

distribution of D,
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PART III: HEAT AGEING OF ELASTOMER FOIL
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ABSTRACT

Results from a heat ageing test of elastomer foil, where standard test
pieces of foil were exposed to elevated temperatures, have been ana-
lyzed. The test pieces had been destructively tested, to measure

breaking force and elongation at break.

The Arrhenius model has included in an accelerated time model for
breaking force, and fitted to the data using non-linear least squares
estimation. The foil is considered useful for its purpose as long as the
breaking force for a standard test piece is above 12 kp. The lifetime
distribution, with respect to this criterion, at normal use temperature

has been estimated.
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SUMMARY AND _ CONCIUSIONS

SINTEF, Division of Materials and Processes, has performed a number of
tests on elastomer foils used as humidity stopper in building walls. The
test series considered in this report, included a foil specially manu-
factured without heat stabilizer, unlike commercially available foils.
The foil is considered useful for its purpose as long as the breaking

force for a standard test plece 1s above 12 kp.

Pieces of foil were hung in heat chambers, and at certain points in
time, standard test pieces were cut off and tested. Breaking force and
elongation at break were measured. Breaking force tended to decrease as
the foll deteriorated. Elongation tended to decrease until it was around
2.5 cm for a standard test piece, and then increased somewhat as it
deteriorated further. Figure 1 shows the measured breaking force of the

test pieces, as function of time.
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Figure 1: Measured breaking force as function of exposure time for each
temperature. The solid lines show average measurements. Loga-

rithmic scales.
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The logarithms of the breaking force for each test piece are assumed

independent, normally distributed with expectation

E(Y;8,t) = 8o - B1 exp( A e B/6 ¢
and variance

Var(Y;d,t) ~ o2,
where Y is log(force), # is absolute temperature, and t is exposure
time. The model parameters, fSp, 81, A, B, and o, have been estimated
using non-linear least squares estimation. According to the model,
exposing the foil to temperature # for time t has the same effect as
exposing it to temperature f#p for time ¢’ if

£t = a(d) t
where

a(d) = exp[-B(1/8 - 1/8Q)].

With fg = 293.15 K (= 20°C), using the obtained parameter estimates,

these acceleration factors a(#) are obtained for the test temperatures:

71°¢: t! = 260 t
85°C: t! = 910 t
105°¢: t! = 4600 t.

Using these acceleration factors, equivalent times at 20°C for the test
pieces have been calculated. Figure 2 shows measured breaking force as
function of equivalent time av 20°C, including the fitted regression
curve (estimated median breaking force). The model seems to fit the data
reasonably well. There are, however, indications that other deterio-
ration mechanisms dominate at the highest exposure times at 85°C and
105°C. A reduced data set is obtained by removing these observations.
The fitted regression curve for the reduced data set is also shown in

Figure 2.
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Figure 2: Breaking force as a function of estimated equivalent time at
20°C. Regression curve for the median breaking force, fitted to

the whole data set (1), and fitted to the reduced data set (2).

The lifetime distribution at 20°C, for the time T until a standard test

pilece it reaches a breaking force of 12 kp, is given by
Fp(t) = P(T = t; §) = P(Y = log(l2);dp,t).

Estimated probability densities based on the complete data set, and on
the reduced data set, are shown in Figure 3. The two distributions are
somewhat different, especially in the left tail. For example, the
percentile tg g9g, is the time such that P(T > tg gg) = 0.98. The
estimates for this percentile are 9.5 years based on the complete data
set and 49.6 years based on the reduced data set. The medians of the two

distributions are 58.4 years and 72.2 years, respectively.
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Figure 3: Estimated probabllity density for the lifetime distribution at
20°C, based on the whole data set (1) and on the reduced data set

(2).

Even the with the lifetime distribution based on the reduced data set,
the performance is far too poor for a humidity stopper in building
walls. These results confirm that the tested type of foil without heat

stabilizer does not seem suitable for this application.
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L. INTRODUCTION

SINTEF, Division of Materials and Processes, has performed a number of
tests on elastomer foils used as humidity stopper in building walls. The

foil is considered useful for its purpose as long as the breaking force

for a gtandard test piece is above 12 Lp,

In this report, results from a laboratory test series are used te study
deterioration function of time, within a stochastic deterioration model,
Especially, the lifetime distribution at wuse temperature 20°C is
studied. The tested foll was specially manufactured without heat

stabilizer, unlike commercially available foils.
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2. LABORATORY TEST RESULTS

Table 2.1 shows data from an ageing experiment of elastomer foil. This
kind of foll is used as humidity stopper in building walls. In the
experiment, pieces of foil were hung in heat chambers, and at certain
pointg in time, standard test pieces were cut off the foil and testad
with respect to breaking force and elongation at break. The purpose of
the experiment was to assess the useful lifetime of the foil at use
temperature, which is approximately 20°C. The foil is considered useful
as long as the breaking force for a standard test piece is above 12 kp.

The limit of 12 kp has been set on a somewhat ad hoc basis.

Table 2.2 shows the average values of the measurements, for each

temperature and time combination.

Plots of corresponding values of elongation and breaking force are given
in Figures 2.1 to 2.4. The trend seems to be the same for all the
temperatures: Both force and elongation tend to decrease until an
elongation "minimum" is achieved, then elongation tends to increase
somewhat while the force still decreases. For modelling and computa-
tional convenience, the further analysis will be dome on the force data,

since these data seem to have a monotone time trend.

Figures 2.5 to 2.7 show the measured breaking force as function of time,

plotted on linear and logarithmic axes.
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Table 2.1: Heat ageing of elastomer foil. Breaking force and elongation

at break for standard test pieces.

Variable # ! Variabhle # 2 Yarrable # 3 Vartable # 4
{Force, kp } (Elong, cm (Time werks) (Temp, C )
0BS#

1 15.00000 3.36000 , 14286 105.00000
2 26.,50000 4.22000 .14286 105.00000
3 22 .i0000 3.934060 14286 105.00800
4 24,50000 4,19000 . 28571 105,00000
5 21.80000 4,00000 L2857t 105.00000
6 21.70000 3.80000 28571 105.00000
7 21.400600 3.80000 .42857 105.00000
8 10.80000 2.74000 42857 105.00000
9 19.80000 3.720890 42857 105,00000
10 12.20000 2.83000 .85714 105.00000
i 11.70000 2.78000 85714 105.00000
12 11.60000 2.75000 .B5714 105.00000
13 1.40000 2.65000 1,28571 105.00000
14 1.86000 2.62000 1.28571 105.00000
15 1.30000 2.58000 1.28571 105.00000
15 . 40000 3.,00000 1.71429 105.00000
17 40000 2.96000 1.71429 105.00000
18 60000 3,00000 1.71429 105.00000
19 21.30000 3.70000 . 14236 85.00000
20 22.40000 3,.76000 14286 85.00000
21 23.70000 4,07000 . 14286 85.00¢00
22 17.80000 2.80000 1.00000 85.00000
23 21.50000 &,30000 1.00000 85.00000
24 24.00000 4,08000 1.00000 85.00000
25 23.20000 &,25000 2.30000 85.00000
26 19.50000 3.80000 2.00000 85.00000
27 17.60000 3.72000 Z2.00000 85.00000
28 13.30000 3.31000 3.,00000 B85.00000
29 12.80000 3.20000 2.00000 85.00000
30 21.20000 4,08000 3.00000 85.00000
31 18.60000 3.83000 4.00000 85.00000
32 15.70000 3.57000 4,00000 85.00000
33 11.80008 3.00000 4.00000 85.00000
34 3.70000 2.,75000 5.60000 85.00000
35 5.40000 2.67000 5.00000 85.00000
36 3.70000 2.56000 5.00000 85.00000
37 1.50000 2.70000 5.300400 85.00000
38 1.40000 2.77000 5.30000 B5.000090
39 1.50000 2.790¢00 5.30000 85.00000
40 27.50000 4.40000 . 14286 71.060000
41 26.20000 4.,52000 14286 71.00000
42 25.70000 4.34000 . 14286 71.000060
43 27.50000 4,45000 4.00000 71.04000
44 26.80000 4,50000 4,00000 71.00000
45 28.00000 4,73000 4.00000 71.00008
46 24.60000 4.22000 6.00000 71.000040
47 22.60000 4.08000 6.00000 71..00000
48 24.10000 4.14000 6.00000 71.00080
49 16.30000 3.48000 8.00000 71.00000
50 15.30000 3.76000 8.00000 71.00080
5t 23.70000 4,320400 8.00000 71.00000
52 23.90000 4,22000 8.0000) 71.00000
53 15.00000 3.17000 £.00000 71.0¢68000
54 22.60000 3.95000 g.00000 71.00000
55 16.70000 3.56000 10.00000 71.00000
56 18.20000 3.63000 10.00000 71.00080
57 20.,70000 3.78000 10.00000 71.00000
58 14,70000 3.35000 12.00000 71.060000
59 15.30000 4.15000 12.00000 71.00000
60 26.70000 3.78000 12.00000 71.060000
61 7.10600 2.33000 16.00000 71.00000
62 11.50000 2.657000 16.00000 71.00000

63 7.70000 2.28000 16.00000 71.00000
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Table 2.2: Heat ageing of elastomer foll, Average breaking force and

average elongation at break for per temperature-time combination.

Fail
Data type is: Raw data
Variahle # 1 Variable # 2 Variable # 32 Variable # 4
(Force, kp (Elong, cm ) (Time weeks) (Temp, C )

0BS#
1 21.,20000 3.83667 -14288 105.00Q00
2 22 .66667 3.99667 28571 105.00000
3 17.33333 3.42000 LA2857 105.00000
4 11.83333 2.78667 .85714 105.00060
5 [.50800 2.51667 1. 28571 105.00000
) 46667 2.98667 1.71425 105.00000
7 22 . 46667 3.84333 . 14286 85.00000
8 21.10000 4,06000 1.00000 85.00000
9 20,10000 3.92333 2.90000 85.00000
10 15.76667 3.53000 3.00000 85.00000
1 15.36667 3.46667 4.,00000 85.00000
12 4,26667 2.66000 5.00000 85.00000
13 1.46667 2.75333 5.30000 85,00000
14 26 . 466867 4,42000 14286 71.00000
15 27.43333 4.56000 4.00000 71.00000
16 23.76B667 4.14667 6.00000 71.000G0
17 20.13333 3.81667 8.00000 71.00000
i8 18.53333 3.B65667 10.0000¢ 71.00008
19 18.90000 3.76000 12.00000 71.00000
20 8.76667 2.42667 16.00000 71.00000
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3. STOCHASTIC MODELLING

Modelling will be performed on the logarithm of the force, log(force),

rather that on the force itself, for two reasons:

8 to be performed, it is adwvan-

=

i) When least zquares estimation
tageous to have homoscedastic data. The force variance seems to be
smaller for temperature-time combinations giving smaller expected
force (Figure 2.5). Plots with force on a logarithmic scale
(figures 2.5 and 2.7), however, indicate that the wvariance of
log(force) seems to be approximately the same for all tempera-

ture-time combinations.

2} The mnormal distribution model, which gives computational con-
venience, assigns positive probability to both positive and
negative values. Force itself is always positive, while log(force)
can be both positive and negative. The normal distribution model

may, thus, be applied on log(force).
Let the random variable Y denote the measured log(force) of a test piece
exposed to temperature ¢ for time t. Throughout the report, log(-)
denotes the natural logarithm. The data shall be fitted to some model

P =y ; 0,£) =F(y;d,0) (3.1)

A total of 4 assumptions will be set for this model.
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Assumption 1:

The distribution depends on time and temperature only through
k(8)-t, where k is a function of 4 only. That is, (3.1) may be

written on the form

F(y;6,t) = F1(y;k(6)t), (3.2)
or

F(y:8,t) = F1(y;u), (3.3)
where

u = k(g)t. (3.4)

The quantity u may be thought of as operational age, being the equiva-
lent time at the (theoretical) temperature dg = k'l(l), that is, the

temperature where the reaction rate k(§) is 1.

It is easily checked out graphically whether (3.2) seems to agree with

the data, since, alternatively, (3.2) may be written
F(y;8,t) = F1(y;exp[log(k(4)) + log(t)])
= Fo(y,log(k(#)) + log(t)). (3.3)

Equation (3.5) states that the temperature effect on the distribution
F(+) is to add a constant to log(t). Figure 2.7 shows the force - time
data plotted on logarithic scales. Indeed, it seems plausible that
changing the temperature only shifts the log(time) scale to the left or
right, it does not seem to change the shape of the curve significantly.

This indicates that (3.3) seems to agree well with the data.
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Assumption 2:
The reaction rate, k(4), follows the Arrhenius law, that isg,
k(§) = A exp(B/4), (3.6)

where A and B are constants and § is given as absolute tempera-

ture,

A rough estimate for the comstant B may be found by examining Figure
2.7, even without extra model assumptions. According to Assumptions 1
and 2, exposing the foill to temperature #1 for time t7 has the same

effect as exposing it to temperature f§9 for time typ if

A exp(B/f1) t1] = A exp(B/fo) ty. (3.7)
It follows from this equation that

B = log(ta/t1)/(1/87 - 1/81) (3.8)

For example, Figure 2.7 shows that average breaking force is approxi-
mately 10 kp after t = 0.9 when 41 = 105°C, and after ts = 15 when
fg = 71°C. Inserting these values into (3.8) gives B = 1.1-10%. The
effect of the parameter B may be interpreted as follows, according to
(3.7): Exposing the foil in 20°C for time t' has the same effect as

exposing it in temperature # for time t if

£’ = a(d) t (3.9)
where

a(d) = exp[-B(1/8 - 1/80}] (3.10)
and fg = 293.15 K. The function a(d) in (3.9) is commonly referred to

as the acceleration factor. In our case, this factor may be estimated by

inserting the estimate for B into (3.10). For the temperatures at which
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the foil has been tested, and with B = 1.1'104, equation {3.9) with

estimated acceleration factor becomes:

71°¢C: t’ = 260 t
85°C: t’ =910 t (3.11)
1059G: - &’ = 4600 t

The interpretation of eqguations (3.11l) is that, for example, breaking

force deterioration goes 260 times faster at 71°C than at 20°C.
Assumption 3:
The log(force) data follow a homoscedastic normal model, that is,
Y ~ N(m(u), o2) (3.12)
where m(u) is a function of u, and o2 does mnot depend on u.
We recall from Assumptions 1 and 2 that
u = ki)t = A exp(Bs4) t. (3.13)

The function m{u) is the expected log(force) after time t in temperature
f. Figures 2.6 and 2.7 indicate a somewhat complex functional form of
m(u): The force seems comstant, or slowly decreasing in the beginning,
then it starts to decrease more rapidly. The physical ageing mechanisms
are not well enough known to provide background for setting up a
function m(u). However, this does not impose any serious problem: The
purpose is to predict how long the force keeps above 12 kp at 20°C. In
order to do this, it is not necessary to extrapolate outside the force
range for which data exists, only outside the temperature range for
which we have data. As long as Assumptions 1 and 2 about the temperature
effect hold, the results will be rather insensitive to which model m{u)

is used, as long as the chosen m(u) fits reasonably well to the data.
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Assumption 4

The following model will be used for expected log(force) after

time t in temperature #:
m(u) = Bg - B1 exp (B2-u) (3.14)
Combining (3.14) with (3.13), deleting excess parameters, yields
m(u) = E(Y;0,t) = Bg - A1 exp( A e B/0 ¢ ), (3.15)

Hence, the complete model may be written

log(Y;) =~ Bp - B1 exp( A e“B/ai ty ) + oUz (3.16)

where Yj is the measured breaking forcé of test specimen number i, after
time tj at temperatufe #;. The parameters to be estimated are B, B1, A,
B, and o. We shall take Y; to be measured in kp, tj in weeks, and

absolute temperature f§; in K.
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4. MODEL PARAMETERS

Least squares estimates (LSE) for the parameters are be found by mini-

mizing the function

n
Q(Bp,B1.4,B) = % [ yi - BE(¥y:161,t9) 12 (4.1)
im]

The minimization is readily done numerically, by a computer code with a
proper search procedure. Rough initial estimates for the search proce-
dure may, for example, be found from Figure 2.7. Initially, the mean
breaking force seems to be around 27 kp, that is, fp = log(27) = 3.3.

Using two of the mean values for 105°C from Table 2.2, we obtain

1

E(Y;105°C, 0.86)
E(Y;105°C, 1.71)

log(11.83) = 2.47
log(0.467) = -0.76

]

These values, together with the obtained rough estimates for B and Bo,

gives two equations for g1 and A:

2.47 = 3.3 - B1 exp[ A exp( -1.1-10%/(273.15+105) ) 0.86 ]
-0.76 = 3.3 - p1 exp[ A exp( -1.1-10%/(273.15+105) ) 1.71 ]

These equations are readily solved, giving 81 = 0.167 and A = 8.02-1012,

Thus, the initial set of parameter estimates is:

Bo = 3.3

81 = 0.167

A = 8.02-1012
B = 1,1-10%

The results below were obtained by a statistical analysis program
package (HP, 1982). This program package utilizes the Marquandt algo-
rithm (Marquandt, 1963) for nonlinear least squares estimation. These

estimates and confidence intervals were obtained:
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Parameter Estimate One at a time 90% confidence intervals:
Bo 4.63 (4.24 | 5.02)

B1 1.17 - (0.848 , 1.49)

A 3.93-1012  (3.06-1012 | 5.04-1012)

B 10899.5 (10996.2 , 11002.8)

g 0.414

A more detailed calculation output is given in Table 4.1. Predicted
observations are estimated expectations, obtained by inserting the

parameter estimates:

Y = E(Yy:;01.t5) = Bg - B1 exp( & e-B/gi ty ).

The difference between observed and predicted Y values,

are called residuals. Table 4.2 gives observed Y, predicted Y, and
residuals for the log(force) data., Figure 4.1 shows the residuals
plotted versus time. The residuals seem to indicate a reasonable fit

between the data and the assumed model.

Note that the final estimate of the temperature dependence parameter, B,
happens to be equal to the initial estimate, B = 1.1-10%. The calculated
acceleration factors (3.11) are, thus, also valid for final parameter
estimates. To provide a visual check on model fit, force is plotted on a
logarithmic scale, as a function of estimated equivalent time at 20°C,
t', in Figure 4.2. The regression curve is also shown in the figure.
From looking at this figure, and at the table of residuals, the model
seems to provide a reasonably well fit with the data, perhaps except the
data for the longest exposure time in 85°C. The measured breaking forces
after 5.3 weeks in this temperature are somewhat lower than our model
would predict., This fact will not be examined further, since the matter
of interest is time to reach a breaking force of 12 kp, and we are

primarily interested in a reasonably good fit in that area.
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Table 4.1: Computer printout,

computations were performed on the transformed model

least squares estimation,

E(Y) = Bo - By exp[ exp(A'-B'/8’) t ],

where A'=log(A), B'=B/L000,

Part IIT

Note that the

and §'=#/1000 is absolute temperatures

given in 1000K. This transformation was performed because the

computer code did not accept parameter values too many orders of

magnitude away from 1.

NON-_IMEAR REGRESSION fIN DATA SET:
Foil

PR e L L R L R R L A R L L R R L L Rl el bl b d bbbl
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DeltalConvergence criterial= 0001
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3 28.7496 79.2484
L 16,9362 11.0828
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Table 4.2: Residual analysis on Y = log(force). The table shows observed
Y, predicted Y, residual, standardized residual, and significance.

Two (three) stars indicate a standardized residual greater than

2 (3).
STANDARDIZED
OBs# OBSERVED Y PREDICTED Y RESIDUAL RESTDUAL SIGNIF.
1 2.70805 3.23457 -.58652 ~-1.41738
2 3.27714 3.29457 - 01743 -.04211
3 3.03358 2.29457 -.153859 - . 48088
4 3.19867 3.10817 09050 21871
5 3.08191 3.10817 -. 02626 -.06346
6 3.07731 3.10817 -.03088 -.07457
7 3.06339 2.89574 CIB76RS LA0515
8 2.37955 2.89574 -.531619 -1.24743
3 2.98568 2.89574 08994 21786
10 2,50144 2.06327 43817 1,05888
1 2.45959 2.0e327 .39622 35775
12 2.45101 2.06327 V38774 .93701
13 . 33647 ) 83101 -. 49453 -1.19509
14 .3877%9 .83101 -.24322 -.58777
15 ceh236 82101 -. 56864 -1.372418
16 -.91629 -.38304 07675 . 18547
17 -.91629 -.99304 07675 . 18547
18 -.51083 =.99304 48222 1.16532
19 3.05871 3.427%7 -.36886 -.89129
20 3.10906 3.42757 -.31851 -. 76970
21 3.iE548 3.42757 -.26209 -.53337
22 2.8792¢ 3.22672 -, 34752 -.83982
23 3.06805 3.22672 -, 15867 -,38344
24 3.17805 3.22672 -. 04867 -. 11761
25 3.14415 2.94955 . 19456 47018
26 2.97041 2.94959 .02083 .05033
27 2.86799 2.94953 -.08169 -. 19741
28 2.38776 2.61769 -.02933 -.07233
29 2.54945 ¢.681759 -. 06825 -. 16493
30 3.05400 2.61769 43631 1.05438
31 2.92315 2.22021 .70285 1.63874
32 2.75366 2,22021 .53345 1.28913
33 2.468i0 2.22021 24789 .59904
34 1.30833 1.74418 -. 43586 -1.05329
35 .68640 1,74419 -.05779 -.13866
36 1.30833 1.74419 - 43586 -1.05329
37 - 40547 1.58382 -1.17836 ~2.84761 ol
38 .33647 1.58382 -1.24735 ~3.01434 s
39 40547 1.5R382 -1.17836 -2.84761 o
40 3.31419 3.44945 -. 13526 -.32687
41 3.26576 3.44945% ~. 18369 -. 44390
42 3.24649 3.443435 -.20285 -.43046
43 3.31413 31891 2507 +. 30225
44 3.28840 3.18911 . 09929 .23994
45 3.33220 3.18911 . 14309 . 34579
46 3.20275 3.03225 .17050 41202
47 3.11795 3.03225 .08570 20710
48 3.18221 3.03225 . 14996 36240
49 2.79117 2.,85830 ~.06714 -. 16224
30 2.96011 2.85830 10180 .24602
51 3.16548 2,83830 30717 74231
52 3.17388 2.83830 31558 . 76262
53 2,70805 2.85830 -. 15025 -.36310
54 3.11795 2.85830 25865 .62746
55 2.81541 2.665M . 15000 . 36250
56 2.90142 2.66541 .23602 .57035
57 3.03013 2.56541 . 36473 38140
58 2.68785 2.45130 .23635 57118
39 2.72785 2.45150 27635 66784
50 3.28466 2.45150 .83317 2.01343 e
61 1.36009 1.95124 . 00885 .02139
62 2.44235 1.95124 L43110 1.18680
63 2.04122 1.95124 18998 .21744
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Figure 4.1: Residuals as function of time (weeks) for the fitted model.
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Figure 4.2: Breaking force as a function of estimated equivalent time at
20°9C. Regression curve for the median breaking force, fitted to

the whole data set (1), and fitted to the reduced data set (2).




Part IIXI . 23
5. LIFETIME DISTRTBUTION

For a standard test piece of elastomer foil, let T denote the time until
it reaches a breaking force of 12 kp. If the breaking force is assumed
te be a non-increasing function of time, we can set

Fp(t) = B(T < t; 6)

= P(Y

IA

log(12);6,¢)

=2

[ log(12) - [Bg - B exp( A e"B/f ¢)) ]

\

o

(81 exp( A e B/f £)] - [y - log(12)] }
= 3

- @[ ex az -~ b ]’ (5.1)
where

a = A e'B/e ]

b = [Bp -~ log(12)1/81 : (5.2)

c =a/B1,

and $(x) is the standard normal distribution function.

The probability density of T is

Ep(t) = JoFp(t)

- cp[gzc.gfa_t)_,.___h] _exp(at)_a%

c

2
= Jﬁ%'c exp[ ~% [gzgiéfl“;“b} ] exp(at)'a'% (5.3)

where ¢(x) 1s the standard normal probability density. Imserting the
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estimated parameters, and 20°C, into (5.2), yields the estimated time to

failure distribution (5.3) at this temperature,

FT(t) - Q[ﬂﬂa_g.}_‘_ﬁ] i (5.4)

where

= 1.99-10"% weeks"1 = 0.01035 years~1
- 1.83
= 0.354.

o> U o

The probability density (5.3) with these parameters 1s shown in Figure
5.1.
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Figure 5.1: Estimated probability density for the lifetime distribution
at 20°C, based on the whole data set (1) and on the reduced data
set (2).
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An interesting question is how sensitive the estimated time to failure
distribution is towards the estimated regression curve. To give an
indication about this, another regression curve will be fitted. From
Figure 2.1, both elongation and force seem to follow an approximately
linear trend as time increases, except for the longest exposed specimens
at the highest temperatures, This could indicate that some other deteri-
wnen the breaking force
passes below 6 - 8 kp. A reduced, and perhaps more homogeneous, data set

is created by deleting the observations for:

9 days, 105°C
12 days, 105°C
5 weeks, 85°C
5.3 weeks, 85°C

That is, a total of 12 observations are deleted, giving 51 observations
in the reduced data set. The same model (16) was fitted to log(force) in
the reduced data set, using LSE with the previous estimated parameters

as initial estimates in the computer run, These final estimates were

obtained:
Parameter Estimate One at a time 90% confidence intervals
Bo 3.19 (3.15 , 3.23)
A1 0.0370 (0.0327 , 0.0413)
1.39-1013  (1.34-1013 | 1.45-1013y
B 10868.0 (10967.6 , 10968.5)
o 0.207

Note that the estimate of the time dependence parameter, B, still equals
the initial estimate, B = 1.1'104, to three digits. This regression
curve is also drawn in Figure 4.2. In this case, the estimated para-

meters in the time to failure distribution (5.1) become

4 = 7.84°10"% weeks™! = 0.0408 years-!
B = 19.06
& = 5.59,
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The probability density (5.3) with these parameters is alsc shown in

Figure 5.1.

Both the fitted regression curve, and the estimated time to failure

i
distribution, depend duite a lot on whether estimation is based on the
complete data set or on the reduced data set. Actually, the left tail of
the time to failure distribution is shifted quite a lot to the right
when the data set is reduced, This is better seen in Tables 5.1 and 5.2,
which give some percentiles and survival probabilities for the estimated
time to failure distributions. For example, the percentile ty gg, is the
time such that P(T > tp gg) = 0.98. Table 5.2 shows that the estimates
for this percentile are 9.5 years and 49.6 years, respectively. The
medians of the two distributions are 58.4 years and 72.2 years, res-

pectively.

Table 5.1: Some survival probabilities for the estimated time to failure

distributions.

Time, years Estimated survival probability
Based on com- Based on redu-
plete data set ced data set

20 0.955 0.999

40 0.815 0.99%

60 0.456 . 0.910

80 0.098 0.102
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Table 5.2: Some percentiles for the estimated time to failure distri-

butions.
Survival Estimated time, years
probability
Based on com- Based on redu-
plete data set ced data set
0.98 9.5 49.6
0.95 21.4 56.1
0.9 ) 30.9 60.7
0.5 58.4 72.2

As mentioned at the begimning of this chapter, there are good reasons to
believe that different deterioration mechanisms have been present the
highest exposure times at the highest temperatures, than for the reduced
data set. First, the observed log(force) wvalues tend to be higher than
the predicted wvalues from our model and estimates. Second, the elonga-
tion - force data do not follow the same approximately linear trend as

for the rest of the data (Figure 2.1).

However, whether the the results based on the complete data set, or the
results based on the reduced data set are accepted, the main conclusion
turns out to be the same. Considering normal life-times for buildings,
neither of the two probability densities shown in Figure 5.1 show a

satisfactory performance for a humidity stopper in building walls.
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