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Abstract

In this thesis we derive the basic theory for distributions, fractional and classical Sobolev
spaces and the direct method of variations, and apply this theory to discuss solutions of
(1+ (—=A)2)u = f for s € (0,2) on both bounded open sets and all of R”. We use both
the direct methods of variations and Lax-Milgram to give sufficient conditions on f for
existence of sobolev and distributional solutions. We also discuss the spectrum of the
operator 1+ (—A)% and give a characterisation of all eigenvalues and eigenfunctions on
bounded open sets.



Sammendrag

I denne oppgaven utleder vi den grunnleggende teorien for distribusjoner, fraksjonelle
og klassiske Sobolevrom og variasjonskalkulus, og anvender denne teorien til diskutere
lgsninger av ligningen (1+(—A)%)u = f for s € (0,2) pa begrensede, apne mengder, samt
hele R™. Vi bruker bade variasjonskalkulus og Lax-Milgram til & gi tilstrekkelige krav pa
f for eksistensen av Sobolev— og distribusjonslgsninger. Vi diskuterer ogsa spektrumet
til operatoren 1+ (—A)g og gir en karakterisering av alle egenverdier og egenfunksjoner
pa begrensede, apne mengder.

i



Preface

This thesis is written throughout the year 2013 in order to complete the degree Master
of Mathematics at the Norwegian University of Science and Technology.

The topic of the thesis was chosen more or less as a ”let’s try something new” ad-
venture. Before starting this endeavour I have had several courses in algebra, topology
and real analysis, but with regards to the themes of the thesis, I had only a course in
Fourier analysis, where distributions were introduced at a basic level, and an abstract
course in functional analysis (where there never was any mention of differential equa-
tions). Sobolev spaces were known only by the most basic definition, and the modern
field of partial differential equations was truly terra incognita. Stepping into the office
of my supervisor, Fgrsteamanuensis/Associate Professor Mats Ehrnstrom, and telling
him that I wanted to write a thesis about Fourier analysis, Distributions and Sobolev
spaces, with particular stress on the latter, in the area partial differential equations, I
had little idea where I was going. Fortunately, he did, and early in the process of writing
the thesis it became clear that I will go on to do a PhD, and then the goal of the thesis
became largely a preparation: to learn relevant theory and how to apply it, and how to
convey results to the reader. The work started vigorously in January 2013, and with the
exception of an exceptionally long summer break, went on throughout the year.

I owe a great deal of gratitude to my supervisor Mats Ehrnstrom for his thorough
guidance in the writing of this thesis, and I would also like to give special thanks to
Anastasiia Sergeevna Tkalich, who gave me the power and motivation to continue my
work when it came to a halt, and to Sunniva Bge, who supported me most of the way.
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Introduction

In many problems of both theoretical and applied mathematics it is not sufficient to
consider only classical solutions of differential equations in order to find solutions. This
led to the introduction of distributions which took its modern form during the first half
of the 20th century [I8]. Distributions were first introduced by Sergey Lvovich Sobolev
in the 1930’s [19], who simply called them functionals. The concept was further devel-
oped by Laurent Schwartz during the 1940’s where he gave a more complete theory of
distributions, and also introduced the name distribution [I§]. Sobolev introduced dis-
tributions as a tool for finding solutions to partial differential equations [I9] and since
their introduction, distributions has been used with great success in the theory of dif-
ferential equations. Another important tool is Sobolev spaces, which, like distributions,
have become a large field during the 20th century, and is connected to distributions:
a Sobolev space is a subspace of an LP space such that the distributional derivatives
of the elements, up to some order, is contained in the LP space [20]. Combining both
integrability and differentiability criteria, these spaces have very suitable compactness
properties and are natural homes for weak (and strong) solutions of partial differential
equations. These concepts were first introduced with more classical types of differential
equations in mind, but has been adapted for fractional differential equations. In fact, the
history of fractional derivatives is more ancient than that of distributions and Sobolev
spaces, and it started from a note by Leibniz [I4] where he discusses the meaning of
derivatives of order one half, which led to the development of a theory of derivatives of
arbitrary order. However, for centuries fractional derivatives was of a purely theoretical
interest, but in the latter part of the 20th century it was discovered that many physical
problems are better described by fractional differential equations (for some examples of
applications there are several textbooks devoted to it, for instance [16]), and it is an area
of active research both purely theoretically and with regards to applications.

In this thesis we provide an almost self-contained treatment of the basic theory
of tempered distributions, the Fourier transform and Sobolev spaces, both fractional
and integer order, and use this theory to define fractional derivatives and discuss the
fractional differential operator 1 + (—A)z for s € (0,2). In Chapter 1 we first derive
the main properties of the Schwartz space and the Fourier transform. In particular we
prove the invariance of the Schwartz space under the Fourier transform, as well as how
to extend the Fourier transform from the Schwartz space to LP(R") for 1 < p < oo, with
special emphasis on L?(R"), on which we prove that the Fourier transform is a unitary
operator. The important tool of mollification which we use extensively in the first
chapters is also introduced. With this foundation, we introduce tempered distributions
and give sufficient criteria for a function to be a distribution, and show that there exists
distributions which are not functions. We define distributional differentiation and the
Fourier transform on tempered distributions, proving that tempered distributions are
invariant under it. The space 2'(Q) is also introduced, but we restrict ourselves to
noting that it is a superspace of tempered distributions, and give sufficient criteria for a
function to be an element of it. All results are stated with complete proofs, except for the



fact that smooth, compactly supported functions are dense in the space of distributions,
which we do not need in this thesis but state because of its fundamental importance in
the theory of distributions. Many of the proofs are done independently by the author,
while the rest are based on [9] and [10].

Distributional differentiation as defined in Chapter 1 provides the tools to give the
definition of classical Sobolev spaces W;(R”) for 1 < p < oo and all non-negative integers
k in Chapter 2. Some basic properties of these spaces are proved, before the attention
is turned to fractional Sobolev spaces. By using the unitarity of the Fourier transform
on L?(R"), we prove that the Fourier transform maps weighted L? spaces with weight
(1 4 |z|?)*/? unitarily onto W&(R™). The spaces H*(R") then occur by interpolating
between these spaces by continuously varying the exponent of the weights. An alternate
definition of fractional Sobolev spaces of positive order, denoted by W5 (R™), is given
by means of singular integrals, inspired by Holder continuity, and it is proved that
H* = W3. Lastly we give a proof of the Sobolev embedding theorem, that is, the
embedding of Sobolev spaces into spaces of bounded, continuous functions, for W3 (R™).
A counter-example for the critical exponent s = [+n/2, where [ is the order of the space
embedded into, is given at the end of the chapter.

In Chapter 3 we define Sobolev spaces, both fractional and classical, on arbitrary
open sets as the set of all distributions on the set which is the restriction of some
element in W (R"™) or H*(R") to the set, with the norm being defined as the infimum
of the WIf(R”) or H*(R™) norm of all such elements. We prove that these spaces inherit
the basic properties of Sobolev spaces on R"™, before we turn to Sobolev spaces on R},
on which we prove an extension theorem to Sobolev spaces on R™. This proof is done
by using partitions of unity, and extending smooth functions and using their density
in the Sobolev spaces. Then, in Chapter 4, we turn to Sobolev spaces on bounded,
open sets, and by partitions of unity, many situations may be reduced to the case on
R?, and so it is straightforward to extend the extension theorem to Sobolev spaces on
bounded open sets with sufficiently smooth boundary. All results on Sobolev spaces up
until this point are, in large part, based on [10], with alterations done and additional
details and remarks given by the author where deemed helpful for the reader. The most
important results in this chapter is the compactness and embedding result, the most
important of which being Rellich-Kondrachov and an extension of it to fractional spaces
of order 0 < s < 1. The proof of Rellich-Kondrachov is taken from [7]. The chapter is
completed by introducing traces and the spaces W;f,o(Q) and H§(), that is the Sobolev
spaces where all the elements have zero trace on the boundary, and proving the Poincaré
inequality.

The last background theory we develop is the direct methods of variations. In Chap-
ter 5 we introduce the idea behind the method with an example and some discussions
of the challenges, and we prove a very general theorem giving sufficient conditions for a
functional depending on the spatial coordinate, a function v € I/Vp1 (Q) and its gradient to
attain its infimum on W (Q) for any open set Q C R" (cf. Theorem . This theorem
and its proof is taken from [24], with minor alterations. The other results are formulated
and proved independently by the author, with some inspiration for the general exposi-



tion taken from [7]. We finish the chapter by applying the direct methods of variations
to a classical problem.

Lastly, in Chapter 6, we apply the theory of the first five chapters to fractional
derivatives and operators. Using a result about the Fourier transform of the derivative
of a function, we give a definition of fractional differentiation by means of the Fourier
transform; a definition which, from our results in Chapter 1, holds for all elements in the
space of tempered distributions. Then we introduce the operator 1 + (_Aﬁ, s € (0,2),
and show its intimate relationship with the space H®. The rest of Chapter 6 is divided
into two main parts: the first part is devoted to the existence of solutions to the equation
(14 (=A)2)u = f on open sets as well as all of R”, and the second part to the spectral
theory for this operator.

For f € H~%/%(Q), we prove that there exists a solution u € HS/Q (Q) to the equation
(14 (=A)2)u = f in Q, with u = 0 outside Q for all bounded, open sets . This is
proved in two ways: by using the direct methods of variations, and by using the Lax-
Milgram theorem. On R", we prove existence of solutions with even weaker assumptions
on f;if f € H"(R™), r € R, then there exists a solution u € H""$(R™). This is proved
directly, by constructing a solution, and in addition we find a fundamental solution to
(14 (—=A)2)u = f. We do not claim that these results are new (indeed, we even comment
on a more powerful result that has been proved, although by different methods than those
we employ), but all theorems are formulated and proved independently by the author.

Finally we turn to the eigenvalue problem. We first give a simple proof of the fact
that there are no non-trivial eigenvalues of 1 + (—A)% on R". Therefore we turn our
attention to open, bounded sets and prove that in this case there exists a countably
infinite number of distinct, positive eigenvalues that form a sequences that diverges to
infinity. Furthermore, the eigenfunctions form a orthogonal basis for both L?() and
HS/ 2((2) The main method of the proof of existence is the direct method of variations.
The proof of the existence of an eigenvalue on bounded domains is done independently
by the author, while the rest of the section owes a lot to the article [23], which proves all
our results for a general class of fractional, elliptic operators that are intimately related
to 1+ (—A)2.



1 Tempered Distributions and their Fourier Transforms

Perhaps the most obvious attribute of a function satisfying a differential equation is
differentiability. In solving the kinds of differential equations we will consider in this
paper, we also rely heavily on the Fourier transform as introduced below. Unfortunately,
the set of Fourier transformable functions seems at first sight very small, and the set of
functions that are also differentiable even smaller. This restriction is unfortunate not
only in a theoretical sense, but also in a practical sense: it may be physically feasible
to consider solutions that are not differentiable in the classical way. This problem has
been solved by introducing the concepts of distributions, which is a generalisation of
functions, and weak and distributional differentiation. We collect the basic theory in
this chapter.

1.1 The Schwartz Space

Notation: Let Ng = NU {0} and Nj = {a = (a1, a2, ...,a,) : a; € Ng,1 < i < n}, the
set of all multi-indices of length n. For o € Nj, we define the norm || = ag+aa+...+ .
For z € R", a € Njj, we write % = z{'25% - - - 28" and D = @iﬂ%fa""m.

Notation We will by domain mean an open but not necessarily bounded subset of R™.

Definition 1.1. The Schwartz space . (R™) is the set of all complex-valued functions
© € C°(R™) such that

sup |2°DPp(z)| < 0o (1.1)
TERM

holds for all o, B € Nj.

Definition 1.2. We define a family of seminorms on ./ (R™):

Pasle) = Sup 2D (). (1.2)
TER™

From these semi-norms we can define a topological structure on . We say that a
sequence @, in . converges to ¢ if

Poglpn — ) =0 (1.3)

for all o, B as above. This is denoted by @y, ? ®.

Remark: The limit ¢ is unique, since (|1.3]) implies uniform convergence on R™.

Lemma 1.3. The space . is invariant under differentiation and multiplication by poly-
nomials.

Proof. This is immediate from Definition [1.1 O



Definition 1.4. For a an open set Q C R", 1 < p < oo, LP(Q2) denotes the Banach

space normed by
1/p
P = </Q |f ()P dfﬁ) : (1.4)

If it is clear which space we are talking about, we will drop the ) in the subscript and
just write || - ||p. The elements of LP(Q) are equivalence classes of measurable functions
f:Q — C for which the norm above is finite, and f is equivalent to g if f = g a.e. in
the Lebesgue measure. We call measurable, complez-valued functions f on ) such that
I fllp < oo for p-integrable. For p = oo, LP(Y) is the space of all essentially bounded,
measurable, complex-valued functions on ), with the esssupp norm. LfOC(Q) 1s the space
of all locally p-integrable functions on Q, i.e. f e LY () if f € LP(K) for all K € Q,
that is, for all K with compact support in §2.

I1f

Remark: We will generally identify an equivalence class [f] € LP(€) with a represen-
tative function and refer to the elements of LP(£2) as functions.

Lemma 1.5. The mapping
e o], pe SR (1.5)

defines a continuous embedding ./ (R™) — LP(R™) for 1 <p < oc.

Proof. The case p = oo is immediate from Definition We first prove that .7 (R") C
LP(R™) for 1 < p < oo. For any ¢ € Z(R"), we have ¢(z) = (1 + |z|*t1)~1/P(1 +
|2["t 1) /Pp(z). Evaluating ||¢||, yields

/ (L |2 )72 (L |2 ) P (a) P da

1
< sup (1 + |z[* Tt acp/ ——dx < 0. 1.6
< sup (4 e Vgl [ (1.6

The last inequality follows from the definition and the fact that (14 |-|*t1)~! ¢
LY(R™).
Next we prove the continuity of the embedding. Given € > 0, ¢, 7 0 implies there

exists an N € N such that for all k > N and x € R", |[(1 + |z|**1)/Pyp.(x)| < e. Thus
for all k > N,

1
wr(x pdxgap/ ————duz. 1.7
| texta) Rsros (1.7
This proves the result. O
Definition 1.6. For an open set Q C R™ we define
2(Q) ={p e C™ :suppp € Q}. (1.8)



Let

-1
cel-le? lz| <1
w(x) = ’ ’ 1.9

) { 0, 2| = 1, 9

where ¢ is chosen such that [p, w(z)dz = 1. Set wy(x) = h"w(x/h) for h > 0. Then
wy, satisfies

suppwy, = {z : z € R", |z| < h}, / wp(z)dr = 1. (1.10)
R”
It is easy to check that w is infinitely differentiable.
Definition 1.7. For f € L} (R™), 1 < p < co we define the mollification of f

n

) = (Fxn)la) = [ wnle = )f(0)dy. (111)
Theorem 1.8. For any open set Q@ C R™, 2(Q) is dense in LP(2), 1 < p < co. Thus
S (R™) is dense in LP(R™), 1 < p < oo.

Proof. Clearly, 2(Q2) C LP(Q2), 1 < p < oo, for any open set 2 C R™. Note that every
function f € LP(Q) can be approximated by step functions, g = . aijx4,, where the
A;’s are connected and compact sets (for instance, it is sufficient to only consider cubes).
We proceed by mollification of characteristic functions of such sets. Let

(n(a) = (e s xa)(@) = [ anle = pxaly) dy (112)

be the mollification of x 4. We note that (x 1), is infinitely differentiable (see Proposition
below) and equations ([1.10) and ([1.12) imply

supp(xa)n = {z: Hel,f;l |z —al < h}. (1.13)

If we choose h such that inf,c 4 | — a| < h implies z € Q, which is always possible since
A is compact in 2, then (x4)p has compact support in Q. In other words, (x4), € 2()
for h sufficiently small. Furthermore, equations (1.10)), (1.11)) and (1.12)) implies

(xa)n(z) = xa(zx) if dist(x,0A) > h, x € R™. (1.14)

Let
Sp ={x € R" : dist(z,0A4) < h}. (1.15)

Then equation ((1.14) implies

(/n |Oxa)n (@) —XA(:B)|de> v < s (xa)n (@) —xA(:c)|pdx> l/p_ (1.16)

Since both (x4)n and x4 are positive functions bounded by 1, we have |(xa)n(x) —
xa(z)| <1 for all z € R™. We then get

1/p
([ 10cm) = xa@lras) < @, (117
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where L£" is the n-dimensional Lebesgue measure. Clearly, £™(S},) — 0 as h — 0, and
s0 (xA)n — xa in LP(Q). Thus we can approximate step functions, and therefore all
p-integrable functions, by elements of Z(€2). For the last part, we note that Z(R") C
< (R™), and so the result follows. O

We prove some properties of mollification, with focus on what will be needed later.
Proposition 1.9. Let f € L} (R"), 1 < p < oo. Then the following holds:
(i) fr is infinitely differentiable.
(ii) If f € LP(R™), 1< p < o0 then | fully < 11l
(i) If f € LP(R™), 1 < p < oo then fr — f in LP(R™).

Proof. 1t is not yet clear that the integral in (1.11)) always exists for 1 < p < oo (the
cases p = 1, p = oo follows immediately from (1.10])). Let 1 < p < oco. Then

@)l < [ wnlo =) ena =) 150y

< ([ ae-va)" ([ ae-virora)”  as

where 1/p’ +1/p = 1 and we used Holder’s inequality. By definition, the first integral
in the second line of (1.18) is 1. Since f € L} (R™) and supp wy, is compact in R", the
second integral converges.

(i)

T+ ae;) — x 1
et ee) 230 - [ Lo +aci—) —ente—)f)dy (119
where Q is some open, bounded set (cf. (1.10))). Since
1 ow
L (wn( +aci —y) —wn(z —y) = 5 —y) (1.20)

uniformly on €2, one can for @ small enough find an integrable, dominating function and
use Lebesgue’s dominated convergence theorem to get

Oniy= [ %)) ay. (1.21)

xT) =
aZL‘Z' Rn al‘z

By similar arguments,
D fn(z) = / D%p(z —y)f(y)dy, for any a € N} (1.22)

11



(ii) Equation (|1.18]) implies, for 1 < p < oo,

L n@ras [ ] ol ad

[P [ we- sy (123
Rn R
- [ 1rwra.
If p = o0, then
@ <1l [ wnle =) dy = [flmr 7 <R (1.24)

This proves (ii).
(iii) Since [, wp(z)dr =1, we may write

fnl@) — f(z) = / wonlz — o) (J(y) — () dy

n

= [ e p)Pente - ) (1) - SNy (129

where p’ is such that 1/p + 1/p’ = 1. Here we use the convention that if p = 1, then
p' = oo and 1/p’ = 0. Then, by Holder’s inequality

e 1@l ([ o -na)” ([ ae-ww-rera)” o)

By definition, the first integral on the right-hand side of (|1.26)) is 1. Hence

[ @ - s@racs [ ] ae-nlie) - f@pae
— [ [ 1w+ - F)P
|2 <h n

|2|<h JR

< (sup / nlf(y+2)f(y)\pdy) /lZShWh<z>dz (1.27)

—swp [ |fy+2) - )P dy

jz<h JR

Now it remains to prove that the final equation in converges to zero as h goes to
zero. Given € > 0, we know from Theorem that there exists a function g € Z(R")
such that ||f — g||, < €/3. Since g has compact support and is uniformly continuous in
R™, there is a § > 0 such that

lg(-+2) —9()llp <e/3, [z <é. (1.28)

12



Using the triangle inequality we get

IFC+2) = fOlp = 1FC+2) —g(-+2) +9(+2) —9() +9() = FO)llp
<NFC+2) —gC+2)lp+ g +2) —gOlp +1f =gl (1.29)
<e/3+¢/3+¢/3=¢, |2| <9

This implies

sup/ lfly+2)— fly)Pdy — 0, as h—D0. (1.30)
|21<h JRn

1.2 The Fourier Transform
Definition 1.10. Let f € LY(R"). Then

M\S

F f(&) = f(&) = (2m)” [ f(@)e —tdy (1.31)

1s called the Fourier Transform of f. We also define

o~ n

FfE)=f(-&)=(r) " Rnf(:v)e”f da. (1.32)

Here x - € in the exponential is the reqular scalar product in R™.

Remark: Lemma ensures that the Fourier transform is defined for all ¢ € .Z(R").
Remark: The convention adopted here (in terms of placement of the factor 2m) is
chosen because we want .% to be a unitary operator on L?(R") (cf. Theorem and
because of perceived ease of bookkeeping in the following results.

Proposition 1.11. Let f,g € L'(R
(i) Ff(z—a)l(€) = e 7 [(€)
(ir) F [ei“‘”f(x)](ﬁ) F [(§—a)
(i) Jon f(@)§(@)dx =[5 [(2)g(x) da

Proof. (i) and (ii) can easily be proved by direct computation.
(iii) It is clear from Definition that f is bounded by || f]|1, so the integrals are
defined. The proof then follows by a direct application of Fubini’s theorem. O

™). Then the following holds:

Remark: Proposition m (iii) is often called the ”change of hats” formula, for obvious
reasons.

Proposition 1.12. (i) If f € L'(R") is such that x*f € L*(R"™) for some a € N,
then D* % f(&) ewists, and

D*.Z f(€) = F[(—i) ™z f(2))(€). (1.33)

13



(i) If f € CK(R™) N LYR") and if all the derivatives Df, |a| < k, are in L*(R™),
then
FDf](€) = i 7 f(©), (1.34)

Proof. (i) The function ¢ ~ f(z)e™™¢ is infinitely differentiable and by assumption
D¢ f (z)e~™¢ is integrable with respect to z. Therefore we may differentiate under the
integral sign and the result follows.

(ii) All derivative up to order k are by assumption sufficiently smooth and integrable,
so we may use integration by parts and the result follows. O

Corollary 1.13. If ¢ € L (R"™), then
(i) F ¢ is infinitely differentiable.

(i) F[Dp| exists for all « € Nj.

Proof. This follows from Lemmas [I.3] and [I.5] and Proposition [T.12 O

Theorem 1.14. The space . is invariant under the Fourier transform %, and, in fact,
the Fourier transform is a linear 1-to-1 mapping F : . — & that maps & onto itself
and is continuous in the topology on .. The inverse mapping is F ' = Z.

Proof. Let ¢ € #(R™). The linearity of .# follows from Definition We start
by proving that ¢ € #(R"), i.e. supgcpn 1€9DBB(E)| < oo for all a,3 € NE. From
Proposition [1.11] (iii), we have

D3] = @m) e [ (=)ae () dal. (1.35)

For |¢] < 1, it follows from Lemmas 1.3 and [L.] that (L.35) is finite. For |¢| > 1, we note
that the (—i)lPlzPp(x) is infinitely differentiable and all derivatives are integrable, so we
may use integration by parts.

& [ pe—iBlaB (et dy

e L DR e

< [ D el do <o, €] > 1 (1.36)
RTL

The last inequality follows from Lemmas|l.3[and This proves that ¢ € .(R"), since

the last expression in (1.36]) does not depend on &. Since .Zp(§) = .7 p(—£), it follows

that .Z¢ € ./ (R"™) as well. Next we prove that % . % ¢ = .F Fp = ¢.
52|z|2

For ¢ > 0, x € R", we define the Gaussian function g.(z) = e~ 2 . Its Fourier
transform is

ge(§) = e e 22, (1.37)



We may apply Proposition m (ii) and (iii) to ¢ and e™¢g.(z) and use the transforma-
tion y = £z to get

2|2

[ o0t dr= [ ol + e d: (1.38)

Lebesgue’s dominated convergence theorem is apphcable on both s1des of - with
respect to £ | 0. Thus the left-hand side of ( converges to (27)2.% .7 ¢(x), while
the right-hand side converges to (27)2 go( ).

Next we prove the continuity of .#. Let ¢, ? 0. From Proposition |1.12] and its

corollary we have |€*DA,(¢)| :|j: (8D, (x) )1(€)]- By assumption (x DA, (x)) —
0 pointwise and from Definition |1.10] we have that [(€)] < ||9]1 for ¢ € #(R™). This
proves the result. Similar arguments hold for .%.

Lastly, we prove that the mapping is onto. For every ¢ € #(R") we have shown
that ¢ = F¢ € #(R"). Thus p = .F ). O

Proposition 1.15. If p,¢ € .Z(R"), then
(i) F(oxy) =F o F .
(it) F(pp) = F o= F 3.

Proof. One may check that .#(R") is closed under convolution. Then (i) can be com-
puted by Fubini’s theorem:

Lemtonian= [ e ([ plo-mua) as
= /n P(y) (/n e Lz —y) dw) dy (1.39)

Y(y)e W F p(&)dy = F ¢ F .

]Rn

(ii) Clearly (i) is true for .# ! Using (i) and Theorem m

FNFoxFP)=F ' FoF P Fy=py. (1.40)
Taking the Fourier transform on both sides of ((1.40) gives (ii). O

In light of Theorem it is possible to extend the Fourier transform to LP(R™),
1 <p< oo Let feLP(R"),1<p< oo. Then, by Theorem there is a sequence
{fn}n C L (R"™) such that f, — f in LP(R™). For each f,, .-Z f, is defined and {.Z f,}n
is clearly a Cauchy sequence in LP(R™). Since LP(R™) is a Banach space, the sequence
converges, and we define

F [ = lim 7 f. (1.41)

This limit is independent of how we choose {f,},. In the particular case of p = 2, we
have an interesting and highly useful result.
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Theorem 1.16. .% and .F ' are unitary operators on L*(R™) and F* = F ', meaning
that F 7' = 717 =id in L>(R").

Proof. Let ¢, € .7 (R"). Then .Z ¢, 1 € L*(R") and we have
(Fo.Fvh= [ FoOFOOE

- [ Fe© 5 e (1.2
= <Q07 1/}>2

The last equality follows from the change of hats formula, (iii). As equation ((1.42))
shows, the Fourier transform on L?(R") preserves the inner product, so that, by the
discussion above, .# and .Z ! are unitary operators. ]

We give an example as a small demonstration of the power of the Fourier transform.
Example: Consider the PDE

Owu(z,t) = kAgu(z,t) + u(z,y), t>0,xz€R" with wu(z,0)= f(z)e S (R").
(1.43)
Applying the Fourier transform with respect to  on both sides and using Proposition

[L.12) we get
Bu(€, ) = —k|E)%a(E, t) +a(é, 1) = (—k[E[? + D)acE, ). (1.44)

This is an ODE with solution

(€, t) = e THEPH IR ) (1.45)

-~

for some function h. Using our initial conditions, we find h(§) = f(§). Thus, using
proposition we find

u(z,t) = e'(f * 9‘1(e_k|§|2t)(x). (1.46)

1.3 Tempered Distributions

Definition 1.17. A tempered distribution is a continuous linear functional on .7 (R™).
In other words,
T: —=C

1s a distribution if the following holds:

T(ap +bip) = aT (o) + bT(¢),
wnjsO;‘T(son)%T(so),

for all o, € L(R™) and all constants a,b € C. We denote the space of tempered
distributions by .#'(R™), also called the continuous dual of .7 (R™).
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For a function f such that fo € L'(R") for all ¢ € .%(R™), we can define Ty by

Ty(s) = | f)olz)dr (1.47)

T} is clearly linear and if it is continuous as well, it is a tempered distribution. Distri-
butions that can be expressed as an integral are called reqular distributions.

Definition 1.18. Let f be a measurable function. If there exists a constant C' > 0 and
an N € N such that
@) <O+ (1.48)

for all x € R™, then f is said to be slowly increasing.

Proposition 1.19. Every slowly increasing function f defines reqular distribution

Proof. We have f(x)p(x) = (f(2)/(1+|z)™)(1+|z)No(x)) < C(1+]z|)¥p(z) for some
constant C, which is integrable by Lemmas[1.3]and [L.5| Furthermore, if {¢n}, C 7(R™)
and ¢, - 0, then, by Definition C(1+|z|)N pn(x) - 0 as well. This, together with

Lemma implies [z, f(x)¢n(x)dz — 0 as n — co. This proves that f is continuous
on .(R"™), and hence a tempered distribution. O

Remark: Slowly increasing functions are also called tempered functions. This explains
the name tempered distributions.

Proposition 1.20. Every function f € LP(R™), 1 < p < oo, defines a reqular distribu-
tion.

Proof. Let {op}n € L (R™) and ¢, () - 0. Continuity follows trivially from Holder’s

inequality, since

1fenlls < [[flIpllenllq (1.49)
where ¢ is such that 1/p+1/¢ = 1. By Lemma the right hand side of ((1.49)) goes to
0 as n — oo. O]

There is one immediate concern now. Is the Schwartz space large enough to distin-
guish two functions that defines regular distributions? Indeed even more is true, and we
prove a more general result below.

Remark: Recall that we in general identify an equivalence class of measurable functions
with a representative function. If two functions are equal a.e. then they obviously define
the same distribution.

Lemma 1.21. Let Q be an open set in R and f € Li, (Q). If

/f@wwnu:o (1.50)
Q

for all p € 2(Q), then f =0 a.e. in Q.
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Proof. Let f € L}, .(Q) be as above, K1 € Ko € Q and fy = fxk,. Then f> is integrable.
Let wy, be as in ([1.9). We then have

Pn(@) = [ Faw)on(e — ) dy = / Fw)wn(z — y) dy (1.51)
Rn Q

for z € K; and h small enough, say 0 < h < hg. By assumption, the right-hand side
of (1.51)) is zero. Thus (f2)n(z) = 0 for z € K;, 0 < h < hg. By Proposition (iii),
(f2)n — f2 in L}*(R™) as h — 0. This implies fo(z) = 0 for z € K1, but fo = f in Ky,

and since K was arbitrary, this proves f = 0 a.e. in . O

If f is a tempered distribution and, say, continuously differentiable and bounded,
then

of

R 8.’Ez

Jp(x) dz = f( ) 2 (z) da. (1.52)

o0x;

By lemma and Proposition E 91 defines a continuous and linear operation on
Z(R™). In other words, it is a dlstrlbutlon We have proved that T, ¢(¢) = —T¢(0x, ),
but the right-hand side of [1.52] makes sense for all tempered distributions f, regardless
of whether or not they are differentiable. In fact, since the test functions are infinitely
differentiable, we can iterate the procedure above to get ”derivatives” of all orders. This
motivates the following definition.

Definition 1.22. For a tempered distribution T', we define DT by
DT(p) = (~DIT(D%), ¢ e L (R"). (1.53)

By Definition and Lemma differentiation in this sense is a (linear) operator
S (R") — '(R™). Tt follows from the discussion above that if f is sufficiently smooth
and its derivatives are regular distributions, then DTy = Tpay.

Until now we have only considered regular distributions, but there are non-regular
distributions. As an example, consider the heaviside function u = X[,«) (Whether the
interval is open or half-open is irrelevant) on R. By lemma it is a tempered distri-
bution. It is not differentiable as a function, but consider its distributional derivative

oo
DT.() = ~Tule') = - [ ula)d/@)do == [~ f)do = pl0), € SR,
" (1.54)
There cannot exist a function f such that [z, f(z)e(z)dz = ¢(0) for all ¢ € (R™),
for f would have to be zero a.e., but then the integral would be zero as well. In other
words DT, is not a regular distribution. Non-regular distributions are called singular
distributions.
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The Fourier Transform on .’ (R")
Suppose f € L'(R™). Then, by lemma m (iii)
| J@e@de= | f@)p@)de, e SR, (1.55)

Theorem [1.14] ensures that the operation on a test function ¢ defined by the right-hand
side of ([1.55)) is continuous and linear on .#(R") for a tempered distribution f, even if
f is not defined. This motivates the following definition.

Definition 1.23. Let T € .Z(R"). Then FT =T and F~'T =T are given by
FT(Q)=T(F¢) and F1T(o)=T(F ly), ¢e SR (1.56)

Definition 1.24. If T is a tempered distribution and the function g is smooth and
tempered (that is, slowly increasing cf. Definition , we define the distribution gT'

by

9T (p) = T(g¢) (1.57)
Definition 1.25. Let {T,}, be a sequence in /' (R™). We say that T,, converges to T
if

Tn(p) = T(p) (1.58)

for all ¢ € S (R™).

Remark: This is a weak form of convergence, but the most natural one for our purpose.
Clearly, both differentiation and multiplication with smooth functions (as defined above)
are continuous in this sense.

Theorem 1.26. (i) Both F and .F ' map ' (R") 1-to-1 and onto itself. Further-
more, they are continuous in the sense of tempered distributions and F =1 is the
inverse of F .

(ii) Let T € /(R") and o € Nj. Then
F(DOT) =iz FT) and F(2°T) =il“D*(Z T). (1.59)
Proof. (i) Linearity follows from construction. Let T,, — T in .#’(R"). Then
FTo(p) =To(F @) = T(F @) = FT(p). (1.60)

This proves continuity. That .% is 1-to-1 follows from Theorem Similar arguments
holds for .Z~!. That the mappings are onto can be proved in exactly the same way as
for . in Theorem Let T € .#/(R™). Then

FIFIT(p)=T(FF ¢)=T(p)=F ' FT(p), ¢ecIR") (1.61)

This proves that .% ! is the inverse of .% on .7#’(R™).
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(ii) Let T € .#’(R™). Then, by Definitions and and Proposition and

its corollary,
F(DT)(¢) = (D*T)(F @) = (-1)IT(D*.7 )
= T (F %)) = il°N(F T)(a%p) (1.62)
=il ZT)(p), ¢e S [RY).

This proves the first formula. The second one can be proved in the same straightforward
manner. O

1.4 The Space 7'(12)

We will later need distributions on arbitrary domains Q@ C R”, but .#(R"™) has no
natural equivalent on 2 C R"™. We therefore need a more general type of distributions.
Differentiability being the most desired property, it is natural to consider Z(2) as a
starting point. However, to make sense of continuous functionals on Z({2), we need a
sense of convergence in Z(12).

Definition 1.27. A sequence {¢on}n C Z(2) is said to converge to ¢ in P(Q) if there
exists a set K € ) such that

supp o, C K, for alln € N, (1.63)

and

supDY(pp, — ) = 0, for all « € N{. (1.64)
e

This is denoted by py, ? .

Similarly to the definition of .#/(R™) as the continuous dual of .(R™), we have the
following definition:

Definition 1.28. Let Q@ C R™. The space 2'(Q) is the space of all functionals T :
2(Q) — C such that

T(ap +bp) = aT(p) + 0T'(),

pn > 0= Tlpn) = T(p),

for all o, € 2(Q) and all constants a,b € C.

Remark: Since Z(R") C .(R") and convergence in Z(R") implies convergence in
S (R™), it follows that ./(R"™) C 2'(R").

We will not need a more precise characterisation of the elements of 2'(2) beyond
the remark above and the following proposition.

Proposition 1.29. Let Q C R™. If f € L} (), 1 < p < oo, then f defines a regular
distribution.
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Proof. Linearity is obvious. Let {¢n}n C Z2(£2) be such that ¢, > 0. Then every ¢,

has support contained in the same set, say K € €2, and we get

[1f@en@lde= [ 17@en@lds < [flaclealyac >0 (1.65)
Q K

where we used Holder’s inequality. O

An interesting question at this point, is how far have we moved away from functions
in introducing distributions. An answer is contained in the next theorem.

Theorem 1.30. Let Q C R™ be an open set. If T € P'(Q) there exists a sequence
{on}tn C 2(Q) such that @, — T in 2'(Q).

Proof. See for instance [L1], Theorem 4.1.5. O

Remark: Since ' (R™) C 2'(R™), it follows that the above result also holds for .7/ (R"™).

Support of a Distribution

The support of a distribution is defined much like the support of a measurable function
(essential support, as it is also called, to distinguish it from the usual support of a
continuous function, which clearly does not make sense for general measurable functions).
Clearly, if T' is a tempered distribution and

T(p)=0, foral ¢e2(Q) (1.66)
for some open set Q C R™, then we want Q NsuppT = (. Let
Bs(zx) ={y e R": |z —y| <}, zeR™ (1.67)
Definition 1.31. Let T be a distribution. Then we define the support of T:
suppT ={z € R" : T|py) #0 for all § >0} (1.68)

For a locally integrable function f, the support of f and the support of the distribu-
tion it defines coincides. That is,

supp f = supp Ty. (1.69)

2 Sobolev Spaces on R”

2.1 The Spaces W) (R")

Here we will interpret f € LP(R™), 1 < p < oo as a tempered distribution according to
Proposition In particular, we may take derivatives of all orders of f € LP(R").
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Definition 2.1. Let k € Ny and 1 < p < oco. We define
k n ny . Mo n n
Wy R") ={f € LP(R") : D*f € LP(R"™) for all « € Ny, |a| < k}. (2.1)
The spaces Wg(R”) are called classical Sobolev spaces.

Remark: As mentioned D*f € LP(R™) must be interpreted in the sense of distributions.
That is, there exists a g € LP(R™) such that g = D*f as distributions. This means

/n g(@)p(x) dz = (=) - f(@)D%p(x) dx (2.2)

for all p € . (R™). While D®f always exists as a distribution, it is not necessarily in
LP(R™), nor even a regular distribution, as shown in Section 1.2. Thus a g as above
does not always exist. Of course, if f is sufficiently smooth, then g is just the ordinary
derivative of f.

Remark: If the distributional derivative of a regular distribution is itself a distribution,
it is often called a weak derivative. Thus one will often see Sobolev spaces described
as the space of weakly differentiable functions belonging to some LP space in the litera-
ture. Clearly, distributional differentiation is even weaker than weak differentiation, but
coincides with it when the weak derivative exists.

Theorem 2.2. The space WJ(R") furnished with the norm
£ lwgn = (3 D) (23
|| <k
is a Banach space.

Proof. First we need to check that || ]"||sz7C (rny really is a norm. Clearly

M llwg ey = M lwg e, (2.4)
and
Hf”W;?(Rn) =0<=f=0 ae. (2.5)
If f,g € WF(R™), then
1/p
If + gllws@n = [ D ID*f+D%lP
la] <k
1/p
<[ > UDfllp + 1D%gll,)”
| <k
1/p 1/p
< I+ | X Dl (2.6)
| <k la| <k

= HfHW,lc(Rn) + HgHWZE(R"p
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where we used Minkowski’s inequality going from the second to the third line. Next we
show completeness. Let f; be a Cauchy sequence in Wlf (R™). This implies D f; for
|a| < k is a Cauchy sequence in LP(R™), which is a Banach space. Thus D*f; — f¢ for
some f® € LP(R"). Let fO = f. Using Holder’s inequality, we have

1Df; = [l < IDf; = fllpllelly =0, ¢ e L (RY), (2.7)
and
15 = H)D%ell < M1f5 = fllpID%0lly =0, ¢ € L (R™), (2.8)
where p’ is such that 1/p+ 1/p’ = 1. Putting this together we get

A f(@)p(x) dz = (=1)* A f(z)D%p da. (2.9)
Thus Df = £ for [a| < k and f; — f in WF(R). O
Theorem 2.3. Let 1 < p < 0o and k € Ng. Then &(R") C WFR") C .#"(R") and

2(R™), and therefore /' (R™), is dense in W;(R”).

Proof. The inclusions follows immediately from Definition We show that Z(R") is
dense in W;(R”). Let f € WIf(R") and let f3 be its mollification. Then

(D® fy)(2) = / D (x — ) (y) dy

n

= (—1)l . (Dywn(z —y)) f(y)dy (2.10)

— /n wp(z —y)Df(y)dy = (D f)n(x).

From Proposition (ii) we know that
ID*f —DYfnllp =0 as h—0, |of<k. (2.11)

Thus [} is a smooth function belonging to W}f (R™) and f5, — f in Wlﬂ“ (R™). Let ¢ €
2(R™) be such that ¢(x) =1 for |z| < 1. Then pf} € .@(R")ﬂWﬁ(R”) and ©(277) fr, —
fnin W]f (R™) as j — oo. This proves the result. O

2.2 Fractional Sobolev Spaces on R”

Due to the fact that L?(R") is a Hilbert space, we can define an inner product on W§(R")
as well,

(f, D) wemny = D f(x)D%g(x) dx. (2.12)
wsen = 3 [

By Theorem W¥(R™) with this inner product is a Hilbert space.

Proposition relates the integrability of x®f to the differentiability of .# f, and
Theorem established that the Fourier transform is a unitary operator on L?(R™).
We investigate the consequences of these results with regards to Sobolev spaces. With
this in mind, we make the following definition:
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Definition 2.4. Let
we(z) = (1+|2>)*?, seN,zeR™ (2.13)
We define the weighted L? space
LX(R™, w,) = {f measurable : wyf € L*(R")}. (2.14)

Remark: L?(R", w,) is a Hilbert space with the inner product

(f:9) 12(Rn w,) —/ ws (@) f ()ws(2)g(x) dz = (ws f, wsg)2. (2.15)

Rn
Other weights than wg are of course possible, but ws serves a special purpose.

Theorem 2.5. The Fourier transform .F and its inverse .F ' generate unitary maps
from WE(R™) onto L?(R™ wy), and vice versa.

Proof. Let f € WF(R™). Using Theorem and Proposition we get

11y = 3 ID° 13

lal<k
= Y 17D
<k
=D i 113 (2.16)
<k
- [ S e 17 ror ac
|

o<k

For all k£ € N, there exists constants cx,C such that cpwg(x) < Z|a|<k |z < Crw(x)

for all z € R™, thus the last line in represents an equivalent norm to ||f|| L2(R™ )
We will use the symbol ~ to denote equivalence between norms. This proves that % is a
isometric map from W¥(R") to L2(R™, wy). Given g € L?(R", wy,), then, by Proposition
adapted to .Z ! and Theorem

D7l g =il Z=1(12g) € LA(R™) (2.17)

for |o| < k. This proves that the mapping is onto, and thus unitary since it is isometric.
The proofs for .# ! and the mapping(s) in the opposite direction are similar. ]

Theorem tells us that W&(R") = . L?(R", wy), and this can be taken as a
definition of W} (R™). However, Definition [2.4{ and .# L?(R",ws) makes sense not only
for s € N, but for all s € R and this gives rise to fractional Sobolev spaces.

Definition 2.6. Let s € R and ws be as in (2.13]). We define
HYR") = {f € Z'(R") : Z f € L*(R", w;)}. (2.18)
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For s > 0, .7 f € L?*(R", w;) implies .# f € L?(R"), which by Theorem implies
f € L?(R"), so all elements of H*(R") are functions. However, for s < 0, Z f €
L?(R™, w;) is weak criteria, which allows for a greater variety of elements; even non-
regular distributions. Indeed, for s small enough we have § € H*(R™). Let us prove this.
It is simply a matter of writing out the definition to see that .# § = 1, the function with
constant value 1. Then we require

(14 |z[>)*?1 € L2(R). (2.19)
We know this is the case when s < —n/2.
Proposition 2.7. Let s € R. Then the following holds:
(i) H*(R™) furnished with the inner product
o) = [ wia) F f@jon() 7 glo) do (220
is a Hilbert space.
(i) L (R™) c H*(R™) Cc ' (R"), and L (R"™) is dense in H*(R™).

Proof. (i) If f € L>(R™) then .# 'w_,f is in H*(R™). Thus the mapping f — w,.Z f
maps H*(R") onto L?(R") and it is by definition an isometric map. It follows that
H?5(R™) is a Hilbert space with the inner product defined above.

(ii) The inclusions are immediate from Definition Let f € H*(R"). Then
ws Z f € L?>(R™), and by Theorem there exists a sequence {¢,}, C ¥ (R™) such
that

Y — ws F f in L*R™M). (2.21)
By Lemma and Theorem on = F Hw_s) € LR, and it follows from
(2.21)) that ¢, — f in H5(R™). ]

Remark: Since Z(R") can be continuously embedded into . (R™), it follows that Z(R")
is dense in H*(R").

By Theorem and Definition [2.6| we have W& (R") = H¥(R") for k € Ng. Furthermore,
it follows from Definitions and respectively, that

WL (R™) € WF2(R™) ki, ke € No, kg <k, (2.22)
H7'(R") C H?(R") —o00< 82 < 81 < 00.

This means that the spaces H*(R™) with the continuous parameter s fills in the gaps
between the spaces W (R") with the discrete parameter k (it should be noted that there
are other ways to interpolate between the spaces W& (R"); the spaces H*(R") is just one
way).

Our current definition of fractional Sobolev spaces is elegant, but perhaps a bit
mysterious. It seems natural that one should be able define fractional Sobolev spaces, at
least for s > 0, without any reference to the Fourier transform. Our original definition
of Sobolev spaces was in terms of the existence and integrability of (distributional)
derivatives of functions, so we need some fractional extension of differentiation.
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Definition 2.8. Let BC*(R"), k € Ny, be the space of complez-valued, k-times differ-
entiable functions such that

Il Bok@n = Y Sup. D% f ()] < oo (2.23)

\a|<k:

Here B stands for bounded.
With this definition in mind, a reasonable extension to s =k + 0, 0 < ¢ < 1, would
be the space normed by

D*f(z + h) — Df(x
I lscean = Il sor@n + 3 sup sup DA+ =D/ (@)

2.24
(T 07heR" ceR |h[ (2.24)

An appropriate definition for the norm || - ||W§(Rn), s=k+4+o,keNgand 0 <o < 1is
then given by

1/2

Def(x + h) — D*f(x 2
I lwgen = | 10 amy + 3 //R’ i W{% SO 47 an (2.25)

|la|=F

D+ )~ Do)
= (W + X [ P

|la|=F

1/2

where the factor |h|™ is added for convergence purposes. This gives us another definition
of fractional Sobolev spaces.

Definition 2.9. Let s=k+ o0, k € Ng and 0 < o < 0. We define
W3 (R™) = {f € L*(R") : || fllwg (n) < 00}. (2:26)

It follows from that if s = k+ 0, k € Ng, 0 < 0 < 0, then W§(R") C WE(R").
One can define fractional Sobolev spaces for any 1 < p < oo in the same way as above,
and these spaces are called Slobodeckij spaces. However, we are only interested in the
case p = 2, so we will restrict our focus to this. Of course, any result we prove for W3
where we do not use any properties of L? will hold for every other Slobodeckij space.

Theorem 2.10. Let s = k+ o0, k € Ny and 0 < 0 < 1. Then Z(R"), and therefore
L (R™) is dense in W3 (R™), and

H*(R™) = W3 (R). (2.27)

Pmof First we show that .7 (R”) C W5 (R™). From Theorem [2.3] we know .7 (R") C
W¥(R™). For § > 0, fh|>6 |h|=("t9) dh < oo, so we need only consider h close to zero.

Let ¢ € .Z(R"™). Then, by Definition

(@ +h) — ()] < clhl(1+ |2[) 7 (2.28)
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for all ¢ > 0 and some constant ¢; > 0 dependent on ¢t when h is close to zero. Let
d > 0. Since .(R"™) is invariant under differentiation, we may as well consider ¢ instead
of D*p. Then

/ lo(z + h) — o()|3 dh </ I+ =) 713 ah (2.29)
Ih|<s || 20 I U

which is finite if we take ¢ > n + 1 since (as already noted) (1+|-[**1)~! € L?(R") and
o < 1. This proves . (R"™) C W5 (R").

Let f € W5(R") and ¢ € . (R"). We wish to show that fo € W5 (R™), in order
to prove that it is sufficient to consider f with compact support, so that we may use
mollification to find an approximating function in Z(R™). We use the classic "add and
subtract” trick of calculus:

(0f)(@+h) = (pf)(x) = f(@)(p(z + h) = (2) + e(z + h)(f(z+h) - f(z). (2.30)

Furthermore we have the simple inequality

n agp
+h) — < |h — 2.31
(@ +h) = (z)] < | ‘;f&@’e)x,m‘ (2.31)

for h small (again, it is sufficient to only consider the behaviour for small h). It then
follows from that fo € W5(R™).

Now let ¢ € 2(R"™) be such that p(z) = 1 if |[x| < 1 and |¢(x)| < 1 outside the
unit ball. Let p;(z) = p(277), 5 € N. Then (¢;f)(z) — f(z) in R?, and |p;f| < |f]
almost everywhere for all j € N. Furthermore, Leibniz rule holds for distributional
derivatives and D%y, is uniformly bounded for every o € Nfj, thus [D*(¢; f)| < Co|D* f|
almost everywhere for all |a| < k and for some constant C,, depending on «.. Lebesgue’s
dominated convergence then implies that ¢;f — f in W3 (R™). This shows that every
function in W5 (R™) can be approximated by functions in W5 (R™) with compact support,
so it is sufficient to approximate such functions to prove the density of Z(R™), and thus
also .7 (R"). Let f € W5 (R™) have compact support and

fi(x) = /n wy)f(z—ty)dy, zeR" 0<t<1 (2.32)

be its mollification. From the proof of Theorem we know that f; — f in WF(R").
To prove convergence in W5 (R"), we consider

/ IDf( +h) = Df() + D) = Dfi( + 13

’h’n—l—QU

dh (2.33)

Again, only h close to zero may cause problems. From Proposition (ii) we know that
| fell2 < || fll2- By equation ([2.10]), this implies

ID*fi- +h) =D fi(IIE ) IDf(-+h) DO -
/hISJ |h|t2e = /|h|§5 |h|nt2e (2:34)
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for any 6 > 0. By assumption, the W3 (R") norm of f is finite, and so we can for any
€ > 0 find a 4 > 0 such that the right-hand side of is less than e. It follows that
ft = fin W5(R™). Thus 2(R"), and therefore also .(R™), is dense in W3 (R™). It is
then sufficient to prove

| o€ 7 HOP & ~ I lwzn, | € SR, (2:35)

in order to prove (2.27). To show this, we first concentrate on the second term in ([2.25)).
Using Theorem [I.16] we get

/ IID“f(-+h)—D“f(')||3dh:/ |7 @+ =D 4, (2.36)

’h‘n—l—ZJ |h’n+20

Using Proposition m (i) and Proposition and its corollary, we arrive at

F(Df(- 4+ h) = D*F(-))(€) = (" = 1)il*lg™.7 f(¢). (2.37)
Thus
DYf(-+h) — Df(-)|2 i€h _ 12
[ AR PIOB g~ [ ez peo [ S anae
" 1

— a2\ ¢|20) o 2 ~7d}~ld .
[ ez e | S ahae @

where we used the coordinate transformation h = h/|€| going from the first line to the
second. Observe that the integral over h is independent of £ and finite. Hence

IDSCE R =D [ e o e
/n R +2o dh—C/Rn [EXPIE 7 FOI7 dE, (2.39)

where the constant ¢ is independent of f. Combining the equation above with the
calculations done in the proof of Theorem we get

1/2
_ |2 o 2 |2 20 or 2
s = | [ > e 17 560) d€+claz::k/w\§!|5! |7 Q)P d
1/2
- / Sl 4o Y el | |7 rePde| . (240)
R\ \lal<k la|=k

As noted in the proof of Theorem 2 laj<k €] ~ wi and [£][€]7 ~ 1€ ~ wio,
and so we get

1/2
e R XCRES IR (2.41)
where s = k + 0. This proves ([2.27)). O]
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Remark: We have proved that H* = W3 for s > 0, but we will still distinguish these
spaces: when working with the norm defined by the singular integral, we will use the
notation Wy, and when working with the Fourier transform definition we will use /. For
many of the theoretical theorems regarding the properties of these spaces, the W3 (R"™)
norm will be more convenient to use, but in chapter 6 we will return to the Fourier
definition and use the notation H*(R™). In particular we have to use H® for s < 0, as
W3 is not defined in this case.

2.3 Sobolev Embedding

Theorem 2.11. Let BC'(R™), | € Ny, be as in Deﬁm’tion and s > 1+ 5. Then the
embedding
id : W3 (R"™) — BCYR") (2.42)

exists in the sense that for each equivalence class [f] € W5 (R™) there exists a represen-
tative function f € BCY(R™).

Proof. From Theorem we know that .#(R"™) is dense in W3 (R™). Considering the
fact that both BC!'(R"™) and Wi (R") are Banach spaces, it is sufficient to prove that
there exists a number ¢ > 0 such that

> sup [D%(a)| < cllellws@m, ¢ € L (RY). (2.43)

n
< z€R

Using Theorem Proposition our previous considerations regarding |z%| ~
w|a‘(a:) and Holder’s inequality we get

— DN (P F @) @)| = | FHE F () @)
—dl [ e ) a
< [ wl©) 7 o©lwn(€)de

R?’L

<t ([ werizeora)” ([ wiewn) . e

The last integral converges since s —1 > 5 and by Theorem the first integral in the
last line of (2.44) represents an equivalent norm in W5 (R"™). O

[D%p(x)

The lower bound on s cannot be improved. That is, the theorem does not hold in
general for s = [ + 5. To see this, consider the sequence of functions

1, 2] < 55
1
fila) =4 1%L 4 < <l (2.45)
0, jz| > 1
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on R2. Tt is easy to check that these functions are continuous, and that

sup |fj(z)| =1, jeN. (2.46)
z€R2
Thus |f;(z)| < xp(o)(x) for every z € R?, where B(0,1) is the ball centred at 0 with
radius 1. Lebesgue’s dominated convergence theorem then gives || fj||2 — 0 since f; — 0
pointwise.
Consider now the distributional derivative %(w), i = 1,2. Dividing the area of
integration and using partial integration in each part, we get

O Oy
— da — d
/xlsuﬁ f(x)afﬂi(x) ! /l/jQSleﬁl/jf(x)axi(x) v

2 €Ty
= —— ——p(x)dx. 2.47
/1/j2§w|§1/j log j |=[? ) G40

Yy .
In other words, B—Q(I) = 1023‘ éfQ

fj € W3 (R?). Furthermore

for 1/52 < |z| < 1/j and zero elsewhere. This implies

af; 1
&CZ (z)| < mXB(og)(ﬂf),l‘ € R% (2.48)

The right-hand side is integrable, so Lebesgue’s dominated convergence theorem implies
H%Hg —0,71=1,2, as j — oo, since g—g(x) — 0 pointwise. This, combined with the

calculations above, implies

Equations (2.46)) and (2.49) implies that W} (R™) cannot be continuously embedded in
BCO(R?).

3 Sobolev Spaces on R

Sobolev spaces on R™ was defined in terms on tempered distributions, but for general
sets 0 C R"™ there does not exist something like Schwartz functions. There are two
natural ways to proceed.

Definition 3.1. Let Q C R" be an arbitrary, open set and W;(R") be either as in
Definition [2.1] with 1 < p < oo and s € Ny, or as in Definition[2.9 with p = 2 and s > 0.
We define

W,y (Q) = {f € LP(Q) : there exists g € W (R") with glo = f} (3.1)
with norm
1 llws ) = nf{llgllws@n) : g € Wi(R"), gla = f}- (3.2)
For s <0, we define
H*(Q) ={f € 2'(Q) : there exists g € H*(R™) with g|q = f}. (3.3)
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Here f € LP(§2) must be understood in the sense of distributions, and g|o = f means
9(p) = f() for all o € 7(Q).

Remark:It is also common to define W}f(Q) to be the space of all f € LP(Q) such
that D*f € LP(Q), |a| < k, where D®f is the distributional derivative, with norm
corresponding to (2.3). If  is smooth enough, this will give the same result, as we will
see.

We wish to show that W, (€2) inherits some properties from W (R") and for this we need
a basic result from functional analysis.

Proposition 3.2. Let E be a Banach (Hilbert) space and M C E a closed subset. Then
the quotient space
E/M, (3.4)

where x ~ vy if xt —y € M, with the quotient norm
= inf = inf — 3.5
=]l £/ae Jnf, Iyl = inf [lo—mig (3.5)

is a Banach (Hilbert) space.

Proof. Since M is closed, it is clear that the norm defined above is actually a norm. Asis
usual in quotient spaces, we write 7(z) for [x], the mapping of x to its equivalence class.
Let {m(zy)}n be a Cauchy sequence in E/M. Since {m(z,)}n is Cauchy, it is sufficient
to prove that a subsequence converges. Choose ny such that ||7(z,) —7(z0) || g/ < 1/2
for all n,m > ny and choose ny such that ||7(zm) — 7 (24| g/ < 1/2% for all n,m > ny.
Proceeding like this, we get a sequence, which we again denote {m(x,)}, such that

o forall n>1. (3.6)

17 (Znt1) = (@)l B/ <

By the definition of the norm of E /M, this implies that there exists a sequence {my}, C

M such that 1

[Zn+1 — T — mn|lE < on (3.7)
Writing my, = Yn+1 — yn with y1 = 0 and y,, € M, we get that {z,, — yn}n is a Cauchy
sequence in F, and hence has a limit « € E. This implies 7(xy,) — 7(z) in E/M. O

Proposition 3.3. Let @ C R" be an open set. Then W;(S2) is Banach space, and a
Hilbert space if p =2, and

2(Q) C Wy (Q) C LP(Q) € Z'(Q). (3.8)
Furthermore, the restrictions 2(R")|q and & (R")|q are dense in W, ().

Proof. Let Q¢ =R"\  and

W;(Q°) = {g € W,;(R") : suppg C Q°}. (3.9)
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Since Q¢ is closed, it follows from Definition and that if {gn}n C W;(Qc) and
gn — g in W7 (R"), then g € W;(QC) Now consider the space
WS(R™) /W5 (Q°). (3.10)

By proposition 3.2|it is a Banach space, and if p = 2 it is a Hilbert space. If f, g € W (R")
are such that f(z) = g(x) for all z € Q, then supp(f — g) C QF, hence [f] = [g] in
Wy (R™) /W5 (2°). Thus we see that

W5(Q) = Wy (R™) /W7 (Q°), (3.11)

meaning that the spaces are isomorphic, and hence W;(€) is a Banach space (and a
Hilbert space if p = 2). The inclusions are immediate from Definition and the
density of 2(R"™)|q and .7 (R")|q follows from Theorem [2.3] and Theorem [2.10] O

We now restrict our attention to Q = R’} = {x € R" : x, > 0}. As will become
apparent later, many problems on open sets {2 C R"™ with sufficiently smooth boundary
can be reduced to the case R’}. We begin by describing a tool that will be useful in the
sequel.

3.1 Partitions of Unity
Let Q C R™ be a compact set (that is, bounded and closed) and set

Q. ={z e R" : dist(z,Q) < e}, &>0. (3.12)

We cover () by finitely many open balls B; with radius r; > 0,7 =1,...,1. For § > 0 we
let Bf be the ball concentric with B; with radius dr;. Since € is closed and the finite set
of balls B; is an open covering of €2, there exists an ¢’ > 0 such that

I
Q. c | B (3.13)

Hence it is possible to choose € > 0 and 0 < é < 1 such that
I
Q.c B (3.14)
i=1
Using Proposition [1.9( one can find functions
Vi € P(B;) with (z) =1, zeB), i=1,..1. (3.15)

For instance, set v = (14 ¢6)/2 and consider (xgv)p with h < r; —yr; = yr; — 0r;. By
the same argument there exists functions

e D) with ¢x)=1, =ze€. (3.16)
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We define
I

p(z) =Y i(z) € 2R, (3.17)
i=1
which has the property that ¢(x) > 1 for x € Q.. Thus we can define

wi(z) = Yil@)p(e) €P(B;N), i=1,..,1 (3.18)

p(z)

which has the property that

I
1, x €,
Z‘pl(aj) - { 07 T g Qsa (319)
i=1
We call {¢;}._, a partition of unity of  subordinate to the cover {B;}_;.

3.2 Extensions

It is often easier to work in R™ rather than some subset of R™ (for instance with regards
to approximation, as Z(f2) is in general not dense in Wzﬁ“(Q)), and we therefore wish to
extend functions from W (R’) to W, (R"). For a function f € Wé(R’}r), distributional
differentiation as we have defined it is not a pointwise operation and does not require
continuity. One could therefore hope that extending f by zero outside R’} would do
the trick. Certainly, f € LP(R™) in that case, but D®f may no longer be a regular
distribution, since we require

/n D f(z)p(z) dx = (~1)* - f(2)D%p(x) dz (3.20)

for a much larger class of functions ¢. Indeed, consider x(o4 € Z'([a,b]) for a <
simple calculation yields 0;X[q5(¢) = 0 for all ¢ € Z([a,b]), since ¢(a) = ¢(b)
Thus x4 € Wi([a,b]). Regarding X[a,p @ an element of 2'(R) or #/(R), we know
that differentiating it yields J-distributions, which are not regular distributions, i.e.
X[a,b] & WL (R). Thus the existence of a general way to extend functions is not obvious.
We will rely on the density of smooth functions in W (R’).

b. A
= 0.

Theorem 3.4. For any L € N there exists a linear and bounded extension operator ext™
defined on W;(R%}), 1 <p < o0, s=0,...,L forp#2 and 0 < s < L for p =2, such
that

BCY(R%) — BC'(R"), 1=0,..,L,

ext’ : ¢ WHRY) — WEHR™), 1=0,..,L,1<p< oo, (3.21)
W3 (R%) — Wi (R™), 0<s<L,
with
(ext” f) [gn = [ for any f € BC'UW}(RL) U WS (RY). (3.22)
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Proof. We define
7" ={m = (my,...,my,) €ER":m; €Z, j=1,..,n}. (3.23)

Let {By;}mezn be a set of balls of equal radius (that is, congruent) centred at m with
a suitable radius r» > 1 such that R" C (J,,czn Bm, and let {¢, : m € Z"} be a
partition of unity subordinate to {B,}mezn. Since the balls are congruent, we may
assume @, () = p(x —m), m € Z", x € R™ Partition of unity was defined only
for compact sets with a finite covering, but, clearly, all points and indeed all bounded
sets have non-empty intersection with only finitely many balls. Thus only finitely many
om(z) # 0 for any z € R™. We have

om € P(Bm), 0<@<1, Y on(@)=1 forall zcR" (3.24)

mezZm™

Due to the regular spacing of B,,, and since ¢, (z) = ¢(x —m) and ¢ has bounded
derivatives, it follows that

0<c< inf sup D%, (z) < mg (3.25)
z€eR™ meZ"

for all o € Njj for some constants ¢ and m, where m,, depends on a. Using Leibniz rule
we deduce

HfHBCZ(]Ri) ~ Sggﬂ ||80mf”BOl(R3;)7 fe BCZ(R?F)- (3.26)

Furthermore, it follows from Definition [1.22)) that Leibniz rule also holds for distribu-
tional differentiation. Using this and the fact that the derivatives of ¢ is bounded, we
may also derive

1/p
1 ey ~<Z liom 2y, Rn> ) (3.27)

mez"

The corresponding relation for p =2, 0 < s = k + ¢ < L is not immediately clear. We
prove that it is given by

I £ lws gny ~
1/2
D (¢ f) () — D*(om f)(1)]?
D | lemfMrn + D /n/n’ )y’n+2<a JOIE 44 ay
mez" |a|=F
(3.28)

The first term in the parenthesis on the right-hand side is already established. For the
second term, recall that ¢, is supported in an open ball B,,. Thus the integrals can be
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taken over |x — m| < ¢ for some constant ¢ > 0 and |z — y| < 1. The problem can then
be reduced to whether

|(pmg) () = (omg) () ?
/|I—m<c/|m y|<1 ‘l’— ’”JFQU dz dy

o) g 2
= dzd d 2
o L dady e @ (320

for some ¢’ > 0. This follows from the ”"add and subtract” trick

(emg) (@) — (Pm9)(y) = em(y)(9(x) — 9(y)) + 9(x)(Pm () — Lm(y)) (3.30)

‘ 2

and @ () — om(y)|° < clz — y’2'
The next step is to decompose the lattice Z™,

J
=Jz, (3.31)
§=0
where
o ={reR":z=Mm,meZ"} and Zj= mD 478 j=1,..,J (3.32)
with M € N, m9) € Z" and J € N suitably chosen such that the intersection of the

closure of two balls By, belonging to the same sub-lattice is empty. This implies, by the
discussion above,

||f||BCl(R” Z SUP ||90mf”Bcl R7) (3.33)
j=0 MEZL
and
J
Iz ~ SN omFlwicen. (3.34)
j=0 mez?

Due to the construction of Z?, this localizes the extension problem and implies

1/p
1f It @y ~ ( Z ’@mf”@vzl)(m)> : (3.35)

mezZn"

Thus it is sufficient to extend functions f on R’} with
supp f C {zx € R" : |z| < 1,2, > 0}. (3.36)

Let A\ < ... < Apy1 < —1 and define

L _ f(z), z, > 0,
(ext™ f)(x) = { ﬁ;l o f (2 Ak, £y <0, (3.37)
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where = (2/,z,) € R™. If x, < 0 then M\yz, > 0, hence ext! f is well defined.
Furthermore, ext” f has compact support in R, and supp ext” f depends on supp f and
the choice of coefficients A;’s and a;’s. Now we need to find an appropriate choice of
coefficients ag, kK = 1,...,L + 1. First we consider f € BC’Z(R’JF). We wish to find a
choice of a;’s such that ext” f € BC!(R™). The only place ext” f may fail to be [ times
differentiable is in the z,, direction at x,, = 0. By definition,

o oy

li L = ’.0 =0,..,L 3.38
Jim (et @) = G 0), P =0, L (339)
and
L+1
o o f
lim —— (ext® = 1l Ne——L (2!, A\pxn
xng%_ oxr (ext™ f)(z) mng%— Eak ka()\kl'n)r (', Akzn)
L+1
9f r
= amg(x J0)Y aghy, r=0,.., L (3.39)
k=1
Thus the a;’s need to be chosen such that
L+1
dapd=1, r=0,..,L, (3.40)
k=1

which can always be done since Vandermonde’s matrix

D SR ¥ &
I ¥ 1 (3.41)
(D VR

has non-zero determinant when all the \;’s are distinct. That is, the rows are linearly
independent. Since ext” f = f for z € R} and ext” f(x) depends on f (times a constant)
at finitely many points in R"} for x € R”, we deduce

sup [D(ext” f)(z)| < ¢ ) sup [D*f ()] (3.42)

o<t PER" o<1 7R
for some constant ¢ > 0 and all f € BCZ(RTJF) with . This proves the theorem for
BCYR?).

Furthermore, for a smooth function f the value of ext” f and its derivatives at each
point z € R” is bounded by some constant independent of f times the value of f (and
its derivatives) at finitely many points in R’}. Thus

leat™ fllpmn < clf]

PR (3.43)
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and similarly for its derivatives. Therefore
1/p

lext” fllwieny < e | Y 1D f 1l e < |l fllwe ) (3.44)

|| <1

for some ¢ > 0. The last inequality in (3.44]) follows by the definition of the norm in
Wzi(Ri) From Proposition ﬁ we know that Z(R")[gr and .#(R")[gn are dense in

W;,(]R’_f_) and so the result for Wzl)(]Ri) follows by taking limits.
Now let p =2 and s = k+ 0 < L, £k € Nyg. By Proposition .@(R")\Ri and
' (R")|rn are dense in W3 (R%) as well, and

1/2

D« Do 2
L S B e ] I Py

|a| <k |a|=F

for smooth functions, so by the preceding steps, all that remains to prove is that

[ [ Pt Dt NP,

Ifc - yl””"

< c/ / [Df(x) = D/ (y)" dz dy (3.46)

|SL‘ _ |n+20’

for compactly supported, smooth functions. Again we write z = (2, z,,) and y = (¢, yn).
The area of integration on the left-hand side of (3.46|) can be decomposed into

{(z,y) e R* : 2y, >0} and {(z,y) € R*™:z,y, <0} (3.47)

For x,, > 0 and y,, > 0, the integrand on the left-hand side equals the integrand on the
right-hand side in , and if x, < 0 and y, < 0, then the integrands differ only by
a constant. Hence the integral over {(x,y) € R*" : z,y, > 0} can be estimated from
above by the right-hand side. For z,, > 0 and y,, < 0 (the case z,, < 0, y,, > 0 is similar)
we have to prove

Df (2, 2) = 3R] arARD f (Y k) 2
dz dy
n Jrn |x—y|“+2‘7
Daf Daf 2
/n /n T |n+20( vl dz dy. (3.48)

where r = |a|. Since (3.40) holds, the numerator of the integrand in the left-hand side
of (3.48) can be written as

L+1

| > ap, (D f (@', wn) = DUF (Y, M) (3.49)
k=1
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Using the inequality

Zajj < niw?, (3.50)
j=1

the problem can be reduced to

37 -Tn g(ylv)‘yn” |2
/n/n T dzdy <c¢ o e |x— |n+2a dz dy (3.51)

with A < —1. If Ay, < @y, then z, — Ay, < x, — Y, and if Ay, > z,, then |z, — Ay, | <
(Alynl < [Allzn — yn-
Replacing |z — y|? on the left-hand side of ([3.51)) by

2 — |+ A2 (@ — Ayn)? < |z — gy (3.52)
one obtains an estimate proving (3.51). This proves the theorem for W3 (R). O

From the proof of Theorem [3.4] we can extract the following result:
Proposition 3.5. (i) Let 1 <p < oo and k € Ng. Then
1/p

Do ID e |~ I lwpan) (3.53)

o<k
; ; k(Ton
is an equivalent norm on Wy (R ).

(i) Let s=k+o, k€ Ny and 0 <o <1. Then

1/2

Da D« 2
Z HDafH2Q+ Z // f|x_ |n+2{f( vl dzdy ~ ”fHWQS(Ri)

|| <K |a|=F

(3.54)
is an equivalent norm on W3 (R?).

Proof. (i) Since (ext” f) lrn = ffor f € WER™Y), it follows from Deﬁnition that

[fllwr@n) < ext” Fllwr rny- (3.55)
It then follows from (3.44)) that

1/p 1/p

D 1D Il e <Wlwseny <c| DD flpz | (3.56)

o<t lo| <1

(ii) The inequality in (3.55]) holds also for W5 (R} ), s = k+o, and the result then follows
from ([3.46]). O
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4 Sobolev Spaces on Domains

We now return to W (€2) for open sets Q C R". We wish to extend Theorem and
Proposition [3.5] to open sets Q C R™.

Definition 4.1. Let Q C R™ be open and bounded. We say that the boundary 0 is C*
if for each point 2’ € O there exists anr > 0 and a real valued function h € BCF(R"1)
such that

QN B, r)={z € B(',r): z, > h(z1, ..., xn-1)} (4.1)

where B(x',r) denotes the open ball centred at ' with radius r. If O is C* for all
k € N, then we say that 0 is C*°.

If  is an open and bounded set such that 99 is C*, then one can for each point &’
on 0N ”straighten out” the boundary near z’ by C* diffeomorphisms. Let B(z/,7) and
h be as above. Then the function defined by

() = (21,000, Tn1, Tn — h(T1, 0y, 1)), € B(2',r) (4.2)
is a C* diffeomorphism with inverse
W) = (Y1, Yn1, Yn + B(YL, o Yn1) (4.3)
such that
Y(B,r)NQ) CRY and ¢(B(z/,r)NoN) c R* ! x {0}. (4.4)

Theorem 4.2. Let Q C R™ be a bounded and open set such that 9 is C*. Then the
following holds:

(i) For any L = 1,...,k there exists a linear and bounded extension operator exté
defined on W,(Q), 1 <p < oo, s =0,...,L forp#2and 0 < s <L forp=2,

such that
BCY Q) — BCYR™), 1=0,..,L,
ext” 1 ¢ WL(Q) — WLR™), 1=0,..,L, 1<p< oo, (4.5)
W3 (Q) — W5(R™), 0<s<L,
with
(ext™ f) |o = f for all f € BC'(Q) UWL(Q) UW5(Q). (4.6)

(ii) For1<p<oo andl=0,1,..,k,

1/p

D IDYlha | ~ I lwie (4.7)

|| <l

s an equivalent norm on Wé(Q)
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(iii) For s=140,1=0,1,.,k—1and 0 <o <1,

1/2

Da Do 2
> I+ Y | / fm_ W{( D ardy | ~ I flwgey (49)

laf< |al=t

is an equivalent norm on W5 ().

Proof of (i). (i) It follows from Proposition [3.3|that it is sufficient to extend only smooth
functions f from Q to R™ and therefore extending BC* functions will certainly suffice.
Choose balls B(z',7) according to Definition for points ' € 0§ such that 09 is
covered. Since Jf is closed and bounded, it is compact, thus it is sufficient with only
finitely many balls, say {B; }‘j]:l, to cover it. Now let €2 be an open set such that

J
QcQ and QCcQQuU || JB;]. (4.9)
j=1

This gives a finite open covering of Q. Let {¢p; }3-]:0 be a partition of unity subordinate
to this cover according to Section Then f may be decomposed as

J
f@) =po(@)f(z) + > wi@)f(x), ze. (4.10)
=1
Then
suppp;f C BN, j=1,...J (4.11)

According to the discussion before Theorem there exists C* diffeomorphisms (o
with (4.4) for each Bj, j =1,...,J. Define

9i(W) = (eif) o W)~ (), J=1,.... . (4.12)

Since g; is a composition of k-times differentiable functions, g; is k-times differentiable.
Furthermore, by the properties of ¥; and ¢, f, g; satisfies the following:

supp g; = ¢j(supp ¢; f) C M (4.13)

This is exactly the same situation as in Theorem [3.4] and the procedure used there yields
functions ext” g; with

supp ext” g; C 1;(B;). (4.14)
Recall that in the proof of Theorem we extended functions f € BCZ(Rﬁ) directly,
but for Wé(Rﬁ) and W5 (R ) we extended smooth functions and relied on their density
in these spaces. However, there we wanted operators ext” for all L € N. If we restrict
ourself to a given k € N, and the spaces Wé(Rﬁ) and W5 (R"}) with N> [ <k and s < £,
we see that in the calculations done and arguments used in the proof of Theorem
we only need f to be k-times differentiable.
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Mapping back to our original coordinates again gives functions
hj(x) = (ext" g;) o9bj(x), supph; C B, hjla = @;f. (4.15)
Putting h; = 0 outside Bj, we find our extension operator:
J
exts f = pof + Z h;. (4.16)
j=1
(ii) Since everything is reduced to the R”} case, this can be proved by a transformation
of (B53).

(iii) This can be proved by a transformation of (3.54)), but requires some extra work
compared to (ii). See for instance [10].

O
As previously noted, an alternative definition for Sobolev spaces on domains is
WF(Q) = {f € L(Q) : D*f € LP(Q) for all a € Nf}, || < k} (4.17)
normed by
1/p
s = | S I0%f1a | (4.18)

laf<k

However, under certain conditions €, this coincides with Definition [3.1}
Proposition 4.3. Let Q C R"™ be a bounded, open set such that O is of class C*. Then

WE(Q) = WFSQ), for allk < L. (4.19)

Proof. By definition, f € W;‘(Q) implies there exists a g € W;(R”) such that glg = f.
In this case we clearly have g|g € W;(Q) Thus, in general

k 7k
W, (€2) C W, (). (4.20)
The extension theorem above (Theorem also holds for W]f , so in the case when 02
is CT we get
W;“(Q) > f=exth flo, exth fe W;(R") (4.21)

which implies W¥(Q) > WF(Q) for all k < L. Thus WF(Q) = WH(Q) for all k < L. O
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4.1 Embeddings

In this section we collect some result on the embedding of Sobolev spaces. Some will be
stated without proof, but with references to a full proof.

Theorem 4.4. Let @ C R™ be an open and bounded set such that 09 is C', and let
1 <p<n. Then W}(R™) is compactly imbedded in L(S2), written

W, () —— LY(Q) (4.22)

for all 1 < g < p*, where p* = %.

To prove the theorem, we will need an inequality called the Gagliardo—Nirenberg—
Sobolev inequality, which we state as its own theorem.

Theorem 4.5. If 1 < p < n, then

g pr S CHvQHpa (4.23)

where ¢ = 7’(:7__;), for all g € CY(R™) with compact support.

Proof. Since g has compact support, we have
;
g(z) = / 02, 9(X1,5 ooy Tim1, Yiy Tig 1y - T) Ay (4.24)
—0oQ
for i =1,...,n and any z € R”. This implies

‘g(x)’ S /]‘{ ’vg<x17 "'7yi7"'7xn)|dy7;7 Z = 17 "‘7n7 (4'25)

which in turn implies

1

n n 1
g()|77 <] (/R Vg(z1, ...,yi,...,xn)|dyi> Li=1,..,n. (4.26)
=1

Integrating this inequality with respect to x; yields

[lo@i=an < | H( / |v,qrdyz~> ay
R R \JR
— </ \Vg|dyi) /H </ \Vg|dyi) dz; (4.27)
R R s \J/R

1

17 n n—1
n—1
< ( / \Vg\dyz-> (H / / Ngrdxldyi> ,
R o JRJR
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where the last inequality follows from the generalized Holder inequality. Integrating
(4.27) with respect to 2 and using the generalized Holder inequality and then proceeding
likewise for x3, ...z,, one can derive

1

n n 1
/ lg(x)| 7T dz < [ </ / ]ngxl...dyi...dxn>
" i=1 VR /R

n

_ (/R V()| dx> m. (4.28)

Now apply the inequality (4.28]) to |g|”, for some v > 0:

([ s as) ™ < [ ¥rias = [ oVt ao

sW(/nmwn%?ﬂm)ﬁl(@JVﬂ@W&QUé (4.20)

where the last inequality follows from Holder’s inequality. If we choose v = p(:i__;), then

-1
mo_(y=Dp _ np _ (4.30)
n—1 p—1 n—7p

in which case (4.29) becomes

</nmuW%u)MﬁsV<4nvm@w@Q”5 (1.31)

Since v depends only on n and p, this proves the result. ]

Before we proceed with the proof of Theorem [£.4] let us clarify what is stated in the
theorem. A compact linear embedding means that there exists a constant ¢ > 0 such
that [|fllq0 < ¢l fllw;s @) for all f € W;(2) and that every bounded sequence in W;(€2)

has a subsequence that converges in L().

Proof of Theorem[{4. We prove first that W, () C L(Q). In general, for a set Q such
that £"(Q) < oo, i.e. a bounded set, we have

l9llg0 = 11+ 1910 < 1tllp/e-g.2lllgl ey = £ (P DP|g]l (4.32)

for 1 < ¢ < p < oo. In other words, for  C R™ with finite measure, the spaces LP(£2),
1 <p < o0, are nested. Thus, in our case, || f|lq.0 < C| f|lp+a for 1 < ¢ < p* and some
constant C' > 0. Therefore it suffices to prove that f € W} (Q) implies f € LP" (). Since
00 is C1, Theorem implies that there exists an extension ext, f = f € W (R") with
compact support and satisfying

Iflwieny < Cllifllwiy:  fla=f (4.33)
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for some C' > 0. By Theorem there exists a sequence {f,}, C Z(R") such that
fo—= f in W (RY), (4.34)
and according to Theorem we have

an_fm”p* < C”vfn_vfmnp (435)

for all m,n > 1. Furthermore, (4.34)) implies that {V f,, }, is convergent in LP(R"), which
then implies, by the inequality above, that

fo— f in P (R™). (4.36)

Now, combining (4.34]) and (4.36]) with the inequality from Theorem for f, gives the
bound

1£llp < CIV Fllp- (4.37)

By this inequality and the definition of f, we have
£l < 1 Fllp < CUVFllp < C(IFllp + 1V Fllp) = Cllflwp@ny < Ol fllwp) (4:38)

for some C’ > 0 independent of f. This proves that Wpl(Q) C L9(Q2) for 1 < g < p*.

Now consider a bounded sequence {f,}, C W,(Q). In view of Theorem we
may assume {2 = R™ and that each f, has compact support in some bounded open set
V C R™ and we have

sup || fnllw1 vy < oo. (4.39)

According to the Arzela-Ascoli theorem, a sufficient condition for a sequence of func-
tions defined on a closed and bounded set to have a convergent subsequence is that it is
uniformly bounded and equicontinuous. However, Arzela-Ascoli only applies to continu-
ous functions. Therefore, we first consider the sequence of mollified functions {(f)p }n-
Proposition and equation implies that the sequence is uniformly bounded, and
furthermore we have

IV (fa)nl < /Rn wh(@ = Y)|fa(W) dy < [lwalloollfrlly < C (4.40)

for some constant C' > 0 independent of n. This implies that the sequence is equicon-
tinuous as well. According to and we may assume that each (f,); has
compact support in V', by taking h small enough. Thus Arzela-Ascoli applies and hence
there exists a subsequence {(fn;)n}; C {(fn)n}n Which converges uniformly on V. In
particular

limsup |[(fn;)n — (fa)nllqy = 0. (4.41)

J,k—00
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Now, if f, is smooth, then
@) = fole) = [ w)(Unle =) = fula)) dy
1
= [ o) [ Gihala = nty)dey (1.42)
1

[ wt) [ Vhaa—htg) -y

Thus, by we get
1
/Vl(fn)h(w) — falz)|dz < h y|§1w(y)/0 /V|an(x—hty)|dxdydt
<h /V IV £u(2)] d. (4.43)

Since, by Proposition Z(R™)|y is dense in W, (V), the estimate above holds for any
fn € Wy (V). Furthermore, since V is bounded, we have for any g € L'(V) that

v < v llalpy = £7(V)ED7lg]l, v (4.44)

gl =111+ lgl|
for p > 1. Hence
1(fr)n = fally <RIV falliy < ACIV fullpy (4.45)

for some C' depending only on the (Lebesgue) measure of V. Equation (4.39)) implies
that there exists a constant M > 0 such that ||V f,|p,v < M for all n € N. Together

with (4.45)), this implies
(fu)n = fn in LY(V), uniformly in n. (4.46)

However, we want uniform convergence in L4(V'). Since ¢ < p*, we may use the inter-
polation inequality to obtain

1(fa)n = Falley < 1I(Fa)n = Falli v 1(Fadn = Fullhe, (4.47)
where 1/¢=t+(1—t)/p* and 0 <t < 1. Then (4.39), Theorem and (4.46) together
implies

(fn)n = fn in LYV), uniformly in n. (4.48)
Thus we can for each [ € N find an A > 0 such that
1
H(fn)h—anqV < o1’ n=12.. (4.49)

which by the triangle inequality and (4.41)) implies

. 1
thUp ||fn] - fnqu,V < ? (450)

J,k—o0
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Hence we can choose n; such that

1 ,
This gives a subsequence {f,, }; C {fn}n that converges in LI(V). O

Remark: It follows from Definition that W}i“(Q) C Wy(Q) if k > 1 and W5(Q) C
W} (Q) if s > 1. Furthermore, it is clear from the definition of the norms in Wlf” (©) and
W5 (€2) that a bounded sequence in W} () or W5 (), k, s > 1 is bounded in W}(2) or
W1 (), respectively. Thus Theorem holds also for k, s > 1. In fact, when k > 1, the
bound p* can be improved (that is, enlarged), but for our purposes this is not needed.

The inequality in (4.32) gives the following embedding result on bounded sets Q2 C
R™.

Proposition 4.6. Let Q0 C R™ be a bounded set, 1 < g <p < oo and k € Nyg. Then
k k
Wy (Q) = W;(Q). (4.52)
Proof. Let f € Wé"(Q) Then, by (4.32)), we have

1/p

p—q p—q
I llwey < [ D £M(9Q) @ IDFIIE = L") » [ fllwpo)- (4.53)
a<k

This proves the result. ]

As already noted, we have WFT () ¢ Wk (Q) for k,1 € Ng and W5*5(Q) € W5(Q)
for € > 0, but if Q is sufficiently smooth, more is true.

Proposition 4.7. Let Q C R™ be bounded set such that 02 is C*°. Let k € Ny, [l € N,
s €Ry and 0 <e. Then

k+ k
W, Q) —— Wj(Q) (4.54)
and
W5tE(Q) —— W5(Q) (4.55)
Proof. For a proof of this proposition and more general results, see [4], [5] and [6]. O

The main limitation of Theorem for us is that it does not (in the form we stated
it) hold for 0 < s < 1 for W5(Q) (and in this case we only need 0 to be of class
C1). However, Proposition gives us compact embedding also in this case, since
W(Q) = L*(Q), albeit for a lower exponent: only L?(Q) and not LP"(Q), but this will
be sufficient for our purposes.
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4.2 Traces

Later, we wish to look for solutions of partial differential equations on domains €2 in
the spaces WIE (©). In order to do this, we need to assign boundary values to Sobolev
functions. This may seem somewhat problematic, as elements of W:f () are equivalence
classes of measurable functions, i.e. allowed to vary on a set of zero measure, and indeed,
if @ C R™, then £"(92) = 0. Fortunately, the assumption that the functions are weakly
differentiable gives, in some cases, sufficient regularity to make sense of pointwise values
as the following theorem shows.

Theorem 4.8. Let Q C R™ be an open, bounded set such that O is of class C*. Then
there exists a bounded linear operator

tron : W, () — LP(09) (4.56)
such that if f € W, (Q) N C(Q), then traq f = flaa on 0.

Proof. First assume 2 = R’} and f € BC’l(]Rfﬁ). We may apply the decomposition
argument used in the proof of Theorem and assume

supp f C {z € R : |z] < 1}. (4.57)
If f is real-valued, we can for a fixed 2/ € R"™1, |2/| < 1 choose a T = 7(2’) € [0, 1] such
that 1
/ f@' z,) da, = f(2', 7). (4.58)
0
We then obtain

o
a0 =170 - [ ) dop

n

<c(ifanp+1 [ 2@ a o) (450)

<c 1|f(x’,xn)]dmn p+ lyif(a:/,xn)mxn ’
(] ) ()

where ¢ > 0 can be chosen independently of f. Since p > 1 and the measure of the
interval of integration is 1, we may apply Jensen’s inequality and obtain

1
|f(2',0)]P < c/o (|f(a:',a:n)p + aam];(x/,xn)]p> dzy,. (4.60)

This inequality can be extended to complex-valued functions f € BC! (R%) satisfying

1/p
[4.57). Since 09 is of class C', we may use the equivalent norm (ngl [ID>f| ;Q)
on W, (€2) given in Theorem 4.2 Integration over 2’ € R"! on both sides of (£.60) then
yields
0
[oueoradse [ (is6ap g e ) a o wen
Rnfl Rn 83771
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which proves the result for 0 = R"}. For a general open, bounded set 2 with 02 of class
C'! we may apply the same procedure as used in the proof of Theorem to reduce it
to the case 2 = R"}. We repeat the procedure here.

For points 2’ € 99, choose open balls B(2’,r) according to Definition such that
0% is covered. Since 0f2 is compact, a finite number of balls will suffice, say {Bj}le.
Now let 29 be an open set such that

J
QCcQ and QC QU UBj . (4.62)
j=1

This gives a finite open covering of €2, and we can, according to Section 3.1, find a
partition of unity subordinate to this cover, say {¢; }3-7:0. Then f may be decomposed
as

J
f(@) = po(@)f(2) + Y (@) f(z), =€ (4.63)
j=1
Then
supp;f C B;NQ (4.64)

and there exists C! diffeomorphisms ¢; with ([£.4) (cf. the discussion prior to Theorem
for each Bj, j = 1,..., J. Define

95(0) = (030) © () (W), G =Ly . (4.65)
Then g; € BC! (R%), and we may apply the same arguments as above to find
trorn g; € LP(ORY) (4.66)
with . We then define
hj(z) = (trary g;) © ¥;(x) (4.67)

and note that supp h; C 92N B;. We then find our trace operator:

J
troo f =Y _ hj. (4.68)
j=1

O]

Remark: Theorem also holds for W;(Q), k> 1 and W5(Q), s > 1, since these are
subspaces of W (Q) and W (Q) respectively.

Definition 4.9. Let Q C R" be an open, bounded set such that 0S) is of class C'. Then
we denote the space of all functions f € WZI,“(Q), k> 1, with trga f =0 by WﬁO(Q).

There is an alternative way of defining W;O(Q), that has the advantage of being
valid regardless of the smoothness of 92 and the exponent k: it even holds for W3 ()
for 0 < s < 1, and indeed for H*(2) for s < 0.
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Definition 4.10 (Alternative definition of WﬁO(Q)). Let Q@ C R™ be an open set. Then
we define W;O(Q), 1 <p< oo withs €Ny forp#2, s€R forp=2, as the closure of
2(2) in the W, () norm.

When 99 is of class C! and s > 1, then these two definitions coincide. This is the
content of the next theorem.

Theorem 4.11. Let Q C R™ be an open, bounded set such that 0S) is of class C' and
let f € Wpl(Q) Then tragq f = 0 if and only if f there is a sequence { fn}n C Z(Q2) such
that

fo—= f in W, (Q). (4.69)

Proof. See Theorem 2 in chapter 5.5 in [7]. O

We may note that for W ((€2), extension to W (R") is trivial. Any function in 2(2)
may simply be extended by zero outside §2 regardless of the properties of 02, and so the
result follows by taking limits. Since Theorem depended on being able to extend the
functions to R", we may now revisit the theorem for Wy, giving a version that we rely
on in Chapter 5 and 6.

Theorem 4.12. Let Q C R™ be an open and bounded set, and let 1 < p < n. Then the
following holds:

()

W,y 0(Q) == LU(Q) (4.70)
for all 1 < g < p*, where p* = n”—fp.
(it)
W35 o(Q) = L*(Q) (4.71)

for all0 < s < 1.

We will only sketch the proof as the main details of (i) are already done in the proof
of Theorem and (ii) follows from Proposition

Proof sketch. (i) In Theorem 4.4 we extended W, (Q)-functions to W, (R™) by applying
the extension theorem, Theorem to prove the inclusion WI} (Q) < LP"(Q). Similarly
for the compactness, we extended elements of I/Vp1 (©) and mollified them to apply Arzela-
Ascoli. These extensions require that 9 is of class C'. However, Z() is by Definition
dense in W;O(Q), and extending these functions to Z(R™) is done simply by setting
them to be zero outside 2. All arguments done in the proof of Theorem [£.4] can then be
carried out as before, without considering the regularity of the boundary 92.

(ii) It is possible to derive this from Proposition noting again that we do not
need to put any requirements on 952 to extend functions in W3,(£2) to W3 (€2). O

We may now also state and prove the useful Poincaré inequality.
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Theorem 4.13. Let Q C R™ be open and bounded such that O is C1, and let 1 < p < n.
If f € W;O(Q), then there exists a constant C dependent only on p, q, n and  such
that

1fllg0 < ClIVflpe (4.72)
for all g such that 1 < q < p*. In particular
1fllp < ClIV fllpo- (4.73)

Proof. Theorem implies that there exists a sequence {fn}, C Z2() such that
fn— fin W}}(Q) Extending f, by zero outside €2, we may apply Theorem and in
the limit obtain

[ fllpr.0 < CIV flp0- (4.74)
Since €2 is bounded, equation (4.32) implies

Hf”q,ﬂ < CvaHp,Q (4.75)
for 1 < g <p*. O

5 Variational Methods

The calculus of variations deals with finding maxima or minima of functionals on function
spaces. Many problems in analysis, in particular differential equations, can be recast as
functional equations DE(u) = 0, where one looks for the solution u among a suitable
class of admissible functions belonging to some Banach space V. Thus the problem of
finding a solution to a PDE can be restated as finding a minimum of a functional, since
the derivative will be zero at the minimum.

The validity of this approach is perhaps better illustrated by an example than by
abstract explainations.

Let 2 C R™ be an open and bounded set. Consider the functional

I(v):/Q\Vv(x)lzda? (5.1)

where v : 2 — R. We postpone the question of smoothness and regularity conditions on
v. Suppose u is a minimiser of I over a suitable set, say

I(u) = min{I(v) :v=f on 00Q}. (5.2)
Now, for a function ¢ € 2(2), we consider the function

a(t):/Q]V(u—i—up)(m)\de. (5.3)

Expanding this expression, we obtain
at) = / Vu(z)2 dz + 2t / Vu(z) - Vo(x)dz + 2 / V() 2ds.  (5.4)
Q Q Q
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Clearly, « is differentiable with respect to ¢, and by (5.2)), o has an interior minimum at
t = 0. In other words, o/(0) = 0. That is,

/ Vu(z) - Ve(x)de =0 forall p € Z(Q). (5.5)
Q

Assuming u is sufficiently smooth (that is, at least C?), we may use integration by parts
to obtain (since ¢ vanishes on 92)

/Q (Au(z)) p(x)dz =0 for all ¢ € Z(9Q). (5.6)

Lemma implies that if (5.6 holds, then Au = 0 in €. Then, since u = f on 992 by
assumption, we see that u solves the classical Dirichlet problem

Au=0 in Q,
u=f on 9. (5.7)

We need to consider in which space we should look for such a minimiser, and there are
many things to take into consideration. First and foremost, the space should contain a
solution, and the larger the space, the more likely it is to contain a solution. But we also
need to consider how weak solutions we will allow; are we satisfied with distributional
solutions, or do we want classical solutions? Since the minimiser will inevitably have to
be found by minimising sequences, the compactness and convergence properties of the
space will be of utmost importance. Considering the theory we have developed so far, it
is no surprise that the Sobolev spaces are ideal spaces for this purpose, containing both
classical solutions and regular distributions, as well as having desirable compactness
properties (cf. Chapter 4).

Let us formalise the procedure in the example above. Let 2 C R™ be an open set.
We consider functions

L:OxRxR*" =R (5.8)

and functionals of the form
I(u) = / L(z,u(x), Vu(x)) dz, (5.9)
Q

for some set of admissible functions u : © — R. That a minimiser of the functional
considered in the example above solves a partial differential equation is no coincidence
or a property of our particular choice of L, as the next proposition shows. First, let us
fix some notation.

We write

L=L(x,z,p) = L(x1,....Tp, 2,D1,-sDn), TEQ z€R peR” (5.10)
and we set

DL = (Lg,,..., Ls,)
D.L=L, (5.11)
DyL = (Lyp,, ... Lp,).
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Proposition 5.1. Let Q C R™ be open and bounded such that 0S) is of class C'. If L
and I are as above, with L being C? in addition, and u is a minimiser of I among the set
of smooth functions satisfying u = g on 082, then u solves the boundary value problem

given in (5.15)).

Proof. Choose any function ¢ € 2(2) and consider the function
alt) =I(u+typ), teR. (5.12)

By assumption, a(-) has a minimum at ¢ = 0, since u + t¢ = u = g on 9. Therefore
o/(0) = 0. Furthermore, we have

o (t) = /Q

which implies, since L is smooth and ¢ has compact support,

dp
al’i

n
Z Ly, (x,u+tp, Vu+tVy)
i=1

+ L, (z,u+tp,Vu+tVp)p| dz, (5.13)

= / = L . LZ
0=da'(0) /Q ;_1 (T, u, Vu)axi + L,(x,u, Vu)pdz

= /Q (— Z (Lyp, (z, u, Vu))xl + L,(z,u, Vu)) pdx. (5.14)

i=1

Since this holds for all ¢ € 2(Q2), Lemma implies that u solves the boundary value
problem

- Z (Lp; (z,u,Vu)), + L.(z,u,Vu) =0 in Q, (5.15)
i=1

u=g¢g on 0.

5.1 Existence of Minimisers

We have so far established that a minimiser of solves a partial differential equation,
but the existence of such a minimiser, and how to find it, is not clear in the general case.
There are some conditions which the space of admissible functions and the functional
must satisfy, and these conditions are what we will now investigate.

For the functional to attain a global minimum, it is clear that being bounded below
is a necessary condition, however, this is not in general sufficient for it to attain its
infimum. Consider for example the function e®, x € R. It is certainly bounded below,
but it does not attain its infimum. The problem in this case is that the infimum of e* is
its limit at infinity. A reasonable way to avoid such a situation is to require that I(u)
grows as |u| — oo.
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More precisely, for 1 < ¢ < oo fixed, we will assume that there exist a constant a > 0
and a function v € L'(Q) such that

L(x,z,p) > a|p|?! — v(z) for almost every p, z, x. (5.16)

This implies
I{u) = af|Vulgq = [Vlhe (5.17)

for some constant « > 0, which further implies
I(u) = oo when [[Vul]i o — oc. (5.18)

Condition (5.17)) is called called a coercivity condition on 1.
This requirement further encourages us to look for u € qu(Q) such that u — g €
qu,o(Q)~ To simplify notation, we denote this space as

A={ue W (Q) :u—ge W, ()} (5.19)

However, condition (5.17)) is not enough. That is, it is not sufficient for I to attain
its infimum. Let

m= 7yellf;‘I(u) (5.20)

and let {u,}, C A be a minimising sequence, that is
I(u,) > m asn— oo. (5.21)

We wish to show that {u,}, or a subsequence thereof converges to a minimiser. That
is, we want u, — u as n — oo such that I(u) = m. The convergence of {I(uy)}, C R
implies that

sup | (up)| < o0, (5.22)
neN
which by (5.17)) implies
sup || Vuyllq,0 < oo. (5.23)
neN

Let v € A. Then the traces of u,, and v are equal, and thus u,, — v € W;O(Q). We may
then apply the Poincaré inequality, Theorem to this difference and obtain

[unllg0 < lun = vllgo + lvllgo < C[[Vun — Vullpo + o8 (5.24)
This, together with (5.23]) implies that

sup [|un ||y () < oo (5.25)

However, in an infinite dimensional space such as qu(Q), boundedness does not imply
compactness. On the other hand, L4(2) is a reflexive space for 1 < ¢ < oo, which we
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are assuming. It therefore follows from the Banach-Alaoglu theorem that there exists a
subsequence {uy; }; C {un}n and a function u € W, (2) such that

Up; — u weakly in L7(€2)
Vuy,; — Vu weakly in L7(€2). (5.26)

We have gained convergence by going to the weak topology, but we have lost something
in the process as well, for in most (interesting) cases, I will not be continuous with
respect to weak convergence. Thus we cannot infer that

I(u) = lim I(uy,), (5.27)

j—00

i.e. we cannot conclude that u is a minimiser. We therefore need to impose another
criterion on [.

Proposition 5.2. Let @ C R” be a bounded, open set. If for any sequence v,,v €
qu(Q), 1<qg< oo, for alln € N such that

v, — v in LH(Q) (5.28)
Vo, — Vv weakly in L*(Q),

the functional I defined by
I(u) = / L(z,u,Vu)dz (5.29)
Q

satisfies (5.17) and is lower semi-continuous with respect to the convergence in ([5.28]),
then the following holds:

(i) If OS) is of class C', then I attains its infimum on qu(Q)
(i) I attains its infimum on qup(ﬂ).

Proof. Let {uy,}, be a minimising sequence for I in qu(Q) We will prove that any such
minimising sequence has a subsequence that converges in the sense of (5.28). By the
discussion above,

sup ||unHqu(Q) < 0. (5.30)
n

If 9N is of class C! there exists, by Theorem a subsequence (denoted by {u, },) such
that u, — uin L'(Q). Since {Vuy,}, is bounded in L4(), it follows from the discussion
prior to Proposition that there exists a subsequence {u,}, such that Vu, — Vu
weakly in L9(€2).

If {up}y, € LYQ) and u,f — wf in LY(Q) for all f € L7 (), where 1/q+1/¢' =1,
then wu,f — wf in LY(Q) for all f € L®(Q) since L>°(Q) C L7 (). In other words,
weak convergence in L4(£)) implies weak convergence in L!(2). It follows that for any
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minimising sequence {uy,}, C W () of I, there exists a u € W, () and a subsequence
(again denoted by {u,}y,) such that

U, — u in LH(Q) (5.31)
Vu, — Vu in LY(Q).

Thus we have by lower semi-continuity of I with respect to this convergence that

I(u) < liminf I'(uy,). (5.32)

n—oo
If {uy}y is a minimising sequence for I in qu,o (Q), then we may apply Theorem m to
get strong convergence of (a subsequence) {uy}, in L!(2) without any conditions on 9.
The weak convergence of (a subsequence of) {Vuy,}, depends only on the boundedness
of the domain and not on the boundary, as we saw above, and so we get, by lower

semi-continuity,
I(u) < liminf I'(uy,) (5.33)

n—o0

also in this case. O

Checking if the functional is lower semi-continuous in the sense of Proposition [5.2
directly is in general difficult, and would entail showing that the function attains its
infimum directly. Therefore we want conditions for I that are easier to check and that
implies lower semi-continuity. Such conditions are given in the theorem below.

Theorem 5.3. Assume L : Q X R x R" is a Caratheodory function that satisfies the
following:

(i) L(x,z,-) is convez in p for almost every x, z.
(ii) L(z,z,p) > v(x) for almost every x,z,p and v € L*(9).

Then, if ug,u € qu,loc(Q) and v, — u in LY(Y) and Vuy, — Vu weakly in L*(Q) for
every Q' € Q, it follows that
I(u) < likminfl(uk). (5.34)
—00

Proof. We may assume that {I(ug)}y is finite and convergent, and we may also assume
L > 0, since we may otherwise replace L by L —~. Let €' € €. Since L'() is convex
and Vuy, — u weakly in L*(€'), there exists for any ko € N a sequence { P, };>, of convex
linear combinations of Vuy’s,

l l
Pi=) aiVu, 0<oj <1, Y af=1 1>k, (5.35)
k=kg k=kg

such that P, — Vu strongly in L!(€’). See for instance Theorem 3.13 in [17] for a proof
of this result in its most general form. By strong convergence in L!(Q) we also have, by
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passing to a subsequence if necessary, pointwise convergence almost everywhere in €V'.
Therefore, by Fatou’s lemma

/ L(z,u,Vu) dxﬁliminf/ L(z,u, P)dz. (5.36)

l—o0

Now, since L is convex in its third argument by assumption, the following holds for
any ko € N, any | > ko and almost every z € ':

l l
L(xz,u,P) =L | z,u, Z akauk < Z ava(x,u, Vug). (5.37)
k=kg k=ko

From (5.36|) we then obtain

/ L(z,u,Vu)dz < sup/ L(z,u, Vuy) dz. (5.38)
’ k>ko JQ

Since this holds for every kg € N, this implies

/ L(z,u,Vu)dz < limsup/ L(z,u, Vuy) dz. (5.39)

k—o00

In order to complete the proof, we need a relation between L(x, u, Vuy) and L(z, ug, Vuyg).
More precisely, we will prove that there exists a subsequence {uy,}; such that

L(x,uk, Vug) — L(z,u, Vug) — 0 (5.40)

in measure, locally in . Assume to the contrary that there exists a set ' € Q and
€ > 0 such that for

Q. ={z € Q :|L(x,ux, Vug) — L(z,u, Vug)| > e} (5.41)
we have
1i]§n inf £"(Q) > 2e. (5.42)
— 00

By weak convergence, {Vuy}y is uniformly bounded in L!(Y’). Hence

1
Lz e Q : |Vug(z)| > 1} < 7 /Q |Vug| de < % <eg, (5.43)

if [ is large enough, say [ > I. for some [. depending on e. Setting ) = {x € Q :
[Vug| < lc} we have, by (5.42)
lim inf £"(Q) > €. (5.44)

k—o0

Thus, setting Q% = (J,~ jc Q, we have

liminf £"(Q%) > ¢, (5.45)

k—o0
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for all K € N. Furthermore, the inclusions QX! ¢ QF < @ hold for all K and so
for 2°° = Ngen @ we have L7(Q>) > €. Since {ug}), converges to u in L'(Q'), there
exists a subsequence that converges to u pointwise almost everywhere. Neglecting a set
of measure zero, we may therefore assume that L(x, z,p) is continuous in (z,p) (it is by
assumption continuous almost everywhere) and that ug(z) — u(z) as k — oo for every
point x € Q.

Now let z € Q. Since we are neglecting a set of measure zero, Vuy(z) is unam-
biguously defined and as noted above, bounded uniformly in k. Thus there exists a
subsequence (relabelled) and an element p € R™ such that Vug(z) — p as k — oo.
Then, by continuity

L(z,u(z), Vug(z)) = L(z,u(z),p). (5.46)
But, since ug(z) — u(x), we also have
L(z,uk(x), Vug(x)) = L(z,u(x),p). (5.47)

Since this holds for every z € Q°°, except for in a set of measure zero, this contradicts
our assumptions on 2. Thus we have convergence in measure, and for any € > 0 and
any ko € N there exists an k > kg and a set Q’; C  such that

|L(z,up(x), Vug(z)) — Lz, u(x), Vug(x))| < & (5.48)

for all x € QF and L"(2\QF) < e. Hence we can choose a subsequence (still labelled with
k) such that, upon replacing € by &5 = 27, there is a set ngk C Q' with £"(Q\ Q’;k) <
27F such that holds for x € Q’g’k with € = ;. It follows that for any ¢ > 0, if
we choose ko = ko(g) > |logye| and set Qe = Uy, Qf_fk, then £™(QY \ 2.) < € and
holds uniformly for all 2 € Q. and all k > ko(¢). Furthermore, for € < §, we have
Q. D Q.

Next we cover 2 with disjoint bounded sets 2" € 2, m € N. Given € > 0, choose a
sequence {€™},, with €™ > 0 for all m € N, such that

> LM <e. (5.49)
meN
Passing to a subsequence, if necessary, we can for each Q™ and €™ choose kj' and
Q™ C Q™ such that £"(Q™) < ¥ and
|L(z,ug(x), Vug(z)) — Lz, u(x), Vug(x)] < ™ (5.50)

uniformly for x € Q’;, k> EJ*. If e <6, we may assume Qf D Q’g for all £ € N. Then,
defining, for any K € N, Q) = Ule QF and Q) = Ule QF we have

k—o00

/QgK> L(z,u,Vu)dz < limsup /Q<K) L(z,u,Vuy)dz

< lim sup/ L(z,ug, Vug)de + ¢ (5.51)
Q)

k—o00

<limsup I(uy) + ¢ = liminf I (ug) + €.
k—ro0

k—o0
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The way constructed the sets QEK) implies that £" (Q(K) \ QEK)) — 0ase ] 0, and

L (2 Qi )) — 0 as K — oo. Thus the result follows from the Monotone Convergence
Theorem, letting € | 0 and then K — oc. [

Theorem 5.4. Let Q0 C R™ be an open and bounded set and L : Q x R x R™ be as in
Theorem with condition (ii) replaced by L(x,z,p) > a|p|? + v(z) for almost every
x,z,p, some constant o > 0 and some 1 < ¢ < oo, v € LY(Q). Then, assuming that the
set of admissible functions is non-empty, there exists a u € W(II’O(Q) such that

I(u)= inf I(v). 5.52
W)=t 1) 5:52)

Furthermore, if S is of class C*, then there exists a u € qu (Q) such that

I(u) = inf I(v). 5.53
()= inf 1) (553)

Proof. The condition L(z, z,p) > |p|?+~v(x) for almost every z, z, p and some 1 < ¢ < 00,
v € LY(Q) is stronger than condition (ii) in Theorem and so Theorem proves
that I is lower semi-continuous with respect to the convergence . The result then
follows from Proposition [5.2 O

Remark: Even though Theorem proves lower semi-continuity with respect to con-
vergence in L'(Q) of sequences {uy}, C Wi () under certain conditions, Theorem
does not in general hold for Wi (). While Theorem gives strong convergence of uy,
in L'(Q), we have no results that give weak convergence of Vuy, in L!(€2). It is possible
to prove that Vuy converges in some sense, but its limit is in general not in L'(£2), but
in BMO, the space of functions with bounded mean oscillation.

5.2 Solving the Dirichlet Problem by Variational Methods

Let us consider the Dirichlet problem again. Let €2 C R™ be an open and bounded set,
and consider the differential equation

Au=f inQ (5.54)
u=0 on 09, (5.55)

where f € L?(Q). We consider the functional
I(u) = / |Vu(z)|* dz — / f(z)u(x)dx. (5.56)
Q Q
Considering the boundary condition and that we need |Vu||? to be integrable over €, it
is natural to work in the space W4 ,(Q2). Then fu € LY((, since f,u € L?(). Thus the
functional satisfies condition (5.17)) with ¢ = 2. We wish to show that the functional

(5.56|) is convex in Vu.
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Lemma 5.5. The functional I as defined in is convex. That is

Itu+ (1 —t)v) < tl(u) + (1 —t)I(v) (5.57)
for all u,v € W3(Q) and all t € [0,1].
Proof.

I(tu—i—(l—t)v):/Q]tVu(a:)—i—(l—t)Vv(x)\Qda;—/Qf(x) (tu(z) + (1 — t)o(z)) da

< / HVu(@)2 + (1 — )| Vo(a)[2 dz — / H(@)u(@) + (1 — 8 f(2)o(z) dz
Q Q
(5.58)
=tl(u) + (1 —t)I(v),

where we used the fact that w ~ |w|? is convex in going from the first to the second
line. O

The functional (5.56|) thus satisfies all the criteria of Theorem and hence there
exists a minimiser u € W%}O(Q). Recalling the calculations done in (5.3)-(5.5)), we have
by approximation that

/ V() - Vo(z) do — / F@)o(e) =0 for all v € Wi (Q). (5.59)
Q Q

Thus u is a weak solution of the problem [5.54]

6 Fractional Operators

Now we turn our attention to fractional operators, the main example being the fractional
Laplacian: (—A)2 for s € (0,2). Our first goal is to find a usable definition for this. If
u € L (R™) (or .#/(R™)) we have, by Proposition and its corollary, the following
equality:

F(=A)u)(€) = 6 7 u(¢). (6.1)

With that in mind we define (—A)2 as follows:
Definition 6.1. Let u € .“(R™). Then
(=A)zu(z) = FHEP Fu(©))(x), =eR™ (6.2)

Recalling Definition 2.6 and the fact that the Fourier transform is a unitary operator
on L*(R™), it is natural to extend this definition to the space H*(R").

Proposition 6.2. Let s € (0,2) and let u € H*(R™). Then the operator 1 + (—A)2
defines a continuous mapping H*(R™) — L?(R™), and we have following relation:

el sy ~ 111+ (=2)2)ull2. (6.3)
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Proof. Using Theorem [1.16] and Definition 6.1} we have
I+ (=2)2)ulls = | F(1L+ (—2)2)ullzs = (L +[EP) Fullz ~ lullgs@ny.  (64)
This implies that the mapping is continuous. O

An alternative definition of the fractional Laplace is

| u(z) = u(y)
—A)2u(z) = C(n,s) lim ————==d
(=8)2u() ( )8—>0+ RM\B(0,c) [T —y|"ts Y

1 ulx +y) +ulz —y) — 2u(x
- —jClns) [ MRS g, ()

where C'(n, s) is given by

(Xms%:</n1|;fﬁmhh>{ (6.6)

This is an equivalent definition, but we will not prove it here since we will not need
it because for the properties and results we are interested in, we claim that the Fourier
definition is easier to work with. For a proof of the equivalence of these definitions, we
refer to [15].

In the sequel, we will work with the operator 1 + (—A)2. The fractional Laplace
operator (—Aﬁ is more studied in the literature than our operator, but the methods
and results are almost the same for these operators on domains. The main difference
is that (—A)2u = (—A)z(u + ¢) for any constant ¢ (this is a direct consequence of the
Riemann-Lebesgue lemma, stating that the Fourier transform of any constant is zero),
and so one must consider homogeneous Sobolev spaces, and we wish to avoid this.

6.1 The Operator 1+ (—A)3 on Domains

First we want to investigate the Dirichlet problem for the operator 1 + (—A)% on a
bounded, open set 2 C R"™. However, from Definition [6.1] it is clear the operator
14 (=A)2 is non-local, and the values of (1 + (—=A)2)u in Q will depend not only on
its values at 02 like with A, but also on its values in R™\ Q. We will therefore consider
the following problem:

(14 (=A)2)u=f inQ (6.7)
u=0 inR"\Q.

Remark: It is possible to work with the traditional Dirichlet problem for 1 + (—A)2
without any further assumptions on w outside §2, but this is beyond the scope of this
paper. The problem and operator will, in general, not be the same as in (6.7)).

Remark: Having noted the non-local nature of the fractional Laplace operator, it is
worth mentioning that there exist a relation between the fractional Laplace and an
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extension problem [2]. That is, the value of the fractional Laplace of a function in R
can be related to a local problem in R™ x Ry, and so one can get around its non-local
nature. For the results we wish to prove, we do not need this, but it is very useful for
proving many properties and inequalities for the operator.

A more general problem than is considered in [22], although for (—A)z, with f
also depending on the function u in addition to the spatial variable. They prove existence
of solutions in homogeneous Sobolev spaces in this case, under certain conditions on
f(x,u), using the Mountain Pass Lemma. In our simpler case, one does not need such
heavy machinery. We want to find solutions to using the theory developed in
previous chapters, and considering the condition v = 0 in R™\ € it is natural to consider
u € Hj(Q) for some r € R. To make u globally defined, we can trivially consider
Hj(Q) ¢ H"(R™) by extending functions by zero outside 2. Our main theorem is the
following:

Theorem 6.3. For any bounded, open set Q C R™, and for any f € H5/2(Q), the
problem (6.7) admits at least one solution u € Hg/2(Q).

We will prove this theorem in two different ways: by means of the direct method of
variations, and by the Lax-Milgram Theorem. The first proof relies on two lemmas.

The operator 1+ (—A)2 is defined as .Z ! (1 + |£]®) .Z -), and we define the square
root of the operator, (1 + (—A)S)%, as F 1 ((1 + \§|S)% F )

Lemma 6.4. Let f € H%/2(Q). Then a minimiser of the functional I on HS/Q(Q) C
H*/2(R") defined by

I(u) = ;/ (1 + (~a)5)ta)’ dx—/ﬁfudm, (6.8)

solves (|6.7)) in the sense of distributions.

Proof. We define the function

1

alt) = 2/n ((1+ (_A)%)%(u+t¢))2 dx—/ﬂf(u+t<p) da (6.9)

where ¢ € 2(Q2). Expanding and evaluating the derivative with respect to ¢ at
t =0 yields

N[

o/(()):/n ((1+(—A)%) u) (1+(—A)§)%¢dx—/ﬂf¢dx:0. (6.10)
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By Theorem and Definition this equals

0= [ (7 ((1+(—A)5>%u))9((1+(—A)§)%gp)dg—/gf¢dx
— [ (a1t ) arle)iFpde - [ fods
n Q

- [ (i) FoFwe- | foda (6.11)

:/n ((1+(—A)§)u>cpdx—/ﬂfgodx
:/Q<(1+(—A)§)u)@dw—/gfgodxzo.

The second to last equality follows from ¢ € 2(2). Since p € Z() is arbitrary, Lemma
implies that

[N

I+ (-A)>2)u=f (6.12)

in ©, in the sense of distributions. O

Remark: The non-local nature of (—A)2 and the calculations done in (6.11)) show the
reason to take the integral in over R" instead of (2.

Remark: 1+ (—A)2? maps HS/2 to H=%/2. An element of H~%/? is in general not a
function, but a distribution, so from Lemma [6.4] we cannot guarantee any more than the
existence of solutions in the distributional sense. On the other hand, it is clear that if
the minimiser u and f satisfy some stronger regularity condition, say u € H{(f2) and
f € L*(Q), then (14 (—A)2)u will be a function.

Lemma 6.5. Let Q C R™ be bounded and open and f € H=*/2(Q). Then the functional

I(u) = ;/n ((1 + (—A)%)%u>2 dz —/qud:c (6.13)

attains its minimum on H8/2(Q) C H*2(R™).

Proof. We first note that since u = 0 in R™ \ Q, we may write

I(u) = / % (0 + (a)H)5u)” — fuda. (6.14)

We wish to apply the results from Chapter 5, and our first step is to prove lower
semi-continuity. Using the notation of Theorem we have L = L(z,u, (—A)iu) =

((1 + (—A)%)%u>2 — fu. Clearly,
(14 [€[*)% Ful ~ [(1+ |€]3) Z (6.15)
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which implies
sy1 s
11+ (=A)2)2ull2 ~ [[(1+ (=A)1)ulf2. (6.16)
Proposition [6.2] then implies

5 [ (0 Cahie) doz ol (-a)iul} (6.17)

for some constant a > 0. Furthermore, since f € H—%/2(Q), we have fu € L'(Q), and
also fu € LY(R") since u = 0 in R™ \ , and combining this with the inequality
we get

I(u) > af (=A) w3 — || fullr. (6.18)

Convexity of L in the third factor is straightforward to check and thus I satisfies the
criteria of Theorem The only property of the sequences {uy }n and {Vuy,}, used in
the proof of Theore is strong local L' convergence and weak local L' convergence,
respectively, and it then follows from that theorem that I is lower semi-continuous with
respect to the convergence

u, — u in L) for all Q' € R” (6.19)
(=A)Tu, = (—A)iu weakly in L'() for all Q' € R™.

The next step is to prove that a minimising sequence {uy,}, C HS"/ 2((2) of I converges
toawu € HS/2(Q) in this way.

Let {un}tn C HS/ 2(Q) be a minimising sequence for the functional /. This implies
Supy, [|tn|| frs/2(rny < 0. Since €2 is bounded, Theorem implies that there exists a

subsequence (denoted {u,},) such that u, — u strongly in L?(2) for some u, which by
boundedness of domain implies strong convergence in L'(§). Since u,, = 0 in R\ Q for
every n € N, we may set u =0 in R" \ 2 and we get

u, — u in LY(Y) for all ' € R™. (6.20)

Since supy, [[un | gs/2gny < 00, it follows from Proposition and equation ((6.16) that
sup,, [|(1 + (—A)i)unHQ < 00, and thus

sup ||(—A)§un||27gf < oo for all Q' € R™. (6.21)

Banach-Alaoglu and boundedness of domain then gives

(=A)iu, — (—A)iu weakly in L' (Q') for all ' € R™. (6.22)

It then follows that
I(u) < lirginf I(uy) (6.23)
and [(u) = infveHg/Z(Q) I(v). O
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Proof I of Theorem[6.3. This follows immediately from Lemmas [6.4] and O

We will also prove Theorem by an application of Lax-Milgram. For clarity we
state the Lax-Milgram Theorem here, without proof.

Theorem 6.6. Let H be a Hilbert space. If
B:HxH—R (6.24)

s a bilinear, coercive and continuous mapping, that is, there exist constants o, 3 > 0
such that
|B(u,v)| < allullgl|vllg  for allu,v € H (6.25)

and
Bllull% < B(u,u), for allu € H, (6.26)

and f: H— R is a bounded linear functional on H, then there exists a unique element
u € H such that
B(u,v) = f(v) (6.27)

forallve H.
Proof. See for instance Theorem 1, Section 6.2.1 in [7]. O

The formulation of Theorem is quite abstract, but the result is highly useful, as
we will provide a small demonstration of below.

Proof II of Theorem[6.3 We wish to apply Theorem [6.6 Proposition states that
Hs/ 2(Q) is a Hilbert space. Recalling Lemma we define a mapping

B: HY?*(Q) x H*(Q) = R by
B(u,v) = / (04 ()5 5) (1t (~2)9)bvdz, w0 e HY*(©). (6.28)

The bilinearity of B follows immediately from the linearity of (1 + (—A)%)% and the
linearity of integration. Furthermore, by Holder’s inequality

s 1 s 1
<+ (=A)2)2ull2ll(T+ (=4)2) 202, (6.29)
From ((6.15)), (6.16]), Proposition [6.2] and (6.29)), we can then find a constant « such that
|B(u,0)| < all(1+ (=2) Dull2]| (1 + (=2)1)o]l2 = allul o2 [0l o2y (6-30)

Since u,v € Hg/ 2(Q) were arbitrary, this proves that B is continuous.
Using Proposition [6.2] again we have

o2y = Ny = [ 101+ (~A)E)uf?do (6.31)
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Coercivity then follows from equations (6.15]), (6.16)).
Next we define a bounded, linear functional on HS/ 2((2) by, abusing notation,

= /Q fvdz. (6.32)

Linearity is immediate from the definition, and boundedness follow from the duality of
H?*/? and H=%/2. Thus, by Theorem there exists a unique u € HS/Q(Q) such that

B(u,v) = f(v) for all v e H/*(Q). (6.33)

Since 2(Q) C H, o/ 2(Q), the result then follows from the calculations done in Lemma
0.4 0

Remark: Proof I only gives existence of solutions and not uniqueness, since it is not
clear if there are other minimisers. However, Proof II gives uniqueness as well.
6.2 The Operator 1+ (—A)? on R"
Now we turn our attention to the problem

(14 (=A)2)u=f inR™ (6.34)
Again we will work with u € H"(R").
Theorem 6.7. For any f € H"(R"), r € R, there exists u € H™*(R") solving (6.34).

In this case we may even give a constructive proof.

Proof. We claim that a solution is given by
F
w=F1 ( f > : (6.35)
1+ (¢l

First we prove that u deﬁned by (6.35) belongs to H"™*(R"). By Definition [2.6] .7 f €
L?(R™, w,), and thus 1+|€‘S € L*(R", w,4). This implies, again by Definition that

F! <1igs> € H"5(R™). (6.36)

Applying the operator 1+ (—A)2 on u yields

a+cams () =7 (aven s (7 ()

-1 ( + [€]%) 1 " é’s) (6.37)
—1
(7
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From this proof we can also derive a fundamental solution of but first we will
define what we mean by this.

Definition 6.8. Let L be a constant coefficient linear partial differential operator,

L= ) cD" (6.38)

laj<m

where m € N and the ¢, ’s are scalars. Then we say that E € 2'(R"™) is a fundamental
solution of L if
LE =6. (6.39)

One may make a similar definition for fractional differential operators.

Proposition 6.9. The distribution

a—1 1 ! (DM
Z <1+|£|8>ey(m) (6.40)

is a fundamental solution to (6.34)).

Proof. We first prove that is a tempered distribution. Since (1 + [£]¥)71 is
bounded and measurable, it is a tempered distribution by Proposition [1.19] Therefore
FH((1+[€)*)71) is defined in the sense of distributions, and belongs to .7/ (R™).

Let ¢ € .7(R"). Then

1+ 0D 5 (g ) @ =2 D)
=1(F 1) (6.41)

Thus

(14 (—A)3) Z! (1 +1|£|8> s (6.42)

O

Remark: The main feature of a fundamental solution F' of a differential operator L is
that for every test-function ¢, u = F % ¢ solves Lu = . Thus we could already guess

from ((6.35]), recalling Proposition that (6.40) is a fundamental solution.

6.3 Spectral Theory for the Operator 1+ (—A)2

In this section we will look for eigenvalues and eigenfunctions of the operator 1+ (—A)%.
On R”, the problem reads as follows

(14 (=A)2)u = Au in R”, X e C. (6.43)

However, this problem is trivial, as shown by the following result:
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Theorem 6.10. The eigenvalue problem (6.43)) assumes no non-trivial solutions.

Proof. Assume ((6.43)) holds for v # 0. Applying the Fourier transform to both sides of

(6.13) yields
(14 [£°) F u(§) = A F u(€) for almost every & € R™. (6.44)

Thus 1+ |£]* = A for almost every £ € R™, which is impossible unless s = 0. O

Therefore, we will consider the eigenvalue problem for this operator on open and
bounded sets, and we will consider the weak formulation of it. That is, for an open and
bounded set 2 C R", we will search for A € R and solutions u & HS/Q(Q) C H/2(R™)

(again we consider it as a subset by extending functions in Hg/ 2 by zero outside §2) of

/n(l +(=A) ) 2u(2) (14 (—A)2)2v(z) do = A/ u(z)v(z) da, (6.45)

Q

for all v € HS/ 2 (©). We wish to find all eigenvalues and eigenfunctions in this case, and
discuss some of their properties. First we may note that we need only consider A € R,
since the whole spectrum of 1+ (—A)? is real.

Proposition 6.11. The spectrum of 1+ (—A)3 : H3(Q) — L*(Q) is real, and contains
only the eigenvalues of the operator. That is, the continuous and residual spectrum are
empty.

Proof. For any open set (2 C R™, the operator is defined on Hg(2) C L?(f2), which is
a dense subset by Theorem since 2(Q) C H(2), and we have, by Theorem [1.16]
Proposition [1.11] (iii) and Definition that

(1+ A e = [ (1) F ) 7 g
/Rn (Fu)(1+[€]*) F 15 de (6.46)

[ o+ Ca) e = (. (14 (-8) o)z

This proves that 1+ (—A)2 is symmetric. Now let A be an eigenvalue of an eigenfunction
u. Then

A= Nllull3 o = {Mu, u}p20) — {u, M} 2 () (6.47)
= (L + (=A)2)u,u) 20y — {u, (14 (=A)2)u) 12() = 0.

This proves the first part of the statement.

If the inverse of 1 — A+ (—A)% exists, it is given by .# 1 <jw>, which is defined

on a dense subset of L?(Q) and is bounded (A = 1 corresponds to the trivial eigenvalue
0 of (—A)z), so the continuous and residual spectrums are empty. O
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Remark: From the calculations done in the proof above we may also derive that
(L+ (—A))u,u) gy = (L + (~A)5)2uf3 > 0 (6.48)

which implies that 1 + (—A)g is a positive operator.

Proposition implies that if we characterise all the eigenvalues of 1+ (—A)S, we will
have characterised the whole spectrum, and this will be our goal.
The next theorem provides the basis of our discourse.

Theorem 6.12. The functional defined by

I(u) = / (1 + (-a)h)tu)” (6.49)

on the space
H={ueH/*Q) c HR") : |ufsq =1} (6.50)

attains its minimum on this space for an ey € H such that

/n ((1 + (—A)%)%el) (14 (-A)2)2vdz = )\1/ erv dz (6.51)

Q
forallv e H§/2(Q), where \y = I(e1) > 0.

Proof. Step 1: First we prove that I attains its infimum on the space H. Note that our

functional is the same as the functional in Lemmas and defined by with
the term [, fudz removed. The proof given in Lemma [6.5| for the lower semi-continuity

of on Hg/ 2(Q) did not rely on the last term, and thus result is true also for the
functional , and for any subspace of HOS/ 2(Q)

Let {uy, }, be a minimising sequence for I in H. By coercivity of I on H, the sequence
is bounded. From the proof of Lemma[6.5[ we know that a subsequence converges weakly
to some e € HS/ 2(Q), and furthermore, by the remark above,

I(e1) < liminf I(u,). (6.52)

n—oo

What remains to prove is that the limit e; is in H, that is, that H is weakly closed.
According to Theorem the embedding Hg/ 2 () < L?(Q) is compact. This implies
that u, — €1 strongly in L*(Q) as n — oo, which implies ||uy]l2.0 — [le1]lz.o. By
assumption ||u,|l2 0 =1 for all n € N, and thus ||e1]j20 =1 and e; € H.

Step 2: We show that the e; found in step 1 satisfies (6.51). Let ¢ € (—1,1),
vE HS/Q(Q), ce = |le1 +ev|2,0 and e1 . = (e1 +€v)/c.. Observe that e; . € H, and note
that I(-)'/2 defines a norm equivalent to || - ”HS/Q(Q) on HS/Z(Q) (cf. Proposition .

For the rest of the chapter, we will take this as our norm on Hg/ 2 (©), and we define the
following inner product, which induces the norm:

(00) gy = [ (1 (<8)3)

0

w(l+ (—A)3)2vdz. (6.53)

N|=
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We have the following relations:

= / le1 4+ ev*dx = HGIH%Q + 25/ e1(z)v(z)dz + o) (6.54)
Q Q
and

lev 0l sy = [ A+ Fer+ev)P g (6.55)
= ”61HH8/2(Q) + 2€<617U>HS/2(Q) + O(E).

Considering our remarks about the norm and inner product above, (6.54) and (6.55)
implies that

Helufq;/g @ 2061 0) gy + 0(2)
T4 22 Jyer(2)o() dz + ofe)

(1(61) + 2¢{eq, U)HS/Q(Q) + 0(5)) (1—2¢ [y ei(z)v(z)dz + o(e))

) 1 —4e2 ([ er(zx)v(x) d$)2 + o(¢) (6.56)

=1I(e1) + 2¢ ((el,v)Hg/z(Q) —I(e1) /Q e1(z)v(x) da:) + o(e). (6.57)

I(e1e) =

If <61,U>Hs/2(9) —2I(e1) [qe1(z)v(z) de is non-zero, it is possible to choose € € (—1,1)
0

such that I(e1.) < I(e1), since for small €, the aforementioned term will by definition

dominate the o(e) term. This contradicts the minimality of e, and we thus have

<61,U>H§/2(Q) — I(e1) /Q e1(z)v(z)dr =0, (6.58)

which by (6.53)) is the same as

NI

/n(1+(_A)§)ée1(1+(—A) )%vdxzf(el)/el(x)v(x)dx. (6.59)

Q

Since v € Hg/ 2 (©) was chosen arbitrarily, this proves the result. O

The procedure used to prove Theorem cannot be extended to unbounded sets 2 C

R™. To get convergence of (a subsequence of) a minimising sequence {uy}, in HS/ 2(9),
we used the Theorems and Banach-Alaoglu, both of which hold only on bounded
domains. We show in Theorem that there are no non-trivial eigenvalues on R".

We will now investigate some of the properties of e; and A;.

Proposition 6.13. FEither e; > 0 ore; <0 a.e. in R™.
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Proof. By definition, e; = 0 a.e. in R™ \ €2, so we only need to consider its values in €.
First we note that |e;| € H, and

llex(@)| = lex(w)]] < lex(x) — ex(y)] (6.60)

and if e;(x) > 0 and e;(y) < 0, the inequality is strict. We claim that this implies
I(le1]) < I(e1) if L"({z € Q:e1(x) <0}) and L™ ({x € Q: ei(x) > 0}) are both non-
zero. To see this, note that if the inequality is strict for a set of positive measure,
it follows from the definition of the W, /2 (R™) norm (cf. (2.25))) that

2 2
sl gy < et 27 g (6.61)
Furthermore, in the proof of Theorem [2.10, we showed that
2 o s 2
Jer sy = [ (146101 2 Q) e (6.6
for s € (0,2) (cf. (2.40)). Recall that, by Definition [6.1] that
2
I(e1) = / (7 (0 +1ei 7)) ae (6.63)
Rn

Thus ||-||? ., is nothing but I(-) with a constant ¢ instead of 1 in front of the ¢ term.
ALY

Thus, by (6.61), I(|e1]) < I(e1). This contradicts the minimality of e;, and therefore
either L" ({zr € Q:e1(x) <0})=0o0r L”" ({z € Q:e1(x) >0}) =0. O

Proposition 6.14. Ifu € H5/2(Q) solves

/n ((1 n (_A)%)%u(x)) (14 (~A)2)zv(z)da = /\1/ w(z)o(z) de (6.64)

Q

for every v € HS/Q(Q), then u = yeyp, for some v € R.

/2

Proof. Suppose g1 € Hy'* is a non-zero eigenfunction corresponding to A1, with g1 # ey.

We claim that any eigenfunction e € HS/Q(Q) corresponding to A; with |le[2o =1is a
minimiser of (6.49) on H. By assumption, e satisfies

[Nl

/n (1 + (~a)5)ke) 1+ (-a) )%vdx:uu)/ e@o(@)de  (6.65)

Q

for every v € Hg/z(Q). Choosing v = e, we get I(e) = Ay = I(e1), since |le|20 = 1.
Therefore Proposition holds for any eigenfunction in H corresponding to A1, and,
by normalization, for any eigenfunction in HS/ 2(9) corresponding to A;. Thus either
g1 > 0 a.e. or g1 <0 a.e. in R™. Define

~ g1

- J- 6.66
9= Tolba (6.66)
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and set f = ey — g1. Suppose f # 0. Then f is also an eigenfunction corresponding to
A, and f > 0 a.e or f <0 a.e. Then either e; > g1 a.e. or e; < g1 a.e. Since e; and §;
both have constant sign, this implies

e?> g ore; < g: ae. in Q. (6.67)

On the other hand,
/Qel(:ff)2 —gi(@)?dz = el o~ lg1l3a=1-1=0 (6.68)
contradiction our assumption on f. This proves the result. O

Proposition 6.15. If A and X are two distinct eigenvalues of problem (6.45)), with
eigenfunctions e and € € H8/2(Q), respectively, then

<e,é>HS/2(Q) =0= /Qe(a:)é(:c) dz. (6.69)

Proof. We may assume e # 0 and € # 0. We may also assume both e and € are
normalised such that e,é € H. Testing e against € and vice-versa in (6.45)), we find

/n (04 (8 e()) (L + (~A)5)de(a) do = )\/Qe(:r:)é(x) dz (6.70)
= 5\/Qe(a:)é(x) dz.

Hence

(A=X) /Q e(r)é(z)dz = 0. (6.71)

/ e(z)é(z)dz =0 (6.72)
Q

Inserting this into (6.70]), we also get

[ (a+ca)

This proves the result. O

N|w

Jre(@)) (1+ (—A)3)7e(2) da = 0= (€.8) ora g, (6.73)

Now we come to the main theorem on eigenvalues of 1 + (—A)g, which gives a
characterisation of all eigenvalues and eigenfunctions of this operator, and thereby of
the whole spectrum (cf. Proposition [6.11). The main ideas of the proof come from [23],
with some alterations due to working with slightly different operators in different spaces,
and [23] defines the fractional operators considered by means of singular integrals, like in
Equation (6.5]), instead of using the Fourier transform. It should be noted that [23] works
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with general elliptic fractional differential operators that satisfy certain criteria with the
fractional Laplace operator being the prime example, and their result almost directly
holds for our operator. While some arguments used in the preceding results and also in
the following theorem are particular to our case, these results can be generalised further
than noted above, and they hold for any positive elliptic and self-adjoint operator. See for
instance [3] (indeed, we have not proved that our operator is self-adjoint, only symmetric,
but in fact many of these results hold for symmetric operators, and self-adjointedness of
our operator follows from arguments presented in the cited paper).

Theorem 6.16. (i) The set of eigenvalues of problem ([6.45)) consists of a sequence
{ Ak i with
D<M << <A< )‘k-i-l <.. (6.74)

Furthermore, for any k € N the eigenvalues can be characterised as follows:

Mer1 = inf I(u), (6.75)

u€EH 11
where I is as defined in (6.49)) and

Hp1 ={u€H: (u,e;) =0, foralli=1,...k} (6.76)

Hy/? ()
with H as in (6.50) and (-,-)Hs/z(m as in (6.53)).
0

(ii) For any k € N, there exists a function exy1 € Hyy1 which attains the infimum in
(6.75) and is an eigenfunction corresponding to Agy1.

(iii) The sequence { A} satisfies
A — 00 as k — oo. (6.77)
(iv) The sequence {eg}r of eigenfunctions corresponding to A is an orthonormal basis
of L*(Q) and an orthogonal basis of HS/Z(Q).

Proof. The proofs of (i), (ii) and (iii) are inter-connected, so in order to avoid repeating
lengthy arguments, we will prove them together.
Let A\; be defined as in (6.75]). Since

Hy1 C Hy, € HY*(Q), (6.78)

we have
D<A < <. <L >\k < )\k+1 <... (679)

We prove that A1 # Aga. Assume to the contrary that A\ = Ao. Then es is an eigenfunc-
tion corresponding to A; and by Proposition [6.14] es = ~eq, for v £ 0. On the other
hand, es € Ha, which by definition implies

0= <€2,€1>H8/2(Q) = ’Y<€1,61>Hg/2(9). (6.80)
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This is saying that e; = 0 a.e., which contradicts our previous results. Thus A; # Ag,
and is proved. Next we prove that the elements of this sequence are eigenvalues
of the problem .

Noting that Hy 1 C H is weakly closed for any k € N, Theorem applies also
on this space, and so there exists a function ey, € Hy1q1 which attains the infimum in
(6.75)). Furthermore, Theorem applied to Hy1 yields

[ (a+ o

for all v € Hx41. In order to prove that Ay is an eigenvalue with eigenfunction egyq,
we need to prove that holds for all v € Hg/ 2(Q) We prove this by induction;
that is, we assume it holds for 1, ...,k and prove it then also holds for £ + 1. Theorem
6.12 proves that A1 is a eigenvalue with eigenfunction e, and this is the basis for our
induction hypothesis.

By (6.50) and (6.76[), we see that

H = span{ey,...,ex} © Hy1. (6.82)

e

ek+1> (1+ (—A)S)%U dz = Ag41 /Q ep+1(x)v(x) de, (6.81)

Thus any v € H can be decomposed as

k
V=01 +v2, V= chel, c; €R, and vy € Hi . (683)
=1

Inserting vy = v — v1 into (6.81]), we find
[0+ Capan) 14 () vds = M [ (@) ds
n )
= / ((1 + (—A)%)%ekH) (1+ (—A)%)%vl dz — )\k+1/ ek+1(x)vi(x)de (6.84)
n Q

— zk;c (/R ((1 - (—A)%)%em) (1+ (=A)5)2e;dz — Nps /Q eni1(z)es(z) dx) ,

By the induction hypothesis, (6.81) holds for e; tested against exiq for i = 1,..., k.
Recalling (6.53|) and (6.76), we find

0—/n<(1+(—A)

This and implies
/ ((1 + (_A)%)%€k+1) (1+ (—A)%)%v dz = >\k+1/ ept1(z)v(x) de (6.86)
n Q

(Sl

Pher) (Lt (~A)) b de = Ay /Q ei(x)ersr(z)dz.  (6.85)

for all v € H. Since every u € HS/Q(Q) except u = 0 can be made an element of H by
normalisation, (6.85]) holds for all v € Hg/ 2(Q) This proves (ii).
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In order to complete the proof of (i), we need (iii). Suppose to the contrary that
A — ¢ for some ¢ € Ry. By (ii) we have

R (CAE Y (6.87)

which implies supy, [leg| ,;s/2oy < ¢. Thus, using Proposition we can find a subse-
0

Q)
quence such that

er, — e for some e € L*(Q). (6.88)

In particular, {ex,}; is a Cauchy sequence in L?(2). On the other hand, the sequence

{ex, }i is by definition orthogonal in Hg/2(Q). Inserting e, and eg;, i # j, into [6.81f we
find that, as they are eigenfunctions,

0= / ((1 + (—A)%)%eki) (14 (—A)%)%ekj dz = Mg / er; (w)ey, (z)dz.  (6.89)
n Q
Thus the sequence is orthogonal in L?(Q) as well, and

lex, = e, 130 = llew 5.0 + ller, 130 = 2. (6.90)

This contradicts {e, }; being a Cauchy sequence in L?(£2), and therefore our assumption
on the limit of A\ is false. This proves (iii).

To finish the proof of (i), we need to show that eigenvalues we have found are all the
eigenvalues. Assume to the contrary that there is an eigenvalue A € {A;}r. Let e € H
be a corresponding eigenfunction. Evaluating e against itself in , we find

I(e) =\ (6.91)

Since e is a minimiser of I in H, we deduce
A=1(e) > I(e1) = 1. (6.92)

Thus, by (iii), there exists a k € N such that
A <A< A1 (6.93)

We claim that
e g Hk+1. (694)

Assume to the contrary that it is. By minimality, Ay+1 = I(ex4+1) < I(e) = A, which
contradicts (6.93)). From (6.94) we deduce that there exists some i € {1,2,...,k} such
that (e, e;) 12 @) # 0. However, this contradicts Proposition This proves (i)

(iv) Orthogonality in both Hg/2(Q) and L?(2) follows from Proposition and
the functions are by definition normalised in L?(2). We first prove that {ey} is a basis

for HS/2(Q). Assume to the contrary there exists a non-zero u € HS/Q(Q) such that

(u, ek>H§/2(Q) =0 for all k € N. (6.95)
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We may assume |jull2 o = 1, otherwise we could normalise. Since u # e; we know, by
Theorem, that

I(e1) < I(u). (6.96)
On the other hand, I(u) < oo, but (6.77) and (6.75) implies I(e;) — oo as k — oo.
Thus there exists a k € N such that

I(u) < Agy1 = I(eg) = inf I(v). (6.97)

vEHE 11

This implies u ¢ Hy11, and so there exists a j € 1,...,k such that (u, ej)Hs/z(Q) # 0,
0
contradicting (6.95)). Thus
(v, ek>Hg/2(Q) =0 for all k € N implies v = 0 a.e. (6.98)

We normalise the eigenfunctions in H5/2(Q) éi = e;/|lell ()" Given f € Hs/2(Q)
we define '
J
fi= 2;<f, i) o/2(yin § € N. (6.99)
=
We wish to prove that f; — f as j — oco. Define v; = f — f;. Then, recalling that {€;};
is an orthonormal system in H s/ 2((2), we calculate

O S <Uj’UJ> 5/2 ||f||2 Q/Q(Q) <f_]7f_7> 5/2 <fa f_]) 5/2 )

= 155720y + i F) g2y = Z<f,ez> et (6:100)

=1

()
J

||f” s/Q(Q) Z<f>el> s/Z(Q)

Thus '
J
Z<f, éi)fqgm(m < HfHZS/Q(Q) for every j € N, (6.101)
i=1
from which we deduce
Z<f, &) gar2 gy < O (6.102)
=1
So A
J
=2 (@ e g (6.103)
=1

is a Cauchy sequence in R. Furthermore, using the orthonormality of {é;}; we find that

for k > j,
k

(O = 03,0k = 03} parz gy = D Fi)onnig) =Tk = T (6.104)
i=j+1
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Thus {v;}; is a Cauchy sequence in Hg/ 2(Q)7 and by Proposition there exists a

NS H8/2(Q) such that v; — v as j — co. From the definition of v, it is straightforward
to compute that (vj, €i>H5/2(Q) =0 when j > 4. From (6.98) we then deduce that v = 0.
0

Then, since f; = f —v;, we get
fi= f=v=fin Hy*(Q) as j = oc. (6.105)

This shows that {ej}x is an orthogonal basis of Hg/ 2(Q) Lastly, we prove that it is
a basis of L%(Q). Given g € L?(Q) and € > 0, Theorem states that there exists a
function ¢ € Z(Q2) such that

£

. (6.106)

lg — ¢ll2.0 <

Furthermore, since 2(Q2) C Hg/ 2(Q), there exists, by what we just proved, a function
g € span{ey : k € N} such that

€
— g < —q|| s —. .
o~ lloz < e~ 8l sy < o (6.107)
Using the triangle inequality, we find
- . e €
lg = gllze < llg = ¢llzg +ll = glza < 5+ 5 = (6.108)
Since g € L?(Q) and € > 0 were arbitrary, this proves the result. O
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