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Abstract

In this thesis we derive the basic theory for distributions, fractional and classical Sobolev
spaces and the direct method of variations, and apply this theory to discuss solutions of
(1 + (−∆)

s
2 )u = f for s ∈ (0, 2) on both bounded open sets and all of Rn. We use both

the direct methods of variations and Lax-Milgram to give sufficient conditions on f for
existence of sobolev and distributional solutions. We also discuss the spectrum of the
operator 1 + (−∆)

s
2 and give a characterisation of all eigenvalues and eigenfunctions on

bounded open sets.



Sammendrag

I denne oppgaven utleder vi den grunnleggende teorien for distribusjoner, fraksjonelle
og klassiske Sobolevrom og variasjonskalkulus, og anvender denne teorien til diskutere
løsninger av ligningen (1+(−∆)

s
2 )u = f for s ∈ (0, 2) p̊a begrensede, åpne mengder, samt

hele Rn. Vi bruker b̊ade variasjonskalkulus og Lax-Milgram til å gi tilstrekkelige krav p̊a
f for eksistensen av Sobolev– og distribusjonsløsninger. Vi diskuterer ogs̊a spektrumet
til operatoren 1 + (−∆)

s
2 og gir en karakterisering av alle egenverdier og egenfunksjoner

p̊a begrensede, åpne mengder.
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Preface

This thesis is written throughout the year 2013 in order to complete the degree Master
of Mathematics at the Norwegian University of Science and Technology.

The topic of the thesis was chosen more or less as a ”let’s try something new” ad-
venture. Before starting this endeavour I have had several courses in algebra, topology
and real analysis, but with regards to the themes of the thesis, I had only a course in
Fourier analysis, where distributions were introduced at a basic level, and an abstract
course in functional analysis (where there never was any mention of differential equa-
tions). Sobolev spaces were known only by the most basic definition, and the modern
field of partial differential equations was truly terra incognita. Stepping into the office
of my supervisor, Førsteamanuensis/Associate Professor Mats Ehrnström, and telling
him that I wanted to write a thesis about Fourier analysis, Distributions and Sobolev
spaces, with particular stress on the latter, in the area partial differential equations, I
had little idea where I was going. Fortunately, he did, and early in the process of writing
the thesis it became clear that I will go on to do a PhD, and then the goal of the thesis
became largely a preparation: to learn relevant theory and how to apply it, and how to
convey results to the reader. The work started vigorously in January 2013, and with the
exception of an exceptionally long summer break, went on throughout the year.

I owe a great deal of gratitude to my supervisor Mats Ehrnström for his thorough
guidance in the writing of this thesis, and I would also like to give special thanks to
Anastasiia Sergeevna Tkalich, who gave me the power and motivation to continue my
work when it came to a halt, and to Sunniva Bøe, who supported me most of the way.
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Introduction

In many problems of both theoretical and applied mathematics it is not sufficient to
consider only classical solutions of differential equations in order to find solutions. This
led to the introduction of distributions which took its modern form during the first half
of the 20th century [18]. Distributions were first introduced by Sergey Lvovich Sobolev
in the 1930’s [19], who simply called them functionals. The concept was further devel-
oped by Laurent Schwartz during the 1940’s where he gave a more complete theory of
distributions, and also introduced the name distribution [18]. Sobolev introduced dis-
tributions as a tool for finding solutions to partial differential equations [19] and since
their introduction, distributions has been used with great success in the theory of dif-
ferential equations. Another important tool is Sobolev spaces, which, like distributions,
have become a large field during the 20th century, and is connected to distributions:
a Sobolev space is a subspace of an Lp space such that the distributional derivatives
of the elements, up to some order, is contained in the Lp space [20]. Combining both
integrability and differentiability criteria, these spaces have very suitable compactness
properties and are natural homes for weak (and strong) solutions of partial differential
equations. These concepts were first introduced with more classical types of differential
equations in mind, but has been adapted for fractional differential equations. In fact, the
history of fractional derivatives is more ancient than that of distributions and Sobolev
spaces, and it started from a note by Leibniz [14] where he discusses the meaning of
derivatives of order one half, which led to the development of a theory of derivatives of
arbitrary order. However, for centuries fractional derivatives was of a purely theoretical
interest, but in the latter part of the 20th century it was discovered that many physical
problems are better described by fractional differential equations (for some examples of
applications there are several textbooks devoted to it, for instance [16]), and it is an area
of active research both purely theoretically and with regards to applications.

In this thesis we provide an almost self-contained treatment of the basic theory
of tempered distributions, the Fourier transform and Sobolev spaces, both fractional
and integer order, and use this theory to define fractional derivatives and discuss the
fractional differential operator 1 + (−∆)

s
2 for s ∈ (0, 2). In Chapter 1 we first derive

the main properties of the Schwartz space and the Fourier transform. In particular we
prove the invariance of the Schwartz space under the Fourier transform, as well as how
to extend the Fourier transform from the Schwartz space to Lp(Rn) for 1 ≤ p <∞, with
special emphasis on L2(Rn), on which we prove that the Fourier transform is a unitary
operator. The important tool of mollification which we use extensively in the first
chapters is also introduced. With this foundation, we introduce tempered distributions
and give sufficient criteria for a function to be a distribution, and show that there exists
distributions which are not functions. We define distributional differentiation and the
Fourier transform on tempered distributions, proving that tempered distributions are
invariant under it. The space D ′(Ω) is also introduced, but we restrict ourselves to
noting that it is a superspace of tempered distributions, and give sufficient criteria for a
function to be an element of it. All results are stated with complete proofs, except for the
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fact that smooth, compactly supported functions are dense in the space of distributions,
which we do not need in this thesis but state because of its fundamental importance in
the theory of distributions. Many of the proofs are done independently by the author,
while the rest are based on [9] and [10].

Distributional differentiation as defined in Chapter 1 provides the tools to give the
definition of classical Sobolev spaces W k

p (Rn) for 1 ≤ p <∞ and all non-negative integers
k in Chapter 2. Some basic properties of these spaces are proved, before the attention
is turned to fractional Sobolev spaces. By using the unitarity of the Fourier transform
on L2(Rn), we prove that the Fourier transform maps weighted L2 spaces with weight
(1 + |x|2)k/2 unitarily onto W k

2 (Rn). The spaces Hs(Rn) then occur by interpolating
between these spaces by continuously varying the exponent of the weights. An alternate
definition of fractional Sobolev spaces of positive order, denoted by W s

2 (Rn), is given
by means of singular integrals, inspired by Hölder continuity, and it is proved that
Hs = W s

2 . Lastly we give a proof of the Sobolev embedding theorem, that is, the
embedding of Sobolev spaces into spaces of bounded, continuous functions, for W s

2 (Rn).
A counter-example for the critical exponent s = l+n/2, where l is the order of the space
embedded into, is given at the end of the chapter.

In Chapter 3 we define Sobolev spaces, both fractional and classical, on arbitrary
open sets as the set of all distributions on the set which is the restriction of some
element in W s

p (Rn) or Hs(Rn) to the set, with the norm being defined as the infimum

of the W k
p (Rn) or Hs(Rn) norm of all such elements. We prove that these spaces inherit

the basic properties of Sobolev spaces on Rn, before we turn to Sobolev spaces on Rn+,
on which we prove an extension theorem to Sobolev spaces on Rn. This proof is done
by using partitions of unity, and extending smooth functions and using their density
in the Sobolev spaces. Then, in Chapter 4, we turn to Sobolev spaces on bounded,
open sets, and by partitions of unity, many situations may be reduced to the case on
Rn+, and so it is straightforward to extend the extension theorem to Sobolev spaces on
bounded open sets with sufficiently smooth boundary. All results on Sobolev spaces up
until this point are, in large part, based on [10], with alterations done and additional
details and remarks given by the author where deemed helpful for the reader. The most
important results in this chapter is the compactness and embedding result, the most
important of which being Rellich-Kondrachov and an extension of it to fractional spaces
of order 0 < s < 1. The proof of Rellich-Kondrachov is taken from [7]. The chapter is
completed by introducing traces and the spaces W k

p,0(Ω) and Hs
0(Ω), that is the Sobolev

spaces where all the elements have zero trace on the boundary, and proving the Poincaré
inequality.

The last background theory we develop is the direct methods of variations. In Chap-
ter 5 we introduce the idea behind the method with an example and some discussions
of the challenges, and we prove a very general theorem giving sufficient conditions for a
functional depending on the spatial coordinate, a function u ∈W 1

p (Ω) and its gradient to
attain its infimum on W 1

p (Ω) for any open set Ω ⊆ Rn (cf. Theorem 5.3). This theorem
and its proof is taken from [24], with minor alterations. The other results are formulated
and proved independently by the author, with some inspiration for the general exposi-
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tion taken from [7]. We finish the chapter by applying the direct methods of variations
to a classical problem.

Lastly, in Chapter 6, we apply the theory of the first five chapters to fractional
derivatives and operators. Using a result about the Fourier transform of the derivative
of a function, we give a definition of fractional differentiation by means of the Fourier
transform; a definition which, from our results in Chapter 1, holds for all elements in the
space of tempered distributions. Then we introduce the operator 1 + (−∆)

s
2 , s ∈ (0, 2),

and show its intimate relationship with the space Hs. The rest of Chapter 6 is divided
into two main parts: the first part is devoted to the existence of solutions to the equation
(1 + (−∆)

s
2 )u = f on open sets as well as all of Rn, and the second part to the spectral

theory for this operator.

For f ∈ H−s/2(Ω), we prove that there exists a solution u ∈ Hs/2
0 (Ω) to the equation

(1 + (−∆)
s
2 )u = f in Ω, with u = 0 outside Ω for all bounded, open sets Ω. This is

proved in two ways: by using the direct methods of variations, and by using the Lax-
Milgram theorem. On Rn, we prove existence of solutions with even weaker assumptions
on f ; if f ∈ Hr(Rn), r ∈ R, then there exists a solution u ∈ Hr+s(Rn). This is proved
directly, by constructing a solution, and in addition we find a fundamental solution to
(1+(−∆)

s
2 )u = f . We do not claim that these results are new (indeed, we even comment

on a more powerful result that has been proved, although by different methods than those
we employ), but all theorems are formulated and proved independently by the author.

Finally we turn to the eigenvalue problem. We first give a simple proof of the fact
that there are no non-trivial eigenvalues of 1 + (−∆)

s
2 on Rn. Therefore we turn our

attention to open, bounded sets and prove that in this case there exists a countably
infinite number of distinct, positive eigenvalues that form a sequences that diverges to
infinity. Furthermore, the eigenfunctions form a orthogonal basis for both L2(Ω) and

H
s/2
0 (Ω). The main method of the proof of existence is the direct method of variations.

The proof of the existence of an eigenvalue on bounded domains is done independently
by the author, while the rest of the section owes a lot to the article [23], which proves all
our results for a general class of fractional, elliptic operators that are intimately related
to 1 + (−∆)

s
2 .
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1 Tempered Distributions and their Fourier Transforms

Perhaps the most obvious attribute of a function satisfying a differential equation is
differentiability. In solving the kinds of differential equations we will consider in this
paper, we also rely heavily on the Fourier transform as introduced below. Unfortunately,
the set of Fourier transformable functions seems at first sight very small, and the set of
functions that are also differentiable even smaller. This restriction is unfortunate not
only in a theoretical sense, but also in a practical sense: it may be physically feasible
to consider solutions that are not differentiable in the classical way. This problem has
been solved by introducing the concepts of distributions, which is a generalisation of
functions, and weak and distributional differentiation. We collect the basic theory in
this chapter.

1.1 The Schwartz Space

Notation: Let N0 = N ∪ {0} and Nn0 = {α = (α1, α2, ..., αn) : αi ∈ N0, 1 ≤ i ≤ n}, the
set of all multi-indices of length n. For α ∈ Nn0 , we define the norm |α| = α1+α2+...+αn.

For x ∈ Rn, α ∈ Nn0 , we write xα = xα1
1 xα2

2 · · ·xαnn and Dα = ∂|α|

∂
α1
x1
∂
α2
x2
···∂αnxn

.

Notation We will by domain mean an open but not necessarily bounded subset of Rn.

Definition 1.1. The Schwartz space S (Rn) is the set of all complex-valued functions
ϕ ∈ C∞(Rn) such that

sup
x∈Rn

|xαDβϕ(x)| <∞ (1.1)

holds for all α, β ∈ Nn0 .

Definition 1.2. We define a family of seminorms on S (Rn):

Pα,β(ϕ) = sup
x∈Rn

|xαDβϕ(x)|. (1.2)

From these semi-norms we can define a topological structure on S . We say that a
sequence ϕn in S converges to ϕ if

Pα,β(ϕn − ϕ)→ 0 (1.3)

for all α, β as above. This is denoted by ϕn −→
S

ϕ.

Remark: The limit ϕ is unique, since (1.3) implies uniform convergence on Rn.

Lemma 1.3. The space S is invariant under differentiation and multiplication by poly-
nomials.

Proof. This is immediate from Definition 1.1.
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Definition 1.4. For a an open set Ω ⊂ Rn, 1 ≤ p < ∞, Lp(Ω) denotes the Banach
space normed by

‖f‖p,Ω =

(∫
Ω
|f(x)|p dx

)1/p

. (1.4)

If it is clear which space we are talking about, we will drop the Ω in the subscript and
just write ‖ · ‖p. The elements of Lp(Ω) are equivalence classes of measurable functions
f : Ω → C for which the norm above is finite, and f is equivalent to g if f = g a.e. in
the Lebesgue measure. We call measurable, complex-valued functions f on Ω such that
‖f‖p < ∞ for p-integrable. For p = ∞, Lp(Ω) is the space of all essentially bounded,
measurable, complex-valued functions on Ω, with the ess supp norm. Lploc(Ω) is the space
of all locally p-integrable functions on Ω, i.e. f ∈ Lploc(Ω) if f ∈ Lp(K) for all K b Ω,
that is, for all K with compact support in Ω.

Remark: We will generally identify an equivalence class [f ] ∈ Lp(Ω) with a represen-
tative function and refer to the elements of Lp(Ω) as functions.

Lemma 1.5. The mapping

ϕ 7→ [ϕ], ϕ ∈ S (Rn) (1.5)

defines a continuous embedding S (Rn) ↪→ Lp(Rn) for 1 ≤ p ≤ ∞.

Proof. The case p =∞ is immediate from Definition 1.1. We first prove that S (Rn) ⊂
Lp(Rn) for 1 ≤ p < ∞. For any ϕ ∈ S (Rn), we have ϕ(x) = (1 + |x|n+1)−1/p(1 +
|x|n+1)1/pϕ(x). Evaluating ‖ϕ‖p yields∫

Rn
|(1 + |x|n+1)−1/p(1 + |x|n+1)1/pϕ(x)|p dx

≤ sup
x∈Rn

|(1 + |x|n+1)ϕ(x)p|
∫
Rn

1

1 + |x|n+1
dx <∞. (1.6)

The last inequality follows from the definition 1.1 and the fact that (1 + | · |n+1)−1 ∈
L1(Rn).

Next we prove the continuity of the embedding. Given ε > 0, ϕn −→
S

0 implies there

exists an N ∈ N such that for all k ≥ N and x ∈ Rn, |(1 + |x|n+1)1/pϕk(x)| < ε. Thus
for all k ≥ N , ∫

Rn
|ϕk(x)|p dx ≤ εp

∫
Rn

1

(1 + |x|n+1)
dx. (1.7)

This proves the result.

Definition 1.6. For an open set Ω ⊆ Rn we define

D(Ω) = {ϕ ∈ C∞ : suppϕ b Ω}. (1.8)
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Let

ω(x) =

{
ce

−1

1−|x|2 , |x| < 1,
0, |x| ≥ 1,

(1.9)

where c is chosen such that
∫
Rn ω(x) dx = 1. Set ωh(x) = h−nω(x/h) for h > 0. Then

ωh satisfies

suppwh = {x : x ∈ Rn, |x| ≤ h},
∫
Rn
ωh(x) dx = 1. (1.10)

It is easy to check that ω is infinitely differentiable.

Definition 1.7. For f ∈ Lploc(R
n), 1 ≤ p ≤ ∞ we define the mollification of f

fh(x) = (f ∗ ωh)(x) =

∫
Rn
ωh(x− y)f(y) dy. (1.11)

Theorem 1.8. For any open set Ω ⊂ Rn, D(Ω) is dense in Lp(Ω), 1 ≤ p < ∞. Thus
S (Rn) is dense in Lp(Rn), 1 ≤ p <∞.

Proof. Clearly, D(Ω) ⊂ Lp(Ω), 1 ≤ p < ∞, for any open set Ω ⊂ Rn. Note that every
function f ∈ Lp(Ω) can be approximated by step functions, g =

∑
i aiχAi , where the

Ai’s are connected and compact sets (for instance, it is sufficient to only consider cubes).
We proceed by mollification of characteristic functions of such sets. Let

(χA)h(x) = (ωh ∗ χA)(x) =

∫
Rn
ωh(x− y)χA(y) dy (1.12)

be the mollification of χA. We note that (χA)h is infinitely differentiable (see Proposition
1.9 below) and equations (1.10) and (1.12) imply

supp(χA)h = {x : inf
a∈A
|x− a| ≤ h}. (1.13)

If we choose h such that infa∈A |x− a| ≤ h implies x ∈ Ω, which is always possible since
A is compact in Ω, then (χA)h has compact support in Ω. In other words, (χA)h ∈ D(Ω)
for h sufficiently small. Furthermore, equations (1.10), (1.11) and (1.12) implies

(χA)h(x) = χA(x) if dist(x, ∂A) > h, x ∈ Rn. (1.14)

Let
Sh = {x ∈ Rn : dist(x, ∂A) ≤ h}. (1.15)

Then equation (1.14) implies(∫
Rn
|(χA)h(x)− χA(x)|p dx

)1/p

=

(∫
Sh

|(χA)h(x)− χA(x)|p dx

)1/p

. (1.16)

Since both (χA)h and χA are positive functions bounded by 1, we have |(χA)h(x) −
χA(x)| ≤ 1 for all x ∈ Rn. We then get(∫

Rn
|(χA)h(x)− χA(x)|p dx

)1/p

≤ (Ln(Sh))1/p , (1.17)
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where Ln is the n-dimensional Lebesgue measure. Clearly, Ln(Sh) → 0 as h → 0, and
so (χA)h → χA in Lp(Ω). Thus we can approximate step functions, and therefore all
p-integrable functions, by elements of D(Ω). For the last part, we note that D(Rn) ⊂
S (Rn), and so the result follows.

We prove some properties of mollification, with focus on what will be needed later.

Proposition 1.9. Let f ∈ Lploc(R
n), 1 ≤ p ≤ ∞. Then the following holds:

(i) fh is infinitely differentiable.

(ii) If f ∈ Lp(Rn), 1 ≤ p ≤ ∞ then ‖fh‖p ≤ ‖f‖p.

(iii) If f ∈ Lp(Rn), 1 ≤ p <∞ then fh → f in Lp(Rn).

Proof. It is not yet clear that the integral in (1.11) always exists for 1 < p < ∞ (the
cases p = 1, p =∞ follows immediately from (1.10)). Let 1 < p <∞. Then

|fh(x)| ≤
∫
Rn
ωh(x− y)1/p′ωh(x− y)1/p|f(y)|dy

≤
(∫

Rn
ωh(x− y) dy

)1/p′ (∫
Rn
ωh(x− y)|f(y)|p dy

)1/p

(1.18)

where 1/p′ + 1/p = 1 and we used Hölder’s inequality. By definition, the first integral
in the second line of (1.18) is 1. Since f ∈ Lploc(R

n) and suppwh is compact in Rn, the
second integral converges.

(i)

fh(x+ aei)− fh(x)

a
=

∫
Ω

1

a
(ωh(x+ aei − y)− ωh(x− y))f(y) dy (1.19)

where Ω is some open, bounded set (cf. (1.10)). Since

1

a
(ωh(x+ aei − y)− ωh(x− y))→ ∂ωh

∂xi
(x− y) (1.20)

uniformly on Ω, one can for a small enough find an integrable, dominating function and
use Lebesgue’s dominated convergence theorem to get

∂fh
∂xi

(x) =

∫
Rn

∂ωh
∂xi

(x− y)f(y) dy. (1.21)

By similar arguments,

Dαfh(x) =

∫
Rn

Dαωh(x− y)f(y) dy, for any α ∈ Nn0 (1.22)

11



(ii) Equation (1.18) implies, for 1 ≤ p <∞,∫
Rn
|fh(x)|p dx ≤

∫
Rn

∫
Rn
ωh(x− y)|f(y)|p dy dx

=

∫
Rn
|f(y)|p

∫
Rn
ωh(x− y) dx dy (1.23)

=

∫
Rn
|f(y)|p dy.

If p =∞, then

|fh(x)| ≤ ‖f‖∞
∫
Rn
ωh(x− y) dy = ‖f‖∞, x ∈ Rn. (1.24)

This proves (ii).
(iii) Since

∫
Rn ωh(x) dx = 1, we may write

fh(x)− f(x) =

∫
Rn
ωh(x− y)(f(y)− f(x)) dy

=

∫
Rn
ωh(x− y)1/p′ωh(x− y)1/p(f(y)− f(x)) dy (1.25)

where p′ is such that 1/p + 1/p′ = 1. Here we use the convention that if p = 1, then
p′ =∞ and 1/p′ = 0. Then, by Hölder’s inequality

|fh(x)− f(x)| ≤
(∫

Rn
ωh(x− y) dy

)1/p′ (∫
Rn
ωh(x− y)|f(y)− f(x)|p dy

)1/p

. (1.26)

By definition, the first integral on the right-hand side of (1.26) is 1. Hence∫
Rn
|fh(x)− f(x)|p dx ≤

∫
Rn

∫
Rn
ωh(x− y)|f(y)− f(x)|p dy dx

=

∫
|z|≤h

ωh(z)

∫
Rn
|f(y + z)− f(y)|p dy dz

≤

(
sup
|z|≤h

∫
Rn
|f(y + z)− f(y)|p dy

)∫
|z|≤h

ωh(z) dz (1.27)

= sup
|z|≤h

∫
Rn
|f(y + z)− f(y)|p dy.

Now it remains to prove that the final equation in (1.27) converges to zero as h goes to
zero. Given ε > 0, we know from Theorem 1.8 that there exists a function g ∈ D(Rn)
such that ‖f − g‖p < ε/3. Since g has compact support and is uniformly continuous in
Rn, there is a δ > 0 such that

‖g(·+ z)− g(·)‖p < ε/3, |z| ≤ δ. (1.28)

12



Using the triangle inequality we get

‖f(·+ z)− f(·)‖p = ‖f(·+ z)− g(·+ z) + g(·+ z)− g(·) + g(·)− f(·)‖p
≤ ‖f(·+ z)− g(·+ z)‖p + ‖g(·+ z)− g(·)‖p + ‖f − g‖p (1.29)

< ε/3 + ε/3 + ε/3 = ε, |z| ≤ δ

This implies

sup
|z|≤h

∫
Rn
|f(y + z)− f(y)|p dy → 0, as h→ 0. (1.30)

1.2 The Fourier Transform

Definition 1.10. Let f ∈ L1(Rn). Then

F f(ξ) = f̂(ξ) = (2π)−
n
2

∫
Rn
f(x)e−ix·ξ dx (1.31)

is called the Fourier Transform of f . We also define

F̌f(ξ) = f̂(−ξ) = (2π)−
n
2

∫
Rn
f(x)eix·ξ dx. (1.32)

Here x · ξ in the exponential is the regular scalar product in Rn.

Remark: Lemma 1.5 ensures that the Fourier transform is defined for all ϕ ∈ S (Rn).
Remark: The convention adopted here (in terms of placement of the factor 2π) is
chosen because we want F to be a unitary operator on L2(Rn) (cf. Theorem 1.16) and
because of perceived ease of bookkeeping in the following results.

Proposition 1.11. Let f, g ∈ L1(Rn). Then the following holds:

(i) F [f(x− a)](ξ) = e−iaξ F f(ξ)

(ii) F [eiaxf(x)](ξ) = F f(ξ − a)

(iii)
∫
Rn f(x)ĝ(x) dx =

∫
Rn f̂(x)g(x) dx

Proof. (i) and (ii) can easily be proved by direct computation.
(iii) It is clear from Definition 1.10 that f̂ is bounded by ‖f‖1, so the integrals are

defined. The proof then follows by a direct application of Fubini’s theorem.

Remark: Proposition 1.11 (iii) is often called the ”change of hats” formula, for obvious
reasons.

Proposition 1.12. (i) If f ∈ L1(Rn) is such that xαf ∈ L1(Rn) for some α ∈ Nn0 ,
then Dα F f(ξ) exists, and

Dα F f(ξ) = F [(−i)|α|xαf(x)](ξ). (1.33)
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(ii) If f ∈ Ck(Rn) ∩ L1(Rn) and if all the derivatives Dαf , |α| ≤ k, are in L1(Rn),
then

F [Dαf ](ξ) = i|α|ξα F f(ξ). (1.34)

Proof. (i) The function ξ 7→ f(x)e−ix·ξ is infinitely differentiable and by assumption
Dα
ξ f(x)e−ix·ξ is integrable with respect to x. Therefore we may differentiate under the

integral sign and the result follows.

(ii) All derivative up to order k are by assumption sufficiently smooth and integrable,
so we may use integration by parts and the result follows.

Corollary 1.13. If ϕ ∈ S (Rn), then

(i) F ϕ is infinitely differentiable.

(ii) F [Dαϕ] exists for all α ∈ Nn0 .

Proof. This follows from Lemmas 1.3 and 1.5 and Proposition 1.12.

Theorem 1.14. The space S is invariant under the Fourier transform F , and, in fact,
the Fourier transform is a linear 1-to-1 mapping F : S → S that maps S onto itself
and is continuous in the topology on S . The inverse mapping is F−1 = F̌ .

Proof. Let ϕ ∈ S (Rn). The linearity of F follows from Definition 1.10. We start
by proving that ϕ̂ ∈ S (Rn), i.e. supξ∈Rn |ξαDβϕ̂(ξ)| < ∞ for all α, β ∈ Nn0 . From
Proposition 1.11 (iii), we have

|ξαDβϕ̂(ξ)| = (2π)−
n
2 |ξα

∫
Rn

(−i)|β|xβe−ix·ξϕ(x) dx|. (1.35)

For |ξ| ≤ 1, it follows from Lemmas 1.3 and 1.5 that (1.35) is finite. For |ξ| > 1, we note
that the (−i)|β|xβϕ(x) is infinitely differentiable and all derivatives are integrable, so we
may use integration by parts.

| ξα

(−i)|α|ξα

∫
Rn

Dα
x((−i)|β|xβϕ(x))e−ix·ξ dx|

≤
∫
Rn
|Dα((−i)|β|xβϕ(x))|dx <∞, |ξ| > 1. (1.36)

The last inequality follows from Lemmas 1.3 and 1.5. This proves that ϕ̂ ∈ S (Rn), since
the last expression in (1.36) does not depend on ξ. Since F̌ϕ(ξ) = F ϕ(−ξ), it follows
that F̌ϕ ∈ S (Rn) as well. Next we prove that F̌ F ϕ = F F̌ϕ = ϕ.

For ε > 0, x ∈ Rn, we define the Gaussian function gε(x) = e−
ε2|x|2

2 . Its Fourier
transform is

ĝε(ξ) = ε−ne−
|y|2

2ε2 . (1.37)
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We may apply Proposition 1.11 (ii) and (iii) to ϕ and eix·ξgε(x) and use the transforma-
tion y = εz to get ∫

Rn
ϕ̂(ξ)gε(ξ)e

ix·ξ dx =

∫
Rn
ϕ(ξ + εz)e−

|z|2
2 dz (1.38)

Lebesgue’s dominated convergence theorem is applicable on both sides of (1.38) with
respect to ε ↓ 0. Thus the left-hand side of (1.38) converges to (2π)

n
2 F̌ F ϕ(x), while

the right-hand side converges to (2π)
n
2 ϕ(x).

Next we prove the continuity of F . Let ϕn −→
S

0. From Proposition 1.12 and its

corollary we have |ξαDβϕ̂n(ξ)| = |F [(xβDαϕn(x))](ξ)|. By assumption (xαDβϕn(x))→
0 pointwise and from Definition 1.10 we have that |ψ̂(ξ)| ≤ ‖ψ‖1 for ψ ∈ S (Rn). This
proves the result. Similar arguments hold for F̌ .

Lastly, we prove that the mapping is onto. For every ϕ ∈ S (Rn) we have shown
that ψ = F̌ϕ ∈ S (Rn). Thus ϕ = F ψ.

Proposition 1.15. If ϕ,ψ ∈ S (Rn), then

(i) F (ϕ ∗ ψ) = F ϕF ψ.

(ii) F (ϕψ) = F ϕ ∗F ψ.

Proof. One may check that S (Rn) is closed under convolution. Then (i) can be com-
puted by Fubini’s theorem:∫

Rn
e−ix·ξϕ ∗ ψ(x) dx =

∫
Rn
e−ix·ξ

(∫
Rn
ϕ(x− y)ψ(y) dy

)
dx

=

∫
Rn
ψ(y)

(∫
Rn
e−ix·ξϕ(x− y) dx

)
dy (1.39)

=

∫
Rn
ψ(y)e−iyξ F ϕ(ξ) dy = F ψF ϕ.

(ii) Clearly (i) is true for F−1. Using (i) and Theorem 1.14;

F−1(F ϕ ∗F ψ) = F−1 F ϕF−1 F ψ = ϕψ. (1.40)

Taking the Fourier transform on both sides of (1.40) gives (ii).

In light of Theorem 1.8, it is possible to extend the Fourier transform to Lp(Rn),
1 ≤ p < ∞. Let f ∈ Lp(Rn), 1 ≤ p < ∞. Then, by Theorem 1.8, there is a sequence
{fn}n ⊂ S (Rn) such that fn → f in Lp(Rn). For each fn, F fn is defined and {F fn}n
is clearly a Cauchy sequence in Lp(Rn). Since Lp(Rn) is a Banach space, the sequence
converges, and we define

F f = lim
n→∞

F fn. (1.41)

This limit is independent of how we choose {fn}n. In the particular case of p = 2, we
have an interesting and highly useful result.
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Theorem 1.16. F and F−1 are unitary operators on L2(Rn) and F ∗ = F−1, meaning
that F F−1 = F−1 F = id in L2(Rn).

Proof. Let ϕ,ψ ∈ S (Rn). Then F ϕ,F ψ ∈ L2(Rn) and we have

〈F ϕ,F ψ〉2 =

∫
Rn

F ϕ(ξ)F ψ(ξ) dξ

=

∫
Rn

F ϕ(ξ) F−1 ψ(ξ) dξ (1.42)

= 〈ϕ,ψ〉2.

The last equality follows from the change of hats formula, 1.11 (iii). As equation (1.42)
shows, the Fourier transform on L2(Rn) preserves the inner product, so that, by the
discussion above, F and F−1 are unitary operators.

We give an example as a small demonstration of the power of the Fourier transform.
Example: Consider the PDE

∂tu(x, t) = k∆xu(x, t) + u(x, y), t ≥ 0, x ∈ Rn, with u(x, 0) = f(x) ∈ S (Rn).
(1.43)

Applying the Fourier transform with respect to x on both sides and using Proposition
1.12 we get

∂tû(ξ, t) = −k|ξ|2û(ξ, t) + û(ξ, t) = (−k|ξ|2 + 1)û(ξ, t). (1.44)

This is an ODE with solution

û(ξ, t) = e(−k|ξ|2+1)th(ξ) (1.45)

for some function h. Using our initial conditions, we find h(ξ) = f̂(ξ). Thus, using
proposition 1.15, we find

u(x, t) = et(f ∗F−1(e−k|ξ|
2t)(x). (1.46)

1.3 Tempered Distributions

Definition 1.17. A tempered distribution is a continuous linear functional on S (Rn).
In other words,

T : S → C

is a distribution if the following holds:

T (aϕ+ bψ) = aT (ϕ) + bT (ψ),

ϕn −→
S

ϕ⇒ T (ϕn)→ T (ϕ),

for all ϕ,ψ ∈ S (Rn) and all constants a, b ∈ C. We denote the space of tempered
distributions by S ′(Rn), also called the continuous dual of S (Rn).
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For a function f such that fϕ ∈ L1(Rn) for all ϕ ∈ S (Rn), we can define Tf by

Tf (ϕ) =

∫
Rn
f(x)ϕ(x) dx. (1.47)

Tf is clearly linear and if it is continuous as well, it is a tempered distribution. Distri-
butions that can be expressed as an integral are called regular distributions.

Definition 1.18. Let f be a measurable function. If there exists a constant C > 0 and
an N ∈ N such that

|f(x)| ≤ C(1 + |x|)N (1.48)

for all x ∈ Rn, then f is said to be slowly increasing.

Proposition 1.19. Every slowly increasing function f defines regular distribution

Proof. We have f(x)ϕ(x) = (f(x)/(1+|x|)N )((1+|x|)Nϕ(x)) ≤ C(1+|x|)Nϕ(x) for some
constant C, which is integrable by Lemmas 1.3 and 1.5. Furthermore, if {ϕn}n ⊂ S (Rn)
and ϕn −→

S
0, then, by Definition 1.2, C(1+|x|)Nϕn(x) −→

S
0 as well. This, together with

Lemma 1.5 implies
∫
Rn f(x)ϕn(x) dx → 0 as n → ∞. This proves that f is continuous

on S (Rn), and hence a tempered distribution.

Remark: Slowly increasing functions are also called tempered functions. This explains
the name tempered distributions.

Proposition 1.20. Every function f ∈ Lp(Rn), 1 ≤ p ≤ ∞, defines a regular distribu-
tion.

Proof. Let {ϕn}n ⊂ S (Rn) and ϕn(x) −→
S

0. Continuity follows trivially from Hölder’s

inequality, since
‖fϕn‖1 ≤ ‖f‖p‖ϕn‖q (1.49)

where q is such that 1/p+ 1/q = 1. By Lemma 1.5 the right hand side of (1.49) goes to
0 as n→∞.

There is one immediate concern now. Is the Schwartz space large enough to distin-
guish two functions that defines regular distributions? Indeed even more is true, and we
prove a more general result below.
Remark: Recall that we in general identify an equivalence class of measurable functions
with a representative function. If two functions are equal a.e. then they obviously define
the same distribution.

Lemma 1.21. Let Ω be an open set in Rn and f ∈ L1
loc(Ω). If∫

Ω
f(x)ϕ(x) dx = 0 (1.50)

for all ϕ ∈ D(Ω), then f = 0 a.e. in Ω.
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Proof. Let f ∈ L1
loc(Ω) be as above, K1 ( K2 b Ω and f2 = fχK2 . Then f2 is integrable.

Let ωh be as in (1.9). We then have

(f2)h(x) =

∫
Rn
f2(y)ωh(x− y) dy =

∫
Ω
f(y)ωh(x− y) dy (1.51)

for x ∈ K1 and h small enough, say 0 < h ≤ h0. By assumption, the right-hand side
of (1.51) is zero. Thus (f2)h(x) = 0 for x ∈ K1, 0 < h ≤ h0. By Proposition 1.9 (iii),
(f2)h → f2 in L1(Rn) as h → 0. This implies f2(x) = 0 for x ∈ K1, but f2 = f in K1,
and since K1 was arbitrary, this proves f = 0 a.e. in Ω.

If f is a tempered distribution and, say, continuously differentiable and bounded,
then ∫

Rn

∂f

∂xi
(x)ϕ(x) dx = −

∫
Rn
f(x)

∂ϕ

∂xi
(x) dx. (1.52)

By lemma 1.3 and Proposition 1.19, ∂f
∂xi

defines a continuous and linear operation on
S (Rn). In other words, it is a distribution. We have proved that T∂xif (ϕ) = −Tf (∂xiϕ),
but the right-hand side of 1.52 makes sense for all tempered distributions f , regardless
of whether or not they are differentiable. In fact, since the test functions are infinitely
differentiable, we can iterate the procedure above to get ”derivatives” of all orders. This
motivates the following definition.

Definition 1.22. For a tempered distribution T , we define DαT by

DαT (ϕ) = (−1)|α|T (Dαϕ), ϕ ∈ S (Rn). (1.53)

By Definition 1.2 and Lemma 1.3, differentiation in this sense is a (linear) operator
S ′(Rn)→ S ′(Rn). It follows from the discussion above that if f is sufficiently smooth
and its derivatives are regular distributions, then DαTf = TDαf .

Until now we have only considered regular distributions, but there are non-regular
distributions. As an example, consider the heaviside function u = χ[0,∞) (whether the
interval is open or half-open is irrelevant) on R. By lemma 1.20 it is a tempered distri-
bution. It is not differentiable as a function, but consider its distributional derivative

DTu(ϕ) = −Tu(ϕ′) = −
∫
R
u(x)ϕ′(x) dx = −

∫ ∞
0

ϕ′(x) dx = ϕ(0), ϕ ∈ S (Rn).

(1.54)
There cannot exist a function f such that

∫
Rn f(x)ϕ(x) dx = ϕ(0) for all ϕ ∈ S (Rn),

for f would have to be zero a.e., but then the integral would be zero as well. In other
words DTu is not a regular distribution. Non-regular distributions are called singular
distributions.
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The Fourier Transform on S ′(Rn)

Suppose f ∈ L1(Rn). Then, by lemma 1.11 (iii)∫
Rn
f̂(x)ϕ(x) dx =

∫
Rn
f(x)ϕ̂(x) dx, ϕ ∈ S (Rn). (1.55)

Theorem 1.14 ensures that the operation on a test function ϕ defined by the right-hand
side of (1.55) is continuous and linear on S (Rn) for a tempered distribution f , even if
f̂ is not defined. This motivates the following definition.

Definition 1.23. Let T ∈ S (Rn). Then F T = T̂ and F−1 T = Ť are given by

F T (ϕ) = T (F ϕ) and F−1 T (ϕ) = T (F−1 ϕ), ϕ ∈ S (Rn). (1.56)

Definition 1.24. If T is a tempered distribution and the function g is smooth and
tempered (that is, slowly increasing cf. Definition 1.18), we define the distribution gT
by

gT (ϕ) = T (gϕ) (1.57)

Definition 1.25. Let {Tn}n be a sequence in S ′(Rn). We say that Tn converges to T
if

Tn(ϕ)→ T (ϕ) (1.58)

for all ϕ ∈ S (Rn).

Remark: This is a weak form of convergence, but the most natural one for our purpose.
Clearly, both differentiation and multiplication with smooth functions (as defined above)
are continuous in this sense.

Theorem 1.26. (i) Both F and F−1 map S ′(Rn) 1-to-1 and onto itself. Further-
more, they are continuous in the sense of tempered distributions and F−1 is the
inverse of F .

(ii) Let T ∈ S (Rn) and α ∈ Nn0 . Then

F (DαT ) = i|α|xα(F T ) and F (xαT ) = i|α|Dα(F T ). (1.59)

Proof. (i) Linearity follows from construction. Let Tn → T in S ′(Rn). Then

F Tn(ϕ) = Tn(F ϕ)→ T (F ϕ) = F T (ϕ). (1.60)

This proves continuity. That F is 1-to-1 follows from Theorem 1.14. Similar arguments
holds for F−1. That the mappings are onto can be proved in exactly the same way as
for S in Theorem 1.14. Let T ∈ S ′(Rn). Then

F F−1 T (ϕ) = T (F F−1 ϕ) = T (ϕ) = F−1 F T (ϕ), ϕ ∈ S (Rn). (1.61)

This proves that F−1 is the inverse of F on S ′(Rn).
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(ii) Let T ∈ S ′(Rn). Then, by Definitions 1.22 and 1.23 and Proposition 1.12 and
its corollary,

F (DαT )(ϕ) = (DαT )(F ϕ) = (−1)|α|T (Dα F ϕ)

= i|α|T (F [xαϕ]) = i|α|(F T )(xαϕ) (1.62)

= i|α|(xα F T )(ϕ), ϕ ∈ S (Rn).

This proves the first formula. The second one can be proved in the same straightforward
manner.

1.4 The Space D ′(Ω)

We will later need distributions on arbitrary domains Ω ⊂ Rn, but S (Rn) has no
natural equivalent on Ω ( Rn. We therefore need a more general type of distributions.
Differentiability being the most desired property, it is natural to consider D(Ω) as a
starting point. However, to make sense of continuous functionals on D(Ω), we need a
sense of convergence in D(Ω).

Definition 1.27. A sequence {ϕn}n ⊂ D(Ω) is said to converge to ϕ in D(Ω) if there
exists a set K b Ω such that

suppϕn ⊂ K, for all n ∈ N, (1.63)

and
sup
x∈Ω

Dα(ϕn − ϕ)→ 0, for all α ∈ Nn0 . (1.64)

This is denoted by ϕn −→
D
ϕ.

Similarly to the definition of S ′(Rn) as the continuous dual of S (Rn), we have the
following definition:

Definition 1.28. Let Ω ⊂ Rn. The space D ′(Ω) is the space of all functionals T :
D(Ω)→ C such that

T (aϕ+ bψ) = aT (ϕ) + bT (ψ),

ϕn −→
D
ϕ⇒ T (ϕn)→ T (ϕ),

for all ϕ,ψ ∈ D(Ω) and all constants a, b ∈ C.

Remark: Since D(Rn) ⊂ S (Rn) and convergence in D(Rn) implies convergence in
S (Rn), it follows that S ′(Rn) ⊂ D ′(Rn).

We will not need a more precise characterisation of the elements of D ′(Ω) beyond
the remark above and the following proposition.

Proposition 1.29. Let Ω ⊂ Rn. If f ∈ Lploc(Ω), 1 ≤ p ≤ ∞, then f defines a regular
distribution.
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Proof. Linearity is obvious. Let {ϕn}n ⊂ D(Ω) be such that ϕn −→
D

0. Then every ϕn

has support contained in the same set, say K b Ω, and we get∫
Ω
|f(x)ϕn(x)|dx =

∫
K
|f(x)ϕn(x)| dx ≤ ‖f‖p,K‖ϕn‖p′,K → 0 (1.65)

where we used Hölder’s inequality.

An interesting question at this point, is how far have we moved away from functions
in introducing distributions. An answer is contained in the next theorem.

Theorem 1.30. Let Ω ⊂ Rn be an open set. If T ∈ D ′(Ω) there exists a sequence
{ϕn}n ⊂ D(Ω) such that ϕn → T in D ′(Ω).

Proof. See for instance [11], Theorem 4.1.5.

Remark: Since S ′(Rn) ⊂ D ′(Rn), it follows that the above result also holds for S ′(Rn).

Support of a Distribution

The support of a distribution is defined much like the support of a measurable function
(essential support, as it is also called, to distinguish it from the usual support of a
continuous function, which clearly does not make sense for general measurable functions).
Clearly, if T is a tempered distribution and

T (ϕ) = 0, for all ϕ ∈ D(Ω) (1.66)

for some open set Ω ⊂ Rn, then we want Ω ∩ suppT = ∅. Let

Bδ(x) = {y ∈ Rn : |x− y| < δ}, x ∈ Rn. (1.67)

Definition 1.31. Let T be a distribution. Then we define the support of T:

suppT = {x ∈ Rn : T |Bδ(x) 6= 0 for all δ > 0} (1.68)

For a locally integrable function f , the support of f and the support of the distribu-
tion it defines coincides. That is,

supp f = suppTf . (1.69)

2 Sobolev Spaces on Rn

2.1 The Spaces W k
p (Rn)

Here we will interpret f ∈ Lp(Rn), 1 ≤ p < ∞ as a tempered distribution according to
Proposition 1.20. In particular, we may take derivatives of all orders of f ∈ Lp(Rn).
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Definition 2.1. Let k ∈ N0 and 1 ≤ p <∞. We define

W k
p (Rn) = {f ∈ Lp(Rn) : Dαf ∈ Lp(Rn) for all α ∈ Nn0 , |α| ≤ k}. (2.1)

The spaces W k
p (Rn) are called classical Sobolev spaces.

Remark: As mentioned Dαf ∈ Lp(Rn) must be interpreted in the sense of distributions.
That is, there exists a g ∈ Lp(Rn) such that g = Dαf as distributions. This means∫

Rn
g(x)ϕ(x) dx = (−1)|α|

∫
Rn
f(x)Dαϕ(x) dx (2.2)

for all ϕ ∈ S (Rn). While Dαf always exists as a distribution, it is not necessarily in
Lp(Rn), nor even a regular distribution, as shown in Section 1.2. Thus a g as above
does not always exist. Of course, if f is sufficiently smooth, then g is just the ordinary
derivative of f .

Remark: If the distributional derivative of a regular distribution is itself a distribution,
it is often called a weak derivative. Thus one will often see Sobolev spaces described
as the space of weakly differentiable functions belonging to some Lp space in the litera-
ture. Clearly, distributional differentiation is even weaker than weak differentiation, but
coincides with it when the weak derivative exists.

Theorem 2.2. The space W k
p (Rn) furnished with the norm

‖f‖Wk
p (Rn) = (

∑
|α|≤k

‖Dαf‖pp)1/p (2.3)

is a Banach space.

Proof. First we need to check that ‖f‖Wk
p (Rn) really is a norm. Clearly

‖λf‖Wk
p (Rn) = |λ|‖f‖Wk

p (Rn), (2.4)

and
‖f‖Wk

p (Rn) = 0⇐⇒ f = 0 a.e. (2.5)

If f, g ∈W k
p (Rn), then

‖f + g‖Wk
p (Rn) =

∑
|α|≤k

‖Dαf + Dαg‖pp

1/p

≤

∑
|α|≤k

(‖Dαf‖p + ‖Dαg‖p)p
1/p

≤

∑
|α|≤k

‖Dαf‖pp

1/p

+

∑
|α|≤k

‖Dαg‖pp

1/p

(2.6)

= ‖f‖Wk
p (Rn) + ‖g‖Wk

p (Rn),
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where we used Minkowski’s inequality going from the second to the third line. Next we
show completeness. Let fj be a Cauchy sequence in W k

p (Rn). This implies Dαfj for
|α| ≤ k is a Cauchy sequence in Lp(Rn), which is a Banach space. Thus Dαfj → fα for
some fα ∈ Lp(Rn). Let f0 = f . Using Hölder’s inequality, we have

‖(Dαfj − fα)ϕ‖1 ≤ ‖Dαfj − fα‖p‖ϕ‖p′ → 0, ϕ ∈ S (Rn), (2.7)

and
‖(fj − f)Dαϕ‖1 ≤ ‖fj − f‖p‖Dαϕ‖p′ → 0, ϕ ∈ S (Rn), (2.8)

where p′ is such that 1/p+ 1/p′ = 1. Putting this together we get∫
Rn
fα(x)ϕ(x) dx = (−1)|α|

∫
Rn
f(x)Dαϕdx. (2.9)

Thus Dαf = fα for |α| ≤ k and fj → f in W k
p (Rn).

Theorem 2.3. Let 1 ≤ p < ∞ and k ∈ N0. Then S (Rn) ⊂ W k
p (Rn) ⊂ S ′(Rn) and

D(Rn), and therefore S (Rn), is dense in W k
p (Rn).

Proof. The inclusions follows immediately from Definition 2.1. We show that D(Rn) is
dense in W k

p (Rn). Let f ∈W k
p (Rn) and let fh be its mollification. Then

(Dαfh)(x) =

∫
Rn

Dα
xωh(x− y)f(y) dy

= (−1)|α|
∫
Rn

(
Dα
yωh(x− y)

)
f(y) dy (2.10)

=

∫
Rn
ωh(x− y)Dαf(y) dy = (Dαf)h(x).

From Proposition 1.9 (ii) we know that

‖Dαf −Dαfh‖p → 0 as h→ 0, |α| ≤ k. (2.11)

Thus fh is a smooth function belonging to W k
p (Rn) and fh → f in W k

p (Rn). Let ϕ ∈
D(Rn) be such that ϕ(x) = 1 for |x| < 1. Then ϕfh ∈ D(Rn)∩W k

p (Rn) and ϕ(2−j ·)fh →
fh in W k

p (Rn) as j →∞. This proves the result.

2.2 Fractional Sobolev Spaces on Rn

Due to the fact that L2(Rn) is a Hilbert space, we can define an inner product on W k
2 (Rn)

as well,

〈f, g〉Wk
2 (Rn) =

∑
|α|≤k

∫
Rn

Dαf(x)Dαg(x) dx. (2.12)

By Theorem 2.2, W k
2 (Rn) with this inner product is a Hilbert space.

Proposition 1.12 relates the integrability of xαf to the differentiability of F f , and
Theorem 1.16 established that the Fourier transform is a unitary operator on L2(Rn).
We investigate the consequences of these results with regards to Sobolev spaces. With
this in mind, we make the following definition:
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Definition 2.4. Let

ws(x) = (1 + |x|2)s/2, s ∈ N, x ∈ Rn. (2.13)

We define the weighted L2 space

L2(Rn, ws) = {f measurable : wsf ∈ L2(Rn)}. (2.14)

Remark: L2(Rn, ws) is a Hilbert space with the inner product

〈f, g〉L2(Rn,ws) =

∫
Rn
ws(x)f(x)ws(x)g(x) dx = 〈wsf, wsg〉2. (2.15)

Other weights than ws are of course possible, but ws serves a special purpose.

Theorem 2.5. The Fourier transform F and its inverse F−1 generate unitary maps
from W k

2 (Rn) onto L2(Rn, wk), and vice versa.

Proof. Let f ∈W k
2 (Rn). Using Theorem 1.16 and Proposition 1.11 we get

‖f‖2
Wk

2 (Rn)
=
∑
|α|≤k

‖Dαf‖22

=
∑
|α|≤k

‖F Dαf‖22

=
∑
|α|≤k

‖i|α|ξα F f‖22 (2.16)

=

∫
Rn

∑
|α|≤k

|ξα|2
 |F f(ξ)|2 dξ.

For all k ∈ N, there exists constants ck,Ck such that ckwk(x) ≤
∑
|α|≤k |xα| ≤ Ckwk(x)

for all x ∈ Rn, thus the last line in (2.16) represents an equivalent norm to ‖f̂‖L2(Rn,wk).
We will use the symbol ∼ to denote equivalence between norms. This proves that F is a
isometric map from W k

2 (Rn) to L2(Rn, wk). Given g ∈ L2(Rn, wk), then, by Proposition
1.12 adapted to F−1 and Theorem 1.16,

Dα F−1 g = i|α|F−1(xαg) ∈ L2(Rn) (2.17)

for |α| ≤ k. This proves that the mapping is onto, and thus unitary since it is isometric.
The proofs for F−1 and the mapping(s) in the opposite direction are similar.

Theorem 2.5 tells us that W k
2 (Rn) = F L2(Rn, wk), and this can be taken as a

definition of W k
2 (Rn). However, Definition 2.4 and F L2(Rn, ws) makes sense not only

for s ∈ N, but for all s ∈ R and this gives rise to fractional Sobolev spaces.

Definition 2.6. Let s ∈ R and ws be as in (2.13). We define

Hs(Rn) = {f ∈ S ′(Rn) : F f ∈ L2(Rn, ws)}. (2.18)
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For s ≥ 0, F f ∈ L2(Rn, ws) implies F f ∈ L2(Rn), which by Theorem 1.16 implies
f ∈ L2(Rn), so all elements of Hs(Rn) are functions. However, for s < 0, F f ∈
L2(Rn, ws) is weak criteria, which allows for a greater variety of elements; even non-
regular distributions. Indeed, for s small enough we have δ ∈ Hs(Rn). Let us prove this.
It is simply a matter of writing out the definition to see that F δ = 1, the function with
constant value 1. Then we require

(1 + |x|2)s/21 ∈ L2(Rn). (2.19)

We know this is the case when s < −n/2.

Proposition 2.7. Let s ∈ R. Then the following holds:

(i) Hs(Rn) furnished with the inner product

〈f, g〉Hs(Rn) =

∫
Rn
ws(x) F f(x)ws(x) F g(x) dx (2.20)

is a Hilbert space.

(ii) S (Rn) ⊂ Hs(Rn) ⊂ S ′(Rn), and S (Rn) is dense in Hs(Rn).

Proof. (i) If f ∈ L2(Rn) then F−1w−sf is in Hs(Rn). Thus the mapping f 7→ ws F f
maps Hs(Rn) onto L2(Rn) and it is by definition an isometric map. It follows that
Hs(Rn) is a Hilbert space with the inner product defined above.

(ii) The inclusions are immediate from Definition 2.6. Let f ∈ Hs(Rn). Then
ws F f ∈ L2(Rn), and by Theorem 1.8 there exists a sequence {ψn}n ⊂ S (Rn) such
that

ψn → ws F f in L2(Rn). (2.21)

By Lemma 1.3 and Theorem 1.14, ϕn = F−1(w−sψ) ∈ S (Rn), and it follows from
(2.21) that ϕn → f in Hs(Rn).

Remark: Since D(Rn) can be continuously embedded into S (Rn), it follows that D(Rn)
is dense in Hs(Rn).

By Theorem 2.5 and Definition 2.6 we have W k
2 (Rn) = Hk(Rn) for k ∈ N0. Furthermore,

it follows from Definitions 2.1 and 2.6, respectively, that

W k1
p (Rn) ⊂W k2

p (Rn) k1, k2 ∈ N0, k2 < k1, (2.22)

Hs1(Rn) ⊂ Hs2(Rn) −∞ < s2 < s1 <∞.

This means that the spaces Hs(Rn) with the continuous parameter s fills in the gaps
between the spaces W k

2 (Rn) with the discrete parameter k (it should be noted that there
are other ways to interpolate between the spaces W k

2 (Rn); the spaces Hs(Rn) is just one
way).

Our current definition of fractional Sobolev spaces is elegant, but perhaps a bit
mysterious. It seems natural that one should be able define fractional Sobolev spaces, at
least for s > 0, without any reference to the Fourier transform. Our original definition
of Sobolev spaces was in terms of the existence and integrability of (distributional)
derivatives of functions, so we need some fractional extension of differentiation.
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Definition 2.8. Let BCk(Rn), k ∈ N0, be the space of complex-valued, k-times differ-
entiable functions such that

‖f‖BCk(Rn) =
∑
|α|≤k

sup
x∈Rn

|Dαf(x)| <∞. (2.23)

Here B stands for bounded.
With this definition in mind, a reasonable extension to s = k + σ, 0 < σ < 1, would

be the space normed by

‖f‖BCs(Rn) = ‖f‖BCk(Rn) +
∑
|α|=k

sup
06=h∈Rn

sup
x∈Rn

|Dαf(x+ h)−Dαf(x)|
|h|σ

. (2.24)

An appropriate definition for the norm ‖ · ‖W s
2 (Rn), s = k + σ, k ∈ N0 and 0 < σ < 1 is

then given by

‖f‖W s
2 (Rn) =

‖f‖2
Wk

2 (Rn)
+
∑
|α|=k

∫∫
R2n

|Dαf(x+ h)−Dαf(x)|2

|h|n+2σ
dx dh

1/2

(2.25)

=

‖f‖2
Wk

2 (Rn)
+
∑
|α|=k

∫
Rn

‖Dαf(·+ h)−Dαf(·)‖22
|h|n+2σ

dh

1/2

where the factor |h|n is added for convergence purposes. This gives us another definition
of fractional Sobolev spaces.

Definition 2.9. Let s = k + σ, k ∈ N0 and 0 < σ < 0. We define

W s
2 (Rn) = {f ∈ L2(Rn) : ‖f‖W s

2 (Rn) <∞}. (2.26)

It follows from (2.25) that if s = k+ σ, k ∈ N0, 0 < σ < 0, then W s
2 (Rn) ⊂W k

2 (Rn).
One can define fractional Sobolev spaces for any 1 ≤ p <∞ in the same way as above,
and these spaces are called Slobodeckij spaces. However, we are only interested in the
case p = 2, so we will restrict our focus to this. Of course, any result we prove for W s

2

where we do not use any properties of L2 will hold for every other Slobodeckij space.

Theorem 2.10. Let s = k + σ, k ∈ N0 and 0 < σ < 1. Then D(Rn), and therefore
S (Rn) is dense in W s

2 (Rn), and

Hs(Rn) = W s
2 (Rn). (2.27)

Proof. First we show that S (Rn) ⊂ W s
2 (Rn). From Theorem 2.3 we know S (Rn) ⊂

W k
2 (Rn). For δ > 0,

∫
|h|>δ |h|

−(n+σ) dh < ∞, so we need only consider h close to zero.

Let ϕ ∈ S (Rn). Then, by Definition 1.1

|ϕ(x+ h)− ϕ(x)| ≤ ct|h|(1 + |x|t)−1 (2.28)
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for all t > 0 and some constant ct > 0 dependent on t when h is close to zero. Let
δ > 0. Since S (Rn) is invariant under differentiation, we may as well consider ϕ instead
of Dαϕ. Then ∫

|h|<δ

‖ϕ(x+ h)− ϕ(x)‖22
|h|n+2σ

dh ≤
∫
|h|<δ

c2
t ‖(1 + |x|t)−1‖22
|h|n−2(1−σ)

dh (2.29)

which is finite if we take t > n+ 1 since (as already noted) (1 + | · |n+1)−1 ∈ L2(Rn) and
σ < 1. This proves S (Rn) ⊂W s

2 (Rn).
Let f ∈ W s

2 (Rn) and ϕ ∈ S (Rn). We wish to show that fϕ ∈ W s
2 (Rn), in order

to prove that it is sufficient to consider f with compact support, so that we may use
mollification to find an approximating function in D(Rn). We use the classic ”add and
subtract” trick of calculus:

(ϕf)(x+ h)− (ϕf)(x) = f(x)(ϕ(x+ h)− ϕ(x)) + ϕ(x+ h)(f(x+ h)− f(x)). (2.30)

Furthermore we have the simple inequality

|ϕ(x+ h)− ϕ(x)| ≤ |h|
n∑
l=1

sup
x∈Rn

| ∂ϕ
∂xl

(x)| (2.31)

for h small (again, it is sufficient to only consider the behaviour for small h). It then
follows from (2.25) that fϕ ∈W s

2 (Rn).
Now let ϕ ∈ D(Rn) be such that ϕ(x) = 1 if |x| ≤ 1 and |ϕ(x)| ≤ 1 outside the

unit ball. Let ϕj(x) = ϕ(2−j), j ∈ N. Then (ϕjf)(x) → f(x) in Rn, and |ϕjf | ≤ |f |
almost everywhere for all j ∈ N. Furthermore, Leibniz rule holds for distributional
derivatives and Dαϕj is uniformly bounded for every α ∈ Nn0 , thus |Dα(ϕjf)| ≤ Cα|Dαf |
almost everywhere for all |α| ≤ k and for some constant Cα depending on α. Lebesgue’s
dominated convergence then implies that ϕjf → f in W s

2 (Rn). This shows that every
function in W s

2 (Rn) can be approximated by functions in W s
2 (Rn) with compact support,

so it is sufficient to approximate such functions to prove the density of D(Rn), and thus
also S (Rn). Let f ∈W s

2 (Rn) have compact support and

ft(x) =

∫
Rn
ω(y)f(x− ty) dy, x ∈ Rn, 0 < t ≤ 1 (2.32)

be its mollification. From the proof of Theorem 2.3 we know that ft → f in W k
2 (Rn).

To prove convergence in W s
2 (Rn), we consider∫

Rn

‖Dαf(·+ h)−Dαf(·) + Dαft(·)−Dαft(·+ h)‖22
|h|n+2σ

dh (2.33)

Again, only h close to zero may cause problems. From Proposition 1.9 (ii) we know that
‖ft‖2 ≤ ‖f‖2. By equation (2.10), this implies∫

|h|≤δ

‖Dαft(·+ h)−Dαft(·)‖22
|h|n+2σ

dh ≤
∫
|h|≤δ

‖Dαf(·+ h)−Dαf(·)‖22
|h|n+2σ

dh (2.34)
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for any δ > 0. By assumption, the W s
2 (Rn) norm of f is finite, and so we can for any

ε > 0 find a δ > 0 such that the right-hand side of (2.34) is less than ε. It follows that
ft → f in W s

2 (Rn). Thus D(Rn), and therefore also S (Rn), is dense in W s
2 (Rn). It is

then sufficient to prove∫
Rn
ws(ξ)

2|F f(ξ)|2 dξ ∼ ‖f‖W s
2 (Rn), f ∈ S (Rn), (2.35)

in order to prove (2.27). To show this, we first concentrate on the second term in (2.25).
Using Theorem 1.16 we get∫

Rn

‖Dαf(·+ h)−Dαf(·)‖22
|h|n+2σ

dh =

∫
Rn

‖F (Dαf(·+ h)−Dαf(·))‖22
|h|n+2σ

dh. (2.36)

Using Proposition 1.11 (i) and Proposition 1.12 and its corollary, we arrive at

F (Dαf(·+ h)−Dαf(·))(ξ) = (eiξh − 1)i|α|ξα F f(ξ). (2.37)

Thus∫
Rn

‖Dαf(·+ h)−Dαf(·)‖22
|h|n+2σ

dh =

∫
Rn
|ξα|2|F f(ξ)|2

∫
Rn

|eiξh − 1|2

|h|n+2σ
dhdξ

=

∫
Rn
|ξα|2|ξ|2σ|F f(ξ)|2

∫
Rn

|ei
ξ
|ξ| h̃ − 1|2

|h̃|n+2σ
dh̃dξ (2.38)

where we used the coordinate transformation h = h̃/|ξ| going from the first line to the
second. Observe that the integral over h̃ is independent of ξ and finite. Hence∫

Rn

‖Dαf(·+ h)−Dαf(·)‖22
|h|n+2σ

dh = c

∫
Rn
|ξα|2|ξ|2σ|F f(ξ)|2 dξ, (2.39)

where the constant c is independent of f . Combining the equation above with the
calculations done in the proof of Theorem 2.5, we get

‖f‖W s
2 (Rn) =

∫
Rn

∑
|α|≤k

|ξα|2
 |F f(ξ)|2 dξ + c

∑
|α|=k

∫
Rn
|ξα|2|ξ|2σ|F f(ξ)|2 dξ

1/2

=

∫
Rn

∑
|α|≤k

|ξα|2
+ c

∑
|α|=k

|ξα|2|ξ|2σ
 |F f(ξ)|2 dξ

1/2

. (2.40)

As noted in the proof of Theorem 2.5,
∑
|α|≤k |ξα| ∼ wk and |ξα||ξ|σ ∼ |ξ|k+σ ∼ wk+σ,

and so we get

‖f‖W s
2 (Rn) ∼

(∫
Rn
ws(ξ)

2|F f(ξ)|2dξ

)1/2

(2.41)

where s = k + σ. This proves (2.27).

28



Remark: We have proved that Hs = W s
2 for s ≥ 0, but we will still distinguish these

spaces: when working with the norm defined by the singular integral, we will use the
notationW s

2 , and when working with the Fourier transform definition we will useHs. For
many of the theoretical theorems regarding the properties of these spaces, the W s

2 (Rn)
norm will be more convenient to use, but in chapter 6 we will return to the Fourier
definition and use the notation Hs(Rn). In particular we have to use Hs for s < 0, as
W s

2 is not defined in this case.

2.3 Sobolev Embedding

Theorem 2.11. Let BC l(Rn), l ∈ N0, be as in Definition 2.8 and s > l + n
2 . Then the

embedding

id : W s
2 (Rn) ↪→ BC l(Rn) (2.42)

exists in the sense that for each equivalence class [f ] ∈ W s
2 (Rn) there exists a represen-

tative function f ∈ BC l(Rn).

Proof. From Theorem 2.10 we know that S (Rn) is dense in W s
2 (Rn). Considering the

fact that both BC l(Rn) and W s
2 (Rn) are Banach spaces, it is sufficient to prove that

there exists a number c > 0 such that∑
|α|≤l

sup
x∈Rn

|Dαϕ(x)| ≤ c‖ϕ‖W s
2 (Rn), ϕ ∈ S (Rn). (2.43)

Using Theorem 1.14, Proposition 1.12, our previous considerations regarding |xα| ∼
w|α|(x) and Hölder’s inequality we get

|Dαϕ(x)| = |Dα(F−1 F ϕ)(x)| = |F−1(ξα F ϕ(ξ))(x)|

= c|
∫
Rn
eix·ξξα(F ϕ)(ξ) dξ|

≤ c′
∫
Rn
ws(ξ)|F ϕ(ξ)|wl−s(ξ) dξ

≤ c′
(∫

Rn
ws(x)2|F ϕ(ξ)|2 dξ

)1/2(∫
Rn
w−2
s−l(ξ) dξ

)1/2

. (2.44)

The last integral converges since s− l > n
2 and by Theorem 2.10 the first integral in the

last line of (2.44) represents an equivalent norm in W s
2 (Rn).

The lower bound on s cannot be improved. That is, the theorem does not hold in
general for s = l + n

2 . To see this, consider the sequence of functions

fj(x) =


1, |x| ≤ 1

j2

−1− log |x|
log j ,

1
j2
≤ |x| ≤ 1

j

0, |x| ≥ 1
j

(2.45)
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on R2. It is easy to check that these functions are continuous, and that

sup
x∈R2

|fj(x)| = 1, j ∈ N. (2.46)

Thus |fj(x)| ≤ χB(0,1)(x) for every x ∈ R2, where B(0, 1) is the ball centred at 0 with
radius 1. Lebesgue’s dominated convergence theorem then gives ‖fj‖2 → 0 since fj → 0
pointwise.

Consider now the distributional derivative
∂fj
∂x1

(x), i = 1, 2. Dividing the area of
integration and using partial integration in each part, we get

−
∫
|x|≤1/j2

f(x)
∂ϕ

∂xi
(x) dx−

∫
1/j2≤|x|≤1/j

f(x)
∂ϕ

∂xi
(x) dx

=

∫
1/j2≤|x|≤1/j

2

log j

xi
|x|2

ϕ(x) dx. (2.47)

In other words,
∂fj
∂xi

(x) = 2
log j

xi
|x|2 for 1/j2 ≤ |x| ≤ 1/j and zero elsewhere. This implies

fj ∈W 1
2 (R2). Furthermore

|∂fj
∂xi

(x)| ≤ 1

|x|
χB(0,1)(x), x ∈ R2. (2.48)

The right-hand side is integrable, so Lebesgue’s dominated convergence theorem implies
‖∂fj∂xi
‖2 → 0, i = 1, 2, as j → ∞, since

∂fj
∂xi

(x) → 0 pointwise. This, combined with the
calculations above, implies

‖fj‖W 1
2 (Rn) → 0 as j →∞. (2.49)

Equations (2.46) and (2.49) implies that W 1
2 (Rn) cannot be continuously embedded in

BC0(R2).

3 Sobolev Spaces on Rn
+

Sobolev spaces on Rn was defined in terms on tempered distributions, but for general
sets Ω ( Rn there does not exist something like Schwartz functions. There are two
natural ways to proceed.

Definition 3.1. Let Ω ⊂ Rn be an arbitrary, open set and W s
p (Rn) be either as in

Definition 2.1 with 1 ≤ p <∞ and s ∈ N0, or as in Definition 2.9 with p = 2 and s > 0.
We define

W s
p (Ω) = {f ∈ Lp(Ω) : there exists g ∈W s

p (Rn) with g|Ω = f} (3.1)

with norm
‖f‖W s

p (Ω) = inf{‖g‖W s
p (Rn) : g ∈W s

p (Rn), g|Ω = f}. (3.2)

For s < 0, we define

Hs(Ω) = {f ∈ D ′(Ω) : there exists g ∈ Hs(Rn) with g|Ω = f}. (3.3)
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Here f ∈ Lp(Ω) must be understood in the sense of distributions, and g|Ω = f means
g(ϕ) = f(ϕ) for all ϕ ∈ D(Ω).

Remark:It is also common to define W k
p (Ω) to be the space of all f ∈ Lp(Ω) such

that Dαf ∈ Lp(Ω), |α| ≤ k, where Dαf is the distributional derivative, with norm
corresponding to (2.3). If Ω is smooth enough, this will give the same result, as we will
see.

We wish to show that W s
p (Ω) inherits some properties from W s

p (Rn) and for this we need
a basic result from functional analysis.

Proposition 3.2. Let E be a Banach (Hilbert) space and M ⊂ E a closed subset. Then
the quotient space

E/M, (3.4)

where x ∼ y if x− y ∈M , with the quotient norm

‖[x]‖E/M = inf
y∈[x]
‖y‖E = inf

m∈M
‖x−m‖E (3.5)

is a Banach (Hilbert) space.

Proof. Since M is closed, it is clear that the norm defined above is actually a norm. As is
usual in quotient spaces, we write π(x) for [x], the mapping of x to its equivalence class.
Let {π(xn)}n be a Cauchy sequence in E/M . Since {π(xn)}n is Cauchy, it is sufficient
to prove that a subsequence converges. Choose n1 such that ‖π(xm)−π(xn)‖E/M < 1/2
for all n,m ≥ n1 and choose n2 such that ‖π(xm)−π(xn)‖E/M < 1/22 for all n,m ≥ n2.
Proceeding like this, we get a sequence, which we again denote {π(xn)}n, such that

‖π(xn+1)− π(xn)‖E/M <
1

2n
, for all n ≥ 1. (3.6)

By the definition of the norm of E/M , this implies that there exists a sequence {mn}n ⊂
M such that

‖xn+1 − xn −mn‖E <
1

2n
. (3.7)

Writing mn = yn+1 − yn with y1 = 0 and yn ∈ M , we get that {xn − yn}n is a Cauchy
sequence in E, and hence has a limit x ∈ E. This implies π(xn)→ π(x) in E/M .

Proposition 3.3. Let Ω ⊂ Rn be an open set. Then W s
p (Ω) is Banach space, and a

Hilbert space if p = 2, and

D(Ω) ⊂W s
p (Ω) ⊂ Lp(Ω) ⊂ D ′(Ω). (3.8)

Furthermore, the restrictions D(Rn)|Ω and S (Rn)|Ω are dense in W s
p (Ω).

Proof. Let Ωc = Rn \ Ω and

W̃ s
p (Ωc) = {g ∈W s

p (Rn) : supp g ⊂ Ωc}. (3.9)
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Since Ωc is closed, it follows from Definition 1.31 and 1.27 that if {gn}n ⊂ W̃ s
p (Ωc) and

gn → g in W s
p (Rn), then g ∈ W̃ s

p (Ωc). Now consider the space

W s
p (Rn)/W̃ s

p (Ωc). (3.10)

By proposition 3.2 it is a Banach space, and if p = 2 it is a Hilbert space. If f, g ∈W s
p (Rn)

are such that f(x) = g(x) for all x ∈ Ω, then supp(f − g) ⊂ Ωc, hence [f ] = [g] in

W s
p (Rn)/W̃ s

p (Ωc). Thus we see that

W s
p (Ω) ≈W s

p (Rn)/W̃ s
p (Ωc), (3.11)

meaning that the spaces are isomorphic, and hence W s
p (Ω) is a Banach space (and a

Hilbert space if p = 2). The inclusions are immediate from Definition 3.1, and the
density of D(Rn)|Ω and S (Rn)|Ω follows from Theorem 2.3 and Theorem 2.10.

We now restrict our attention to Ω = Rn+ = {x ∈ Rn : xn > 0}. As will become
apparent later, many problems on open sets Ω ⊂ Rn with sufficiently smooth boundary
can be reduced to the case Rn+. We begin by describing a tool that will be useful in the
sequel.

3.1 Partitions of Unity

Let Ω ⊂ Rn be a compact set (that is, bounded and closed) and set

Ωε = {x ∈ Rn : dist(x,Ω) < ε}, ε > 0. (3.12)

We cover Ω by finitely many open balls Bi with radius ri > 0, i = 1, ..., I. For δ > 0 we
let Bδ

i be the ball concentric with Bi with radius δri. Since Ω is closed and the finite set
of balls Bi is an open covering of Ω, there exists an ε′ > 0 such that

Ωε′ ⊂
I⋃
i=1

Bi. (3.13)

Hence it is possible to choose ε > 0 and 0 < δ < 1 such that

Ωε ⊂
I⋃
i=1

Bδ
i . (3.14)

Using Proposition 1.9 one can find functions

ψi ∈ D(Bi) with ψi(x) = 1, x ∈ Bδ
i , i = 1, ..., I. (3.15)

For instance, set γ = (1 + δ)/2 and consider (χBγi )h with h < ri − γri = γri − δri. By
the same argument there exists functions

ψ ∈ D(Ωε) with ψ(x) = 1, x ∈ Ω. (3.16)
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We define

ϕ(x) =
I∑
i=1

ψi(x) ∈ D(Rn), (3.17)

which has the property that ϕ(x) ≥ 1 for x ∈ Ωε. Thus we can define

ϕi(x) =
ψi(x)ψ(x)

ϕ(x)
∈ D(Bi ∩ Ωε), i = 1, ..., I (3.18)

which has the property that

I∑
i=1

ϕi(x) =

{
1, x ∈ Ω,
0, x 6∈ Ωε,

(3.19)

We call {ϕi}Ii=1 a partition of unity of Ω subordinate to the cover {Bi}Ii=1.

3.2 Extensions

It is often easier to work in Rn rather than some subset of Rn (for instance with regards
to approximation, as D(Ω) is in general not dense in W k

p (Ω)), and we therefore wish to

extend functions from W s
p (Rn+) to W s

p (Rn). For a function f ∈ W l
p(Rn+), distributional

differentiation as we have defined it is not a pointwise operation and does not require
continuity. One could therefore hope that extending f by zero outside Rn+ would do
the trick. Certainly, f ∈ Lp(Rn) in that case, but Dαf may no longer be a regular
distribution, since we require∫

Rn
Dαf(x)ϕ(x) dx = (−1)|α|

∫
Rn
f(x)Dαϕ(x) dx (3.20)

for a much larger class of functions ϕ. Indeed, consider χ[a,b] ∈ D ′([a, b]) for a < b. A
simple calculation yields ∂xχ[a,b](ϕ) = 0 for all ϕ ∈ D([a, b]), since ϕ(a) = ϕ(b) = 0.
Thus χ[a,b] ∈ W 1

1 ([a, b]). Regarding χ[a,b] as an element of D ′(R) or S ′(R), we know
that differentiating it yields δ-distributions, which are not regular distributions, i.e.
χ[a,b] 6∈ W 1

1 (R). Thus the existence of a general way to extend functions is not obvious.
We will rely on the density of smooth functions in W s

p (Rn+).

Theorem 3.4. For any L ∈ N there exists a linear and bounded extension operator extL

defined on W s
p (Rn+), 1 ≤ p < ∞, s = 0, ..., L for p 6= 2 and 0 ≤ s ≤ L for p = 2, such

that

extL :


BC l(Rn+) ↪→ BC l(Rn), l = 0, ..., L,
W l
p(Rn+) ↪→W l

p(Rn), l = 0, ..., L, 1 ≤ p <∞,
W s

2 (Rn+) ↪→W s
2 (Rn), 0 < s < L,

(3.21)

with (
extL f

)
|Rn+ = f for any f ∈ BC l ∪W l

p(Rn+) ∪W s
2 (Rn+). (3.22)
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Proof. We define

Zn = {m = (m1, ...,mn) ∈ Rn : mj ∈ Z, j = 1, ..., n}. (3.23)

Let {Bm}m∈Zn be a set of balls of equal radius (that is, congruent) centred at m with
a suitable radius r > 1 such that Rn ⊂

⋃
m∈Zn Bm, and let {ϕm : m ∈ Zn} be a

partition of unity subordinate to {Bm}m∈Zn . Since the balls are congruent, we may
assume ϕm(x) = ϕ(x − m), m ∈ Zn, x ∈ Rn. Partition of unity was defined only
for compact sets with a finite covering, but, clearly, all points and indeed all bounded
sets have non-empty intersection with only finitely many balls. Thus only finitely many
ϕm(x) 6= 0 for any x ∈ Rn. We have

ϕm ∈ D(Bm), 0 ≤ ϕ ≤ 1,
∑
m∈Zn

ϕm(x) = 1 for all x ∈ Rn. (3.24)

Due to the regular spacing of Bm, and since ϕm(x) = ϕ(x − m) and ϕ has bounded
derivatives, it follows that

0 < c ≤ inf
x∈Rn

sup
m∈Zn

Dαϕm(x) ≤ mα (3.25)

for all α ∈ Nn0 for some constants c and mα, where mα depends on α. Using Leibniz rule
we deduce

‖f‖BCl(Rn+) ∼ sup
m∈Zn

‖ϕmf‖BCl(Rn+), f ∈ BC l(Rn+). (3.26)

Furthermore, it follows from Definition 1.22) that Leibniz rule also holds for distribu-
tional differentiation. Using this and the fact that the derivatives of ϕ is bounded, we
may also derive

‖f‖W l
p(Rn) ∼

( ∑
m∈Zn

‖ϕmf‖pW l
p(Rn)

)1/p

, f ∈W l
p(Rn). (3.27)

The corresponding relation for p = 2, 0 < s = k + σ < L is not immediately clear. We
prove that it is given by

‖f‖W s
2 (Rn) ∼ ∑

m∈Zn

‖ϕmf‖2Wk
2 (Rn)

+
∑
|α|=k

∫
Rn

∫
Rn

|Dα(ϕmf)(x)−Dα(ϕmf)(y)|2

|x− y|n+2σ
dx dy

1/2

.

(3.28)

The first term in the parenthesis on the right-hand side is already established. For the
second term, recall that ϕm is supported in an open ball Bm. Thus the integrals can be

34



taken over |x−m| ≤ c for some constant c > 0 and |x− y| ≤ 1. The problem can then
be reduced to whether∫

|x−m|≤c

∫
|x−y|≤1

|(ϕmg)(x)− (ϕmg)(y)|2

|x− y|n+2σ
dx dy

≤ c′
∫
|x−m|≤x

∫
|x−y|≤1

|g(x)− g(y)|2

|x− y|n+2σ
dx dy + c′

∫
|x−m|≤c

|g(x)|2 dx (3.29)

for some c′ > 0. This follows from the ”add and subtract” trick

(ϕmg)(x)− (ϕmg)(y) = ϕm(y)(g(x)− g(y)) + g(x)(ϕm(x)− ϕm(y)) (3.30)

and |ϕm(x)− ϕm(y)|2 ≤ c|x− y|2.
The next step is to decompose the lattice Zn,

Zn =
J⋃
j=0

Znj , (3.31)

where

Zn0 = {x ∈ Rn : x = Mm, m ∈ Zn} and Znj = m(j) + Zn0 , j = 1, ..., J (3.32)

with M ∈ N, m(j) ∈ Zn and J ∈ N suitably chosen such that the intersection of the
closure of two balls Bm belonging to the same sub-lattice is empty. This implies, by the
discussion above,

‖f‖BCl(Rn+) ∼
J∑
j=0

sup
m∈Znj

‖ϕmf‖BCl(Rn+) (3.33)

and

‖f‖W l
p(Rn) ∼

J∑
j=0

‖
∑
m∈Znj

ϕmf‖W l
p(Rn). (3.34)

Due to the construction of Znj , this localizes the extension problem and implies

‖f‖W l
p(Rn+) ∼

( ∑
m∈Zn

‖ϕmf‖pW l
p(Rn+)

)1/p

. (3.35)

Thus it is sufficient to extend functions f on Rn+ with

supp f ⊂ {x ∈ Rn : |x| < 1, xn ≥ 0}. (3.36)

Let λ1 < ... < λL+1 < −1 and define

(extL f)(x) =

{
f(x), xn ≥ 0,∑L+1

k=1 akf(x′, λkxn), xn < 0,
(3.37)
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where x = (x′, xn) ∈ Rn. If xn < 0 then λkxn > 0, hence extL f is well defined.
Furthermore, extL f has compact support in Rn, and supp extL f depends on supp f and
the choice of coefficients λi’s and ai’s. Now we need to find an appropriate choice of
coefficients ak, k = 1, ..., L + 1. First we consider f ∈ BC l(Rn+). We wish to find a
choice of ak’s such that extL f ∈ BC l(Rn). The only place extL f may fail to be l times
differentiable is in the xn direction at xn = 0. By definition,

lim
xn→0+

∂r

∂xrn
(extL f)(x) =

∂rf

∂xrn
(x′, 0), r = 0, ..., L, (3.38)

and

lim
xn→0−

∂r

∂xrn
(extL f)(x) = lim

xn→0−

L+1∑
k=1

akλ
r
k

∂rf

∂(λkxn)r
(x′, λkxn)

=
∂rf

∂xrn
(x′, 0)

L+1∑
k=1

akλ
r
k, r = 0, ..., L. (3.39)

Thus the ak’s need to be chosen such that

L+1∑
k=1

akλ
r
k = 1, r = 0, ..., L, (3.40)

which can always be done since Vandermonde’s matrix
1 λ1 ... λL1
1 λ2 ... λL2
...

...
...

...
1 λL+1 . . . λLL+1

 (3.41)

has non-zero determinant when all the λi’s are distinct. That is, the rows are linearly
independent. Since extL f = f for x ∈ Rn+ and extL f(x) depends on f (times a constant)
at finitely many points in Rn+ for x ∈ Rn−, we deduce∑

|α|≤l

sup
x∈Rn

|Dα(extL f)(x)| ≤ c
∑
|α|≤l

sup
x∈Rn+

|Dαf(x)| (3.42)

for some constant c > 0 and all f ∈ BC l(Rn+) with (3.36). This proves the theorem for
BC l(Rn+).

Furthermore, for a smooth function f the value of extL f and its derivatives at each
point x ∈ Rn− is bounded by some constant independent of f times the value of f (and
its derivatives) at finitely many points in Rn+. Thus

‖extLf‖p,Rn− ≤ c‖f‖p,Rn+ (3.43)
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and similarly for its derivatives. Therefore

‖ extL f‖W l
p(Rn) ≤ c

∑
|α|≤l

‖Dαf‖pp,Rn+

1/p

≤ c‖f‖W l
p(Rn+) (3.44)

for some c > 0. The last inequality in (3.44) follows by the definition of the norm in
W l
p(Rn+). From Proposition 3.3 we know that D(Rn)|Rn+ and S (Rn)|Rn+ are dense in

W l
p(Rn+) and so the result for W l

p(Rn+) follows by taking limits.
Now let p = 2 and s = k + σ < L, k ∈ N0. By Proposition 3.3, D(Rn)|Rn+ and

S (Rn)|Rn+ are dense in W s
2 (Rn+) as well, and∑

|α|≤k

‖Dαf‖22,Rn+ +
∑
|α|=k

∫
Rn+

∫
Rn+

|Dαf(x)−Dαf(y)|2

|x− y|n+2σ
dx dy

1/2

≤ ‖f‖W s
2 (Rn+) (3.45)

for smooth functions, so by the preceding steps, all that remains to prove is that∫
Rn

∫
Rn

|Dα(extL f)(x)−Dα(extL f)(y)|2

|x− y|n+2σ
dx dy

≤ c
∫
Rn+

∫
Rn+

|Dαf(x)−Dαf(y)|2

|x− y|n+2σ
dx dy (3.46)

for compactly supported, smooth functions. Again we write x = (x′, xn) and y = (y′, yn).
The area of integration on the left-hand side of (3.46) can be decomposed into

{(x, y) ∈ R2n : xnyn ≥ 0} and {(x, y) ∈ R2n : xnyn < 0}. (3.47)

For xn ≥ 0 and yn ≥ 0, the integrand on the left-hand side equals the integrand on the
right-hand side in (3.46), and if xn < 0 and yn < 0, then the integrands differ only by
a constant. Hence the integral over {(x, y) ∈ R2n : xnyn ≥ 0} can be estimated from
above by the right-hand side. For xn > 0 and yn < 0 (the case xn < 0, yn > 0 is similar)
we have to prove∫

Rn+

∫
Rn−

|Dαf(x′, xn)−
∑L+1

k=1 akλ
r
kD

αf(y′, λkyn)|2

|x− y|n+2σ
dx dy

≤ c
∫
Rn+

∫
Rn+

|Dαf(x)−Dαf(y)|2

|x− y|n+2σ
dx dy. (3.48)

where r = |α|. Since (3.40) holds, the numerator of the integrand in the left-hand side
of (3.48) can be written as

|
L+1∑
k=1

akλ
r
k

(
Dαf(x′, xn)−Dαf(y′, λkyn)

)
|2. (3.49)
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Using the inequality  n∑
j=1

xj

2

≤ n
n∑
j=1

x2
j , (3.50)

the problem can be reduced to∫
Rn+

∫
Rn−

|g(x′, xn)− g(y′, λyn)|2

|x− y|n+2σ
dx dy ≤ c

∫
Rn+

∫
Rn+

|g(x)− g(y)|2

|x− y|n+2σ
dx dy (3.51)

with λ < −1. If λyn ≤ xn, then xn − λyn ≤ xn − yn, and if λyn > xn, then |xn − λyn| ≤
|λ||yn| ≤ |λ||xn − yn.

Replacing |x− y|2 on the left-hand side of (3.51) by

|x′ − y′|+ λ−2(xn − λyn)2 ≤ |x− y|2 (3.52)

one obtains an estimate proving (3.51). This proves the theorem for W s
2 (Rn+).

From the proof of Theorem 3.4 we can extract the following result:

Proposition 3.5. (i) Let 1 ≤ p <∞ and k ∈ N0. Then∑
|α|≤k

‖Dαf‖pp,Rn+

1/p

∼ ‖f‖Wk
p (Rn+) (3.53)

is an equivalent norm on W k
p (Rn+).

(ii) Let s = k + σ, k ∈ N0 and 0 < σ < 1. Then∑
|α|≤k

‖Dαf‖22,Ω +
∑
|α|=k

∫∫
Rn+×Rn+

|Dαf(x)−Dαf(y)|2

|x− y|n+2σ
dx dy

1/2

∼ ‖f‖W s
2 (Rn+)

(3.54)
is an equivalent norm on W s

2 (Rn+).

Proof. (i) Since
(
extL f

)
|Rn+ = f for f ∈W k

p (Rn+), it follows from Definition 3.1 that

‖f‖Wk
p (Rn+) ≤ ‖ extL f‖Wk

p (Rn). (3.55)

It then follows from (3.44) that∑
|α|≤l

‖Dαf‖pp,Rn+

1/p

≤ ‖f‖Wk
p (Rn+) ≤ c

∑
|α|≤l

‖Dαf‖pp,Rn+

1/p

. (3.56)

(ii) The inequality in (3.55) holds also for W s
2 (Rn+), s = k+σ, and the result then follows

from (3.46).

38



4 Sobolev Spaces on Domains

We now return to W s
p (Ω) for open sets Ω ⊂ Rn. We wish to extend Theorem 3.4 and

Proposition 3.5 to open sets Ω ⊂ Rn.

Definition 4.1. Let Ω ⊂ Rn be open and bounded. We say that the boundary ∂Ω is Ck

if for each point x′ ∈ ∂Ω there exists an r > 0 and a real valued function h ∈ BCk(Rn−1)
such that

Ω ∩B(x′, r) = {x ∈ B(x′, r) : xn > h(x1, ..., xn−1)} (4.1)

where B(x′, r) denotes the open ball centred at x′ with radius r. If ∂Ω is Ck for all
k ∈ N, then we say that ∂Ω is C∞.

If Ω is an open and bounded set such that ∂Ω is Ck, then one can for each point x′

on ∂Ω ”straighten out” the boundary near x′ by Ck diffeomorphisms. Let B(x′, r) and
h be as above. Then the function defined by

ψ(x) = (x1, ..., xn−1, xn − h(x1, ..., xn−1)) , x ∈ B(x′, r) (4.2)

is a Ck diffeomorphism with inverse

ψ−1(y) = (y1, ..., yn−1, yn + h(y1, ..., yn−1)) (4.3)

such that

ψ(B(x′, r) ∩ Ω) ⊂ Rn+ and ψ(B(x′, r) ∩ ∂Ω) ⊂ Rn−1 × {0}. (4.4)

Theorem 4.2. Let Ω ⊂ Rn be a bounded and open set such that ∂Ω is Ck. Then the
following holds:

(i) For any L = 1, ..., k there exists a linear and bounded extension operator extLΩ
defined on W s

p (Ω), 1 ≤ p < ∞, s = 0, ..., L for p 6= 2 and 0 ≤ s ≤ L for p = 2,
such that

extL :


BC l(Ω) ↪→ BC l(Rn), l = 0, ..., L,
W l
p(Ω) ↪→W l

p(Rn), l = 0, ..., L, 1 ≤ p <∞,
W s

2 (Ω) ↪→W s
2 (Rn), 0 < s < L,

(4.5)

with (
extL f

)
|Ω = f for all f ∈ BC l(Ω) ∪W l

p(Ω) ∪W s
2 (Ω). (4.6)

(ii) For 1 ≤ p <∞ and l = 0, 1, ..., k,∑
|α|≤l

‖Dαf‖pp,Ω

1/p

∼ ‖f‖W l
p(Ω) (4.7)

is an equivalent norm on W l
p(Ω).
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(iii) For s = l + σ, l = 0, 1, ..., k − 1 and 0 < σ < 1,∑
|α|≤l

‖Dαf‖22,Ω +
∑
|α|=l

∫∫
Ω×Ω

|Dαf(x)−Dαf(y)|2

|x− y|n+2σ
dx dy

1/2

∼ ‖f‖W s
2 (Ω) (4.8)

is an equivalent norm on W s
2 (Ω).

Proof of (i). (i) It follows from Proposition 3.3 that it is sufficient to extend only smooth
functions f from Ω to Rn and therefore extending BCk functions will certainly suffice.
Choose balls B(x′, r) according to Definition 4.1 for points x′ ∈ ∂Ω such that ∂Ω is
covered. Since ∂Ω is closed and bounded, it is compact, thus it is sufficient with only
finitely many balls, say {Bj}Jj=1, to cover it. Now let Ω0 be an open set such that

Ω0 ⊂ Ω and Ω ⊂ Ω0 ∪

 J⋃
j=1

Bj

 . (4.9)

This gives a finite open covering of Ω. Let {ϕj}Jj=0 be a partition of unity subordinate
to this cover according to Section 3.1. Then f may be decomposed as

f(x) = ϕ0(x)f(x) +

J∑
j=1

ϕj(x)f(x), x ∈ Ω. (4.10)

Then
suppϕjf ⊂ Bj ∩ Ω, j = 1, ..., J. (4.11)

According to the discussion before Theorem 4.2, there exists Ck diffeomorphisms ψj
with (4.4) for each Bj , j = 1, ..., J . Define

gj(y) = (ϕjf) ◦ (ψj)
−1(y), j = 1, ..., J. (4.12)

Since gj is a composition of k-times differentiable functions, gj is k-times differentiable.
Furthermore, by the properties of ψj and ϕjf , gj satisfies the following:

supp gj = ψj(suppϕjf) ⊂ Rn+. (4.13)

This is exactly the same situation as in Theorem 3.4, and the procedure used there yields
functions extL gj with

supp extL gj ⊂ ψj(Bj). (4.14)

Recall that in the proof of Theorem 3.4 we extended functions f ∈ BC l(Rn+) directly,
but for W l

p(Rn+) and W s
2 (Rn+) we extended smooth functions and relied on their density

in these spaces. However, there we wanted operators extL for all L ∈ N. If we restrict
ourself to a given k ∈ N, and the spaces W l

p(Rn+) and W s
2 (Rn+) with N 3 l ≤ k and s < k,

we see that in the calculations done and arguments used in the proof of Theorem 3.4,
we only need f to be k-times differentiable.
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Mapping back to our original coordinates again gives functions

hj(x) = (extL gj) ◦ ψj(x), supphj ⊂ Bj , hj |Ω = ϕjf. (4.15)

Putting hj = 0 outside Bj , we find our extension operator:

extLΩ f = ϕ0f +
J∑
j=1

hj . (4.16)

(ii) Since everything is reduced to the Rn+ case, this can be proved by a transformation
of (3.53).

(iii) This can be proved by a transformation of (3.54), but requires some extra work
compared to (ii). See for instance [10].

As previously noted, an alternative definition for Sobolev spaces on domains is

W̃ k
p (Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nn0 , |α| ≤ k} (4.17)

normed by

‖f‖
W̃k
p (Ω)

=

∑
|α|≤k

‖Dαf‖pp,Ω

1/p

. (4.18)

However, under certain conditions Ω, this coincides with Definition 3.1.

Proposition 4.3. Let Ω ⊂ Rn be a bounded, open set such that ∂Ω is of class CL. Then

W k
p (Ω) = W̃ k

p (Ω), for all k ≤ L. (4.19)

Proof. By definition, f ∈ W k
p (Ω) implies there exists a g ∈ W k

p (Rn) such that g|Ω = f .

In this case we clearly have g|Ω ∈ W̃ k
p (Ω). Thus, in general

W k
p (Ω) ⊂ W̃ k

p (Ω). (4.20)

The extension theorem above (Theorem 4.2) also holds for W̃ k
p , so in the case when ∂Ω

is CL we get

W̃ k
p (Ω) 3 f = extLΩ f |Ω, extLΩ f ∈W k

p (Rn) (4.21)

which implies W k
p (Ω) ⊃ W̃ k

p (Ω) for all k ≤ L. Thus W k
p (Ω) = W̃ k

p (Ω) for all k ≤ L.
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4.1 Embeddings

In this section we collect some result on the embedding of Sobolev spaces. Some will be
stated without proof, but with references to a full proof.

Theorem 4.4. Let Ω ⊂ Rn be an open and bounded set such that ∂Ω is C1, and let
1 ≤ p < n. Then W 1

p (Rn) is compactly imbedded in Lq(Ω), written

W 1
p (Ω) ↪→↪→ Lq(Ω) (4.22)

for all 1 ≤ q < p∗, where p∗ = np
n−p .

To prove the theorem, we will need an inequality called the Gagliardo–Nirenberg–
Sobolev inequality, which we state as its own theorem.

Theorem 4.5. If 1 ≤ p < n, then

‖g‖p∗ ≤ c‖∇g‖p, (4.23)

where c = p(n−1)
n−p , for all g ∈ C1(Rn) with compact support.

Proof. Since g has compact support, we have

g(x) =

∫ xi

−∞
∂xig(x1, ..., xi−1, yi, xi+1, ..., xn) dyi (4.24)

for i = 1, ..., n and any x ∈ Rn. This implies

|g(x)| ≤
∫
R
|∇g(x1, ..., yi, ..., xn)| dyi, i = 1, ..., n, (4.25)

which in turn implies

|g(x)|
n
n−1 ≤

n∏
i=1

(∫
R
|∇g(x1, ..., yi, ..., xn)|dyi

) 1
n−1

, i = 1, ..., n. (4.26)

Integrating this inequality with respect to x1 yields∫
R
|g(x)|

n
n−1 dx1 ≤

∫
R

n∏
i=1

(∫
R
|∇g| dyi

) 1
n−1

dx1

=

(∫
R
|∇g| dyi

) 1
n−1

∫
R

n∏
i=2

(∫
R
|∇g|dyi

) 1
n−1

dx1 (4.27)

≤
(∫

R
|∇g| dyi

) 1
n−1

(
n∏
i=2

∫
R

∫
R
|∇g|dx1 dyi

) 1
n−1

,
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where the last inequality follows from the generalized Hölder inequality. Integrating
(4.27) with respect to x2 and using the generalized Hölder inequality and then proceeding
likewise for x3, ...xn, one can derive∫

Rn
|g(x)|

n
n−1 dx ≤

n∏
i=1

(∫
R
· · ·
∫
R
|∇g|dx1...dyi...dxn

) 1
n−1

=

(∫
Rn
|∇g(x)| dx

) n
n−1

. (4.28)

Now apply the inequality (4.28) to |g|γ , for some γ > 0:(∫
Rn
|g(x)|

γn
n−1 dx

)n−1
n

≤
∫
Rn
|∇|g(x)|γ | dx = γ

∫
Rn
|g(x)|γ−1|∇g(x)|dx

≤ γ
(∫

Rn
|g(x)|

(γ−1)p
p−1 dx

) p−1
p
(∫

Rn
|∇g(x)|p dx

)1/p

, (4.29)

where the last inequality follows from Hölder’s inequality. If we choose γ = p(n−1)
n−p , then

γn

n− 1
=

(γ − 1)p

p− 1
=

np

n− p
= p∗ (4.30)

in which case (4.29) becomes(∫
Rn
|g(x)|p∗ dx

)1/p∗

≤ γ
(∫

Rn
|∇g(x)|p dx

)1/p

. (4.31)

Since γ depends only on n and p, this proves the result.

Before we proceed with the proof of Theorem 4.4, let us clarify what is stated in the
theorem. A compact linear embedding means that there exists a constant c > 0 such
that ‖f‖q,Ω ≤ c‖f‖W s

p (Ω) for all f ∈W s
p (Ω) and that every bounded sequence in W s

p (Ω)

has a subsequence that converges in Lq(Ω).

Proof of Theorem 4.4. We prove first that W 1
p (Ω) ⊂ Lq(Ω). In general, for a set Ω such

that Ln(Ω) <∞, i.e. a bounded set, we have

‖g‖qq,Ω = ‖1 · |g|q‖1,Ω ≤ ‖1‖p/(p−q),Ω‖|g|q‖p/q,V = Ln(Ω)(p−q)/p‖g‖qp,Ω (4.32)

for 1 ≤ q < p ≤ ∞. In other words, for Ω ⊂ Rn with finite measure, the spaces Lp(Ω),
1 ≤ p ≤ ∞, are nested. Thus, in our case, ‖f‖q,Ω ≤ C‖f‖p∗,Ω for 1 ≤ q ≤ p∗ and some
constant C > 0. Therefore it suffices to prove that f ∈W 1

p (Ω) implies f ∈ Lp∗(Ω). Since
∂Ω is C1, Theorem 4.2 implies that there exists an extension ext1

Ω f = f̄ ∈W 1
p (Rn) with

compact support and satisfying

‖f̄‖W 1
p (Rn) ≤ C‖f‖W 1

p (Ω), f̄ |Ω = f (4.33)
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for some C > 0. By Theorem 2.3 there exists a sequence {fn}n ⊂ D(Rn) such that

fn → f̄ in W 1
p (Rn), (4.34)

and according to Theorem 4.5, we have

‖fn − fm‖p∗ ≤ C‖∇fn −∇fm‖p (4.35)

for all m,n ≥ 1. Furthermore, (4.34) implies that {∇fn}n is convergent in Lp(Rn), which
then implies, by the inequality above, that

fn → f̄ in Lp
∗
(Rn). (4.36)

Now, combining (4.34) and (4.36) with the inequality from Theorem 4.5 for fn gives the
bound

‖f̄‖p∗ ≤ C‖∇f̄‖p. (4.37)

By this inequality and the definition of f̄ , we have

‖f‖p∗,Ω ≤ ‖f̄‖p∗ ≤ C‖∇f̄‖p ≤ C
(
‖f̄‖p + ‖∇f̄‖p

)
= C‖f̄‖W 1

p (Rn) ≤ C ′‖f‖W 1
p (Ω) (4.38)

for some C ′ > 0 independent of f . This proves that W 1
p (Ω) ⊂ Lq(Ω) for 1 ≤ q ≤ p∗.

Now consider a bounded sequence {fn}n ⊂ W 1
p (Ω). In view of Theorem 4.2, we

may assume Ω = Rn and that each fn has compact support in some bounded open set
V ⊂ Rn and we have

sup
n
‖fn‖W 1

p (V ) <∞. (4.39)

According to the Arzela-Ascoli theorem, a sufficient condition for a sequence of func-
tions defined on a closed and bounded set to have a convergent subsequence is that it is
uniformly bounded and equicontinuous. However, Arzela-Ascoli only applies to continu-
ous functions. Therefore, we first consider the sequence of mollified functions {(fn)h}n.
Proposition 1.9 and equation (4.39) implies that the sequence is uniformly bounded, and
furthermore we have

|∇(fn)h| ≤
∫
Rn
ωh(x− y)|fn(y)| dy ≤ ‖ωh‖∞‖fn‖1,V ≤ C (4.40)

for some constant C > 0 independent of n. This implies that the sequence is equicon-
tinuous as well. According to (1.10) and (1.11) we may assume that each (fn)h has
compact support in V , by taking h small enough. Thus Arzela-Ascoli applies and hence
there exists a subsequence {(fnj )h}j ⊂ {(fn)h}n which converges uniformly on V . In
particular

lim sup
j,k→∞

‖(fnj )h − (fnk)h‖q,V = 0. (4.41)
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Now, if fn is smooth, then

(fn)h(x)− fn(x) =

∫
Rn
ω(y)((fn(x− hy)− fn(x)) dy

=

∫
Rn
ω(y)

∫ 1

0

d

dt
fn(x− hty) dt dy (4.42)

= −h
∫
Rn
ω(y)

∫ 1

0
∇fn(x− hty)) · y dt dy.

Thus, by (1.10) we get∫
V
|(fn)h(x)− fn(x)| dx ≤ h

∫
|y|≤1

ω(y)

∫ 1

0

∫
V
|∇fn(x− hty)|dx dy dt

≤ h
∫
V
|∇fn(z)|dz. (4.43)

Since, by Proposition 3.3, D(Rn)|V is dense in W 1
p (V ), the estimate above holds for any

fn ∈W 1
p (V ). Furthermore, since V is bounded, we have for any g ∈ L1(V ) that

‖g‖1,V = ‖1 · |g|‖1,V ≤ ‖1‖p/(p−1),V ‖g‖p,V = Ln(V )(p−1)/p‖g‖p,V (4.44)

for p ≥ 1. Hence
‖(fn)h − fn‖1,V ≤ h‖∇fn‖1,V ≤ hC‖∇fn‖p,V (4.45)

for some C depending only on the (Lebesgue) measure of V . Equation (4.39) implies
that there exists a constant M > 0 such that ‖∇fn‖p,V ≤ M for all n ∈ N. Together
with (4.45), this implies

(fn)h → fn in L1(V ), uniformly in n. (4.46)

However, we want uniform convergence in Lq(V ). Since q < p∗, we may use the inter-
polation inequality to obtain

‖(fn)h − fn‖q,V ≤ ‖(fn)h − fn‖t1,V ‖(fn)h − fn‖1−tp∗,V , (4.47)

where 1/q = t+ (1− t)/p∗ and 0 < t < 1. Then (4.39), Theorem 4.5 and (4.46) together
implies

(fn)h → fn in Lq(V ), uniformly in n. (4.48)

Thus we can for each l ∈ N find an h > 0 such that

‖(fn)h − fn‖q,V ≤
1

2l+1
, n = 1, 2, ... (4.49)

which by the triangle inequality and (4.41) implies

lim sup
j,k→∞

‖fnj − fnk‖q,V ≤
1

2l
. (4.50)
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Hence we can choose nl such that

‖fnj − fnk‖ ≤
1

2l
, j, k ≥ l, l = 1, 2, ... (4.51)

This gives a subsequence {fnl}l ⊂ {fn}n that converges in Lq(V ).

Remark: It follows from Definition 3.1 that W k
p (Ω) ⊂ W 1

p (Ω) if k > 1 and W s
2 (Ω) ⊂

W 1
2 (Ω) if s > 1. Furthermore, it is clear from the definition of the norms in W k

p (Ω) and

W s
2 (Ω) that a bounded sequence in W k

p (Ω) or W s
2 (Ω), k, s > 1 is bounded in W 1

p (Ω) or
W 1

2 (Ω), respectively. Thus Theorem 4.4 holds also for k, s > 1. In fact, when k > 1, the
bound p∗ can be improved (that is, enlarged), but for our purposes this is not needed.

The inequality in (4.32) gives the following embedding result on bounded sets Ω ⊂
Rn.

Proposition 4.6. Let Ω ⊂ Rn be a bounded set, 1 ≤ q < p <∞ and k ∈ N0. Then

W k
p (Ω) ↪→W k

q (Ω). (4.52)

Proof. Let f ∈W k
p (Ω). Then, by (4.32), we have

‖f‖Wk
q (Ω) ≤

∑
α≤k
Ln(Ω)

p−q
q ‖Dαf‖pp

1/p

= Ln(Ω)
p−q
pq ‖f‖Wk

p (Ω). (4.53)

This proves the result.

As already noted, we have W k+l
p (Ω) ⊂ W k

p (Ω) for k, l ∈ N0 and W s+ε
2 (Ω) ⊂ W s

2 (Ω)
for ε > 0, but if Ω is sufficiently smooth, more is true.

Proposition 4.7. Let Ω ⊂ Rn be bounded set such that ∂Ω is C∞. Let k ∈ N0, l ∈ N,
s ∈ R+ and 0 < ε. Then

W k+l
p (Ω) ↪→↪→W k

p (Ω) (4.54)

and

W s+ε
2 (Ω) ↪→↪→W s

2 (Ω) (4.55)

Proof. For a proof of this proposition and more general results, see [4], [5] and [6].

The main limitation of Theorem 4.4 for us is that it does not (in the form we stated
it) hold for 0 < s < 1 for W s

2 (Ω) (and in this case we only need ∂Ω to be of class
C1). However, Proposition 4.7 gives us compact embedding also in this case, since
W 0

2 (Ω) = L2(Ω), albeit for a lower exponent: only L2(Ω) and not Lp
∗
(Ω), but this will

be sufficient for our purposes.
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4.2 Traces

Later, we wish to look for solutions of partial differential equations on domains Ω in
the spaces W k

p (Ω). In order to do this, we need to assign boundary values to Sobolev

functions. This may seem somewhat problematic, as elements of W k
p (Ω) are equivalence

classes of measurable functions, i.e. allowed to vary on a set of zero measure, and indeed,
if Ω ⊂ Rn, then Ln(∂Ω) = 0. Fortunately, the assumption that the functions are weakly
differentiable gives, in some cases, sufficient regularity to make sense of pointwise values
as the following theorem shows.

Theorem 4.8. Let Ω ⊂ Rn be an open, bounded set such that ∂Ω is of class C1. Then
there exists a bounded linear operator

tr∂Ω : W 1
p (Ω)→ Lp(∂Ω) (4.56)

such that if f ∈W 1
p (Ω) ∩ C(Ω̄), then tr∂Ω f = f |∂Ω on ∂Ω.

Proof. First assume Ω = Rn+ and f ∈ BC1(Rn+). We may apply the decomposition
argument used in the proof of Theorem 3.4 and assume

supp f ⊂ {x ∈ Rn+ : |x| < 1}. (4.57)

If f is real-valued, we can for a fixed x′ ∈ Rn−1, |x′| < 1 choose a τ = τ(x′) ∈ [0, 1] such
that ∫ 1

0
f(x′, xn) dxn = f(x′, τ). (4.58)

We then obtain

|f(x′, 0)|p = |f(x′, τ)−
∫ τ

0

∂f

∂xn
(x′, xn) dxn|p

≤ c
(
|f(x′, τ)|p + |

∫ τ

0

∂f

∂xn
(x′, xn) dxn|p

)
(4.59)

≤ c
((∫ 1

0
|f(x′, xn)| dxn

)p
+

(∫ 1

0
| ∂f
∂xn

(x′, xn)|dxn
)p)

where c > 0 can be chosen independently of f . Since p ≥ 1 and the measure of the
interval of integration is 1, we may apply Jensen’s inequality and obtain

|f(x′, 0)|p ≤ c
∫ 1

0

(
|f(x′, xn)|p + | ∂f

∂xn
(x′, xn)|p

)
dxn. (4.60)

This inequality can be extended to complex-valued functions f ∈ BC1(Rn+) satisfying

(4.57). Since ∂Ω is of class C1, we may use the equivalent norm
(∑

|α|≤1 ‖Dαf‖pp,Ω
)1/p

on W 1
p (Ω) given in Theorem 4.2. Integration over x′ ∈ Rn−1 on both sides of (4.60) then

yields ∫
Rn−1

|f(x′, 0)|p dx′ ≤ c
∫
Rn

(
|f(x′, xn)|p + | ∂f

∂xn
(x′, xn)|p

)
dx (4.61)
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which proves the result for Ω = Rn+. For a general open, bounded set Ω with ∂Ω of class
C1 we may apply the same procedure as used in the proof of Theorem 4.2 to reduce it
to the case Ω = Rn+. We repeat the procedure here.

For points x′ ∈ ∂Ω, choose open balls B(x′, r) according to Definition 4.1 such that
∂Ω is covered. Since ∂Ω is compact, a finite number of balls will suffice, say {Bj}Jj=1.
Now let Ω0 be an open set such that

Ω0 ⊂ Ω and Ω ⊂ Ω0 ∪

 J⋃
j=1

Bj

 . (4.62)

This gives a finite open covering of Ω, and we can, according to Section 3.1, find a
partition of unity subordinate to this cover, say {ϕj}Jj=0. Then f may be decomposed
as

f(x) = ϕ0(x)f(x) +
J∑
j=1

ϕj(x)f(x), x ∈ Ω. (4.63)

Then
suppϕjf ⊂ Bj ∩ Ω (4.64)

and there exists C1 diffeomorphisms ψj with (4.4) (cf. the discussion prior to Theorem
4.2) for each Bj , j = 1, ..., J . Define

gj(y) = (ϕjf) ◦ (ψj)
−1(y), j = 1, ..., J. (4.65)

Then gj ∈ BC1(Rn+), and we may apply the same arguments as above to find

tr∂Rn+ gj ∈ L
p(∂Rn+) (4.66)

with (4.61). We then define

hj(x) = (tr∂Rn+ gj) ◦ ψj(x) (4.67)

and note that supphj ⊂ ∂Ω ∩Bj . We then find our trace operator:

tr∂Ω f =
J∑
j=1

hj . (4.68)

Remark: Theorem 4.8 also holds for W k
p (Ω), k > 1 and W s

2 (Ω), s > 1, since these are
subspaces of W 1

p (Ω) and W 1
2 (Ω) respectively.

Definition 4.9. Let Ω ⊂ Rn be an open, bounded set such that ∂Ω is of class C1. Then
we denote the space of all functions f ∈W k

p (Ω), k ≥ 1, with tr∂Ω f = 0 by W k
p,0(Ω).

There is an alternative way of defining W k
p,0(Ω), that has the advantage of being

valid regardless of the smoothness of ∂Ω and the exponent k: it even holds for W s
2 (Ω)

for 0 < s < 1, and indeed for Hs(Ω) for s < 0.
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Definition 4.10 (Alternative definition of W k
p,0(Ω)). Let Ω ⊂ Rn be an open set. Then

we define W s
p,0(Ω), 1 ≤ p <∞ with s ∈ N0 for p 6= 2, s ∈ R for p = 2, as the closure of

D(Ω) in the W s
p (Ω) norm.

When ∂Ω is of class C1 and s ≥ 1, then these two definitions coincide. This is the
content of the next theorem.

Theorem 4.11. Let Ω ⊂ Rn be an open, bounded set such that ∂Ω is of class C1 and
let f ∈W 1

p (Ω). Then tr∂Ω f = 0 if and only if f there is a sequence {fn}n ⊂ D(Ω) such
that

fn → f in W 1
p (Ω). (4.69)

Proof. See Theorem 2 in chapter 5.5 in [7].

We may note that for W s
p,0(Ω), extension to W s

p (Rn) is trivial. Any function in D(Ω)
may simply be extended by zero outside Ω regardless of the properties of ∂Ω, and so the
result follows by taking limits. Since Theorem 4.4 depended on being able to extend the
functions to Rn, we may now revisit the theorem for W s

p,0, giving a version that we rely
on in Chapter 5 and 6.

Theorem 4.12. Let Ω ⊂ Rn be an open and bounded set, and let 1 ≤ p < n. Then the
following holds:

(i)

W 1
p,0(Ω) ↪→↪→ Lq(Ω) (4.70)

for all 1 ≤ q < p∗, where p∗ = np
n−p .

(ii)

W s
2,0(Ω) ↪→↪→ L2(Ω) (4.71)

for all 0 < s < 1.

We will only sketch the proof as the main details of (i) are already done in the proof
of Theorem 4.4 and (ii) follows from Proposition 4.7.

Proof sketch. (i) In Theorem 4.4 we extended W 1
p (Ω)–functions to W 1

p (Rn) by applying

the extension theorem, Theorem 4.2, to prove the inclusion W 1
p (Ω) ↪→ Lp

∗
(Ω). Similarly

for the compactness, we extended elements of W 1
p (Ω) and mollified them to apply Arzela-

Ascoli. These extensions require that ∂Ω is of class C1. However, D(Ω) is by Definition
4.10 dense in W 1

p,0(Ω), and extending these functions to D(Rn) is done simply by setting
them to be zero outside Ω. All arguments done in the proof of Theorem 4.4 can then be
carried out as before, without considering the regularity of the boundary ∂Ω.

(ii) It is possible to derive this from Proposition 4.7, noting again that we do not
need to put any requirements on ∂Ω to extend functions in W s

2,0(Ω) to W s
2 (Ω).

We may now also state and prove the useful Poincaré inequality.
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Theorem 4.13. Let Ω ⊂ Rn be open and bounded such that ∂Ω is C1, and let 1 ≤ p < n.
If f ∈ W 1

p,0(Ω), then there exists a constant C dependent only on p, q, n and Ω such
that

‖f‖q,Ω ≤ C‖∇f‖p,Ω (4.72)

for all q such that 1 ≤ q ≤ p∗. In particular

‖f‖p,Ω ≤ C‖∇f‖p,Ω. (4.73)

Proof. Theorem 4.11 implies that there exists a sequence {fn}n ⊂ D(Ω) such that
fn → f in W 1

p (Ω). Extending fn by zero outside Ω, we may apply Theorem 4.5 and in
the limit obtain

‖f‖p∗,Ω ≤ C‖∇f‖p,Ω. (4.74)

Since Ω is bounded, equation (4.32) implies

‖f‖q,Ω ≤ C‖∇f‖p,Ω (4.75)

for 1 ≤ q ≤ p∗.

5 Variational Methods

The calculus of variations deals with finding maxima or minima of functionals on function
spaces. Many problems in analysis, in particular differential equations, can be recast as
functional equations DE(u) = 0, where one looks for the solution u among a suitable
class of admissible functions belonging to some Banach space V . Thus the problem of
finding a solution to a PDE can be restated as finding a minimum of a functional, since
the derivative will be zero at the minimum.

The validity of this approach is perhaps better illustrated by an example than by
abstract explainations.

Let Ω ⊂ Rn be an open and bounded set. Consider the functional

I(v) =

∫
Ω
|∇v(x)|2 dx (5.1)

where v : Ω→ R. We postpone the question of smoothness and regularity conditions on
v. Suppose u is a minimiser of I over a suitable set, say

I(u) = min{I(v) : v = f on ∂Ω}. (5.2)

Now, for a function ϕ ∈ D(Ω), we consider the function

α(t) =

∫
Ω
|∇(u+ tϕ)(x)|2 dx. (5.3)

Expanding this expression, we obtain

α(t) =

∫
Ω
|∇u(x)|2 dx+ 2t

∫
Ω
∇u(x) · ∇ϕ(x) dx+ t2

∫
Ω
|∇ϕ(x)|2 dx. (5.4)
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Clearly, α is differentiable with respect to t, and by (5.2), α has an interior minimum at
t = 0. In other words, α′(0) = 0. That is,∫

Ω
∇u(x) · ∇ϕ(x) dx = 0 for all ϕ ∈ D(Ω). (5.5)

Assuming u is sufficiently smooth (that is, at least C2), we may use integration by parts
to obtain (since ϕ vanishes on ∂Ω)∫

Ω
(∆u(x))ϕ(x) dx = 0 for all ϕ ∈ D(Ω). (5.6)

Lemma 1.21 implies that if (5.6) holds, then ∆u = 0 in Ω. Then, since u = f on ∂Ω by
assumption, we see that u solves the classical Dirichlet problem

∆u = 0 in Ω,

u = f on ∂Ω. (5.7)

We need to consider in which space we should look for such a minimiser, and there are
many things to take into consideration. First and foremost, the space should contain a
solution, and the larger the space, the more likely it is to contain a solution. But we also
need to consider how weak solutions we will allow; are we satisfied with distributional
solutions, or do we want classical solutions? Since the minimiser will inevitably have to
be found by minimising sequences, the compactness and convergence properties of the
space will be of utmost importance. Considering the theory we have developed so far, it
is no surprise that the Sobolev spaces are ideal spaces for this purpose, containing both
classical solutions and regular distributions, as well as having desirable compactness
properties (cf. Chapter 4).

Let us formalise the procedure in the example above. Let Ω ⊂ Rn be an open set.
We consider functions

L : Ω̄× R× Rn → R (5.8)

and functionals of the form

I(u) =

∫
Ω
L(x, u(x),∇u(x)) dx, (5.9)

for some set of admissible functions u : Ω̄ → R. That a minimiser of the functional
considered in the example above solves a partial differential equation is no coincidence
or a property of our particular choice of L, as the next proposition shows. First, let us
fix some notation.

We write

L = L(x, z, p) = L(x1, ..., xn, z, p1, ..., pn), x ∈ Ω, z ∈ R, p ∈ Rn (5.10)

and we set

DxL = (Lx1 , ..., Lxn)

DzL = Lz (5.11)

DpL = (Lp1 , ..., Lpn).
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Proposition 5.1. Let Ω ⊂ Rn be open and bounded such that ∂Ω is of class C1. If L
and I are as above, with L being C2 in addition, and u is a minimiser of I among the set
of smooth functions satisfying u = g on ∂Ω, then u solves the boundary value problem
given in (5.15).

Proof. Choose any function ϕ ∈ D(Ω) and consider the function

α(t) = I(u+ tϕ), t ∈ R. (5.12)

By assumption, α(·) has a minimum at t = 0, since u + tϕ = u = g on ∂Ω. Therefore
α′(0) = 0. Furthermore, we have

α′(t) =

∫
Ω

[
n∑
i=1

Lpi(x, u+ tϕ,∇u+ t∇ϕ)
∂ϕ

∂xi
+ Lz(x, u+ tϕ,∇u+ t∇ϕ)ϕ

]
dx, (5.13)

which implies, since L is smooth and ϕ has compact support,

0 = α′(0) =

∫
Ω

n∑
i=1

Lpi(x, u,∇u)
∂ϕ

∂xi
+ Lz(x, u,∇u)ϕdx

=

∫
Ω

(
−

n∑
i=1

(Lpi(x, u,∇u))xi + Lz(x, u,∇u)

)
ϕdx. (5.14)

Since this holds for all ϕ ∈ D(Ω), Lemma 1.21 implies that u solves the boundary value
problem

−
n∑
i=1

(Lpi(x, u,∇u))xi + Lz(x, u,∇u) = 0 in Ω, (5.15)

u = g on ∂Ω.

5.1 Existence of Minimisers

We have so far established that a minimiser of (5.9) solves a partial differential equation,
but the existence of such a minimiser, and how to find it, is not clear in the general case.
There are some conditions which the space of admissible functions and the functional
must satisfy, and these conditions are what we will now investigate.

For the functional to attain a global minimum, it is clear that being bounded below
is a necessary condition, however, this is not in general sufficient for it to attain its
infimum. Consider for example the function ex, x ∈ R. It is certainly bounded below,
but it does not attain its infimum. The problem in this case is that the infimum of ex is
its limit at infinity. A reasonable way to avoid such a situation is to require that I(u)
grows as |u| → ∞.

52



More precisely, for 1 < q <∞ fixed, we will assume that there exist a constant α > 0
and a function γ ∈ L1(Ω) such that

L(x, z, p) ≥ α|p|q − γ(x) for almost every p, z, x. (5.16)

This implies

I(u) ≥ α‖∇u‖qq,Ω − ‖γ‖1,Ω (5.17)

for some constant α > 0, which further implies

I(u)→∞ when ‖∇u‖qq,Ω →∞. (5.18)

Condition (5.17) is called called a coercivity condition on I.

This requirement further encourages us to look for u ∈ W 1
q (Ω) such that u − g ∈

W 1
q,0(Ω). To simplify notation, we denote this space as

A = {u ∈W 1
q (Ω) : u− g ∈W 1

q,0(Ω)}. (5.19)

However, condition (5.17) is not enough. That is, it is not sufficient for I to attain
its infimum. Let

m = inf
u∈A

I(u) (5.20)

and let {un}n ⊂ A be a minimising sequence, that is

I(un)→ m as n→∞. (5.21)

We wish to show that {un}n or a subsequence thereof converges to a minimiser. That
is, we want un → u as n → ∞ such that I(u) = m. The convergence of {I(un)}n ⊂ R
implies that

sup
n∈N
|I(un)| <∞, (5.22)

which by (5.17) implies

sup
n∈N
‖∇un‖q,Ω <∞. (5.23)

Let v ∈ A. Then the traces of un and v are equal, and thus un − v ∈W 1
q,0(Ω). We may

then apply the Poincaré inequality, Theorem 4.13, to this difference and obtain

‖un‖q,Ω ≤ ‖un − v‖q,Ω + ‖v‖q,Ω ≤ C‖∇un −∇v‖p,Ω + C ′. (5.24)

This, together with (5.23) implies that

sup
n
‖un‖W 1

q (Ω) <∞. (5.25)

However, in an infinite dimensional space such as W 1
q (Ω), boundedness does not imply

compactness. On the other hand, Lq(Ω) is a reflexive space for 1 < q < ∞, which we
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are assuming. It therefore follows from the Banach-Alaoglu theorem that there exists a
subsequence {unj}j ⊂ {un}n and a function u ∈W 1

q (Ω) such that

unj ⇀ u weakly in Lq(Ω)

∇unj ⇀ ∇u weakly in Lq(Ω). (5.26)

We have gained convergence by going to the weak topology, but we have lost something
in the process as well, for in most (interesting) cases, I will not be continuous with
respect to weak convergence. Thus we cannot infer that

I(u) = lim
j→∞

I(unj ), (5.27)

i.e. we cannot conclude that u is a minimiser. We therefore need to impose another
criterion on I.

Proposition 5.2. Let Ω ⊆ Rn be a bounded, open set. If for any sequence vn, v ∈
W 1
q (Ω), 1 ≤ q <∞, for all n ∈ N such that

vn → v in L1(Ω) (5.28)

∇vn ⇀ ∇v weakly in L1(Ω),

the functional I defined by

I(u) =

∫
Ω
L(x, u,∇u) dx (5.29)

satisfies (5.17) and is lower semi-continuous with respect to the convergence in (5.28),
then the following holds:

(i) If ∂Ω is of class C1, then I attains its infimum on W 1
q (Ω).

(ii) I attains its infimum on W 1
q,0(Ω).

Proof. Let {un}n be a minimising sequence for I in W 1
q (Ω). We will prove that any such

minimising sequence has a subsequence that converges in the sense of (5.28). By the
discussion above,

sup
n
‖un‖W 1

q (Ω) <∞. (5.30)

If ∂Ω is of class C1 there exists, by Theorem 4.4, a subsequence (denoted by {un}n) such
that un → u in L1(Ω). Since {∇un}n is bounded in Lq(Ω), it follows from the discussion
prior to Proposition 5.2 that there exists a subsequence {un}n such that ∇un ⇀ ∇u
weakly in Lq(Ω).

If {un}n ⊂ Lq(Ω) and unf → uf in L1(Ω) for all f ∈ Lq′(Ω), where 1/q + 1/q′ = 1,
then unf → uf in L1(Ω) for all f ∈ L∞(Ω) since L∞(Ω) ⊆ Lq

′
(Ω). In other words,

weak convergence in Lq(Ω) implies weak convergence in L1(Ω). It follows that for any

54



minimising sequence {un}n ⊂W 1
q (Ω) of I, there exists a u ∈W 1

q (Ω) and a subsequence
(again denoted by {un}n) such that

un → u in L1(Ω) (5.31)

∇un ⇀ ∇u in L1(Ω).

Thus we have by lower semi-continuity of I with respect to this convergence that

I(u) ≤ lim inf
n→∞

I(un). (5.32)

If {un}n is a minimising sequence for I in W 1
q,0(Ω), then we may apply Theorem 4.12 to

get strong convergence of (a subsequence) {un}n in L1(Ω) without any conditions on ∂Ω.
The weak convergence of (a subsequence of) {∇un}n depends only on the boundedness
of the domain and not on the boundary, as we saw above, and so we get, by lower
semi-continuity,

I(u) ≤ lim inf
n→∞

I(un) (5.33)

also in this case.

Checking if the functional is lower semi-continuous in the sense of Proposition 5.2
directly is in general difficult, and would entail showing that the function attains its
infimum directly. Therefore we want conditions for I that are easier to check and that
implies lower semi-continuity. Such conditions are given in the theorem below.

Theorem 5.3. Assume L : Ω × R × Rn is a Caratheodory function that satisfies the
following:

(i) L(x, z, ·) is convex in p for almost every x, z.

(ii) L(x, z, p) ≥ γ(x) for almost every x, z, p and γ ∈ L1(Ω).

Then, if uk, u ∈ W 1
q,loc(Ω) and uk → u in L1(Ω′) and ∇uk ⇀ ∇u weakly in L1(Ω′) for

every Ω′ b Ω, it follows that

I(u) ≤ lim inf
k→∞

I(uk). (5.34)

Proof. We may assume that {I(uk)}k is finite and convergent, and we may also assume
L ≥ 0, since we may otherwise replace L by L− γ. Let Ω′ b Ω. Since L1(Ω′) is convex
and ∇uk ⇀ u weakly in L1(Ω′), there exists for any k0 ∈ N a sequence {Pl}l≥k0 of convex
linear combinations of ∇uk’s,

Pl =
l∑

k=k0

αlk∇uk, 0 ≤ αlk ≤ 1,
l∑

k=k0

αlk = 1, l ≥ k0, (5.35)

such that Pl → ∇u strongly in L1(Ω′). See for instance Theorem 3.13 in [17] for a proof
of this result in its most general form. By strong convergence in L1(Ω′) we also have, by
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passing to a subsequence if necessary, pointwise convergence almost everywhere in Ω′.
Therefore, by Fatou’s lemma∫

Ω′
L(x, u,∇u) dx ≤ lim inf

l→∞

∫
Ω′
L(x, u, Pl) dx. (5.36)

Now, since L is convex in its third argument by assumption, the following holds for
any k0 ∈ N, any l ≥ k0 and almost every x ∈ Ω′:

L(x, u, Pl) = L

x, u, l∑
k=k0

αlk∇uk

 ≤ l∑
k=k0

αlkL(x, u,∇uk). (5.37)

From (5.36) we then obtain∫
Ω′
L(x, u,∇u) dx ≤ sup

k≥k0

∫
Ω′
L(x, u,∇uk) dx. (5.38)

Since this holds for every k0 ∈ N, this implies∫
Ω′
L(x, u,∇u) dx ≤ lim sup

k→∞

∫
Ω′
L(x, u,∇uk) dx. (5.39)

In order to complete the proof, we need a relation between L(x, u,∇uk) and L(x, uk,∇uk).
More precisely, we will prove that there exists a subsequence {uk}k such that

L(x, uk,∇uk)− L(x, u,∇uk)→ 0 (5.40)

in measure, locally in Ω. Assume to the contrary that there exists a set Ω′ b Ω and
ε > 0 such that for

Ωk = {x ∈ Ω′ : |L(x, uk,∇uk)− L(x, u,∇uk)| ≥ ε} (5.41)

we have
lim inf
k→∞

Ln(Ωk) ≥ 2ε. (5.42)

By weak convergence, {∇uk}k is uniformly bounded in L1(Ω′). Hence

Ln{x ∈ Ω′ : |∇uk(x)| ≥ l} ≤ 1

l

∫
Ω
|∇uk|dx ≤

C

l
≤ ε, (5.43)

if l is large enough, say l ≥ lε for some lε depending on ε. Setting Ω̃k = {x ∈ Ωk :
|∇uk| ≤ lε} we have, by (5.42)

lim inf
k→∞

Ln(Ω̃k) ≥ ε. (5.44)

Thus, setting ΩK =
⋃
k≥K Ω̃k, we have

lim inf
k→∞

Ln(ΩK) ≥ ε, (5.45)
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for all K ∈ N. Furthermore, the inclusions ΩK+1 ⊂ ΩK ⊂ Ω′ hold for all K and so
for Ω∞ =

⋂
K∈N ΩK we have Ln(Ω∞) ≥ ε. Since {uk}k converges to u in L1(Ω′), there

exists a subsequence that converges to u pointwise almost everywhere. Neglecting a set
of measure zero, we may therefore assume that L(x, z, p) is continuous in (z, p) (it is by
assumption continuous almost everywhere) and that uk(x) → u(x) as k → ∞ for every
point x ∈ Ω∞.

Now let x ∈ Ω∞. Since we are neglecting a set of measure zero, ∇uk(x) is unam-
biguously defined and as noted above, bounded uniformly in k. Thus there exists a
subsequence (relabelled) and an element p ∈ Rn such that ∇uk(x) → p as k → ∞.
Then, by continuity

L(x, u(x),∇uk(x))→ L(x, u(x), p). (5.46)

But, since uk(x)→ u(x), we also have

L(x, uk(x),∇uk(x))→ L(x, u(x), p). (5.47)

Since this holds for every x ∈ Ω∞, except for in a set of measure zero, this contradicts
our assumptions on Ωk. Thus we have convergence in measure, and for any ε > 0 and
any k0 ∈ N there exists an k ≥ k0 and a set Ωk

ε ⊂ Ω such that

|L(x, uk(x),∇uk(x))− L(x, u(x),∇uk(x))| < ε (5.48)

for all x ∈ Ωk
ε and Ln(Ω\Ωk

ε) < ε. Hence we can choose a subsequence (still labelled with
k) such that, upon replacing ε by εk = 2−k, there is a set Ωk

εk
⊂ Ω′ with Ln(Ω′ \Ωk

εk
) <

2−k such that (5.48) holds for x ∈ Ωk
εk

with ε = εk. It follows that for any ε > 0, if

we choose k0 = k0(ε) > | log2 ε| and set Ωε =
⋃
k≥k0 Ωk

εk
, then Ln(Ω′ \ Ωε) < ε and

(5.48) holds uniformly for all x ∈ Ωε and all k ≥ k0(ε). Furthermore, for ε < δ, we have
Ωε ⊃ Ωδ.

Next we cover Ω with disjoint bounded sets Ωm b Ω, m ∈ N. Given ε > 0, choose a
sequence {εm}m with εm > 0 for all m ∈ N, such that∑

m∈N
Ln(Ωm)εm < ε. (5.49)

Passing to a subsequence, if necessary, we can for each Ωm and εm choose km0 and
Ωm
ε ⊂ Ωm such that Ln(Ωm

ε ) < εk and

|L(x, uk(x),∇uk(x))− L(x, u(x),∇uk(x)| < εm (5.50)

uniformly for x ∈ Ωk
ε , k ≥ km0 . If ε < δ, we may assume Ωk

ε ⊃ Ωk
δ for all k ∈ N. Then,

defining, for any K ∈ N, Ω(K) =
⋃K
k=1 Ωk and Ω

(K)
ε =

⋃K
k=1 Ωk

ε , we have∫
Ω

(K)
ε

L(x, u,∇u) dx ≤ lim sup
k→∞

∫
Ω

(K)
ε

L(x, u,∇uk) dx

≤ lim sup
k→∞

∫
Ω

(K)
ε

L(x, uk,∇uk) dx+ ε (5.51)

≤ lim sup
k→∞

I(uk) + ε = lim inf
k→∞

I(uk) + ε.
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The way constructed the sets Ω
(K)
ε implies that Ln

(
Ω(K) \ Ω

(K)
ε

)
→ 0 as ε ↓ 0, and

Ln
(
Ω \ Ω(K)

)
→ 0 as K →∞. Thus the result follows from the Monotone Convergence

Theorem, letting ε ↓ 0 and then K →∞.

Theorem 5.4. Let Ω ⊂ Rn be an open and bounded set and L : Ω × R × Rn be as in
Theorem 5.3, with condition (ii) replaced by L(x, z, p) ≥ α|p|q + γ(x) for almost every
x, z, p, some constant α > 0 and some 1 < q <∞, γ ∈ L1(Ω). Then, assuming that the
set of admissible functions is non-empty, there exists a u ∈W 1

q,0(Ω) such that

I(u) = inf
v∈W 1

q,0(Ω)
I(v). (5.52)

Furthermore, if ∂Ω is of class C1, then there exists a u ∈W 1
q (Ω) such that

I(u) = inf
v∈W 1

q (Ω)
I(v). (5.53)

Proof. The condition L(x, z, p) ≥ |p|q+γ(x) for almost every x, z, p and some 1 < q <∞,
γ ∈ L1(Ω) is stronger than condition (ii) in Theorem 5.3, and so Theorem 5.3 proves
that I is lower semi-continuous with respect to the convergence (5.28). The result then
follows from Proposition 5.2.

Remark: Even though Theorem 5.3 proves lower semi-continuity with respect to con-
vergence in L1(Ω) of sequences {uk}n ⊂ W 1

1 (Ω) under certain conditions, Theorem 5.4
does not in general hold for W 1

1 (Ω). While Theorem 4.4 gives strong convergence of uk
in L1(Ω), we have no results that give weak convergence of ∇uk in L1(Ω). It is possible
to prove that ∇uk converges in some sense, but its limit is in general not in L1(Ω), but
in BMO, the space of functions with bounded mean oscillation.

5.2 Solving the Dirichlet Problem by Variational Methods

Let us consider the Dirichlet problem again. Let Ω ⊂ Rn be an open and bounded set,
and consider the differential equation

∆u = f in Ω (5.54)

u = 0 on ∂Ω, (5.55)

where f ∈ L2(Ω). We consider the functional

I(u) =

∫
Ω
|∇u(x)|2 dx−

∫
Ω
f(x)u(x) dx. (5.56)

Considering the boundary condition and that we need |∇u‖2 to be integrable over Ω, it
is natural to work in the space W 1

2,0(Ω). Then fu ∈ L1(Ω, since f, u ∈ L2(Ω). Thus the
functional satisfies condition (5.17) with q = 2. We wish to show that the functional
(5.56) is convex in ∇u.

58



Lemma 5.5. The functional I as defined in (5.56) is convex. That is

I(tu+ (1− t)v) ≤ tI(u) + (1− t)I(v) (5.57)

for all u, v ∈W 1
2,0(Ω) and all t ∈ [0, 1].

Proof.

I(tu+ (1− t)v) =

∫
Ω
|t∇u(x) + (1− t)∇v(x)|2 dx−

∫
Ω
f(x) (tu(x) + (1− t)v(x)) dx

≤
∫

Ω
t|∇u(x)|2 + (1− t)|∇v(x)|2 dx−

∫
Ω
tf(x)u(x) + (1− t)f(x)v(x) dx

(5.58)

= tI(u) + (1− t)I(v),

where we used the fact that w 7→ |w|2 is convex in going from the first to the second
line.

The functional (5.56) thus satisfies all the criteria of Theorem 5.4 and hence there
exists a minimiser u ∈ W 1

2,0(Ω). Recalling the calculations done in (5.3)-(5.5), we have
by approximation that∫

Ω
∇u(x) · ∇v(x) dx−

∫
Ω
f(x)v(x) = 0 for all v ∈W 1

2,0(Ω). (5.59)

Thus u is a weak solution of the problem 5.54.

6 Fractional Operators

Now we turn our attention to fractional operators, the main example being the fractional
Laplacian: (−∆)

s
2 for s ∈ (0, 2). Our first goal is to find a usable definition for this. If

u ∈ S (Rn) (or S ′(Rn)) we have, by Proposition 1.12 and its corollary, the following
equality:

F ((−∆)u)(ξ) = |ξ|2 F u(ξ). (6.1)

With that in mind we define (−∆)
s
2 as follows:

Definition 6.1. Let u ∈ S (Rn). Then

(−∆)
s
2u(x) = F−1(|ξ|s F u(ξ))(x), x ∈ Rn. (6.2)

Recalling Definition 2.6 and the fact that the Fourier transform is a unitary operator
on L2(Rn), it is natural to extend this definition to the space Hs(Rn).

Proposition 6.2. Let s ∈ (0, 2) and let u ∈ Hs(Rn). Then the operator 1 + (−∆)
s
2

defines a continuous mapping Hs(Rn)→ L2(Rn), and we have following relation:

‖u‖Hs(Rn) ∼ ‖(1 + (−∆)
s
2 )u‖2. (6.3)
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Proof. Using Theorem 1.16 and Definition 6.1, we have

‖(1 + (−∆)
s
2 )u‖2 = ‖F (1 + (−∆)

s
2 )u‖2 = ‖(1 + |ξ|s) F u‖2 ∼ ‖u‖Hs(Rn). (6.4)

This implies that the mapping is continuous.

An alternative definition of the fractional Laplace is

(−∆)
s
2u(x) = C(n, s) lim

ε→0+

∫
Rn\B(0,ε)

u(x)− u(y)

|x− y|n+s
dy

= −1

2
C(n, s)

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+s
dy, (6.5)

where C(n, s) is given by

C(n, s) =

(∫
Rn

1− cos(x1)

|x|n+s
dx

)−1

. (6.6)

This is an equivalent definition, but we will not prove it here since we will not need
it because for the properties and results we are interested in, we claim that the Fourier
definition is easier to work with. For a proof of the equivalence of these definitions, we
refer to [15].

In the sequel, we will work with the operator 1 + (−∆)
s
2 . The fractional Laplace

operator (−∆)
s
2 is more studied in the literature than our operator, but the methods

and results are almost the same for these operators on domains. The main difference
is that (−∆)

s
2u = (−∆)

s
2 (u + c) for any constant c (this is a direct consequence of the

Riemann-Lebesgue lemma, stating that the Fourier transform of any constant is zero),
and so one must consider homogeneous Sobolev spaces, and we wish to avoid this.

6.1 The Operator 1 + (−∆)
s
2 on Domains

First we want to investigate the Dirichlet problem for the operator 1 + (−∆)
s
2 on a

bounded, open set Ω ⊂ Rn. However, from Definition 6.1, it is clear the operator
1 + (−∆)

s
2 is non-local, and the values of (1 + (−∆)

s
2 )u in Ω will depend not only on

its values at ∂Ω like with ∆, but also on its values in Rn \Ω. We will therefore consider
the following problem:

(1 + (−∆)
s
2 )u = f in Ω (6.7)

u = 0 in Rn \ Ω.

Remark: It is possible to work with the traditional Dirichlet problem for 1 + (−∆)
s
2

without any further assumptions on u outside Ω̄, but this is beyond the scope of this
paper. The problem and operator will, in general, not be the same as in (6.7).

Remark: Having noted the non-local nature of the fractional Laplace operator, it is
worth mentioning that there exist a relation between the fractional Laplace and an
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extension problem [2]. That is, the value of the fractional Laplace of a function in Rn
can be related to a local problem in Rn × R+, and so one can get around its non-local
nature. For the results we wish to prove, we do not need this, but it is very useful for
proving many properties and inequalities for the operator.

A more general problem than (6.7) is considered in [22], although for (−∆)
s
2 , with f

also depending on the function u in addition to the spatial variable. They prove existence
of solutions in homogeneous Sobolev spaces in this case, under certain conditions on
f(x, u), using the Mountain Pass Lemma. In our simpler case, one does not need such
heavy machinery. We want to find solutions to (6.7) using the theory developed in
previous chapters, and considering the condition u = 0 in Rn \Ω it is natural to consider
u ∈ Hr

0(Ω) for some r ∈ R. To make u globally defined, we can trivially consider
Hr

0(Ω) ⊂ Hr(Rn) by extending functions by zero outside Ω. Our main theorem is the
following:

Theorem 6.3. For any bounded, open set Ω ⊂ Rn, and for any f ∈ H−s/2(Ω), the

problem (6.7) admits at least one solution u ∈ Hs/2
0 (Ω).

We will prove this theorem in two different ways: by means of the direct method of
variations, and by the Lax-Milgram Theorem. The first proof relies on two lemmas.

The operator 1 + (−∆)
s
2 is defined as F−1 ((1 + |ξ|s) F ·), and we define the square

root of the operator, (1 + (−∆)s)
1
2 , as F−1

(
(1 + |ξ|s)

1
2 F ·

)
.

Lemma 6.4. Let f ∈ H−s/2(Ω). Then a minimiser of the functional I on H
s/2
0 (Ω) ⊂

Hs/2(Rn) defined by

I(u) =
1

2

∫
Rn

(
(1 + (−∆)

s
2 )

1
2u
)2

dx−
∫

Ω
fudx, (6.8)

solves (6.7) in the sense of distributions.

Proof. We define the function

α(t) =
1

2

∫
Rn

(
(1 + (−∆)

s
2 )

1
2 (u+ tϕ)

)2
dx−

∫
Ω
f(u+ tϕ) dx (6.9)

where ϕ ∈ D(Ω). Expanding (6.9) and evaluating the derivative with respect to t at
t = 0 yields

α′(0) =

∫
Rn

(
(1 + (−∆)

s
2 )

1
2u
)

(1 + (−∆)
s
2 )

1
2ϕdx−

∫
Ω
fϕdx = 0. (6.10)
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By Theorem 1.16 and Definition 6.1, this equals

α′(0) =

∫
Rn

(
F
(

(1 + (−∆)
s
2 )

1
2u
))

F
(

(1 + (−∆)
s
2 )

1
2ϕ
)

dξ −
∫

Ω
fϕdx

=

∫
Rn

(
(1 + |ξ|s)

1
2 F u

)
(1 + |ξ|s)

1
2 F ϕdξ −

∫
Ω
fϕdx

=

∫
Rn

((1 + |ξ|s) F u) F ϕdξ −
∫

Ω
fϕdx (6.11)

=

∫
Rn

(
(1 + (−∆)

s
2 )u
)
ϕdx−

∫
Ω
fϕdx

=

∫
Ω

(
(1 + (−∆)

s
2 )u
)
ϕdx−

∫
Ω
fϕdx = 0.

The second to last equality follows from ϕ ∈ D(Ω). Since ϕ ∈ D(Ω) is arbitrary, Lemma
1.21 implies that

(1 + (−∆)
s
2 )u = f (6.12)

in Ω, in the sense of distributions.

Remark: The non-local nature of (−∆)
s
2 and the calculations done in (6.11) show the

reason to take the integral in (6.8) over Rn instead of Ω.

Remark: 1 + (−∆)
s
2 maps H

s/2
0 to H−s/2. An element of H−s/2 is in general not a

function, but a distribution, so from Lemma 6.4 we cannot guarantee any more than the
existence of solutions in the distributional sense. On the other hand, it is clear that if
the minimiser u and f satisfy some stronger regularity condition, say u ∈ Hs

0(Ω) and
f ∈ L2(Ω), then (1 + (−∆)

s
2 )u will be a function.

Lemma 6.5. Let Ω ⊂ Rn be bounded and open and f ∈ H−s/2(Ω). Then the functional

I(u) =
1

2

∫
Rn

(
(1 + (−∆)

s
2 )

1
2u
)2

dx−
∫

Ω
fudx (6.13)

attains its minimum on H
s/2
0 (Ω) ⊂ Hs/2(Rn).

Proof. We first note that since u = 0 in Rn \ Ω, we may write

I(u) =

∫
Rn

1

2

(
(1 + (−∆)

s
2 )

1
2u
)2
− fudx. (6.14)

We wish to apply the results from Chapter 5, and our first step is to prove lower
semi-continuity. Using the notation of Theorem 5.3, we have L = L(x, u, (−∆)

s
4u) =(

(1 + (−∆)
s
2 )

1
2u
)2
− fu. Clearly,

|(1 + |ξ|s)
1
2 F u| ∼ |(1 + |ξ|

s
2 ) F u| (6.15)
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which implies

‖(1 + (−∆)
s
2 )

1
2u‖2 ∼ ‖(1 + (−∆)

s
4 )u‖2. (6.16)

Proposition 6.2 then implies

1

2

∫
Rn

(
(1 + (−∆)

s
2 )

1
2u
)2

dx ≥ α‖(−∆)
s
4u‖22 (6.17)

for some constant α > 0. Furthermore, since f ∈ H−s/2(Ω), we have fu ∈ L1(Ω), and
also fu ∈ L1(Rn) since u = 0 in Rn \ Ω, and combining this with the inequality (6.17)
we get

I(u) ≥ α‖(−∆)
s
4u‖22 − ‖fu‖1. (6.18)

Convexity of L in the third factor is straightforward to check and thus I satisfies the
criteria of Theorem 5.3. The only property of the sequences {un}n and {∇un}n used in
the proof of Theorem 5.3 is strong local L1 convergence and weak local L1 convergence,
respectively, and it then follows from that theorem that I is lower semi-continuous with
respect to the convergence

un → u in L1(Ω′) for all Ω′ b Rn (6.19)

(−∆)
s
4un ⇀ (−∆)

s
4u weakly in L1(Ω′) for all Ω′ b Rn.

The next step is to prove that a minimising sequence {un}n ⊂ H
s/2
0 (Ω) of I converges

to a u ∈ Hs/2
0 (Ω) in this way.

Let {un}n ⊂ H
s/2
0 (Ω) be a minimising sequence for the functional I. This implies

supn ‖un‖Hs/2(Rn) < ∞. Since Ω is bounded, Theorem 4.12 implies that there exists a

subsequence (denoted {un}n) such that un → u strongly in L2(Ω) for some u, which by
boundedness of domain implies strong convergence in L1(Ω). Since un = 0 in Rn \Ω for
every n ∈ N, we may set u = 0 in Rn \ Ω and we get

un → u in L1(Ω′) for all Ω′ b Rn. (6.20)

Since supn ‖un‖Hs/2(Rn) < ∞, it follows from Proposition 6.2 and equation (6.16) that

supn ‖(1 + (−∆)
s
4 )un‖2 <∞, and thus

sup
n
‖(−∆)

s
4un‖2,Ω′ <∞ for all Ω′ b Rn. (6.21)

Banach-Alaoglu and boundedness of domain then gives

(−∆)
s
4un ⇀ (−∆)

s
4u weakly in L1(Ω′) for all Ω′ b Rn. (6.22)

It then follows that
I(u) ≤ lim inf

n→∞
I(un) (6.23)

and I(u) = inf
v∈Hs/2

0 (Ω)
I(v).
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Proof I of Theorem 6.3. This follows immediately from Lemmas 6.4 and 6.5

We will also prove Theorem 6.3 by an application of Lax-Milgram. For clarity we
state the Lax-Milgram Theorem here, without proof.

Theorem 6.6. Let H be a Hilbert space. If

B : H ×H → R (6.24)

is a bilinear, coercive and continuous mapping, that is, there exist constants α, β > 0
such that

|B(u, v)| ≤ α‖u‖H‖v‖H for all u, v ∈ H (6.25)

and
β‖u‖2H ≤ B(u, u), for all u ∈ H, (6.26)

and f : H → R is a bounded linear functional on H, then there exists a unique element
u ∈ H such that

B(u, v) = f(v) (6.27)

for all v ∈ H.

Proof. See for instance Theorem 1, Section 6.2.1 in [7].

The formulation of Theorem 6.6 is quite abstract, but the result is highly useful, as
we will provide a small demonstration of below.

Proof II of Theorem 6.3. We wish to apply Theorem 6.6. Proposition 3.3 states that
Hs/2(Ω) is a Hilbert space. Recalling Lemma 6.4, we define a mapping

B : H
s/2
0 (Ω)×Hs/2

0 (Ω)→ R by

B(u, v) =

∫
Rn

(
(1 + (−∆)

s
2 )

1
2u
)

(1 + (−∆)
s
2 )

1
2 v dx, u, v ∈ Hs/2

0 (Ω). (6.28)

The bilinearity of B follows immediately from the linearity of (1 + (−∆)
s
2 )

1
2 and the

linearity of integration. Furthermore, by Hölder’s inequality

|B(u, v)| ≤
∫
Rn
|
(

(1 + (−∆)
s
2 )

1
2u
)

(1 + (−∆)
s
2 )

1
2 v| dx

≤ ‖(1 + (−∆)
s
2 )

1
2u‖2‖(1 + (−∆)

s
2 )

1
2 v‖2. (6.29)

From (6.15), (6.16), Proposition 6.2 and (6.29), we can then find a constant α such that

|B(u, v)| ≤ α‖(1 + (−∆)
s
4 )u‖2‖(1 + (−∆)

s
4 )v‖2 = α‖u‖Hs/2(Rn)‖v‖Hs/2(Rn). (6.30)

Since u, v ∈ Hs/2
0 (Ω) were arbitrary, this proves that B is continuous.

Using Proposition 6.2 again we have

‖u‖2
H
s/2
0 (Ω)

= ‖u‖2
Hs/2(Rn)

=

∫
Rn
|(1 + (−∆)

s
4 )u|2 dx (6.31)
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Coercivity then follows from equations (6.15), (6.16).

Next we define a bounded, linear functional on H
s/2
0 (Ω) by, abusing notation,

f(v) =

∫
Ω
fv dx. (6.32)

Linearity is immediate from the definition, and boundedness follow from the duality of

Hs/2 and H−s/2. Thus, by Theorem 6.6, there exists a unique u ∈ Hs/2
0 (Ω) such that

B(u, v) = f(v) for all v ∈ Hs/2
0 (Ω). (6.33)

Since D(Ω) ⊂ H
s/2
0 (Ω), the result then follows from the calculations done in Lemma

6.4.

Remark: Proof I only gives existence of solutions and not uniqueness, since it is not
clear if there are other minimisers. However, Proof II gives uniqueness as well.

6.2 The Operator 1 + (−∆)
s
2 on Rn

Now we turn our attention to the problem

(1 + (−∆)
s
2 )u = f in Rn. (6.34)

Again we will work with u ∈ Hr(Rn).

Theorem 6.7. For any f ∈ Hr(Rn), r ∈ R, there exists u ∈ Hr+s(Rn) solving (6.34).

In this case we may even give a constructive proof.

Proof. We claim that a solution is given by

u = F−1

(
F f

1 + |ξ|s

)
. (6.35)

First we prove that u defined by (6.35) belongs to Hr+s(Rn). By Definition 2.6, F f ∈
L2(Rn, wr), and thus F f

1+|ξ|s ∈ L
2(Rn, wr+s). This implies, again by Definition 2.6, that

F−1

(
F f

1 + |ξ|s

)
∈ Hr+s(Rn). (6.36)

Applying the operator 1 + (−∆)
s
2 on u yields

(1 + (−∆)
s
2 ) F−1

(
F f

1 + |ξ|s

)
= F−1

(
(1 + |ξ|s) F

(
F−1

(
F f

1 + |ξ|s

)))
= F−1

(
(1 + |ξ|s) F f

1 + |ξ|s

)
(6.37)

= F−1 (F f) = f.
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From this proof we can also derive a fundamental solution of 6.34, but first we will
define what we mean by this.

Definition 6.8. Let L be a constant coefficient linear partial differential operator,

L =
∑
|α|≤m

cαDα, (6.38)

where m ∈ N and the cα’s are scalars. Then we say that E ∈ D ′(Rn) is a fundamental
solution of L if

LE = δ. (6.39)

One may make a similar definition for fractional differential operators.

Proposition 6.9. The distribution

F−1

(
1

1 + |ξ|s

)
∈ S ′(Rn) (6.40)

is a fundamental solution to (6.34).

Proof. We first prove that (6.40) is a tempered distribution. Since (1 + |ξ|s)−1 is
bounded and measurable, it is a tempered distribution by Proposition 1.19. Therefore
F−1

(
(1 + |ξ|s)−1

)
is defined in the sense of distributions, and belongs to S ′(Rn).

Let ϕ ∈ S (Rn). Then

(1 + (−∆)
s
2 ) F−1

(
1

1 + |ξ|s

)
(ϕ) = F−1(1)(ϕ)

= 1(F−1 ϕ) (6.41)

=

∫
Rn

F−1 ϕ(ξ) dξ = ϕ(0).

Thus

(1 + (−∆)
s
2 ) F−1

(
1

1 + |ξ|s

)
= δ. (6.42)

Remark: The main feature of a fundamental solution F of a differential operator L is
that for every test-function ϕ, u = F ∗ ϕ solves Lu = ϕ. Thus we could already guess
from (6.35), recalling Proposition 1.15, that (6.40) is a fundamental solution.

6.3 Spectral Theory for the Operator 1 + (−∆)
s
2

In this section we will look for eigenvalues and eigenfunctions of the operator 1+(−∆)
s
2 .

On Rn, the problem reads as follows

(1 + (−∆)
s
2 )u = λu in Rn, λ ∈ C. (6.43)

However, this problem is trivial, as shown by the following result:
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Theorem 6.10. The eigenvalue problem (6.43) assumes no non-trivial solutions.

Proof. Assume (6.43) holds for u 6= 0. Applying the Fourier transform to both sides of
(6.43) yields

(1 + |ξ|s) F u(ξ) = λF u(ξ) for almost every ξ ∈ Rn. (6.44)

Thus 1 + |ξ|s = λ for almost every ξ ∈ Rn, which is impossible unless s = 0.

Therefore, we will consider the eigenvalue problem for this operator on open and
bounded sets, and we will consider the weak formulation of it. That is, for an open and

bounded set Ω ⊂ Rn, we will search for λ ∈ R and solutions u ∈ Hs/2
0 (Ω) ⊂ Hs/2(Rn)

(again we consider it as a subset by extending functions in H
s/2
0 by zero outside Ω) of∫

Rn
(1 + (−∆)

s
2 )

1
2u(x)(1 + (−∆)

s
2 )

1
2 v(x) dx = λ

∫
Ω
u(x)v(x) dx, (6.45)

for all v ∈ Hs/2
0 (Ω). We wish to find all eigenvalues and eigenfunctions in this case, and

discuss some of their properties. First we may note that we need only consider λ ∈ R,
since the whole spectrum of 1 + (−∆)

s
2 is real.

Proposition 6.11. The spectrum of 1 + (−∆)
s
2 : Hs

0(Ω)→ L2(Ω) is real, and contains
only the eigenvalues of the operator. That is, the continuous and residual spectrum are
empty.

Proof. For any open set Ω ⊂ Rn, the operator is defined on Hs
0(Ω) ⊂ L2(Ω), which is

a dense subset by Theorem 1.8 since D(Ω) ⊂ Hs
0(Ω), and we have, by Theorem 1.16,

Proposition 1.11 (iii) and Definition 6.1, that

〈(1 + (−∆)
s
2 )u, v〉L2(Ω) =

∫
Rn

((1 + |ξ|s) F u) F−1 v dξ∫
Rn

(F u) (1 + |ξ|s) F−1 v dξ (6.46)∫
Rn
u(1 + (−∆)

s
2 )v dx = 〈u, (1 + (−∆)

s
2 )v〉L2(Ω).

This proves that 1+(−∆)
s
2 is symmetric. Now let λ be an eigenvalue of an eigenfunction

u. Then

(λ− λ)‖u‖22,Ω = {λu, u}L2(Ω) − {u, λu}L2(Ω) (6.47)

= 〈(1 + (−∆)
s
2 )u, u〉L2(Ω) − 〈u, (1 + (−∆)

s
2 )u〉L2(Ω) = 0.

This proves the first part of the statement.

If the inverse of 1−λ+(−∆)
s
2 exists, it is given by F−1

(
F ·

1−λ+|ξ|s

)
, which is defined

on a dense subset of L2(Ω) and is bounded (λ = 1 corresponds to the trivial eigenvalue
0 of (−∆)

s
2 ), so the continuous and residual spectrums are empty.
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Remark: From the calculations done in the proof above we may also derive that

(1 + (−∆)
s
2 )u, u〉L2(Ω) = ‖(1 + (−∆)

s
2 )

1
2u‖22 ≥ 0 (6.48)

which implies that 1 + (−∆)
s
2 is a positive operator.

Proposition 6.11 implies that if we characterise all the eigenvalues of 1 + (−∆)
s
2 , we will

have characterised the whole spectrum, and this will be our goal.
The next theorem provides the basis of our discourse.

Theorem 6.12. The functional defined by

I(u) =

∫
Rn

(
(1 + (−∆)

s
2 )

1
2u
)2

dx (6.49)

on the space

H = {u ∈ Hs/2
0 (Ω) ⊂ Hs/2(Rn) : ‖u‖2,Ω = 1} (6.50)

attains its minimum on this space for an e1 ∈ H such that∫
Rn

(
(1 + (−∆)

s
2 )

1
2 e1

)
(1 + (−∆)

s
2 )

1
2 v dx = λ1

∫
Ω
e1v dx (6.51)

for all v ∈ Hs/2
0 (Ω), where λ1 = I(e1) > 0.

Proof. Step 1: First we prove that I attains its infimum on the space H. Note that our
functional is the same as the functional in Lemmas 6.4 and 6.5 defined by (6.8) with
the term

∫
Ω fudx removed. The proof given in Lemma 6.5 for the lower semi-continuity

of (6.8) on H
s/2
0 (Ω) did not rely on the last term, and thus result is true also for the

functional (6.49), and for any subspace of H
s/2
0 (Ω).

Let {un}n be a minimising sequence for I in H. By coercivity of I on H, the sequence
is bounded. From the proof of Lemma 6.5 we know that a subsequence converges weakly

to some e1 ∈ Hs/2
0 (Ω), and furthermore, by the remark above,

I(e1) ≤ lim inf
n→∞

I(un). (6.52)

What remains to prove is that the limit e1 is in H, that is, that H is weakly closed.

According to Theorem 4.12, the embedding H
s/2
0 (Ω) ↪→ L2(Ω) is compact. This implies

that un → e1 strongly in L2(Ω) as n → ∞, which implies ‖un‖2,Ω → ‖e1‖2,Ω. By
assumption ‖un‖2,Ω = 1 for all n ∈ N, and thus ‖e1‖2,Ω = 1 and e1 ∈ H.

Step 2: We show that the e1 found in step 1 satisfies (6.51). Let ε ∈ (−1, 1),

v ∈ Hs/2
0 (Ω), cε = ‖e1 + εv‖2,Ω and e1,ε = (e1 + εv)/cε. Observe that e1,ε ∈ H, and note

that I(·)1/2 defines a norm equivalent to ‖ · ‖
H
s/2
0 (Ω)

on H
s/2
0 (Ω) (cf. Proposition 6.2).

For the rest of the chapter, we will take this as our norm on H
s/2
0 (Ω), and we define the

following inner product, which induces the norm:

〈u, v〉
H
s/2
0 (Ω)

=

∫
Rn

(1 + (−∆)
s
2 )

1
2u(1 + (−∆)

s
2 )

1
2 v dx. (6.53)
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We have the following relations:

c2
ε =

∫
Ω
|e1 + εv|2 dx = ‖e1‖22,Ω + 2ε

∫
Ω
e1(x)v(x) dx+ o(ε) (6.54)

and

‖e1 + εv‖2
H
s/2
0 (Ω)

=

∫
Rn

(1 + |ξ|2)
s
2 |F (e1 + εv)|2 dξ (6.55)

= ‖e1‖Hs/2
0 (Ω)

+ 2ε〈e1, v〉Hs/2
0 (Ω)

+ o(ε).

Considering our remarks about the norm and inner product above, (6.54) and (6.55)
implies that

I(e1,ε) =
‖e1‖2

H
s/2
0 (Ω)

+ 2ε〈e1, v〉Hs/2
0 (Ω)

+ o(ε)

1 + 2ε
∫

Ω e1(x)v(x) dx+ o(ε)

=

(
I(e1) + 2ε〈e1, v〉Hs/2

0 (Ω)
+ o(ε)

) (
1− 2ε

∫
Ω e1(x)v(x) dx+ o(ε)

)
1− 4ε2

(∫
Ω e1(x)v(x) dx

)2
+ o(ε)

(6.56)

= I(e1) + 2ε

(
〈e1, v〉Hs/2

0 (Ω)
− I(e1)

∫
Ω
e1(x)v(x) dx

)
+ o(ε). (6.57)

If 〈e1, v〉Hs/2
0 (Ω)

− 2I(e1)
∫

Ω e1(x)v(x) dx is non-zero, it is possible to choose ε ∈ (−1, 1)

such that I(e1,ε) < I(e1), since for small ε, the aforementioned term will by definition
dominate the o(ε) term. This contradicts the minimality of e1, and we thus have

〈e1, v〉Hs/2
0 (Ω)

− I(e1)

∫
Ω
e1(x)v(x) dx = 0, (6.58)

which by (6.53) is the same as∫
Rn

(1 + (−∆)
s
2 )

1
2 e1(1 + (−∆)

s
2 )

1
2 v dx = I(e1)

∫
Ω
e1(x)v(x) dx. (6.59)

Since v ∈ Hs/2
0 (Ω) was chosen arbitrarily, this proves the result.

The procedure used to prove Theorem 6.12 cannot be extended to unbounded sets Ω ⊂
Rn. To get convergence of (a subsequence of) a minimising sequence {un}n in H

s/2
0 (Ω),

we used the Theorems 4.12 and Banach-Alaoglu, both of which hold only on bounded
domains. We show in Theorem 6.10 that there are no non-trivial eigenvalues on Rn.

We will now investigate some of the properties of e1 and λ1.

Proposition 6.13. Either e1 ≥ 0 or e1 ≤ 0 a.e. in Rn.
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Proof. By definition, e1 = 0 a.e. in Rn \ Ω, so we only need to consider its values in Ω.
First we note that |e1| ∈ H, and

||e1(x)| − |e1(y)|| ≤ |e1(x)− e1(y)| (6.60)

and if e1(x) > 0 and e1(y) < 0, the inequality is strict. We claim that this implies
I(|e1|) < I(e1) if Ln ({x ∈ Ω : e1(x) < 0}) and Ln ({x ∈ Ω : e1(x) > 0}) are both non-
zero. To see this, note that if the inequality (6.60) is strict for a set of positive measure,

it follows from the definition of the W
s/2
2 (Rn) norm (cf. (2.25)) that

‖|e1|‖2
W
s/2
2 (Rn)

< ‖e1‖2
W
s/2
2 (Rn)

. (6.61)

Furthermore, in the proof of Theorem 2.10, we showed that

‖e1‖2
W
s/2
2 (Rn)

=

∫
Rn

(1 + c|ξ|s) |F f(ξ)|2 dξ (6.62)

for s ∈ (0, 2) (cf. (2.40)). Recall that, by Definition 6.1, that

I(e1) =

∫
Rn

(
F−1

(
(1 + |ξ|s)

1
2 F e1

))2
dξ. (6.63)

Thus ‖·‖2
W
s/2
2 (Rn)

is nothing but I(·) with a constant c instead of 1 in front of the ξ term.

Thus, by (6.61), I(|e1|) < I(e1). This contradicts the minimality of e1, and therefore
either Ln ({x ∈ Ω : e1(x) < 0}) = 0 or Ln ({x ∈ Ω : e1(x) > 0}) = 0.

Proposition 6.14. If u ∈ Hs/2
0 (Ω) solves∫

Rn

(
(1 + (−∆)

s
2 )

1
2u(x)

)
(1 + (−∆)

s
2 )

1
2 v(x) dx = λ1

∫
Ω
u(x)v(x) dx (6.64)

for every v ∈ Hs/2
0 (Ω), then u = γe1, for some γ ∈ R.

Proof. Suppose g1 ∈ Hs/2
0 is a non-zero eigenfunction corresponding to λ1, with g1 6= e1.

We claim that any eigenfunction e ∈ Hs/2
0 (Ω) corresponding to λ1 with ‖e‖2,Ω = 1 is a

minimiser of (6.49) on H. By assumption, e satisfies∫
Rn

(
(1 + (−∆)

s
2 )

1
2 e
)

(1 + (−∆)
s
2 )

1
2 v dx = I(u)

∫
Ω
e(x)v(x) dx (6.65)

for every v ∈ H
s/2
0 (Ω). Choosing v = e, we get I(e) = λ1 = I(e1), since ‖e‖2,Ω = 1.

Therefore Proposition 6.13 holds for any eigenfunction in H corresponding to λ1, and,

by normalization, for any eigenfunction in H
s/2
0 (Ω) corresponding to λ1. Thus either

g1 ≥ 0 a.e. or g1 ≤ 0 a.e. in Rn. Define

g̃1 =
g1

‖g1‖2,Ω
(6.66)
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and set f = e1 − g̃1. Suppose f 6= 0. Then f is also an eigenfunction corresponding to
λ1, and f ≥ 0 a.e or f ≤ 0 a.e. Then either e1 ≥ g̃1 a.e. or e1 ≤ g̃1 a.e. Since e1 and g̃1

both have constant sign, this implies

e2
1 ≥ g̃2

1 or e1 ≤ g̃2
1 a.e. in Ω. (6.67)

On the other hand,∫
Ω
e1(x)2 − g̃1(x)2 dx = ‖e1‖22,Ω − ‖g̃1‖22,Ω = 1− 1 = 0 (6.68)

contradiction our assumption on f . This proves the result.

Proposition 6.15. If λ and λ̃ are two distinct eigenvalues of problem (6.45), with

eigenfunctions e and ẽ ∈ Hs/2
0 (Ω), respectively, then

〈e, ẽ〉
H
s/2
0 (Ω)

= 0 =

∫
Ω
e(x)ẽ(x) dx. (6.69)

Proof. We may assume e 6= 0 and ẽ 6= 0. We may also assume both e and ẽ are
normalised such that e, ẽ ∈ H. Testing e against ẽ and vice-versa in (6.45), we find∫

Rn

(
(1 + (−∆)

s
2 )

1
2 e(x)

)
(1 + (−∆)

s
2 )

1
2 ẽ(x) dx = λ

∫
Ω
e(x)ẽ(x) dx (6.70)

= λ̃

∫
Ω
e(x)ẽ(x) dx.

Hence

(λ− λ̃)

∫
Ω
e(x)ẽ(x) dx = 0. (6.71)

By assumption, λ 6= λ̃, which implies∫
Ω
e(x)ẽ(x) dx = 0 (6.72)

Inserting this into (6.70), we also get∫
Rn

(
(1 + (−∆)

s
2 )

1
2 e(x)

)
(1 + (−∆)

s
2 )

1
2 ẽ(x) dx = 0 = 〈e, ẽ〉

H
s/2
0 (Ω)

. (6.73)

This proves the result.

Now we come to the main theorem on eigenvalues of 1 + (−∆)
s
2 , which gives a

characterisation of all eigenvalues and eigenfunctions of this operator, and thereby of
the whole spectrum (cf. Proposition 6.11). The main ideas of the proof come from [23],
with some alterations due to working with slightly different operators in different spaces,
and [23] defines the fractional operators considered by means of singular integrals, like in
Equation (6.5), instead of using the Fourier transform. It should be noted that [23] works
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with general elliptic fractional differential operators that satisfy certain criteria with the
fractional Laplace operator being the prime example, and their result almost directly
holds for our operator. While some arguments used in the preceding results and also in
the following theorem are particular to our case, these results can be generalised further
than noted above, and they hold for any positive elliptic and self-adjoint operator. See for
instance [3] (indeed, we have not proved that our operator is self-adjoint, only symmetric,
but in fact many of these results hold for symmetric operators, and self-adjointedness of
our operator follows from arguments presented in the cited paper).

Theorem 6.16. (i) The set of eigenvalues of problem (6.45) consists of a sequence
{λk}k with

0 < λ1 < λ2 ≤ ... ≤ λk ≤ λk+1 ≤ ... (6.74)

Furthermore, for any k ∈ N the eigenvalues can be characterised as follows:

λk+1 = inf
u∈Hk+1

I(u), (6.75)

where I is as defined in (6.49) and

Hk+1 = {u ∈ H : 〈u, ei〉Hs/2
0 (Ω)

= 0, for all i = 1, ..., k} (6.76)

with H as in (6.50) and 〈·, ·〉
H
s/2
0 (Ω)

as in (6.53).

(ii) For any k ∈ N, there exists a function ek+1 ∈ Hk+1 which attains the infimum in
(6.75) and is an eigenfunction corresponding to λk+1.

(iii) The sequence {λk}k satisfies

λk →∞ as k →∞. (6.77)

(iv) The sequence {ek}k of eigenfunctions corresponding to λk is an orthonormal basis

of L2(Ω) and an orthogonal basis of H
s/2
0 (Ω).

Proof. The proofs of (i), (ii) and (iii) are inter-connected, so in order to avoid repeating
lengthy arguments, we will prove them together.

Let λk be defined as in (6.75). Since

Hk+1 ⊂ Hk ⊂ H
s/2
0 (Ω), (6.78)

we have
0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ λk+1 ≤ ... (6.79)

We prove that λ1 6= λ2. Assume to the contrary that λ1 = λ2. Then e2 is an eigenfunc-
tion corresponding to λ1 and by Proposition 6.14 e2 = γe1, for γ 6= 0. On the other
hand, e2 ∈ H2, which by definition implies

0 = 〈e2, e1〉Hs/2
0 (Ω)

= γ〈e1, e1〉Hs/2
0 (Ω)

. (6.80)
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This is saying that e1 = 0 a.e., which contradicts our previous results. Thus λ1 6= λ2,
and (6.74) is proved. Next we prove that the elements of this sequence are eigenvalues
of the problem (6.45).

Noting that Hk+1 ⊂ H is weakly closed for any k ∈ N, Theorem 6.12 applies also
on this space, and so there exists a function ek+1 ∈ Hk+1 which attains the infimum in
(6.75). Furthermore, Theorem 6.12 applied to Hk+1 yields∫

Rn

(
(1 + (−∆)

s
2 )

1
2 ek+1

)
(1 + (−∆)

s
2 )

1
2 v dx = λk+1

∫
Ω
ek+1(x)v(x) dx, (6.81)

for all v ∈ Hk+1. In order to prove that λk+1 is an eigenvalue with eigenfunction ek+1,

we need to prove that (6.81) holds for all v ∈ H
s/2
0 (Ω). We prove this by induction;

that is, we assume it holds for 1, ..., k and prove it then also holds for k + 1. Theorem
6.12 proves that λ1 is a eigenvalue with eigenfunction e1, and this is the basis for our
induction hypothesis.

By (6.50) and (6.76), we see that

H = span{e1, ..., ek} ⊕Hk+1. (6.82)

Thus any v ∈ H can be decomposed as

v = v1 + v2, v1 =

k∑
i=1

c1e1, ci ∈ R, and v2 ∈ Hk+1. (6.83)

Inserting v2 = v − v1 into (6.81), we find∫
Rn

(
(1 + (−∆)

s
2 )

1
2 ek+1

)
(1 + (−∆)

s
2 )

1
2 v dx− λk+1

∫
Ω
ek+1(x)v(x) dx

=

∫
Rn

(
(1 + (−∆)

s
2 )

1
2 ek+1

)
(1 + (−∆)

s
2 )

1
2 v1 dx− λk+1

∫
Ω
ek+1(x)v1(x) dx (6.84)

=

k∑
i=1

ci

(∫
Rn

(
(1 + (−∆)

s
2 )

1
2 ek+1

)
(1 + (−∆)

s
2 )

1
2 ei dx− λk+1

∫
Ω
ek+1(x)ei(x) dx

)
.

By the induction hypothesis, (6.81) holds for ei tested against ek+1 for i = 1, ..., k.
Recalling (6.53) and (6.76), we find

0 =

∫
Rn

(
(1 + (−∆)

s
2 )

1
2 ei

)
(1 + (−∆)

s
2 )

1
2 ek+1 dx = λk+1

∫
Ω
ei(x)ek+1(x) dx. (6.85)

This and (6.84) implies∫
Rn

(
(1 + (−∆)

s
2 )

1
2 ek+1

)
(1 + (−∆)

s
2 )

1
2 v dx = λk+1

∫
Ω
ek+1(x)v(x) dx (6.86)

for all v ∈ H. Since every u ∈ Hs/2
0 (Ω) except u = 0 can be made an element of H by

normalisation, (6.85) holds for all v ∈ Hs/2
0 (Ω). This proves (ii).
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In order to complete the proof of (i), we need (iii). Suppose to the contrary that
λk → c for some c ∈ R+. By (ii) we have

‖ek‖2
H
s/2
0 (Ω)

∼ I(ek) = λk, (6.87)

which implies supk ‖ek‖Hs/2
0 (Ω)

≤ c. Thus, using Proposition 4.7, we can find a subse-

quence such that
eki → e for some e ∈ L2(Ω). (6.88)

In particular, {eki}i is a Cauchy sequence in L2(Ω). On the other hand, the sequence

{eki}i is by definition orthogonal in H
s/2
0 (Ω). Inserting eki and ekj , i 6= j, into 6.81 we

find that, as they are eigenfunctions,

0 =

∫
Rn

(
(1 + (−∆)

s
2 )

1
2 eki

)
(1 + (−∆)

s
2 )

1
2 ekj dx = λk+1

∫
Ω
eki(x)ekj (x) dx. (6.89)

Thus the sequence is orthogonal in L2(Ω) as well, and

‖eki − ekj‖
2
2,Ω = ‖eki‖

2
2,Ω + ‖ekj‖

2
2,Ω = 2. (6.90)

This contradicts {eki}i being a Cauchy sequence in L2(Ω), and therefore our assumption
on the limit of λk is false. This proves (iii).

To finish the proof of (i), we need to show that eigenvalues we have found are all the
eigenvalues. Assume to the contrary that there is an eigenvalue λ 6∈ {λk}k. Let e ∈ H
be a corresponding eigenfunction. Evaluating e against itself in (6.45), we find

I(e) = λ. (6.91)

Since e1 is a minimiser of I in H, we deduce

λ = I(e) ≥ I(e1) = λ1. (6.92)

Thus, by (iii), there exists a k ∈ N such that

λk < λ < λk+1. (6.93)

We claim that
e 6∈ Hk+1. (6.94)

Assume to the contrary that it is. By minimality, λk+1 = I(ek+1) ≤ I(e) = λ, which
contradicts (6.93). From (6.94) we deduce that there exists some i ∈ {1, 2, ..., k} such
that 〈e, ei〉Hs/2

0 (Ω)
6= 0. However, this contradicts Proposition 6.15. This proves (i)

(iv) Orthogonality in both H
s/2
0 (Ω) and L2(Ω) follows from Proposition 6.15, and

the functions are by definition normalised in L2(Ω). We first prove that {ek}k is a basis

for H
s/2
0 (Ω). Assume to the contrary there exists a non-zero u ∈ Hs/2

0 (Ω) such that

〈u, ek〉Hs/2
0 (Ω)

= 0 for all k ∈ N. (6.95)
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We may assume ‖u‖2,Ω = 1, otherwise we could normalise. Since u 6= e1 we know, by
Theorem, 6.12 that

I(e1) < I(u). (6.96)

On the other hand, I(u) < ∞, but (6.77) and (6.75) implies I(ek) → ∞ as k → ∞.
Thus there exists a k ∈ N such that

I(u) < λk+1 = I(ek) = inf
v∈Hk+1

I(v). (6.97)

This implies u 6∈ Hk+1, and so there exists a j ∈ 1, ..., k such that 〈u, ej〉Hs/2
0 (Ω)

6= 0,

contradicting (6.95). Thus

〈v, ek〉Hs/2
0 (Ω)

= 0 for all k ∈ N implies v = 0 a.e. (6.98)

We normalise the eigenfunctions in H
s/2
0 (Ω), ẽi = ei/‖ei‖Hs/2

0 (Ω)
. Given f ∈ Hs/2

0 (Ω),

we define

fj =

j∑
i=1

〈f, ẽi〉Hs/2
0 (Ω)

ẽi, j ∈ N. (6.99)

We wish to prove that fj → f as j →∞. Define vj = f − fj . Then, recalling that {ẽi}i
is an orthonormal system in H

s/2
0 (Ω), we calculate

0 ≤ 〈vj , vj〉Hs/2
0 (Ω)

= ‖f‖2
H
s/2
0 (Ω)

+ 〈fj , fj〉Hs/2
0 (Ω)

− 2〈f, fj〉Hs/2
0 (Ω)

= ‖f‖2
H
s/2
0 (Ω)

+ 〈fj , fj〉Hs/2
0 (Ω)

− 2

j∑
i=1

〈f, ẽi〉2
H
s/2
0 (Ω)

(6.100)

= ‖f‖2
H
s/2
0 (Ω)

−
j∑
i=1

〈f, ẽi〉2
H
s/2
0 (Ω)

.

Thus
j∑
i=1

〈f, ẽi〉2
H
s/2
0 (Ω)

≤ ‖f‖2
H
s/2
0 (Ω)

for every j ∈ N, (6.101)

from which we deduce
∞∑
i=1

〈f, ẽi〉2
H
s/2
0 (Ω)

<∞. (6.102)

So

τj =

j∑
i=1

〈f, ẽi〉2
H
s/2
0 (Ω)

(6.103)

is a Cauchy sequence in R. Furthermore, using the orthonormality of {ẽi}i we find that
for k > j,

〈vk − vj , vk − vj〉Hs/2
0 (Ω)

=

k∑
i=j+1

〈f, ẽi〉2
H
s/2
0 (Ω)

= τk − τj . (6.104)
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Thus {vj}j is a Cauchy sequence in H
s/2
0 (Ω), and by Proposition 2.7 there exists a

v ∈ Hs/2
0 (Ω) such that vj → v as j →∞. From the definition of v, it is straightforward

to compute that 〈vj , ei〉Hs/2
0 (Ω)

= 0 when j > i. From (6.98) we then deduce that v = 0.

Then, since fj = f − vj , we get

fj → f − v = f in H
s/2
0 (Ω) as j →∞. (6.105)

This shows that {ek}k is an orthogonal basis of H
s/2
0 (Ω). Lastly, we prove that it is

a basis of L2(Ω). Given g ∈ L2(Ω) and ε > 0, Theorem 1.8 states that there exists a
function ϕ ∈ D(Ω) such that

‖g − ϕ‖2,Ω <
ε

2
. (6.106)

Furthermore, since D(Ω) ⊂ H
s/2
0 (Ω), there exists, by what we just proved, a function

g̃ ∈ span{ek : k ∈ N} such that

‖ϕ− g̃‖Ω,2 ≤ ‖ϕ− g̃‖Hs/2
0 (Ω)

<
ε

2
. (6.107)

Using the triangle inequality, we find

‖g − g̃‖2,Ω ≤ ‖g − ϕ‖2,Ω + ‖ϕ− g̃‖2,Ω <
ε

2
+
ε

2
= ε. (6.108)

Since g ∈ L2(Ω) and ε > 0 were arbitrary, this proves the result.
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