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Abstract. Each extreme edge of the Newton diagram of a plurisubharmonic polynomial
on C2 gives rise to a plurisubharmonic polynomial. It is tempting to believe that the union
of the extreme edges or the convex hull of said union will do the same. If true, then the
latter would provide useful strategies for the bumping of plurisubharmonic polynomials on
C2, but whether they are true has been elusive until now. We construct a plurisubharmonic
polynomial P on C2 with precisely two extreme edges E1 and E2, such that neither E1 ∪E2

nor Conv(E1 ∪ E2) yields a plurisubharmonic polynomial.

1. Introduction

It is a well-known fact that it is possible to solve the ∂-equation with supnorm estimates
for sufficiently regular ∂-closed (0, 1)-forms on bounded strictly pseudoconvex domains in Cn
with boundary of class C2. This was shown by H. Grauert and I. Lieb [8] and G.M. Henkin
[9] in the case of higher boundary regularity and by N. Øvrelid [11] for boundaries of class
C2.

If, however, Ω ⊆ Cn is a bounded weakly pseudoconvex domain with boundary of class
C∞, it is not necessarily possible to solve the ∂-equation with supnorm estimates. In fact,
N. Sibony [14] has constructed a bounded weakly pseudoconvex domain D ⊆ C3 with C∞-
boundary which admits a ∂-closed (0, 1)-form Φ ∈ C∞0,1(D) ∩ C0

0,1(D), such that the equation

∂Ψ = Φ has no bounded solution on D.

It hence becomes and interesting question which additional assumptions on a bounded
weakly pseudoconvex domain Ω ⊆ Cn with smooth boundary guarantee the existence of
supnorm estimates for solutions of ∂u = f , where f is a sufficiently regular ∂-closed (0, 1)-
form on Ω.
R.M. Range [13] has shown that supnorm (and even Hölder) estimates do exist for bounded
smoothly bounded pseudoconvex domains of finite type in C2. Later K. Diederich, B. Fischer
and J.E. Fornæss [3] obtained estimates for bounded smoothly bounded convex domains of
finite type in Cn.

One of the crucial ingredients in Range’s argument is the local bumping of the domain
at a boundary point. Following [2], one defines a local bumping of a smoothly bounded
pseudoconvex domain Ω ⊆ Cn, n ≥ 2, at a boundary point ζ ∈ ∂Ω to be a triple (∂Ω, Uζ , ρζ),
such that:

2010 Mathematics Subject Classification. Primary 32T25. Secondary 32C25.
Key words and phrases. Bumping, plurisubharmonic polynomial, Newton diagram, finite-type domain,

extreme edge.
The second author is supported by the Research Council of Norway, Grant number 240569/F20.
This work was done during the international research program ”Several Complex Variables and Complex

Dynamics” at the Centre for Advanced Study at the Academy of Science and Letters in Oslo during the
academic year 2016/2017.

1



2 LARS SIMON AND BERIT STENSØNES

• Uζ ⊆ Cn is an open neighborhood or ζ,
• ρζ : Uζ → R is smooth and plurisubharmonic,

• ρ−1
ζ ({0}) is a smooth hypersurface in Uζ that is pseudoconvex from the side U−ζ :=

{z : ρζ(z) < 0},
• ρζ(ζ) = 0, but ρζ < 0 on Uζ ∩

(
Ω \ {ζ}

)
.

Given a bounded smoothly bounded pseudoconvex domain D of finite type in C2, Range
proceeds by producing a bumping Dp of D at a boundary point p ∈ bD, fitting large polydiscs
centered in D into Dp and thus obtaining good pointwise estimates for holomorphic functions

using the Cauchy estimates. This in turn he uses to construct integral kernels for the ∂-
equation satisfying the necessary estimates. The finite type condition is necessary to ensure
that the above-mentioned polydiscs are large enough.

When the dimension is increased, however, it becomes much harder to construct local
bumpings of the domain. For the remainder of this section let Ω ⊆ Cn, n ≥ 2, be a bounded
pseudoconvex domain with real-analytic boundary. In this situation, K. Diederich and J.E.
Fornæss have shown in [5] that local bumpings always exist at each boundary point. This,
however, is a priori not enough to construct good integral kernels and hence obtain supnorm
or Hölder estimates for ∂, since the order of contact between ∂Ω and the boundary of the
bumped out domain at a boundary point p ∈ ∂Ω can be a lot higher than the type of p when
n ≥ 3 (the notion of type we are working with is the D’Angelo 1-type).
The goal hence becomes to construct a local bumping of Ω at a boundary point p ∈ ∂Ω, such
that the order of contact between ∂Ω and the boundary of the bumped out domain at p does
not exceed the type in any direction. It should be noted that Ω is of finite type, as was shown
by K. Diederich and J.E. Fornæss [4].

So let p be a boundary point of Ω. After a holomorphic change of coordinates one can
assume that p = 0 and that the domain is given as follows:

Ω ∩ V = {(ζ, z) ∈ (C× Cn−1) ∩ V : Re(ζ) + r(z) +O(| Im(ζ)|2, |z| · | Im(ζ)|) < 0},

where V is a small open neighborhood of p = 0 and r is a real-valued real-analytic function
defined on an open neighborhood of 0 ∈ Cn−1. Furthermore r can be chosen to be of the form

r(z) =

∞∑
j=2k

Pj(z),

where Pj is a homogeneous polynomial in z and z of degree j and P2k 6≡ 0 (i.e. the lowest-
degree term of r has degree 2k, which is less or equal to the type of Ω at p = 0) and P2k is
plurisubharmonic but not pluriharmonic. In the special case Ω ⊆ C2 one can show that it
is possible to find such a local description, such that 2k is actually equal to the type of the
domain at p = 0. By absorbing all pluriharmonic terms of P2k into the real part of ζ, one can
assume that P2k has no pluriharmonic terms.
When Ω ⊆ C2, J.E. Fornæss and N. Sibony [6] have shown that the domain can be bumped
to order 2k, the type of the domain. Further A. Noell [10] showed that if P2k is additionally
assumed to not be harmonic along any complex line through 0 ∈ Cn−1 this is still the case.
But if P2k is allowed to be harmonic along complex lines through 0, things become much
more complicated.
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Noell proceeded by showing that there exist an R-homogeneous function P̃2k : Cn−1 → R
of degree 2k and a constant ε > 0, such that

P2k(z)− P̃2k(z) ≥ ε|z|2k for all z ∈ Cn−1,

and such that P̃2k is smooth and strictly plurisubharmonic on Cn−1 \ {0}.
The next step is to look for similar results without assuming P2k to not be harmonic along

any complex line through 0. In this case, however, one can not expect to obtain an inequality
as strong as the one in Noell’s result, since that would lead to a violation of the strong
maximum principle for subharmonic functions along a complex line through 0 along which
P2k is harmonic (i.e. vanishes, since P2k does not have any pluriharmonic terms). A similar
argument also shows that one can not expect to get something strictly plurisubharmonic on
Cn−1 \ {0}.

Assume n = 3 for the remainder of this section. In this situation G. Bharali and B.
Stensønes [2] have obtained bumping results for the polynomial P2k : C2 → R in two different
cases. They prove that that P2k is harmonic along at most finitely many complex lines
through 0, which, in one of the two cases, allows them to combine local bumpings in conical
neighborhoods of said lines using a gluing argument.
Since P2k can be harmonic along complex lines through 0, however, this does not necessarily
lead to a bumping of the domain Ω. Addressing this issue in one of the cases considered in [2],
G. Bharali [1] has constructed bumpings of the domain Ω under a non-restrictive assumption
on the remaining terms, which is satisfied in a motivating example in [2].

This paper deals with the problem of finding a bumping for the domain Ω in the case n = 3
and provides a counterexample to a proposed strategy.

2. Motivating Examples

Let Ω be a bounded pseudoconvex domain with real-analytic boundary in C3 and p ∈ ∂Ω.
As in the introduction, after a holomorphic change of coordinates, one can assume that p = 0
and that

Ω ∩ V = {(ζ, z, w) ∈ C3 ∩ V : Re(ζ) + r(z, w) +O(| Im(ζ)|2, |(z, w)| · | Im(ζ)|) < 0},

where V is a small open neighborhood of p = 0 and r is a real-valued real-analytic function
defined on an open neighborhood of 0 ∈ C2. Since this paper is on a counterexample,
we limit ourselves to the case where r is a plurisubharmonic polynomial. By absorbing all
pluriharmonic terms into the real part of ζ, one can assume that r has no pluriharmonic
terms. Write

r(z, w) =
M∑
j=2k

Pj(z, w),

where Pj is a homogeneous polynomial in z, z, w,w of degree j and P2k 6≡ 0 is plurisubhar-
monic.

If the remainder

R(z, w) := r(z, w)− P2k(z, w) =

M∑
j=2k+1

Pj(z, w)
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is plurisubharmonic then a bumping with the desired properties exists in many cases. The sit-
uation is not usually that simple however, so a different strategy is needed when the remainder
R is not assumed to be plurisubharmonic.

Example 2.1. Assume Ω is given as follows locally around 0:

Ω ∩ V = {(ζ, z, w) ∈ C3 ∩ V : Re(ζ) + P (z, w) < 0},
where

P (z, w) =|z|6|w|8 − 2 Re(z3w4z5w3) + |z|4|w|12 + |z|10|w|6 − 2 Re(zw10z2w6)

+ |z|18|w|4 + |z|2|w|20 − 2 Re(z9w2z17w) + |z|34|w|2 + ‖(z, w)‖1000 .

Define “wedge-wise” holomorphic coordinate changes Φ1,Φ2,Φ3 : C2 → C2 by

Φ1(z, w) =
(
z4, w

)
,

Φ2(z, w) =
(
z, w2

)
,

Φ3(z, w) =
(
z, w8

)
.

We compute:

(P ◦ Φ1) (z, w) = |z|8|w|20 − 2 Re(z4w10z8w6) + |z|16|w|12 + (higher-order terms)

=
∣∣z4w10 − z8w6

∣∣2 + (higher-order terms),

(P ◦ Φ2) (z, w) = |z|6|w|16 − 2 Re(z3w8z5w6) + |z|10|w|12 + (higher-order terms)

=
∣∣z3w8 − z5w6

∣∣2 + (higher-order terms),

(P ◦ Φ3) (z, w) = |z|18|w|32 − 2 Re(z9w16z17w8) + |z|34|w|16 + (higher-order terms)

=
∣∣z9w16 − z17w8

∣∣2 + (higher-order terms).

For j ∈ {1, 2, 3}, the lowest-order homogeneous summand of P ◦ Φj corresponds to the sum-

mand P (j) in the Taylor expansion of P around 0, where

P (1)(z, w) =
∣∣zw10 − z2w6

∣∣2 ,

P (2)(z, w) =
∣∣z3w4 − z5w3

∣∣2 ,

P (3)(z, w) =
∣∣z9w2 − z17w

∣∣2 .

P (1), P (2) and P (3) are plurisubharmonic. This is not a coincidence: P is plurisubharmonic
and Φj , j ∈ {1, 2, 3}, is holomorphic, so the lowest order homogeneous summand of P ◦ Φj

is plurisubharmonic as well, which leads to P (j) being plurisubharmonic. P (1), P (2) and P (3)

have pairwise no monomial in common, so:

P = P (1) + P (2) + P (3) + (remaining terms),

where the (remaining terms) consists of a finite (possibly empty) sum of monomials, each
appearing with the same coefficient as the corresponding monomial in the Taylor expansion
of P around 0. By direct computation one easily verifies that

P (z, w) = P (1)(z, w) + P (2)(z, w) + P (3)(z, w) + ‖(z, w)‖1000 .

So we have written P as a sum of four plurisubharmonic weighted-homogeneous polynomials.
It is obvious how to bump P . In a more general setting one could attempt to use the
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bumping results for weighted-homogeneous plurisubharmonic polynomials in [2] to bump
each summand separately.

Example 2.2. Assume Ω is given as follows locally around 0:

Ω ∩ V = {(ζ, z, w) ∈ C3 ∩ V : Re(ζ) + P (z, w) < 0},
where

P (z, w) = |z|6 − 2 Re(z3z2w2) + 2|z|4|w|4 − 2 Re(z2w2w10) + |w|20 + ‖(z, w)‖1000 .

Analogously to Example 2.1, one defines singular holomorphic coordinate changes Φ1,Φ2 : C2 →
C2 by

Φ1(z, w) =
(
z2, w

)
,

Φ2(z, w) =
(
z4, w

)
,

and computes:

(P ◦ Φ1) (z, w) = |z|12 − 2 Re(z6z4w2) + 2|z|8|w|4 + (higher-order terms),

(P ◦ Φ2) (z, w) = 2|z|16|w|4 − 2 Re(z8w2w10) + |w|20 + (higher-order terms).

For j ∈ {1, 2}, the lowest-order homogeneous summand of P ◦Φj corresponds to the summand

P (j) in the Taylor expansion of P around 0, where

P (1)(z, w) = |z|6 − 2 Re(z3z2w2) + 2|z|4|w|4,

P (2)(z, w) = 2|z|4|w|4 − 2 Re(z2w2w10) + |w|20.

Analogously to the previous example, one argues that P (1) and P (2) are plurisubharmonic.
But now the polynomials P (1) and P (2) share the summand 2|z|4|w|4, so one can not proceed
analogously to Example 2.1.
Splitting up the shared summand, however, one can write:

P (z, w) = P̃ (1)(z, w) + P̃ (2)(z, w) + ‖(z, w)‖1000 ,

where

P̃ (1)(z, w) = |z|6 − 2 Re(z3z2w2) + |z|4|w|4

=
∣∣z3 − z2w2

∣∣2 ,

P̃ (2)(z, w) = |z|4|w|4 − 2 Re(z2w2w10) + |w|20

=
∣∣z2w2 − w10

∣∣2 .

P̃ (1) and P̃ (2) are obviously plurisubharmonic and hence we have once again written P as a
sum of plurisubharmonic weighted-homogeneous polynomials, each of which we can attempt
to bump individually.

So, in both Example 2.1 and Example 2.2, we used certain singular holomorphic coordi-
nate changes to express P as a sum of weighted-homogeneous plurisubharmonic polynomials.
While the algorithmic procedure we applied will not always yield such a decomposition, the
existence of said coordinate changes is not a coincidence: in both examples, each coordinate
change corresponds to an extreme edge (see Def. 3.1 below) of the real-valued plurisubhar-
monic polynomial P .
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3. The Problem

Most of the definitions and lemmas in this section are taken from [7]. From now on,
all occurring polynomials are assumed to be polynomials with complex coefficients in two
complex variables (z, w) and their conjugates (z, w).

Let P be a real-valued polynomial. We write

P =
∑

(A,B)∈Z≥0×Z≥0

PA,B,

where PA,B is homogeneous of degree A in z, z and homogeneous of degree B in w,w. Note
that this decomposition is unique and that each PA,B is real-valued.

Definition 3.1. Let P be a real-valued polynomial. We define the Newton diagram N(P ) of
P to be the following subset of R2:

N(P ) = {(A,B) ∈ Z≥0 × Z≥0 : PA,B 6≡ 0}.

We make the following definitions:

• A non-empty subset X ⊆ N(P ) is called an extreme set if there exist a, b ∈ R with
a < 0, such that

B = aA+ b for all (A,B) ∈ X
B > aA+ b for all (A,B) ∈ N(P ) \X.

• A point (A0, B0) ∈ N(P ) is called an extreme point if {(A0, B0)} is an extreme set.
• A subset E ⊆ N(P ) is called an extreme edge if E is an extreme set of cardinality at

least 2.

Remark 3.2. Similar notions appear elsewhere in the literature. In the study of oscillatory
integral operators for example, one defines the Newton polytope of a real-valued real-analytic
function

S(x, y) =
∑

(p,q)∈Z≥0×Z≥0

cpqx
pyq

defined in a neighborhood of the origin in R2 as the convex hull of

{(p, q) ∈ Z≥0 × Z≥0 : cpq 6= 0}+ R≥0
2,

i.e., in the language of [12], as the convex hull of the union of all the northeast quadrants
in R≥0

2 with corners at those (p, q) ∈ Z≥0 × Z≥0 for which cpq 6= 0. If S is non-trivial, the
Newton polygon is an unbounded set with non-empty interior, in contrast to the Newton
diagram as defined in Definition 3.1, which is always a finite set. Furthermore, each element
of the set {(p, q) ∈ Z≥0 × Z≥0 : cp,q 6= 0} corresponds to a single monomial of S, whereas the
analogous assertion is obviously not true in general for the Newton diagram.
Still, these two notions are clearly analogous in the sense that the 0-faces (resp. compact
1-faces) of the Newton polytope play the same role as the the extreme points (resp. extreme
edges) of the Newton diagram.
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Notation 3.3. Let P be a real-valued polynomial and let S ⊆ R2. We define the real-valued
polynomial PS as follows:

PS :=
∑

(A,B)∈N(P )∩S

PA,B.

Note that PS ≡ 0 if and only if N(P ) ∩ S = ∅.

Notation 3.4. Let P be a real-valued polynomial. We denote the Complex Hessian Matrix
or the Levi Matrix of P as HP ,

HP =

(
∂2P
∂z∂z

∂2P
∂w∂z

∂2P
∂z∂w

∂2P
∂w∂w

)
.

The following two lemmas demonstrate that the concepts introduced in this section are
significant when considering plurisubharmonic polynomials:

Lemma 3.5 ([7, Lemma 2 on p. 983]). Let P be a real-valued polynomial. Then the Newton
diagram N(P ) has finitely many extreme sets.

Lemma 3.6 ([7, Lemmas 3 and 4 on p. 983]). Let P be a real-valued polynomial and further-
more assume that P is plurisubharmonic. Then, for any extreme set X of N(P ), the function
PX is a plurisubharmonic weighted-homogeneous polynomial and there exists a natural sin-
gular holomorphic change of coordinates Φ of the form (z, w) 7→ (zk, wl) with k, l ∈ Z≥1,
gcd(k, l) = 1, such that PX ◦ Φ constitutes the lowest-order homogeneous terms of P ◦ Φ.

In the setting of Example 2.1, the maps Φ1, Φ2 and Φ3 correspond to extreme edges, say
E1, E2 and E3, of N(P ) in the sense of Lemma 3.6 (it should be noted, however, that N(P )
has other extreme edges as well). Since E1, E2 and E3 are pairwise disjoint, the polynomials
PE1 , PE2 and PE3 have pairwise no terms in common, so that

PE1∪E2∪E3 = PE1 + PE2 + PE3

is plurisubharmonic and

P (z, w) = PE1(z, w) + PE2(z, w) + PE3(z, w) + ‖(z, w)‖1000 .

In the setting of Example 2.2, the maps Φ1 and Φ2 correspond to the precisely two extreme
edges, say E1 and E2, of N(P ) in the sense of Lemma 3.6. Here, however, E1 and E2 are
neighboring extreme edges, so that PE1 and PE2 have terms in common, namely PE1∩E2 . But
PE1∪E2 is plurisubharmonic and we found a splitting

PE1∪E2 = P̃E1 + P̃E2 ,

where P̃Ej is a plurisubharmonic polynomial with N
(
P̃Ej

)
⊆ N(PEj ), for j ∈ {1, 2}.

In attempting to generalize the bumping strategies outlined in Examples 2.1 and 2.2, it
becomes desirable to identify subsets of the Newton diagram of a plurisubharmonic polynomial
that will yield a plurisubharmonic function in the sense of Notation 3.3. It is the content of
Lemma 3.6 that extreme sets, i.e. extreme points and extreme edges, are examples of such
subsets.
Specifically, in view of Examples 2.1 and 2.2 and Remark 3.8 below, one could hope that two
“neighboring” extreme edges yield a plurisubharmonic function by taking their union or by
taking the convex hull of that union. A precise statement of those questions goes as follows:



8 LARS SIMON AND BERIT STENSØNES

Question 3.7. Let P be a real-valued polynomial and furthermore assume that P is plurisub-
harmonic. Let E denote the (possibly empty) set of extreme edges of N(P ).

• Given extreme edges E1 and E2 of N(P ) with E1 6= E2 but E1 ∩ E2 6= ∅, is PE1∪E2

necessarily plurisubharmonic in some neighborhood of the origin?
• Given extreme edges E1 and E2 of N(P ) with E1 6= E2 but E1∩E2 6= ∅, is PConv(E1∪E2)

necessarily plurisubharmonic in some neighborhood of the origin?
• Is P⋃

E∈E E
necessarily plurisubharmonic in some neighborhood of the origin?

• Is PConv(
⋃

E∈E E) necessarily plurisubharmonic in some neighborhood of the origin?

Here, Conv(S) denotes the convex hull of a subset S of R2.

In the following section we will construct a plurisubharmonic polynomial with precisely 2
extreme edges, for which the answer to all of these questions is “no”.

Remark 3.8. In the last two questions in Question 3.7 one asks whether certain estimates of
the Complex Hessian of P are preserved when deleting certain terms of P without affecting
the extreme edges.
A similar question in the situation of Remark 3.2 is, roughly speaking, whether certain es-
timates of S and its partials are preserved when modifying S without affecting the Newton
polytope or the terms corresponding to its 1-faces. In [12], D. H. Phong and E. M. Stein have
obtained L2-estimates for oscillatory integral operators that only depend on the (reduced)
Newton polytope of the phase S. More recently, in [15], L. Xiao has classified the existence
of certain Lp-estimates for oscillatory integral operators entirely in terms of the (reduced)
Newton polytope of the phase S. One important ingredient in Xiao’s proof is [15, Theorem
4.1 on p. 267]; it says, roughly speaking, that one can partition a neighborhood of the origin
in R2 into finitely many curved triangular regions, on each of which the phase S (and its
partials) can be estimated in terms of a monomial (and its partials).
From our point of view, the crucial point is that these monomials correspond to certain com-
pact faces of the Newton polytope of S and that the curved triangular regions are obtained
in a way that is very similar to some of the ideas appearing in [7]. Because of this, one could
hope that, in the situation of Question 3.7, a similar analysis of the Levi form of P involving
the extreme edges would yield a positive answer to one of the questions in Question 3.7.

4. The Counterexample

In order to simplify the computations in the construction announced in the previous section,
we state and prove the following lemma:

Lemma 4.1. Let P =
∑

α∈A cα · |fα|
2, where

• A is a finite set,
• cα ∈ {−1, 1} for all α ∈ A,
• fα : C2 → C is a holomorphic polynomial for all α ∈ A.

Then in C2 we have:

detHP =
1

2
·

∑
(α,β)∈A×A

cαcβ

∣∣∣∣∂fα∂z · ∂fβ∂w
−
∂fβ
∂z
· ∂fα
∂w

∣∣∣∣2.
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Proof. We calculate:

detHP =

(∑
α∈A

cα
∂fα
∂z

∂fα
∂z

)
·

∑
β∈A

cβ
∂fβ
∂w

∂fβ
∂w

−(∑
α∈A

cα
∂fα
∂z

∂fα
∂w

)
·

∑
β∈A

cβ
∂fβ
∂w

∂fβ
∂z


=

(∑
α∈A

cα
∂fα
∂z

(
∂fα
∂z

))
·

∑
β∈A

cβ
∂fβ
∂w

(
∂fβ
∂w

)
−

(∑
α∈A

cα
∂fα
∂z

(
∂fα
∂w

))
·

∑
β∈A

cβ
∂fβ
∂w

(
∂fβ
∂z

)
=

∑
(α,β)∈A×A

cαcβ ·
∂fα
∂z
·
∂fβ
∂w
·
(
∂fα
∂z
·
∂fβ
∂w
−
∂fβ
∂z
· ∂fα
∂w

)

=
1

2
·

∑
(α,β)∈A×A

cαcβ ·
∂fα
∂z
·
∂fβ
∂w
·
(
∂fα
∂z
·
∂fβ
∂w
−
∂fβ
∂z
· ∂fα
∂w

)

+
1

2
·

∑
(β,α)∈A×A

cβcα ·
∂fβ
∂z
· ∂fα
∂w
·
(
∂fβ
∂z
· ∂fα
∂w
− ∂fα

∂z
·
∂fβ
∂w

)

=
1

2
·

∑
(α,β)∈A×A

cαcβ ·
(
∂fα
∂z
·
∂fβ
∂w
−
∂fβ
∂z
· ∂fα
∂w

)
·
(
∂fα
∂z
·
∂fβ
∂w
−
∂fβ
∂z
· ∂fα
∂w

)

=
1

2
·

∑
(α,β)∈A×A

cαcβ

∣∣∣∣∂fα∂z · ∂fβ∂w
−
∂fβ
∂z
· ∂fα
∂w

∣∣∣∣2.

�

Let f1, f2, f3, g, h : C2 → C be the holomorphic monomials given as follows:

f1(z, w) = z2w2 f2(z, w) = z10w f3(z, w) = zw10

g(z, w) = z4w2 h(z, w) = z4w8

We now define a real-valued polynomial P :

P := |f1 + f2 + f3|2 + |g + h|2 .

It is obvious that P is plurisubharmonic. Intuitively speaking, the Newton diagram N(P )
has precisely two extreme edges and lies entirely in the triangle spanned by N(|f1|2), N(|f2|2)
and N(|f3|2), with the exception of N(|h|2), which is “sticking out” of the triangle without
creating an extreme edge. Both extreme edges correspond to sides of said triangle. The
monomials were specifically chosen to have these properties (among others). We will treat
this formally:

Lemma 4.2. The Newton diagram of P is the following set:

N(P ) = {(4, 4), (12, 3), (3, 12), (20, 2), (11, 11), (2, 20), (8, 4), (8, 10), (8, 16)}.
Furthermore, N(P ) has precisely two extreme edges, namely

E1 = {(4, 4), (3, 12), (2, 20)} and E2 = {(4, 4), (12, 3), (20, 2)},
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and the following holds on C2:

PE1∪E2 = |f1 + f3|2 + |f1 + f2|2 − |f1|2,

PConv(E1∪E2) = P − |h|2

= |f1 + f2 + f3|2 + |g + h|2 − |h|2.

The proof of Lemma 4.2 is a straightforward calculation and will be omitted. It should,
however, be remarked that, in light of Lemma 4.1, the monomials occurring in the definition
of P were chosen so that PE1∪E2 and PConv(E1∪E2) take this particular form.

In order to show that (for P ) the answer to all the questions in Question 3.7 is “no”, it
suffices to show that both PE1∪E2 and PConv(E1∪E2) are not plurisubharmonic in any neigh-
borhood of the origin.
By Lemma 4.1 and Lemma 4.2 we have the following on C2:

detHPE1∪E2
=

∣∣∣∣∂(f1 + f3)

∂z
· ∂(f1 + f2)

∂w
− ∂(f1 + f2)

∂z
· ∂(f1 + f3)

∂w

∣∣∣∣2
−
∣∣∣∣∂(f1 + f3)

∂z
· ∂f1

∂w
− ∂f1

∂z
· ∂(f1 + f3)

∂w

∣∣∣∣2
−
∣∣∣∣∂(f1 + f2)

∂z
· ∂f1

∂w
− ∂f1

∂z
· ∂(f1 + f2)

∂w

∣∣∣∣2
≤

∣∣∣∣∂(f1 + f3)

∂z
· ∂(f1 + f2)

∂w
− ∂(f1 + f2)

∂z
· ∂(f1 + f3)

∂w

∣∣∣∣2
−
∣∣∣∣∂(f1 + f3)

∂z
· ∂f1

∂w
− ∂f1

∂z
· ∂(f1 + f3)

∂w

∣∣∣∣2 ,

detHPConv(E1∪E2)
=

∣∣∣∣∂(f1 + f2 + f3)

∂z
· ∂(g + h)

∂w
− ∂(g + h)

∂z
· ∂(f1 + f2 + f3)

∂w

∣∣∣∣2
−
∣∣∣∣∂(f1 + f2 + f3)

∂z
· ∂h
∂w
− ∂h

∂z
· ∂(f1 + f2 + f3)

∂w

∣∣∣∣2
−
∣∣∣∣∂(g + h)

∂z
· ∂h
∂w
− ∂h

∂z
· ∂(g + h)

∂w

∣∣∣∣2
≤

∣∣∣∣∂(f1 + f2 + f3)

∂z
· ∂(g + h)

∂w
− ∂(g + h)

∂z
· ∂(f1 + f2 + f3)

∂w

∣∣∣∣2
−
∣∣∣∣∂(g + h)

∂z
· ∂h
∂w
− ∂h

∂z
· ∂(g + h)

∂w

∣∣∣∣2 .

So, by plugging in and calculating, we get the following inequalities on C2:

detHPE1∪E2
(z, w) ≤

∣∣(2zw2 + w10) · (2z2w + z10)− (2zw2 + 10z9w) · (2z2w + 10zw9)
∣∣2

−
∣∣(2zw2 + w10) · 2z2w − 2zw2 · (2z2w + 10zw9)

∣∣2
=

∣∣z2w2(99z8w8 + 18z9 + 18w9)
∣∣2

−
∣∣18z2w11

∣∣2 ,



ON NEWTON DIAGRAMS OF PLURISUBHARMONIC POLYNOMIALS 11

detHPConv(E1∪E2)
(z, w) ≤ |(2zw2 + 10z9w + w10) · (2z4w + 8z4w7)

−(4z3w2 + 4z3w8) · (2z2w + z10 + 10zw9)|2

−
∣∣(4z3w2 + 4z3w8) · 8z4w7 − 4z3w8 · (2z4w + 8z4w7)

∣∣2
=

∣∣−2z4w2(16w15 − 38w6z9 + 19w9 − 8z9 − 4zw7 + 2zw)
∣∣2

−
∣∣24z7w9

∣∣2 .

We define two holomorphic polynomials Q1, Q2 : C2 → C as follows:

Q1(z, w) = 99z8w8 + 18z9 + 18w9,

Q2(z, w) = 16w15 − 38w6z9 + 19w9 − 8z9 − 4zw7 + 2zw,

i.e. we have on C2:

detHPE1∪E2
(z, w) ≤

∣∣z2w2Q1(z, w)
∣∣2

−
∣∣18z2w11

∣∣2 ,

detHPConv(E1∪E2)
(z, w) ≤

∣∣−2z4w2Q2(z, w)
∣∣2

−
∣∣24z7w9

∣∣2 .

Since Q1 is a non-constant holomorphic polynomial on C2, its vanishing set V (Q1) is an
equidimensional affine algebraic variety of dimension 1 containing (0, 0). For (z, w) ∈ V (Q1)
we have

detHPE1∪E2
(z, w) ≤ −

∣∣18z2w11
∣∣2 ,

so that it suffices to show that V (Q1) contains points (z, w) with z 6= 0, w 6= 0 arbitrarily
close to (0, 0). But that is clear, since both Q1(·, 0) and Q1(0, ·) are non-constant holomorphic
polynomials on C and as such have finitely many zeroes.

Hence PE1∪E2 is not plurisubharmonic in any neighborhood or the origin. By consider-
ing Q2 instead of Q1, we analogously get that PConv(E1∪E2) is not plurisubharmonic in any
neighborhood of the origin.
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