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1 Introduction

1.1 Preliminaries

Discrete harmonic functions on the lattice, also known as pre-harmonic func-
tions, were intensively studied in the last century. The main motivation
comes from the classical works where the solution of the Dirichlet problem
is constructed using discrete approximation. This method can be used to
establish both existence and stability of solution to the Dirichlet problem.

The theory of discrete harmonic functions on the lattices dates back to
the 1920s, when fundamental works of H. Phillips and N. Wiener [41] (1923),
and R. Courant, K. Friedrichs, and H. Lewy [14] (1928) were published. For
the next three decades a number of articles followed, we will mention those
of J. Capoulade [9] (1932), I. Petrowski [40] (1941), M. Frocht [22] (1946),
H. Heilbronn [28] (1949), and S.Verblunsky [47] (1949-50). At the same time
the theory of discrete holomorphic functions was developed in the works
of J. Ferrand [20] (1944). In the middle of the last century an important
contribution to the theory of discrete harmonic functions was done by R.
Duffin [18] (1953).

The study of discrete harmonic function in the first half of the last century
was at least two-folded, convergence of the numerical methods and approx-
imation of continuous harmonic functions by discrete ones was developed
side by side with the study of the properties of discrete functions. One of
the original motivations for the study of discrete harmonic functions is that
such functions converge to continuous ones. For example to obtain a so-
lution of the Dirichlet problem one may solve discrete problems in lattice
domains and pass to the limit as the mesh size of the lattice goes to zero.
We refer the reader to the classical works mentioned above and to the article
of I. Petrowsky [40]. Connections to random walks give one more side of
the theory. We don’t discuss it here and refer the readers to the classical
work of K. Ito and H. McKean [29]. It turned out that while many fun-
damental results of continuous theory of harmonic functions have discrete
counterparts (as the maximum principle, Green’s function, solution of the
Dirichlet problem), there are many aspects of discrete potential theory that
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are quite different from the continuous ones. These difference provide various
interesting problems on discrete Laplacian and special properties of discrete
harmonic functions which were recently addressed by researchers in theoret-
ical and applied analysis, as examples we cite articles of C. Kiselman [31],
E. Bendito, A. Carmona, and A. Encinas, [4], J. Chanzy [10], A. Rubinstein,
J. Rubenstein, and G. Wolansky [43], P. Vivo, M. Casartelli, L. Dall’Asta,
and A. Vezzani [48], and P. Nayar [38]. One of the interesting questions is
the study of the zero sets of discrete harmonic functions is that equivalent to
the study of their uniqueness sets. The aim of our work is to provide basic
examples and first results that connect the size of the zero sets of discrete
harmonic functions to its growth properties.

In this introduction we first give a short account of discrete harmonic
functions on graphs and then describe the main results of the thesis.

1.2 Laplace operators and harmonic functions

on graphs

In this section we discuss basic definitions, the maximum principle for discrete
harmonic functions on graphs, and the discrete Dirichlet problem. For more
general theory of Laplace operators on graphs we refer the reader to the
monograph [12].

1.2.1 Definitions and the maximum principle

A graph G = (V,E) consists of two sets, V being the set of vertices and
E ⊂ V × V the set of edges. We assume that G has no self loops and is
undirected, i.e. (x, x) �∈ E for any x ∈ V and if (x, y) ∈ E then (y, x) ∈ E.
We also assume that G is locally finite. That means that for any x ∈ V
the set Ox = {y ∈ V : (x, y) ∈ E} is finite; the number of points in Ox

will be denoted by d(x). Moreover, we mostly consider graphs with d =
supx∈G d(x) < +∞.

By a function on G we mean a real-valued function on the set of the
vertices. We denote by U(G) the set of all functions on G . By a vector field
we mean a real–valued function u : E → R on the set of the edges that
satisfy u(x, y) = −u(y, x), We denote by F (G) the set of all vector fields on
G.
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If f is a function on G, then its gradient ,∇f, is the vector field defined
by

∇f(x, y) = f(y)− f(x), (1.1)

for any (x, y) ∈ E. Clearly∇f(y, x) = −∇f(x, y). The divergence of a vector
field u is a function on G defined by

divu(x) =
∑

y:(y,x)∈E
u(x, y). (1.2)

Definition. Let f be a function on G. Then the Laplacian of f is a function
on G denoted by Δf and defined by

Δf(x) =
∑

y:(y,x)∈E
f(y)− d(x)f(x). (1.3)

Clearly, for every f ∈ U(G) it holds that

Δf(x) = div(∇f)(x).

Definition. A function f ∈ U(G) is said to be discrete harmonic at a vertex
x if it satisfies the relation

Δf(x) = 0. (1.4)

We say that f is discrete harmonic on a set S ⊂ V if it is discrete harmonic
at each point of S.

Definition. A function f ∈ U(G) is said to be discrete subharmonic at a
vertex x if Δf(x) ≥ 0.

Definition. Let D be a subset of the vertices, D ⊂ V. Then the (outer)
boundary of D denoted bD is defined by

bD = {y ∈ V \D, there exists x ∈ D such that (x, y) ∈ E} .
The closure of D is defined by D = D ∪ bD.

Definition. Given a graphG = (V,E) , a subsetD ⊂ V is said to be connected
if for every two points x, y ∈ D, there exists a finite sequence of points
{x0, x1, . . . , xs} such that x0 = x, xs = y, xj ∈ D, xj and xj+1 are neighboring
points of G, i.e , (xj, xj+1) ∈ E.

From now on we assume that G is a connected graph. It means that V
is simply a connected set of vertices.
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Theorem 1. If f is a function on G that is discrete harmonic on a finite
connected set D ⊂ V and if

max
x∈D

f(x) = max
x∈D

f(x),

then f is constant on D.

Proof. Let M = maxx∈D f(x) and suppose that x0 is a point of D for which
f(x0) = M. Then we have f(x0) ≥ f(x) for any x that is neighboring to x0,
furthermore, since f is discrete harmonic at x0 then we have f(x) = M for all
neighbors x of x0. Since D is connected, D is also connected and f(x) = M
for all x ∈ D.

In particular, any discrete harmonic function on a finite connected graph
is a constant (take D = V ). It also follows from the theorem that if D is
a finite connected set, D �= V, and f is a discrete harmonic function on D,
then

max
x∈D

f(x) = max
x∈bD

f(x). (1.5)

The relation displayed in (1.5), which is the maximum principle for discrete
harmonic functions is an analog of the classical maximum principle for con-
tinuous harmonic functions in a bounded domain. The condition of bound-
edness is now replaced by the condition that D is finite; it is easy to see that
such condition is necessary. There exists a non-zero function on the graph
V = Z× {−1, 0, 1} with standard edges of the square lattice that is discrete
harmonic on D = Z × {0} , but equal to zero on the boundary of the latter
set. We can define

u(−n, 0) = u(n, 0) =
1

2

(
(2 +

√
3)n + (2−

√
3)n

)
, n ≥ 0. (1.6)

We will discuss discrete harmonic functions on subdomains of the lattice in
the next chapter. The example above illustrates that on special unbounded
subdomains of the lattice maximum principle fails for exponentially growing
functions. We will develop this topic further in Chapter 3.

1.2.2 The Dirichlet problem

Let G = (V,E) be a connected finite graph and let D ⊂ V be a finite subset
of V such that bD �= ∅. Then the discrete Dirichlet problem is formulated as{

Δf(x) = 0 x ∈ D
f(x) = g(x) x ∈ bD,
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where g : bD → R is a given function.
The discrete Dirichlet problem can be considered as a linear algebra prob-

lem, with k unknowns, where k is the number of points in D and k equations
from the relation Δf = 0 in D. Moreover, when g = 0 the system is homoge-
neous and from the maximum principle we know that it only admits trivial
solution. Then the existence and uniqueness of the solution to the Dirichlet
problem for arbitrary g is a simple consequence of the basic theorems of linear
algebra. Another classical approach is also to describe harmonic functions
as minimizers of the certain energy integral.

Theorem 2. Let g : bD → R. Then the Dirichlet problem above has a unique
solution f . If h is a real function defined on D̄ which takes the values g(x)
on bD, then ∑

(x,x′)∈E
(∇f(x, x′))2 ≤

∑
(x,x′)∈E

(∇h(x, x′))2

and equality holds only if f(x) = h(x) for all x in D.

Proof. Let f be a function for which E(f) is minimum, subject to the bound-
ary condition, where

E(f) =
1

2

∑
(x,x′)∈E

(∇f(x, x′))2 =
1

2

∑
(x,x′)∈E

(f(x′)− f(x))
2

is the discrete Dirichlet energy.
For each x ∈ D the minimizer of the discrete Dirichlet energy satisfies

d

df(x)
E(f) = −

∑
x′:(x,x′)∈E

∇f(x, x′) = −
∑

x′:(x,x′)∈E
(f(x′)− f(x)) = 0,

which implies that Δf(x) = 0. This proves that f is discrete harmonic.
To show that the solution f is unique we argue as follows. Let F be

another discrete harmonic function which takes the value g on the boundary.
Then it follows that F (x) − f(x) = 0 on the boundary. By the maximum
principle we conclude F (x) = f(x) for all x in D which shows the uniqueness
of f.

In chapter 4 we consider the following generalization of the discrete Dirich-
let problem {

Δf(x) = 0 x ∈ D
f(x) = g(x) x ∈ Λ,
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for some Λ ⊂ D. For the problem with Λ �= bD one can’t use the energy
method and reconstruction becomes unstable.

1.2.3 Green’s formula

In this section we introduce the discrete version of Green’s formula on graphs,
which can be found for example in [12].

Proposition 1. Suppose G = (V,E) be a finite connected graph and D be
any non-empty finite subset of V. Then for any two functions f, g ∈ U(G)
we have∑

x∈D
Δf(x)g(x) =

− 1

2

∑
x,y∈D,(x,y)∈E

∇f(x, y)∇g(x, y) +
∑
x∈D

∑
y∈bD,(x,y)∈E

∇f(x, y)g(x),

where Δ and ∇ are the discrete Laplace and gradient operators respectively.

Proof. For any two functions f, g ∈ U(G), we have∑
x∈D

Δf(x)g (x) =
∑
x∈D

g(x)
∑

y:(x,y)∈E
(f(y)− f(x)) =

∑
x∈D,(x,y)∈E

g (x) f (y)−
∑
x∈D

d(x)g (x) f (x) =

∑
x,y∈D,(x,y)∈E

g(x)f(y) +
∑

x∈D,y∈bD,(x,y)∈E
g(x)f(y)−

∑
x∈D

d(x)g(x)f(x).

And also we have∑
x,y∈D,(x,y)∈E

∇f(x, y)∇g(x, y) =

∑
x,y∈D,(x,y)∈E

(f(y)− f(x)) (g(y)− g(x)) =

2
∑
x∈D

dD(x)f(x)g(x)− 2
∑

x,y∈D,(x,y)∈E
f(x)g(y),
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where dD(x) is the number of neighbors of the vertex x in D. Now dividing
both sides of the above identity by 2 and adding the last two identities we
obtain∑

x∈D
Δf(x)g (x) +

1

2

∑
x,y∈D,(x,y)∈E

∇f(x, y)∇g(x, y) =

∑
x∈D,y∈bD,(x,y)∈E

g (x) f (y)−
∑
x∈D

f(x)g(x) (d(x)− dD(x)] =∑
x∈D,y∈bD,(x,y)∈E

g (x) [f (y)− f (x)] =
∑

x∈D,y∈bD,(x,y)∈E
g (x)∇f (x, y) .

Then the proposition follows.

Corollary. Let G = (V,E) be a finite graph, and f, g in U (G) be two
arbitrary functions. Then∑

x∈V
f(x)Δg(x) =

∑
x∈V

g(x)Δf(x) = −1

2

∑
(x,y)∈E

∇f(x, y)∇g(x, y).

1.2.4 Green’s function

Let D ⊂ V be a finite subset that defines a connected subgraph with non-
empty boundary bD. We define a function GD : D̄ × D̄ → R such that for
any g : D → R we have

Δf = g, where f(x) =
∑
y∈D

GD(x, y)g(y).

The function GD defines the inverse of the Laplace operator on D. For a fixed
y ∈ D we have ΔGD(·, y) = δy and GD(x, y) = 0 when x ∈ bD. For example
when D ⊂ Zn, we may first construct a global Green’s function G0(x, y) that
satisfies ΔG0(·, y) = δy and then take GD(x, y) = G0(x, y)−HD(x, y), where
HD(·, y) is discrete harmonic in D with boundary values G0(x, y) for x ∈ bD.

Suppose that φ′
js are the Dirichlet eigenfunctions of the discrete Laplacian

on D with eigenvalues λj. Then we have

GD(x, y) =
∑
j

λ−1
j d1/2x φj(x)φj(y)d

−1/2
y ,

where da is the degree of the vertex a. A detailed treatment of discrete
Green’s function can be found in [11] and the references therein.
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1.2.5 Harmonic measure and the Poisson kernel

Let D ⊂ V be a finite subset with bD �= ∅. For any A ⊂ bD we define
ω(x,A,D) as the discrete harmonic function in D with boundary values
ω(x,A,D) = 1 when x ∈ A and ω(x,A,D) = 0 when x ∈ bD \ A. Clearly
such discrete harmonic function exists uniquely, and 0 ≤ ω(x,A,D) ≤ 1 for
any x ∈ D. The function ω(·, A,D) is called the harmonic measure of A with
respect to D. In particular, if we take A = {y} for some y ∈ bD, we get a
discrete harmonic function ω(x, {y}, D) = PD(x, y). Then for any discrete
harmonic function u in D we have

u(x) =
∑
y∈bD

PD(x, y)u(y).

So PD(x, y) plays the role of the Poisson kernel for the discrete domain D.
Another way to look at the Poisson kernel is by taking the “normal deriva-
tive” of the Green function defined above and applying the Green formula.
For some simple cases, for example when D is a lattice cube, we give a simple
formula for the Poisson kernel and prove some estimates in Chapters 2 and
Chapter 5.

1.3 Overview of the main results

1.3.1 Harmonic polynomials and generalizations of the
Liouville theorem

In the rest of the text we study discrete harmonic functions on subsets on
the lattice Zn (or sometimes (hZ)n when we prefer to fix some domains and
change the mesh size of the lattice). In Chapter 2 we present some results
from a long dated work of of H. Heilbronn [28] and subsequent work of
B. Murdoch [37], that seems to be completely forgotten. Recently some of
their results were rediscovered in [48, 38].

The main topics of this Chapter are discrete harmonic polynomials (it
is easy to see that usual harmonic polynomials ingeneral are not discrete
harmonic) and Liouville theorem and its generalizations. We fill in some of
the details of the arguments of Heilbronn, suggest new proofs for some of his
results and collect some well-known facts about discrete harmonic functions.
We also generalize one of the results of H. Heilbronn and show that each
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discrete harmonic function on a cube in Zn coincides with some discrete
harmonic polynomial.

1.3.2 Discrete harmonic functions on product domains

Continuing the study of discrete harmonic functions on subsets of Zn, we
consider unbounded cylinder domains and prove some discrete versions of
the Phragmén-Lindelöf theorem in Chapter 3.

Let Ω be a bounded subdomain of Zn and D = Ω × Zk. The following
statement holds

Theorem 3. Let v be a discrete subharmonic function in D such that v ≤ 0
on ∂D. Let λ1 be the first eigenvalue of the discrete Dirichlet problem for the
Laplacian in Ω and b be the positive solution to the equation

cosh b = 1 +
1

2k
λ1.

Suppose that

v(x, y) ≤ o(1) exp(b‖y‖1), when ‖y‖1 → ∞. (1.7)

Then v ≤ 0 on D.

We also give some quantitative version of the result when k = 1, us-
ing estimates of the harmonic measure in truncated cylinders, and discuss
eigenvalues of discrete Dirichlet problem.

Another result which would be discussed in Chapter 3 is the following
discrete version of the three-line theorem.

Theorem 4. Let u be a discrete harmonic function in �0,M+1�×Zn, where
�0,M + 1� = [0,M + 1] ∩ Z. Suppose that u satisfies (1.7) and

{u (0, j)}j∈Zn ∈ l2 (Zn) , {u (M + 1, j)}j∈Zn ∈ l2 (Zn) .

Let us further denote

m (k) = ‖ux (k, j)‖2l2(Zn) +
n∑

l=1

‖uyl (k, j)‖2l2(Zn) for k = 0, 1, . . . , M,

where ux and uyl are discrete partial derivatives of u. Then m(k) is finite
and satisfies

m (k) ≤ (m (0))1−
k
M (m (M))

k
M .

The result is obtained by treating values of a discrete harmonic function
on hyperplanes as the Fourier coefficients of some continuous function.
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1.3.3 Determining sets of discrete Laplacian

Further, we study discrete harmonic functions on cubes or squares. The
space of the discrete harmonic functions on such set Q is finite dimensional,
the dimension , dimQ, is equal to the number of boundary points (for example
if Q = �1, N − 1�2, then its boundary contains 4N − 4 points). A discrete
subset of a cube is called a determining set for the discrete Laplace operator
if it contains exactly dimQ points and is also a uniqueness set for discrete
harmonic functions. The notation of determining sets were introduced in
[43].

In Chapter 4 we discuss reconstruction of discrete harmonic function from
a determining set. This is a linear algebra problem that may have a very
large conditioning number. For example we fix a square and a set Λ as below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1: Model set Λb

Then when we change the mesh size h = N−1 of the lattice, the con-
ditioning number growth exponentially, like CN . We suggest regularization
procedure and get conditional stability for such reconstruction. One of the
main tools is the logarithmic convexity estimates for the norms of a discrete
harmonic function over parallel segments.

1.3.4 Unique continuation for discrete harmonic func-
tions

In Chapter 5 we suggest a simple proof of the discrete version of three sphere
inequality for harmonic functions. It is clear that there is no classical unique
continuation theorem for discrete harmonic functions, as one can construct
functions that vanish on any finite subset of the lattice without being zero

10



identically. However, there is a unique continuation inequality that involves
the mesh size of the lattice.

We define by Qd the cube [−d, d]n ⊂ Rn and by Qh
d its discretization,

Qh
d = Qd ∩ (hZ)n. Then we prove the following.

Theorem 5. Suppose that r < R < 1. Then there exist positive constants
C, δ, α that depend on r, R with α, δ < 1 such that for any h = N−1, N ∈ N,
and any h-discrete harmonic function u in Qh

1 that satisfies maxQh
r
|u(x|) ≤ ε

and maxQh
1
|u(x)| ≤ M, then the inequality

max
Qh

R

|u(x)| ≤ C(εαM1−α + δ
√
NM),

holds.

Explicit values for the constants are given for the case r < R < 2r <
2−3n−3. We also discuss the nature of additional term δ

√
NM that goes to

zero as N → ∞.
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2 Discrete harmonic polynomials and
a generalization of the Liouville the-
orem

In this Chapter we present discrete harmonic polynomials and zero sets of
discrete harmonic polynomials on square lattice, discrete harmonic interpo-
lation in higher dimensions, the Liouville’s theorem and its generalization.
Our starting point is the work of Heilbronn [28]. For the first section we will
set our graph to be a square lattice with vertices in Zn and edges of the form
(x±ej, x), where x = (x1, x2, . . . , xn) ∈ Zn. We denote the discrete Laplacian
on this standard lattice by Δd and use Δ for the usual continuous Laplace
operator.

2.1 Discrete harmonic polynomials

2.1.1 Definition and examples

In this section we consider polynomials that are discrete harmonic. We start
by pointing out that in general polynomials which are harmonic in the usual
continuous sense are not necessarly discrete harmonic.

Theorem 6. For every integer k ≥ 1, there are exactly

hn(k) =

(
n+ k − 2

n− 1

)
2k + n− 1

k
(2.1)

linearly independent discrete harmonic polynomials of degree not exceeding
k.

Proof. For k = 1 the theorem is trivial since the n+1 polynomials 1, x1, · · · , xn

are all discrete harmonic. Hence we may assume that k ≥ 2. An easy (and
standard) count shows that there are(

n+ k
n

)
13



linearly independent polynomials of degree not exceeding k. We will show
that every polynomial of degree not exceeding k − 2 can be represented in
the form

g(x) = Δdf(x), deg f(x) ≤ k.

To show this we consider the discrete Laplacian Δd : Pk → Pk−2 where Pk is
the set consisting of all polynomials of degree not exceeding k.

Note that Δdfk = Δfk+r where fk ∈ Pk, andr ∈ Pk−3. This can be easily
checked on monomials. We remark also that the usual Laplacian Δ : Pk →
Pk−2 is onto since dim(KerΔPk) = dim(Pk)−dim(Pk−2), see for example [3].

We will show by induction on k that if g ∈ Pk−2, then there exists f ∈ Pk

such that Δdf = g. For k = 2 the claim is trivial. Let g ∈ Pk−2. Then there
exists h ∈ Pk such that Δh = g and that

Δdh = g + g1 where g1 ∈ Pk−3. (2.2)

By the induction hypothesis we can find h1 ∈ Pk−1 such that Δdh1 = g1.
Then we take f = h− h1 ∈ Pk and get Δdf = g. Thus we have

dim(KerΔdPk) = dim(Pk)− dim(ImΔdPk) =

(
n+ k

n

)
−
(
n+ k − 2

n

)
.

Computing further the difference above yields(
n+ k

n

)
−
(
n+ k − 2

n

)
=

(n+ k)!

n!k!
− (k − 2 + n)!

n! (k − 2)!

=
(n+ k − 2)! [(n+ k) (k + n− 1)− k (k − 1)]

n (n− 1)!k (k − 1) (k − 2)!

=
(k + n− 2)!

(n− 1)! (k − 1)!

(2k + n− 1)

k
=

(
n+ k − 2

n− 1

)
2k + n− 1

k
,

which completes the proof of the theorem.

Observe that in the proof we used the fact that for any fk ∈ Pk we have
Δdfk = Δfk + r for some r ∈ Pk−3. This fact further implies the following

Corollary. If f is a discrete harmonic polynomial of degree k then f = h+r
where h is a homogeneous harmonic polynomial of degree k and the degree of
r is less than k.

14



Example 1. For n = 2 the discrete harmonic polynomials up to degree 5 are
linear combinations of

1; x1, x2; x2
1 − x2

2, 2x1x2; x3
1 − 3x1x

2
2, 3x2

1x2 − x3
2;

x4
1 − 6x2

1x
2
2 + x4

2 −
(
x2
1 + x2

2

)
, 4x3

1x2 − 4x1x
3
2;

x5
1 − 10x3

1x
2
2 + 5x1x

4
2 − 10x1x

2
2, 5x4

1x2 − 10x2
1x

3
2 + x5

2 − 10x2
1x2.

We notice that in this sequence one polynomial of degree k is of the form
�(x1+ ix2)

k+ terms of degree not exceeding k−2, while the second one is of
the form �(i−1(x1 + ix2)

k)+ terms of degree not exceeding k− 2. The above
sequence is not uniquely defined and it is not clear if there is any preferable
choice. For further examples and discussion we refer the reader to [28, 48].

Example 2. We also give some examples for the case n = 3. By Theorem 6
we have (

k + 1

2

)
2k + 2

k
= (k + 1)2

linearly independent discrete harmonic polynomials of degree not exceeding
k, i.e., we have 2k + 1 linearly independent discrete harmonic polynomials
of degree k. The following 25 polynomials generate all harmonic discrete
polynomials of degree up to 4

1; x1, x2, x3; x1x2, x2x3, x1x3, x2
1 − x2

2, x2
2 − x2

3; x1x2x3,

x3
1 − 3x1x

2
2, x3

1 − 3x1x
2
3, x3

2 − 3x2x
2
1, x3

2 − 3x2x
2
3, x3

3 − 3x3x
2
1, x3

3 − 3x3x
2
2;

x1x2(x
2
1 + x2

2 − 6x2
3), x1x3(x

2
1 + x2

3 − 6x2
2), x2x3(x

2
2 + x2

3 − 6x2
1)

x4
1 − 6x2

1x
2
2 + x4

2 − (x2
1 + x2

2), x4
1 − 6x2

1x
2
3 + x4

3 − (x2
1 + x2

3)

x4
2 − 6x2

3x
2
2 + x4

3 − (x2
2 + x2

3), x1x2(x
2
1 − x2

2), x1x3(x
2
1 − x2

3), x2x3(x
2
2 − x2

3).

We remind that hn(k) are given by (2.1) for k ≥ 1 and define hn(0) = 1,
hn(−1) = 0. We will use the following result in our later consideration.

Proposition 2. There exists a sequence of polynomials {Pk,m,j}, where k
and m are non-negative integers, 1 ≤ j ≤ hn(k) − hn(k − 1), such that
ΔdPk,m,j = Pk,m−1,j for m ≥ 1, ΔdPk,0,j = 0, the degree of Pk,m,j is equal to
2m + k, and for each l the polynomials {Pk,m,j, k + 2m ≤ l} form a basis of
the space of all polynomials of degree less than or equal to l.

Proof. We will construct those polynomials by induction on 2m + k. First
we define P0,0,1 = 1 and P1,0,j = xj, j = 1, ..., n. Now suppose we already

15



have all polynomials Pk,m,j with k + 2m ≤ l we will construct ones with
k + 2m = l + 1.

It follows from Theorem 6 that for each polynomial Pk,m,j with k+2m =
l−1 there exists a polynomial that we call Pk,m+1,j such that its degree is equal
to l+ 1 and ΔdPk,m+1,j = Pk,m,j. We also choose new polynomials Pl+1,0,j as
linear independent discrete harmonic polynomials of degree exactly l+1, we
have hn(l + 1) − hn(l) of them. Further, since {Pk,m,j, k + 2m = l − 1} are
linearly independent polynomials of degree l−1, we conclude that the system
{Pk,m+1,j, k+2m = l−1,m ≥ 0}∪{Pl+1,0,i} is also linearly independent.

2.1.2 Zeros of discrete harmonic polynomials

We discuss zeros of discrete harmonic polynomials and interpolation of dis-
crete harmonic functions by harmonic polynomials first for the case of di-
mension 2.

We consider the following square subdomains of the lattice. Let KN be
the domain whose interior points are

|x1| ≤ N, |x2| ≤ N.

We will also need the interior boundary of KN defined by ∂KN = KN \KN−1.
Further, let U2N , be the domain whose interior points are

|x1|+ |x2| ≤ 2N.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 2.1: Graph of K4 and U8

Figure 2.1 shows the domain K4 and U8; the points of K4 are denoted by o
and points of U8 are denoted by o ∪ ∗.
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The following statement is straightforward but it turns to be useful.

Lemma 1. If p is discrete harmonic function on U2N and p = 0 on KN then
p = 0 on U2N .

The next theorem was proved in [28] (see also [48]). We repeat the proof
given by Heilbronn and fill in the necessary details.

Theorem 7. If N is a positive integer, and if f is a discrete harmonic
function on KN ⊂ Z×Z, then there exists a discrete harmonic polynomial p
such that f = p on KN .

Proof. Let f be discrete harmonic function on the domain KN . We want to
find a discrete harmonic polynomial p such that

f(m,n) = p(m,n) for all (m,n) ∈ ∂KN .

Then by the maximum principle it will follow that f = p on KN . We note
that ∂KN consists of 4(2N + 1) − 4 = 8N points. Let po = 1 and for
each j = 1, . . . , 4N − 1 let pj,1 and pj,2 be two linearly independent discrete
harmonic polynomials of degree j; further let p4N,1 be a discrete harmonic
polynomials of the form

p4N,1 = �(x1 + ix2)
4N + polynomial of lower degree

= x4N
1 −

(
4N
2

)
x4N−2
1 x2

2 + . . .+ polynomial of lower degree.

We claim that for any f there exist constants C0, C1,1, · · · , C4N,1 such
that

f = C0p0 + C1,1p1,1 + C1,2p1,2 + · · ·+ C4N,1p4N,1 on ∂KN .

This system has a solution for any data {f(m,n), (m,n) ∈ ∂KN} if and only
if the only solution to the system

0 = C0p0 + C1,1p1,1 + C1,2p1,2 + · · ·+ C4N,1p4N,1 on ∂KN (2.3)

is the trivial one C0 = C1,1 = C1,2 = · · · = C4N,1 = 0. Assume that

q = C0p0 + C1,1p1,1 + C1,2p1,2 + · · ·+ C4N,1p4N,1

and q(m,n) = 0, for any (m,n) ∈ ∂KN . Clearly q is discrete harmonic on
KN . Since q = 0 on ∂KN , it also holds that q = 0 on U2N .
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Now let us consider q on the horizontal axis (x1, 0),

q(x1, 0) = C4N,1p4N,1(x1, 0) + · · ·+ C1,1p1,1(x1, 0) + C0p0(x1, 0)

= C4N,1x
4N
1 + polynomials of degree less than 4N.

We have q(k, 0) = 0 for k = −2N, · · · ,−1, 0, 1, · · · , 2N, while the de-
gree of q(x1, 0) does not exceed 4N . Hence q(x1, 0) = 0 and in partic-
ular C4N,1 = 0. Then q is a polynomial of degree less than or equal to
4N − 1. Similarly q(0, x2) has 4N + 1 zeros and thus q(0, x2) = 0. We
have q(x1, x2) = x1x2q1(x1, x2) where deg q1 ≤ 4N − 3. We then consider
the following polynomials q1(x1, 1), q1(x1,−1), q1(1, x2), q1(−1, x2) each of
them is of degree at most ≤ 4N −3, and each has zeros at the points −2N +
1,−2N + 2, · · · ,−1, 1, · · · , 2N − 1. Therefore q1(x1, 1) = 0, q1(x1,−1) =
0, q1(1, x2) = 0, q1(−1, x2) = 0. Hence

q1(x1, x2) = (x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1)q2(x1, x2),

where deg q2(x1, x2) ≤ 4N−7. Continuing this process we obtain polynomial
qs(x1, x2) of degree less than or equal to 4N+1−4s that has zeros at all points
(m,n) ∈ U2N if |n| ≥ s, |m| ≥ s. The polynomial qs(x1, s) has 4N − 4s + 2
roots and the same is true for qs(x1,−s), qs(s, x2), qs(−s, x2). Thus,

qs(x1, x2) = (x1 − s)(x1 + s)(x2 − s)(x2 + s)qs+1(x1, x2),

where qs+1(x1, x2) is of degree ≤ 4N − 4s − 3 and qs+1(x1, x2) has zeros at
all points (m,n) ∈ U2N such that |n| ≥ s, |m| ≥ s. Take s = N − 1, then we
have

qN−1(x1, x2) = (x1 −N + 1)(x1 +N − 1)(x2 −N + 1)(x2 +N − 1)qN(x1, x2),

where qN(x1, x2) is of degree less than or equal to 1 and it has zeros at the
points (N,N), (N,−N), (−N,−N), (−N,N). This implies that qN = 0 and
hence q = 0.

Corollary. There exists a non-zero harmonic polynomial of degree 4N with
zero values at each point of KN ⊂ Z × Z. But there is no non-zero discrete
harmonic polynomial of degree strictly less than 4N with zero values on KN .
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Proof. Let p0, p1,1, · · · , p4N,1, p4N,2 be discrete harmonic polynomials de-
fined as above. We want to find constants C0, C1,1, · · · , C4N,1, C4N,2 such
that

C0p0(a) + C1,1p1,1(a) + · · ·+ C4N,1p4N,1(a) + C4N,2p4N,2(a) = 0

for any point a = (m,n) ∈ KN .
Since we are dealing with discrete harmonic polynomials where one could

apply the maximum principle, it is enough to check the above condition on
the boundary. Thus, we have 8N + 1 unknowns and 8N equations. Which
implies that the system has a non trivial solution. Therefore there exists a
non zero harmonic polynomial of degree 4N with zero values on KN .

The second part follows from the proof of Theorem 7, where we proved
that there is no non-zero solution of equation (2.3) and thus no non-zero
polynomial of degree< 4N with zero values on KN .

2.1.3 Discrete harmonic interpolation in higher dimen-
sions

We give another proof of Theorem 7 that works in any dimension. We find
it essential to present this alternative proof since we have not succeeded in
generalizing Heilbroon’s proof to higher dimensional settings. Let us define

K
(n)
N = {(x1, ..., xn) ∈ Zn : |x1| ≤ N, ..., |xn| ≤ N}

and more generally

K
(n)
M,N = {(x1, ..., xn) ∈ Zn : |x1| ≤ M, ..., |xn−1| ≤ M, |xn| ≤ N}.

Having setting this we will prove the following.

Theorem 8. If f is a discrete harmonic function on K
(n)
N , then there exists

a discrete harmonic polynomial P on Zn, degP ≤ 6N(n− 1) + 1, such that

f = P on K
(n)
N .

We first claim that there exists a function g discrete harmonic in K
(n)
3N,N

such that f = g in K
(n)
N (for example, we can always extend a discrete

harmonic function from a rectangle [−K,K] × [−L,L] to a large rectangle
[−K,K] × [−M,M ] by adding arbitrarily values at the points on {±K} ×
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[±L + 1,±M ], and similar construction works in higher dimensions) . Fur-

ther, values of g on K
(n)
N are determined by its values on two squares K

(n−1)
3N ×

{−N + 1,−N} and we will be done if we show that there exists a discrete

harmonic polynomial that coincides with g on the setK
(n−1)
3N ×{−N+1,−N}.

By changing variables we may instead consider the set K
(n−1)
3N × {0, 1}. Fur-

thermore we can find two polynomials G0 and G1 of n − 1 variables such
that g(x, 0) = G0(x) and g(x, 1) = G1(x) when x ∈ Zn−1 (this is standard
multivariate polynomial interpolation on a grid). The polynomials G0, G1

can be chosen of degree less than or equal to 6N(n − 1). For the detail we
refer the reader to [17, Chapter 4]. So we have reduced the Theorem to the
following statement.

Lemma 2. Let G0 and G1 be polynomials of n− 1 variables with degree less
than or equal to M . Then there exists a discrete harmonic polynomial P on
Zn such that P (x, 0) = G0(x), P (x, 1) = G1(x) and the degree of P is less
than or equal to M + 1.

Proof. We first find polynomials of one variable qj that satisfy

Δdqj(t) = qj(t+ 1) + qj(t− 1)− 2qj(t) = tj−2

when j ≥ 2, qj(0) = 0 and qj(1) = 0, we have

qj(t) = cj,jt
j + cj,j−1t

j−1 + ...+ cj,1t.

We also let q0 = 1 and q1 = t. Now we look for P (x, xn) in the form

P (x, xn) =
M+1∑
j=0

qj(xn)Qj(x),

and the conditions become ΔdP (x, xn) = 0, P (x, 0) = Q0(x) = G0(x), and
P (x, 1) = Q0(x) +Q1(x) = G1(x). We have

ΔdP (x, xn) =
M+1∑
j=0

(Δdqj(xn)Qj(x) + qj(xn)ΔdQj(x)) =

M+1∑
j=2

xj−2
n Qj(x) +

M+1∑
j=0

qj(xn)ΔdQj(x)
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=
M−1∑
j=0

xj
n

(
Qj+2(x) +

M+1∑
k=j

ck,jΔdQk(x)

)
+

xM
n

M+1∑
k=M

ck,MΔdQk(x) + xM+1
n cM+1,M+1ΔdQM+1(x).

Now since Q0 and Q1 are given polynomials of degree less than or equal to
M , it is sufficient to find sequence of polynomials Q2, ..., QM+1 such that the
degree of Qj is less than or equal to M − j + 1 and

Qj+2(x) +
M+1∑
k=j

ck,jΔdQk = 0, j = 0, ...,M + 1.

Now, by comparing coefficients we treat the equations as a linear system.
Each polynomial Qj gives us unknowns (coefficients) and the total number
of unknowns we get is

M−1∑
k=0

(
n− 1 + k

n− 1

)
.

The number of equations is exactly the same. The right-hand sides for this
linear system comes from the given polynomials Q0 and Q1. To show that
there is a solution, we have to show that the relation Q0 = Q1 = 0 gives only
trivial solution Q2 = ... = QM+1 = 0. If there exists a non-trivial solution,
we choose polynomial Ql, l ≥ 2 that has the highest degree. We thus have

Ql = −
M+1∑
k=l−2

ck,l−2ΔdQk,

which is not possible, since the degree of the polynomial on the left-hand
side is greater than the degree of the one on the right-hand side.

The difference between Theorem 8 and Theorem 7 is that in the latter
we get exact degree of the polynomial and the solution is unique, while the
former gives a non-unique solution but holds in any dimension. There exists
also a more constructive way to find the interpolation polynomial using the
basis described in Proposition 2. Applications of such discrete harmonic
polynomial interpolation can be found in [48].
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We remark also that the discrete Laplacian has no rotational invariant
structure and discrete harmonic polynomials seem to be not so natural as in
the continuous case, where they correspond to eigenfunctions on the Laplace–
Beltrami operator on the unit sphere. For discrete harmonic functions on a
cube a more natural basis is obtained by taking products of eigenfunctions
on the base of the cube and some exponential function of the last variable as
it is described in Chapter 3.

2.2 Liouville’s theorem and its generalizations

2.2.1 Liouville’s theorem

We introduce the following notation for the directional forward difference of
the function f in Zn;

djf(x) = f(x+ ej)− f(x) for 1 ≤ j ≤ n,

where e1, e2, . . . , en are the standard coordinate vectors for Zn.
The following theorem is a well known discrete analog of the Liouville’s

theorem.

Theorem 9. If f is discrete harmonic everywhere and satisfies the inequality

|f(x)| ≤ M (2.4)

for all x, where M is a constant, then f is a constant.

Proof. We follow the proof given in [28]. We assume that

d1f(x) = g(x) (2.5)

is not zero everywhere. Since |g(x)| ≤ 2M, there exists m such that m =
supx |g(x)| then

|g(x)| ≤ m ≤ 2M, (2.6)

everywhere, and for any ε > 0 there exists x such that g(x) > m− ε.
We choose an integer l such that lm > 2M, and a positive δ such that

l(m− (2n)lδ) > 2M. Then we can find a point x(0) such that

g(x(0)) > m− δ. (2.7)
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We put x(λ) = x(0) + λe1 for 0 < λ ≤ l. Then since g is discrete harmonic,

2ng(x(0)) =
n∑

j=1

[
g(x(0) + ej) + g(x(0) − ej)

]
=

g(x(1))+ g(x0− e1)+ g(x0+ e2)+ g(x0− e2)+ · · ·+ g(x0+ en)+ g(x0− en).

Therefore
2ng(x(0)) ≤ (2n− 1)m+ g(x(1))

and by (2.7), we have g(x(1)) ≥ m−2nδ. Applying the same argument again,
we obtain by induction for 0 ≤ λ ≤ l

g(x(λ)) ≥ m− (2n)λδ.

Hence

2M ≥ f(x(l))− f(x(0)) =
l−1∑
λ=0

g(x(λ)) ≥
l−1∑
λ=0

(m− (2n)λδ)

> l(m− (2n)lδ) > 2M

which is the desired contradiction. Therefore f is constant.

2.2.2 A generalization of Liouville’s theorem

It turns out that the Liouville theorem remains true if one assume bounded-
ness from below only. The following statement is well known, most famous
proof (in dimension two) is probably the probabilistic one. We avoid random
walks in this exposition and give an elementary proof (also well known in
folklore).

Theorem 10. If f : Zn → R is discrete harmonic function and f ≥ 0 then
f is a constant.

Proof. Consider the set A of all non-negative discrete harmonic functions u
on Zn that satisfy u(0) = 1. Let

M2 = sup
u∈A

n∑
j=1

(
u(ej)

2 + u(−ej)
2
)
,
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where {ej}nj=1 are as usual standard basis vectors. Then for any non-negative
discrete harmonic function f one has

M2f(x)2 ≥
n∑

j=1

(
f(x+ ej)

2 + f(x− ej)
2
)
. (2.8)

First we claim that there exists u0 ∈ A for which the supremum above
is achieved (and thus it is finite). Indeed, let ui be a sequence of discrete
harmonic functions for which

n∑
j=1

(
ui(ej)

2 + ui(−ej)
2
) → M2.

We can find a subsequence uik such that uik(x) converges for any x ∈ Zn.
Note that the conditions u(0) = 1 and u ≥ 0 imply that u(x) ≤ C(x) for any
x ∈ Zn. If x and y are two neighboring points, then u(x) ≥ (2n)−1u(y). Thus
we can take C(x) = (2n)−m, where m is the length of the shortest path from
0 to x. Now applying the Heine–Borel theorem and the standard diagonal
procedure we find a required subsequence. Let u0(x) = limk uik(x). Then
clearly u0(0) = 1, u0 is discrete harmonic and

n∑
j=1

(
u0(ej)

2 + u0(−ej)
2
)
= M2.

Now let g+k (x) = (2n)−1u0(x+ ek) and g−k (x) = (2n)−1u0(x− ek), we have
u0 =

∑
k(g

+
k + g−k ). Then by triangle inequality and (2.8), we have

M = ‖(u0(±ej)‖2 =
∥∥∥∥∥∑

k

(g+k (±ej) + g−k (±ej))

∥∥∥∥∥
2

≤∑
k

(∥∥g+k (±ej)‖2 + ‖g−k (±ej)
∥∥
2

) ≤ M
∑
k

(g+k (0) + g−k (0)) = M.

But the equality in the triangle inequality occurs only when all vectors are
proportional. Thus

g+k (±ej) = c+k u0(±ej), g−k (±ej) = c−k u0(±ej),

which also implies g±k (0) = c±k since all these functions are discrete harmonic.
Then

1 = u0(0) = 2ng+j (−ej) = 2nc+j u0(−ej) = (2n)2c+j g
−
j (0) = (2n)2c+j c

−
j .
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Finally

u0(0) =
∑
k

(g+k (0) + g−k (0)) =
∑
k

c+k + c−k ≥
∑
k

2
√
c+k c

−
k =

∑
k

d−1 = 1.

Here the equality holds only if c+j = c−j = (2n)−1. Then u0(±ej) = 1 and
M2 = 2n.

For any non-negative discrete harmonic function satisfying condition (2.8)
with M2 = 2n implies

n∑
j=1

(
(f(x+ ej)− f(x))2 + (f(x− ej)− f(x))2

) ≤ 0,

from which it follows that f is a constant.

2.2.3 Discrete harmonic functions of polynomial growth

In this section we present generalizations of the Liouville theorem for discrete
harmonic functions of polynomial growth. The results can be found in [28, 37,
38]. We suggest a different approach based on estimates of the Poisson kernel
for a cube. Similar estimates are used in Chapter 5 to prove quantitative
unique continuation for discrete harmonic functions.

Let QR = [−R,R]n ∩ Zn. Therefore there exists a function PR : QR ×
∂QR → [0, 1] such that for any discrete harmonic function u on QR we have

u(x) =
∑

y∈∂QR

PR(x, y)u(y).

One can find PR(·, y0) as the solution of the Dirichlet problem⎧⎪⎨⎪⎩
ΔPR(·, y0) = 0,

PR(y, y0) = 0, y ∈ ∂QR \ {y0},
PR(y0, y0) = 1.

This function appears in different combinatorial and geometric problems. We
refer the reader to [12] for modern treatment. Here we use only an elementary
identity

∑
y∈∂QR

PR(x, y) = 1 and the following estimates.

Lemma 3. There exists c0, c1 and c2 that depend only on n such that for all
R ≥ 2
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(i) PR(x, y) ≤ c0R
1−n, when x ∈ QR

2
,

(ii) |PR(ej, y)− PR(0, y)| ≤ c1R
−n and

(iii) PR(0, y0) ≥ c2R
1−n, when y0 = Rej.

Proof. Without loss of generality, we assume that y = (y1, . . . , yn−1, R). For
each K = (k1, . . . , kn−1) ∈ ((0, 2R) ∩Z)n−1 = �1, 2R− 1�n−1 we define aK to
be the only positive solution of the equation

cosh
aK
2

= n−
n−1∑
j=1

cos
πkj
2R

.

Then

fK(x) = sinh(aK(xn +R)/2)
n−1∏
j=1

sin(πkj(xj +R)/2R)

is discrete harmonic and vanishes on all sides of the cube QR in Zn except
the one where y lies. Then

PR(x, y) =

(
1

R

)n−1∑
K

n−1∏
j=1

sin

(
πkj

xj +R

2R

)
sin

(
πkj

yj +R

2R

)
sinh

(
aK

xn+R
2

)
sinh aKR

.

It is easy to check that this function is discrete harmonic in the cube QR

and satisfies the required boundary conditions. In fact, it vanishes when
xj = ±R and j �= n and when xn = −R, to compute the values of PR(x, y)
when x = (x1, ..., xn−1, R) we note that for this case

PR(x, y) = R1−n

n−1∏
j=1

2R−1∑
kj=1

sin

(
πkj

xj +R

2R

)
sin

(
πkj

yj +R

2R

)
.

But discrete sin functions that we consider are orthogonal when xj �= yj,

2R−1∑
k=1

sin

(
πk

xj +R

2R

)
sin

(
πk

yj +R

2R

)
= Rδ(xj, yj),

where δ(x, y) = 0 when x �= y and δ(x, y) = 1 when x = y.
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We first prove the inequality in (i). We have

Rn−1PR(x, y) =∣∣∣∣∣∑
K

n−1∏
j=1

sin

(
πkj

xj +R

2R

)
sin

(
πkj

yj +R

2R

)
sinh

(
aK

xn+R
2

)
sinh aKR

∣∣∣∣∣
≤
∑
K

∣∣∣∣∣sinh
(
aK

xn+R
2

)
sinh aKR

∣∣∣∣∣ ≤ ∑
K

exp (aK(xn −R)/2) ≤
∑
K

exp

(−aKR

4

)
.

We note that aK ≥ 2 or(aK
2

)2

≥ cosh
aK
2

− 1 =
n−1∑
j=1

(1− cos
πkj
2R

) ≥ 1

4R2

n−1∑
j=1

k2
j ,

we used elementary inequalities 1+x2 ≥ cosh x, for x ∈ [0, 1) and 1−cos x ≥
x2

π2 for x ∈ [0, π) . Thus either aK ≥ 2 or aK ≥ ‖K‖R−1, where

‖K‖2 =
∑
j

k2
j ≥

1

n− 1

(∑
j

kj

)2

.

We then obtain∑
K

exp (−aKR/4) ≤
∑
K

(exp(−‖K‖ /4) + exp(−R/2)) ≤∑
K

exp(−‖K‖ /4) +
∑
K

exp(−R/2) ≤( ∞∑
k=1

exp

(
− k

4
√
n− 1

))n−1

+ (2R)n−1 exp(−R/2) ≤ Cn,

where the constant Cn depends only on n but not R, and from which the
statement in (i) follows.

To prove (ii), assume first that j �= n. Then we have

Rn−1|PR(ej, y)− PR(0, y)| ≤∑
K

∣∣∣∣(sin(πkjR + 1

2R

)
− sin

(
πkj
2

))∣∣∣∣ exp(−aKR

2

)
≤

πR−1
∑
K

kj exp

(
−aKR

2

)
.
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The same argument as above shows that the last sum is finite. For j = n,
we have

Rn−1|PR(en, y)− PR(0, y)| ≤
∑
K

sinh(aK(R + 1)/2)− sinh(aKR/2)

sinh aKR
≤

C
∑
K

sinh
aK
4

exp

(
−aKR

2

)
≤ C

∑
K

aK exp

(
−aKR

4

)
.

Now, using the formula for aK we see that

a2K ≤ 8(cosh
aK
2

− 1) ≤ π2

R2

∑
j

k2
j ≤

π2n

R2

∏
j

k2
j .

Finally,

|PR(en, y)− PR(0, y)| ≤ CR−n
∑
K

∏
j

kj exp

(
−aKR

4

)
and the last sum is finite.

It remains to verify the inequality in (iii). To do this we assume that
j = n and let K0 = (1, ...1). Then aK0R ≤ π

√
n and

PR(0, y0) =

R1−n
∑
K

n−1∏
j=1

sin(πkj/2)
2(2 cosh aKR/2)−1 ≥ R1−n

2 cosh aK0R/2
≥ c2R

1−n.

Now we can prove the following.

Lemma 4. Let f : Zn → R be a discrete harmonic function. Suppose there
exists a polynomial W : Zn → R such that f ≥ −W. Then |f | ≤ R for some
polynomial R : Zn → R.

Proof. Let y1 = y0 + Rej. Applying the Poisson formula to a cube y0 +QR,
we obtain

f(y1) ≤ PR(0, Rej)
−1

⎛⎝f(y0) +
∑

y∈∂QR\{y1−y0}
PR(0, y)|W (y0 + y)|

⎞⎠ ≤

c−1
2 Rn−1(f(y0) + c0 max

y0+QR

|W |).

28



The inequality with y0 = 0 and y1 = R1e1 implies that |f(R1e1)| is bounded
by a polynomial in R1. Now we repeat the same argument for y0 = R1e1
and y1 = R2e2, iterating n times we conclude that |f(y)| is bounded by a
polynomial in |y|.

For probabilistic proof of Lemma 4 we refer the reader to a recent work
[38]. The next Theorem was stated and proved in [28].

Theorem 11. If f is discrete harmonic function everywhere and satisfies
the inequality

f(x) = O
(
1 + (|x1|+ . . .+ |xn|)N

)
everywhere, where N is an integer, then f is a polynomial of degree not
exceeding N.

The proof is done by induction on N . For N = 0 it is the Liouville
theorem. For N ≥ 1 we consider d1f(x) = f(x+e1)−f(x) and use inequality
(ii) of Lemma 3 to conclude that for d1f a similar estimate holds with N−1.
Now by the induction hypothesis d1f is a polynomial of degree less then or
equal to N − 1, we have d1f(x1, ..., xn) = P0(x2, ..., xn) + x1P1(x2, ..., xn) +
... + xN−1

1 PN−1(x2, ..., xn). For each k there exists a polynomial sk(x1) of
degree k + 1 such that d1sk = xk

1. Then

f(x1, ..., xn) =
N−1∑
k=0

sk(x1)Pk(x2, ..., xn) + g(x2, ..., xn).

Further, we have Δdg(x2, ..., xn) = Q(x2, .., xn) is a polynomial of degree
less than N − 2, as it was proved in the beginning of this chapter, there
exists a discrete harmonic polynomial S(x2, ..., xn) of degree less than or
equal to N such that ΔdS = Q. We have Δd(g − S) = 0 and g − S =
O(1+ (|x2|+ ...+ |xn|)N). We reduced the problem to the same one in n− 1
dimension. Clearly in dimension 1 any harmonic function is linear and the
statement holds. Then by induction in n it holds in any dimension.

We conclude this chapter by the following one-sided polynomial Liouville
theorem.

Theorem 12. Let f : Zn → R be a discrete harmonic function. Suppose
there exists a polynomial W : Zn → R of degree N such that f ≥ −W. Then
f is a polynomial and deg f ≤ N .
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Proof. We already know that f is a polynomial and assume that deg f =
M > N. Then f = H + Q, where ΔH = 0, H is homogeneous of degree
M and degQ < degH. Hence we have H + (Q + W ) ≥ 0 on Zn, where
deg (Q+W ) < degH. Since there are no non-constant positive harmonic
functions (continuous version of Theorem 10), there exists a set U on the
sphere Sn−1 such that H < −c < 0 on U . Clearly there exists an unbounded
sequence of points xm ∈ Zn such that xm/|xm| ∈ U . Then we have

c|xm|M < −H(xm) ≤ (Q+W )(xm).

This is a contradiction since Q + W is a polynomial of degree strictly less
than M and for |xm| large enough the opposite inequality holds.
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3 Stability estimates for discrete har-
monic functions on product domains

We study the Dirichlet problem for discrete harmonic functions in unbounded
product domains on multidimensional lattices. First we prove some versions
of the Phragmén–Lindelöf theorem, and use Fourier series to obtain a discrete
analog of the three-line theorem for the gradients of harmonic functions in
a strip. Then we derive some inequalities for the discrete harmonic measure
and also use elementary spectral inequalities to obtain stability estimates for
Dirichlet problem in cylinder domains.

3.1 Introduction

We consider functions defined on subsets of the multidimensional lattice
(δZ)n in Rn. The usual 2n + 1-point discretization of the Laplace operator
is denoted by Δn or Δn,δ to emphasize the mesh of the lattice, the accurate
definition is given below. Then we study the following Dirichlet problem

Δnu = 0,

u = f on ∂Dδ,

u ∈ Hb(D
δ),

where Hb(D
δ) is some class of functions of bounded growth in Dδ, and Dδ is

an unbounded connected (on the lattice) subset of (δZ)n. Our main question
is for which Hb(D

δ) the problem above has a unique solution. Moreover,
when the solution is unique we estimate how the error in the boundary data
affects the error of the solution. Such estimates are called conditional stability
estimates. We suppose a priori that solution belongs to Hb(D

δ). Since our
problem is linear, stability estimate reduces to a bound of some norm of the
solution u ∈ Hb(D) by some norm of its boundary values f .

First, we prove that if D = Ω×Rk, where Ω is a bounded domain in Rn,
and u is a discrete harmonic function in Dδ = D ∩ (δZ)n+k that satisfies

|u(x, y)| ≤ C exp (c‖y‖1)
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for some c = c(Ω, k), and u = 0 on ∂Dδ then u = 0 (here and in what
follows ‖y‖1 = |y1| + ... + |yk|, and ‖y‖∞ = max {|y1| , . . . , |yk|} where
y = (y1, ..., yk) ∈ Rk). We refer to this statement as a discrete version
of the Phragmén–Lindelöf theorem. It implies the uniqueness in the Dirich-
let problem in the class of functions of limited growth. We consider more
carefully the case Ω = [0, 1] and solve the Dirichlet problem using Fourier
analysis when the boundary data is in l2. We obtain

‖u(x, .)‖l2 ≤ ‖f‖l2 .
We also use this technique to show that gradients of discrete harmonic func-
tions satisfy the following three-line inequality that resembles three-line the-
orem of Hadamard,

‖∇u(δk, ·)‖l2(Zk) ≤ (‖∇u(0, ·)‖)1− k
M (‖∇u(δM, ·)‖) k

M ,

where (M +1)δ = 1. Both the Phragmén–Lindelöf theorem and Hadamard’s
three line theorem are classical results in complex analysis (for example see
[45]). Here we want to underline that the result is precise and it is an analog
of the continuous theorem proved in [30], the proof is similar but requires a
new algebraic identity.

To obtain conditional stability estimates for Dirichlet problem with par-
tial boundary data (see Theorem 17), we study the discrete harmonic measure
in the truncated domains Ω× [−N,N ]. We also use elementary properties of
the spectrum of the discrete Dirichlet–Laplacian on Ω and some comparison
results that can be found in [5, 16]. In particular, we show that if u grows
slower than some exponential function, then the maximum principle holds
for the infinite cylinder domain.

The remaining part of this Chapter is organized as follows. In the next
section we give necessary definitions and results for discrete harmonic func-
tions, including basic properties of the eigenvalues and eigenfunctions of the
discrete Laplace operator with Dirichlet boundary condition. We also prove
a simple version of the Phragmén–Lindelöf theorem for product domains. In
Section 3.3 we use Fourier analysis to study discrete harmonic functions in a
strip, in particular we obtain the logarithmic convexity inequality. Our main
stability result for the Dirichlet problem in an infinite cylinder is proved in
the last section. It follows from estimates of discrete harmonic measure and
a more accurate version of the Phragmén–Lindelöf theorem. This Chapter is
based on paper [26].
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3.2 Preliminaries

3.2.1 Discrete harmonic functions

Suppose that u is a function defined on a subset of the lattice (δZ)n. Then
the δ-discrete Laplacian of u is defined by

Δδu(x) = Δδ,nu(x) = δ−2

(
n∑

j=1

(u(x+ δej) + u(x− δej))− 2nu(x)

)
,

where e1, e2, ..., en is the standard coordinate basis for Zn and −Δδ coin-
cides with the combinatorial Laplacian of the lattice where the conductance
associated to each edge equals δ−2. This is the discrete version of the Laplace–
Beltrami operator in Riemannian manifolds. We refer the reader to T.
Biyikoglu, J. Leydold, P. Stadler [5] for the details. Potential theory on
finite networks is an active area of investigation, see for example [4] and the
references therein.

Definition. A function u is called δ-discrete harmonic at a point x of the
lattice (δZ)n if it is defined at x together with all its neighbors and satisfies
the equation

Δδu(x) = 0.

So the value of a discrete harmonic function at a lattice point is the average
of its values at the 2n neighboring points.

Discrete harmonic functions share many properties of continuous ones.
For example results on the maximum principle, solution to the Dirichlet
problem, Green’s function, and Liouville’s theorem can be found in the very
first articles on the subject, see also Y. Colin de Verdiére [13] and C. Kiselman
[31] for more recent surveys and more general discrete structures. On the
other hand, not all results about continuous harmonic functions are easily
generalized to the discrete case. For example zero sets of discrete harmonic
functions are difficult to compare to those of continuous ones. For any finite
square there exists a discrete harmonic polynomial that vanishes at each
lattice point of this square. We study growth properties of discrete harmonic
functions in cylinders and strips and provide accurate estimates that show
to which extend continuous theorems can be generalized to solutions of the
discrete equation that arises in the simplest numerical scheme.
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We consider discrete harmonic functions on subsets of (δZ)n. A subset
Dδ is called a (discrete) domain if it is connected, i.e., for any two points x
and y in Dδ there exists a sequence {x0, x1, . . . , xs} such that x0 = x, xs =
y, xj ∈ Dδ, xj and xj+1 are neighboring points of the lattice (δZ)n.

A point x ∈ (δZ)n \Dδ is called a boundary point of Dδ if at least one of
the 2n neighbors of x is in Dδ. We denote the set of boundary points of Dδ

by ∂Dδ, we also use the notation Dδ = Dδ ∪ ∂Dδ. A domain is called finite
if it contains only finite number of points, otherwise it is called infinite.

Definition. A function u defined on Dδ∪∂Dδ is called δ-discrete subharmonic
(superharmonic) in Dδ if Δδu ≥ 0 (≤ 0) in Dδ.

Clearly, a function is harmonic in Dδ if it is both subharmonic and su-
perharmonic. The following Maximum principle holds

Theorem. If u is δ-discrete subharmonic in a finite domain D, then

max
D

u = max
∂D

u.

Simple examples show that the maximum principle does not hold for
infinite domains.

3.2.2 Eigenvalues and eigenfunctions for the discrete
Dirichlet-Laplacian

In order to prove a version of the Phragmén–Lindelöf theorem for discrete
subharmonic functions in cylindrical domains, we need some basic facts about
eigenfunctions and eigenvalues of the discrete Dirichlet problem for the Lapla-
cian on the base of the cylinder.

Let Ω be a bounded domain Rn, n ≥ 1, with Lipschitz boundary and
let Ωδ = Ω ∩ (δZ)n. We always assume that δ < δ0 is small enough such
that Ωδ is a discrete connected set. We study δ-discrete harmonic functions
that are defined on the product domain Dδ(Ω) = Ωδ × (δZ)k and vanish on
the boundary. We consider the eigenvalues of the continuous n-dimensional
Dirichlet–Laplacian on Ω, {λj(Ω)} and the eigenvalues of the correspond-
ing discrete operators. It is known (see for example [5] or [16]) that the
eigenvalues of the following problem{ −Δδ,nf = λf in Ωδ

f = 0 on ∂Ωδ

34



are positive, 0 < λδ
1 < λδ

2 ≤ . . . ≤ λδ
Kδ , the first eigenvalue is simple and the

corresponding eigenfunction f δ
1 can be chosen strictly positive in Ωδ. The

last statement is the analog of the classical result on the first eigenfunction
of Dirichlet–Laplacian, see [15, §6, ch VI]. For the discrete operator it follows
from the Perron–Frobeniuos theorem on positive matrices, see for example
[5, Corollary 2.23] . Clearly Kδ is finite in the discrete case and equals the
number of points of Ωδ.

It is also known that λδ
k(Ω

δ) → λk(Ω) as δ → 0. We don’t discuss the
limit arguments in this article, but we indicate which of our estimates survey
the limit passage as δ → 0.

The eigenvalues λδ
k(Ω

δ) are given by the following minimax principle, see
[5, Corollary 2.6],

λδ
k(Ω

δ) = min
w∈Wk

max
0 �=g∈w

〈
g, Lδ

Ωg
〉

〈g, g〉 ,

where Wk denotes the set of subspaces of dimension at least k and Lδ
Ω is the

δ-discrete Dirichlet-Laplacian of Ω. This readily implies that if Ω′ ⊃ Ω then

λδ
k(Ω

′) ≤ λδ
k(Ω). (3.1)

We denote by N δ
Ω the counting function, N δ

Ω(λ) equals the number of eigen-
values λδ

k(Ω) that are less than or equal to λ. Then (3.1) implies

N δ
Ω′(λ) ≥ N δ

Ω(λ). (3.2)

3.2.3 Eigenvalues for the cube

We need some estimates of the growth of the eigenvalues λδ
j(Ω) to prove

a precise version of the Phragmén–Lindelöf theorem in the last section of
this Chapter. We obtain them by comparing the eigenvalues to those of a
large cube Q containing Ω. The latter ones can be found explicitly. Let
QR = (0, R)n, where R ∈ N and let M = 1/δ ∈ N. We consider the following
problem { −Δδ,nf = λf in Qδ

R

f = 0 on ∂Qδ
R.

This is an eigenvalue problem for a matrix of the size (Rδ−1−1)n×(Rδ−1−1)n.
Let J = {1, 2, ..., Rδ−1 − 1}, for any k ∈ Jn, k = (k1, ..., kn) the function

fk(x1, ..., xn) =
n∏

j=1

sin
kjπ

R
xj
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is an eigenfunction and the corresponding eigenvalue is

λδ
k
= 2δ−2

(
n−

n∑
j=1

cos
kjπδ

R

)
.

Using the elementary inequality 1 − cosx ≥ 2π−2x2, when x ∈ (0, π) we
obtain

λδ
k
≥ 4R−2

n∑
j=1

k2
j .

We use the following elementary inequality for the counting function for the
cube

N δ
QR

(λ) ≤ Cn(R)(λn/2 + 1), (3.3)

where the constant does not depend on δ. This inequality is an illustration of
the Weyl’s asymptotic for the counting function for eigenvalues of Dirichlet–
Laplacian.

3.2.4 Phragmén–Lindelöf theorems in cylindrical do-
mains

Let Ω be a bounded subdomain of Rn and Dδ = Ωδ × (δZ)k. Clearly,
Δδ,n+ku(x, y) = Δδ,nu(x, y) + Δδ,ku(x, y), where the first Laplacian is tak-
ing with respect to x-variables and the second with respect to y-variables.
Let f δ

1 be the first eigenfunction of the Dirichlet–Laplacian in Ωδ defined
above. As we noted f δ

1 is strictly positive on Ωδ and we have the following
positive harmonic function in Dδ

uδ(x, y) = f δ
1 (x) cosh b

δy1 cosh b
δy2... cosh b

δyk,

where

cosh δbδ = 1 +
1

2k
δ2λδ

1. (3.4)

In the discrete setting the function f δ
1 is strictly positive; this makes the

proof of our first theorem of Phragmén–Lindelöf type more simple than the
proof of a similar result for continuous functions, see for example [8, 36, 50].

Theorem 13. Let v be a δ-discrete subharmonic function in Dδ such that
v ≤ 0 on ∂Ωδ×(δZ)k. Let λδ

1 be the first eigenvalue of the δ-discrete Dirichlet
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problem for the Laplacian in Ω and bδ be the positive solution to the equation
cosh δbδ = 1 + 1

2k
δ2λδ

1. Suppose that

v(x, y) ≤ o(1) exp(bδ‖y‖1), when ‖y‖1 → ∞.

Then v ≤ 0 on Dδ.

Proof. We want to compare v(x, y) to a multiple of uδ(x, y) on Ω
δ×[−N,N ]k .

On the part of the boundary ∂Ωδ × (δZ)k we have v ≤ 0 and uδ = 0 because
f δ
1 = 0 on ∂Ωδ. On the other part of the boundary, ‖y‖1 ≥ N and

v(x, y) ≤ CN exp(bδ‖y‖1) ≤ 2kCN

minΩδ f δ
1

uδ(x, y),

where CN → 0 as N → ∞.
The maximum principle for subharmonic functions implies that

v(x, y) ≤ 2kCN

minΩδ f δ
1

uδ(x, y), where x ∈ Ωδ, y ∈ (δZ)k, ‖y‖∞ ≤ N.

Now if we fix (x, y) and let N grow to infinity, we obtain v(x, y) ≤ 0.

The theorem holds for subharmonic functions with all estimates from
above only. If we have a discrete harmonic function h and apply the above
statement to h and −h we obtain the uniqueness for the Dirichlet problem
in Dδ in the class of functions

Hb(D
δ) = {u : Dδ → R : |u(x, y)| = o(exp(bδ‖y‖1)), ‖y‖1 → ∞}.

Corollary. Let u and v be δ-discrete harmonic functions on Dδ such that
u, v ∈ Hb(D

δ). If u = v on ∂(Ωδ)× (δZ)k then u = v on Dδ.

Proof. Let g = u − v. Then g is δ-discrete harmonic in Dδ and g = 0 on
∂(Ωδ)× (δZ)k. Moreover |g(x, y)| ≤ |u(x, y)|+ |v(x, y)| and therefore

|g(x, y)| ≤ CN exp(bδ‖y‖1), when ‖y‖1 ≥ N,

where CN → 0 as N → ∞. Then g ≤ 0 on Dδ by Theorem 13. In the same
way we obtain −g ≤ 0 and thus u = v.

We note that bδ → √
λ1(Ω)/k when δ → 0, however Theorem 13 does

not survive a limit argument as δ → 0. In the last section we provide an
estimate for δ-discrete harmonic functions in truncated cylinders that allow
us to prove a more accurate version of the Phragmén–Lindelöf theorem.

37



3.3 Discrete harmonic functions on strips

In this section we study quantitative uniqueness for discrete harmonic func-
tions and their gradients on strips S = (0, 1)×Rn. We remark that eigenval-
ues of Dirichlet–Laplacian on [0, 1]δ are λδ

l = 2δ−2(1−cos 2πlδ). In particular
the Phragmén–Lindelöf theorem proved in the last section implies the unique-
ness in the Dirichlet problem for discrete harmonic functions that satisfy

|u(x, y)| = o(exp(bδ‖y‖1)), ‖y‖1 → ∞ (3.5)

where

cosh δbδ =
n+ 1

n
− 1

n
cos 2πδ. (3.6)

3.3.1 Tempered harmonic functions in a strip

Now we consider tempered harmonic functions in the strip and use the Fourier
representation to solve the Dirichlet problem.

Definition. Let u be a δ−discrete function on Sδ. Then u is said to be tem-
pered if

1/δ∑
k=0

∑
j∈Zn

|u(δk, δj)|2 < ∞.

Theorem 14. Let u be a δ-discrete harmonic function in Sδ such that (3.5)
holds, and δ−1 = L for some positive integer L. Suppose that∑

j∈Zn

|u (0, δj)|2 < ∞ and
∑
j∈Zn

|u (1, δj)|2 < ∞.

Then {u (δk, δj)}j∈Zn ∈ l2 (Zn) for each k = 1, 2, . . . , L− 1, and∑
j∈Zn

|u(δk, δj)|2 ≤
∑
j∈Zn

|u(0, δj)|2 +
∑
j∈Zn

|u(1, δj)|2.

Proof. Let

ϕ0 (t) =
∑
j∈Zn

u (0, δj) e2πij·t, and ϕL (t) =
∑
j∈Zn

u (1, δj) e2πij·t

for t ∈ [0, 1]n. Then ϕ0, ϕL ∈ L2 ([0, 1]n).
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For each t ∈ [0, 1]n we define q such that q(t) ≥ 1 and

q(t) + q(t)−1 = 2(n+ 1)− 2
n∑

l=1

cos 2πtl.

More precisely q(t) = λ(t)+
√

λ2(t)− 1 and then q(t)−1 = λ(t)−√
λ2(t)− 1,

where

λ(t) = n+ 1−
n∑

l=1

cos 2πtl.

Now for k = 1, ..., L− 1 we consider

ϕk (t) =
q(t)k − q(t)−k

q(t)L − q(t)−L
ϕL (t) +

q(t)L−k − q(t)L−k

q(t)L − q(t)−L
ϕ0 (t) .

Since q ≥ 1, we have

q(t)k − q(t)−k ≤ q(t)L − q(t)−L, and q(t)L−k − q(t)−L+k ≤ q(t)L − q(t)−L.

Then ϕk ∈ L2 ([0, 1]n) and ‖ϕk‖2 ≤ ‖ϕ0‖2 + ‖ϕL‖2. Thus

ϕk (t) =
∑
j∈Zn

v (k, j) e2πij·t,

where {v (k, j)}j∈Zn ∈ l2 (Zn) . Remark that

q (t) =
1 + q2 (t)

2λ (t)
and therefore qk (t) =

qk−1 (t) + qk+1 (t)

2λ (t)
.

Then

ϕk (t) =
ϕk−1 (t) + ϕk+1 (t)

2λ (t)

and

ϕk =
1

2(n+ 1)

[
ϕk+1 + ϕk−1 + ϕk

(
n∑

l=1

e2πitl + e−2πitl

)]
.

Hence the Fourier coefficients v (k, j) satisfy

v (k, j) =
v (k − 1, j) + v (k + 1, j) +

∑n
l=1 (v (k, j − el) + v (k, j + el))

2(n+ 1)
.
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It means that v is a discrete harmonic function on [1, L− 1]× Zn. We have
that v (0, j) = u (0, δj) and v (L, j) = u (1, δj) . Note also that

|v (k, J)|2 ≤
∑
j∈Zn

|v (k, j)|2 = ‖ϕk‖2L2([0,1]n) ≤(
‖ϕ0‖L2([0,1]n) + ‖ϕL‖L2([0,1]n)

)2

.

Thus v (k, J) is bounded, in particular |v (k, y)| = o
(
exp(bδ‖y‖1)

)
when

‖y‖1 → ∞. Finally, by Corollary in Section 3.2.4 we have v (k, j) = u (δk, δj)
and {u (δk, δj)}j∈Zn ∈ l2 (Zn) with the required estimate.

Remark. We have also proved that if u is a δ-discrete harmonic function on
Sδ that is square-summable along the hyperplanes {δk} × (δZ)n, then there
exist two functions a1, a2 ∈ L2 ([0, 1]n) such that

u(δk, δj) =

∫
[0,1]n

(
a1(t)q(t)

k + a2(t)q(t)
−k
)
e−2πj·tdt, (3.7)

where q is defined by q(t) ≥ 1,

q(t) + q−1(t) = 2(n+ 1)− 2
n∑

l=1

cos 2πtl.

Reviewing the computations in the proof of the lemma, we see that

a1(t) =
ϕL(t)− q(t)−Lϕ0(t)

q(t)L − q(t)−L
, a2(t) =

q(t)Lϕ0(t)− ϕL(t)

q(t)L − q(t)−L
.

Thus the theorem provides a constructive procedure for solution of the
Dirichlet problem for tempered harmonic function in a strip as well as a
stability estimate for this procedure.

3.3.2 Three line theorem for discrete harmonic func-
tions

In this subsection we prove a three line theorem for the gradients of discrete
harmonic functions, the corresponding continuous result and its connections
to the interpolation theory can be found in [30].
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Definition. Let u be a δ-discrete function on a subdomain of the lattice
(δZ)n+1. Its discrete partial derivatives are defined by

ux(x, y) = δ−1 (u (x+ δ, y)− u (x, y)) and

uyl(x, y) = δ−1 (u (x, y + δel)− u (x, y)) .

For the case of the strip S = [0, 1]×Rn all partial derivatives in y-variables
are defined on the same domain, while ux is defined on [0, 1− δ]×Rn.

Definition. The discrete gradient of a discrete function u on a subdomain of
the lattice (δZ)n+1 is defined as

∇u(x, y) = (ux(x, y), uy1(x, y), uy2(x, y), . . . , uyn(x, y)) .

Theorem 15. Let u be a δ-discrete harmonic function in [0, 1]×Rn, δ−1 =
M + 1 for some positive integer M . Suppose that u satisfies (3.5) and

{u (0, δj)}j∈Zn ∈ l2 (Zn) , {u (1, δj)}j∈Zn ∈ l2 (Zn) .

Let further

m (k) = δ2 ‖ux (δk, δj)‖2l2(Zn)+δ2
n∑

l=1

‖uyl (δk, δj)‖2l2(Zn) for k = 0, 1, . . . , M.

Then
m (k) ≤ (m (0))1−

k
M (m (M))

k
M .

Proof. Using formula (3.7) and the definition of the partial derivatives, we
get

ux(δk, δj) =

δ−1

∫
[0,1]n

(
a1(t)q(t)

k(q(t)− 1) + a2(t)q(t)
−k(q(t)−1 − 1)

)
e−2πj·tdt,

and

‖ux(δk, δj)‖2l2(Zn) = δ−2‖a1(t)q(t)k(q(t)−1)+a2(t)q(t)
−k(q(t)−1−1)‖2L2([0,1]n).

Further,

uyl(δk, δj) = δ−1

∫
[0,1]n

(
a1(t)q(t)

k + a2(t)q(t)
−k
)
e−2πj·t(e−2πtl − 1)dt,
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‖uyl(δk, δj)‖2l2(Zn) = δ−2‖(a1(t)q(t)k + a2(t)q(t)
−k)(e−2πtl − 1)‖2L2([0,1]n).

Then, adding up the identities above, we get

m(k) = δ2 ‖ux (δk, δj)‖2l2(Zn) + δ2
n∑

l=1

‖uyl (δk, δj)‖2l2(Zn) =∥∥a1 (t) q(t)k (q(t)− 1) + a2 (t) q(t)
−k

(
q(t)−1 − 1

)∥∥2

L2([0,1]n)
+

n∑
l=1

∥∥a1 (t) q(t)k (e−2πitl − 1
)
+ a2 (t) q(t)

−k
(
e−2πitl − 1

)∥∥2

L2([0,1]n)
. (3.8)

We note that q(t) is real and by the definition q(t) + q(t)−1 = 2(n + 1) −
2
∑n

l=1 cos 2πtl, therefore

(q(t)−1)(q(t)−1−1) = 2
n∑

l=1

cos 2πtl−2n = −
n∑

l=1

(e−2πitl−1)(e2πitl−1). (3.9)

Finally,

δ2m(k) =∥∥a1 (t) q(t)k (q(t)− 1)
∥∥2

L2([0,1]n)
+
∥∥a2 (t) q(t)−k

(
q(t)−1 − 1

)∥∥2

L2([0,1]n)
+

n∑
l=1

∥∥a1 (t) q(t)k (e−2πitl − 1
)∥∥2

L2([0,1]n)
+∥∥a2 (t) q(t)−k

(
e−2πitl − 1

)∥∥2

L2([0,1]n)
. (3.10)

Each term in the right hand side of the last formula can be written in the
form s(k) = ‖b(t)q(t)±k‖22 for some b ∈ L2([0, 1]n) and q(t)±k ∈ L∞([0, 1]n).
By Hölder’s inequality, we have

s(k) =
∥∥b (t) qk (t)∥∥2

L2([0,1]n)
≤(∫

[0,1]n
|b (t)|2 dt

)1− k
M
(∫

[0,1]n
|b (t)|2 q2(t)dt

) k
M

≤ (s(0))1−
k
M (s(M))

k
M .

Applying the same computation for each term and using the lemma below
we conclude the proof of the theorem.
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Lemma 5. If each function ml : [0, 1, . . . ,M ] → R+ satisfies the inequality

m (k) ≤ [m (0)]1−
k
M [m (M)]

k
M ,

then the sum m(k) =
∑

l ml(k) satisfies the same inequality.

Proof. It is suffices to prove the statement when m(k) = m1(k) + m2(k) is
the sum of two functions. Let α = k/M then we have

m(k) = m1(k) +m2(k) ≤ m1(0)
1−αm1(M)α +m2(0)

1−αm2(M)α =

m(0)1−αm(M)α

[(
m1(0)

m(0)

)1−α(
m1(M)

m(M)

)α

+

(
m2(0)

m(0)

)1−α(
m2(M)

m(M)

)α
]
.

And the lemma follows from the elementary inequality

x1−αyα + (1− x)1−α(1− y)α ≤ 1

when x, y ∈ [0, 1] and α ∈ [0, 1].

Remark. The proof of Theorem 15 above is similar to that of the continuous
three–line theorem, see [30]. In the continuous case the passage from (3.8)
to (3.10) is trivial, in discrete case we fortunately have the identity (3.9).

For continuous harmonic functions similar three balls or three spheres
theorem can be obtain, see for example [33, 35]. There are no trivial gen-
eralizations of those results as a harmonic function can vanish on any finite
square without being identically zero.

3.4 Harmonic measure and stability estimates

In this section we study δ-discrete harmonic functions that are defined on
the cylinder Dδ(Ω) = Ωδ × (δZ). Discrete harmonic measure on truncated
cylinder is estimated first, then we apply these estimates to give a more
precise version of the Phragmén–Lindelöf theorem and prove some stability
results.
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3.4.1 Discrete harmonic measure

Let now H0(D
δ) denote the space of δ-discrete harmonic functions on Dδ(Ω)

that vanish on the boundary. Such function is uniquely determined by its
values on two layers Ωδ × {a} and Ωδ × {b} (where it may attain arbitrary
values) and the dimension of H0(D

δ) equals 2Kδ, where Kδ is the number
of points in Ωδ.

We note that for a function u(x) = u(x′, xn+1) on Dδ(Ω) we have

Δδ,n+1u(x
′, xn+1) =

Δδ,nu(x
′, xn+1) + δ−2(u(x′, xn+1 + δ) + u(x′, xn+1 − δ)− 2u(x′, xn+1)).

Let {f δ
k}Kδ

k=1 be the sequence of eigenfunctions of the Dirichlet–Laplacian in
Ωδ, discussed in 3.2.2. Then it is easy to check that the following functions
form a basis for H0(D

δ).

uδ
k(x) = f δ

k (x
′) cosh(aδkxn+1), vδk(x) = f δ

k (x
′) sinh(aδkxn+1), k = 1, 2, ..., Kδ,

where aδk is the positive solution of

cosh δaδk = 1 +
1

2
δ2λδ

k.

Now we calculate the discrete harmonic measure of the bases of a trun-
cated cylinder. Let gδN be the δ-discrete harmonic function on Dδ

N(Ω) =

Ω
δ × ([−N,N ] ∩ (δZ)) defined by its boundary values{

gδN(x
′,±N) = 1 x′ ∈ Ωδ

gδN(x
′, xn+1) = 0 x′ ∈ ∂Ωδ,−N ≤ xn+1 ≤ N.

Lemma 6. The harmonic measure gδN(x) = gδN(x
′, xn+1) is given by

gδN(x
′, xn+1) =

Kδ∑
k=1

dδkf
δ
k (x

′)
cosh(aδkxn+1)

cosh aδkN
,

where dδk =
∑

x′∈Ωδ f δ
k (x

′).

Proof. Clearly gδN is an even function with respect to xn+1 and therefore it
can be written as

gδN(x
′, xn+1) =

Kδ∑
k=1

Ckf
δ
k (x

′) cosh(aδkxn+1), (3.11)
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where the coefficients Ck satisfy the linear system of equations

1 =
Kδ∑
k=1

Ckf
δ
k (x

′) cosh(aδkN),

for each x′ ∈ Ωδ. Since functions {f δ
k}Kδ

k=1 form an orthonormal basis, we
obtain

Ck cosh a
δ
kN =

∑
x′

f δ
k (x

′) = dδk. (3.12)

Substituting (3.12) in (3.11) we get the required formula.

We conclude this subsection by one auxiliary inequality. We note that
the values of the function gδN(x

′, xn+1) on the middle hyperplane {xn+1 = 0}
are given by

gδN(x
′, 0) =

Kδ∑
k=1

dδkf
δ
k (x

′)
1

cosh aδkN
.

Then a linear combination of the values of u on Ωδ×{0} admits the following
estimate:

∑
x′

w(x′)gδN(x
′, 0) =

∑
x′

Kδ∑
k=1

dδkw(x
′)f δ

k (x
′)

1

cosh aδkN
≤

Kδ∑
k=1

|dδk|
cosh aδkN

(∑
x′

|w(x′)|2
)1/2

, (3.13)

we applied the Cauchy–Schwarz inequality and used that eigenfunctions f δ
k

are normilized by
∑

x′ |f δ
k (x

′)|2 = 1.

3.4.2 Phragmén–Lindelöf theorem for δ-discrete sub-
harmonic functions

Now we prove a version of the Phragmén–Lindelöf theorem for δ-discrete
subharmonic functions in truncated cylinder Dδ

N(Ω). We want to show that
if a subharmonic function is positive inside the cylinder, say at some points
on the section Ωδ × {0}, then it grows at least exponentially. Moreover, we
can give estimates on the truncated cylinders and not only asymptotic result
as in Theorem 13.

We use the following notation u+ = max{0, u}.
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Theorem 16. Suppose u is a δ-discrete subharmonic function on Dδ
N(Ω)

such that u(x′, xn+1) = 0 when x′ ∈ ∂Ωδ and u satisfies the following positivity
condition on Ω× {0} ∑

x′∈Ωδ

u+(x′, 0)2 = A2Kδ > 0.

Then

max
Ωδ×[−N,N ]

u(x′, xn+1) ≥ A

2

(∑
k

exp(−aδkN)

)−1

, (3.14)

where aδk = δ−1 cosh−1(1 + 1
2
δ2λδ

k). In particular, there exists a constant CΩ

that depends only on Ω such that

max
Ωδ×[−N,N ]

u(x′, xn+1) ≥ CΩA exp(aδ1N), (3.15)

for any N ∈ N and any δ < δ0.

The inequality (3.14) is more precise than (3.15). We write the constant
explicitly and, as soon as λδ

k are known, the right hand side of (3.14) can be
estimated. Clearly, the right hand side of (3.14) is of order exp(aδ1N) when
N → ∞. This is expressed accurately in inequality (3.15). The constant
CΩ is not explicit, but it depends neither on N nor on δ, so we can also fix
N and let δ go to zero to get estimates of continuous functions that can be
approximated by discrete subharmonic ones.

Proof. Let MN = max|xn+1|=N u(x′, xn+1). Then by the maximum principle,

u(x′, xn+1) ≤ MNg
δ
N(x

′, xn+1) on Ωδ × [−N,N ] ,

where gδN is the harmonic measure from Lemma 6, clearly gδN ≥ 0. Taking
the linear combination over x′ ∈ Ωδ with non-negative coefficients w(x′) =
u+(x′, 0) and using (3.13), we obtain∑

x′
u+(x′, 0)2 =

∑
x′

u+(x′, 0)u(x′, 0) ≤

MN

Kδ∑
k=1

|dδk|
cosh aδkN

(∑
x′

|u+(x′, 0)|2
)1/2

.

46



Then we have

MN ≥
(∑

x′
u+(x′, 0)2

)1/2
⎛⎝ Kδ∑

k=1

|dδk|
cosh aδkN

⎞⎠−1

=

A(Kδ)1/2

⎛⎝ Kδ∑
k=1

|dδk|
cosh aδkN

⎞⎠−1

.

Applying the Cauchy–Schwarz inequality, we get

|dδk| =
∣∣∣∣∣∑

x′
f δ
k (x

′)

∣∣∣∣∣ ≤
(∑

x′
(f δ

k (x
′))2

) 1
2
(∑

x′
1

) 1
2

≤ (Kδ)
1
2 .

Now, we combine the last two inequalities and obtain

MN ≥ A

⎛⎝ Kδ∑
k=1

1

cosh aδkN

⎞⎠−1

.

Then (3.14) follows from the following inequality

Kδ∑
k=1

1

cosh aδkN
≤ 2

Kδ∑
k=1

exp(−aδkN).

To prove (3.15) we may assume that δ is small (otherwise we have an
upper bound for Kδ). We partition the eigenvalues λδ

k into two groups. We
choose a positive number c and define I1 = {k : λδ

k < cδ−2} and I2 = {k :
λδ
k ≥ cδ−2}. Let also c0 = cosh−1(1 + c), then∑

k∈I2
exp(−aδkN) ≤

∑
k∈I2

exp(−δ−1c0N) ≤ Kδ exp(−δ−1c0N) ≤ C0 exp(−aδ1N),

when δ is small enough, since Kδ ≤ Cδ−n and aδ1 → (λ1(Ω))
1/2 as δ → 0.

For the second part of the sum we have δ
√
λδ
k < c. We consider the

function α : R+ → R+ defined by

coshα(s) = 1 +
1

2
s2.

47



Then aδk = δ−1α(δ
√

λδ
k) and a simple calculation gives

α′(s) =
2√

4 + s2
.

Denoting the minimum of the derivative of α on [0, c] by d, we obtain

aδk ≥ aδ1 + d
(
(λδ

k)
1/2 − (λδ

1)
1/2
)
.

Now we partition I1 further into Jl = {k : l ≤ (λδ
k)

1/2 − (λδ
1)

1/2 < l + 1},
l = 0, 1, ... and let |Jl| denote the cardinality of Jl. We consider any cube Q
such that Ω ⊂ Q and apply inequalities (3.2) and (3.3) to obtain

|Jl| ≤ N δ
Ω

((
(λδ

1)
1
2 + l + 1

)2
)

≤ N δ
Q

((
(λδ

1)
1
2 + l + 1

)2
)

≤ CΩ(l + 1)n,

for each l = 0, 1, .... Finally, we obtain

∑
k∈I1

exp(−aδk) ≤
∞∑
l=0

∑
k∈Jl

exp(−aδkN) ≤
∞∑
l=0

exp(−(aδ1 + ld)N)|Jl| ≤

CΩ exp(−aδ1N)
∞∑
l=0

(l + 1)n exp(−ldN).

The last sum is finite and can be bounded by a constant independent of
N ∈ N and δ. This concludes the proof of the theorem.

One of the differences between the continuous and discrete cases lies in
the formulas connecting eigenvalues λ and corresponding numbers a. For the
continuous case one has a(λ) =

√
λ while for the discrete case the formula

becomes

aδ(λ) = δ−1 cosh−1(1 +
1

2
δ2λ).

This function resembles
√
λ on the interval [0, cδ−2] but grows as log λ when

λ → ∞. To deal with the discrete case we have partitioned the set of
eigenvalues into two parts.
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3.4.3 Stability estimates for solution of the Dirichlet
problem

A standard argument shows that estimates of the harmonic measure imply
conditional stability estimates for harmonic function. We apply it for trun-
cated cylinders and prove the following.

Theorem 17. Let h be a δ-discrete harmonic function in the truncated
cylinder Dδ

N(Ω) with boundary values f on ∂Ωδ × [−N,N ] and such that
|h(x′,±N)| ≤ MN . Then

max
x′

|h(x′, 0)| ≤ max |f |+ CΩ(MN +max |f |) exp(−aδ1N). (3.16)

In particular, if h is harmonic in Dδ(Ω) , |h(x′, xn+1)| = o(exp(aδ1|xn+1|))
when |xn+1| → ∞ and h is bounded on the boundary ∂Ω × (δZ), then h is
bounded by the same constant in Dδ(Ω).

Proof. Let v be the δ-discrete harmonic function in the truncated cylinder
Dδ

N(Ω) = (Ω× (−N,N))δ that solves the following Dirichlet problem.

Δn+1,δv = 0, v(x′,±N) = 0, x′ ∈ Ωδ, and v(x′, xn+1) = f(x′, xn+1), x
′ ∈ ∂Ωδ.

By the maximum principle for the bounded domainDδ
N(Ω) we have |v(x′, xn+1)| ≤

max |f |. Then u = h− v is δ-discrete harmonic function on Dδ
N(Ω) that van-

ishes on the part ∂Ωδ × [−N,N ] of the boundary and satisfies

max
Ωδ×[−N,N ]

|u(x′, xn+1)| ≤ max |f |+MN .

We compare it to a multiple of the harmonic measure gδN and use the estimate

|gδN(x′, 0)| ≤ CΩ exp(−aδ1N)

that follows from the proof of Theorem 16. Then we obtain

|u(x′, 0)| ≤ CΩ(MN +max |f |) exp(−aδ1N).

This implies (3.16).The second statment of the theorem follows from (3.16).
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4 Stability and regularization for de-
termining sets of discrete Laplacian

We study the determining sets for discrete harmonic functions on the square
lattices. The stability and regularization of the reconstruction of harmonic
functions from its values on a part of a domain is discussed. For some specific
configurations we use the logarithmic convexity estimates to obtain error
bounds and propose an optimal choice of the mesh size of discretization.

4.1 Introduction

4.1.1 Background

In this Chapter the question of reconstruction of a harmonic function by its
values on a given set is discussed. We study the following model problem{

Δu = 0 in [0, 1]× [0, 1],

u|Λ = g,
(4.1)

where Λ ⊂ [0, 1] × [0, 1] and g is a given function. A simple example is
given by Λ = ∂([0, 1]× [0, 1]), for which (4.1) becomes the classical Dirichlet
problem. Another limit case is the Cauchy problem⎧⎪⎨⎪⎩

Δu = 0 in [0, 1]× [0, 1],

u(0, y) = g1, u(1, y) = g2,

u(x, 0) = f0, uy(x, o) = f1,

which is known to be ill-posed. Different stability estimates and regulariza-
tion techniques are known for the Cauchy problem, see [2, 6] and the ref-
erences therein. The discretization of the Cauchy problem and conditional
stability was discussed in [21, 42].

We are interested in the situation when only part of the boundary is
accessible but some measurements can be done inside the domain, so our
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typical example is given by

Λb = ({0, 1} × [0, 1]) ∪ ([0, 1]× {1/2− b, 1/2 + b}), 0 < b ≤ 1/2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: The graph of Λb

Clearly, a harmonic function is uniquely determined by its values on Λb.
We discuss a reconstruction method, the stability of this reconstruction, and
possible regularization procedures. It is well-known that initial problem is
not well-posed when Λ contains a part inside the domain [0, 1]× [0, 1], not all
functions g are admissible and a small variation of the data g may result in
a large perturbation of the solution u. Regularization is a standard tool for
such problems, instead of solving the initial problem (4.1) exactly, we look
for the solution u0 of the following extremal problem⎧⎪⎨⎪⎩

Δu0 = 0 in [0, 1]× [0, 1],

‖u0|Λ− g‖ ≤ ε,

‖u0‖ → min .

(4.2)

This allows us to treat noisy data g; ε is typically the data error. We are
interested in the approximation error ‖u − u0‖ and we obtain estimates on
the discrete level, using for simplicity the standard five-point difference ap-
proximation for the Laplace operator. We specify the norms later.

The starting point of our discussion is the notion of the determining sets
for the discrete Laplacian by A. Rubinstein, J. Rubinstein and G. Wolansky,
[43]. We measure also the stability of determining sets and suggest a regu-
larization method for reconstruction. For model sets Λb we use the technique
of logarithmic convexity estimates to obtain approximation bounds following
the ideas of R. Falk and P. Monk, [21] and of H. Reinhardt, H. Han and
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D. Háo, [42]. However, we don’t assume zero initial values on vertical sides
of the boundary but elaborate the data on these sides into the problem (4.2).

The notion of determining sets was suggested in [43] in connection to
the phase reconstruction problem. The instability of the reconstruction was
also addressed and the authors suggested using overdetermined reconstruc-
tion and least square methods. Our approach is different, the estimates are
based on the simple geometry of the model set, however the regularization
procedure can be meaningful for more general configurations of determining
sets. This Chapter is based on [25].

4.1.2 Determining sets of discrete Laplacian

We consider discrete harmonic functions on two-dimensional lattice (hZ)2,
where h = 1/N is the mesh size and N is a positive integer. Let

Gh = {(hi, hj)| 0 ≤ i ≤ N, 0 ≤ j ≤ N} (4.3)

be the discretization of the square [0, 1] × [0, 1]. There are three types of
points in Gh : the set Ih = {(hi, hj)| 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1}
of interior points that consists of all points that have four neighbors in Gh,
the set Bh of boundary points that consists of 4(N − 1) points that have
only three neighbors in Gh, and the four vertices of the square that have no
interior point as a neighbor.

A function u : Gh → R is said to be discrete harmonic if

Δhu(x, y) = 0 for all (x, y) ∈ Ih, where (4.4)

Δhu(x, y) =

u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y)

h2
.

Since the four vertices of the square (0, 0), (0, 1), (1, 0), and (1, 1) play no
role in equation (4.4), we eliminate them from Gh and denote the new set by

G̃h.
It is well known that a discrete harmonic function is uniquely determined

by prescribing its values on the boundary Bh of Gh, where it can attain arbi-
trary values. The space of discrete harmonic functions on Gh has dimension
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4(N − 1). We consider subsets D of G̃h consisting of 4(N − 1) points. Fol-
lowing [43], we call such a set D a determining set if prescribing the values
of a discrete harmonic function on D determines the function uniquely. In
other words, a set D of 4(N − 1) points in G̃h is called a determining set, or
a D-set for short, if Δhu = 0 on Ih, u = 0 on D implies u = 0 everywhere
on G̃h.

The problem of deciding whether a given set is a D-set is equivalent to
checking whether the appropriate system of (N − 1)2 homogeneous linear
equations has a unique solution. It could also be reduced to the problem of
non-singularity of a 4(N − 1)× 4(N − 1) matrix, see [43] for details. We go
back to this in the next section when we calculate the stability constants of
determining sets.

The first example of a D-set is the boundary set Bh. One can check that
replacing one point on the boundary Bh by some point in Ih provides a new
D-set. Another simple example of a D-set is the discrete version of our model
set Λb defined as

Λb,h = Λb ∩ G̃h,

where 1/2± b ∈ hZ. Our special attention to this model set is connected to
the origin of determining sets and problems of phase reconstruction, we refer
the reader to [43] for details.

The following example of a D-set that is fairly evenly distributed in the
domain G̃ is also studied in [43]. Let (hi0, hj0) be a point in G̃h, we call it a
center. Consider cells around this center of the form

Sk = {(hi, hj) : max(|i− i0 + j − j0|, |i− i0 − j + j0|) = k}.

Suppose that C ⊂ G̃h contains all four points of S1 and for k = 2, ..., N it
contains exactly four points of Sk one on each edge, but not the four vertices,
i.e.,

C ∩ Sk �= {(hi0 + hk, hj0), (hi0, hj0 + hk), (hi0 − hk, hj0), (hi0, hj0 − hk)}.

Then C is a D-set, we call it a centered D-set with center at (hi0, hj0).
Our main aim is to estimate stability of the reconstruction of a discrete

harmonic function from its values on a D-set and describe a regularization
method for this reconstruction for some specific D-sets.

The remaining part of this Chapter is organized in the following way.
In the next section we define stability constants of determining sets and

54



calculate those constants for model sets. In Section 4.3 we prove logarithmic
convexity for discrete harmonic functions adjusted to our model sets and
obtain conditional stability. Regularization is discussed in the last Section.
We work first with a combination of L2 and L∞ norms and use maximum
principle to incorporate boundary values on horizontal sides. In the last
section we also show that our main result holds for L2-norms, some estimates
for eigenvalues of the discrete Laplacian on the square are needed.

4.2 Stability Constants of D-sets

4.2.1 Definitions and elementary estimates

We denote the supremum norm of a discrete function u in G̃h by

‖u‖∞, ˜Gh
= max

(x,y)∈ ˜Gh

|u(x, y)| .

We also consider the standard L2-norm of a discrete function in G̃h

‖u‖2, ˜Gh
=

⎛⎝ 1

(N + 1)2

∑
(x,y)∈ ˜Gh

|u(x, y)|2
⎞⎠ 1

2

.

Definition. The (uniform) stability constant of a D-set K is denoted by
s∞(K) and is defined as

s∞(K) = max
{
‖u‖∞, ˜Gh

, Δhu = 0 in Ih, |u| ≤ 1 on K
}
. (4.5)

Similarly, the L2-stability constant of a D-set K is defined by

s2(K) = max
{
‖u‖2, ˜Gh

, Δhu = 0 in Ih, |u| ≤ 1 on K
}
. (4.6)

We remark that by the maximum principle

(i) s2(Bh) = (N + 1)−1
√

(N + 1)2 − 4 and s∞(Bh) = 1;

(ii) s∞(K) ≥ s2(K) for any D-set K and s∞(K) ≥ s∞(Bh), s2(K) ≥
s2(Bh).
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The motivation of the definition above is the following straightforward
(and naive) estimate. If Δhu = 0, |u− g| < ε on K and if u∗ is the exact
solution of the discrete problem Δhu

∗ = 0 on Ih, and u∗ = g on K, then

‖u− u∗‖∞, ˜Gh
≤ s∞(K)ε, ‖u− u∗‖2, ˜Gh

≤ s2(K)ε.

Let Lh be the matrix of the discrete Laplace operator on the square G̃h,
we normalize it such that each row contains one 4, four −1 and zeros. The
kernel of Lh is 4(N − 1) dimensional. Let F1, F2, . . . , F4(N−1) be a basis for
the null space of the Laplacian matrix Lh and let Fh be the matrix whose
columns are the basis vectors, the rows of Fh correspond to points in G̃h.
For computational purposes we may either define Fh as a basis for Null(Lh),
since the matrix Lh has a very simple representation in terms of Kronecker
tensor products, or we can write down the standard basis explicitly, using
discrete harmonic functions of the form

uk(x, y) = sin πkx cosh aky, vk(x, y) = sin πkx sinh aky,

u∗
k(x, y) = sin πky cosh akx, v∗k(x, y) = sin πky sinh akx, 1 ≤ k ≤ N − 1,

where ak is the only positive solution of cos πhk + cosh akh = 2.
Let K be a subset of G̃ consisting of 4(N − 1) points. The rows of the

matrix Lh correspond to the equations of the discrete Laplacian and the
columns correspond to the points in G̃h. We rearrange the columns of Lh so
that the last columns correspond to the points of K and call the new matrix
Lh,K . Then

Lh,K = [AB],

where A is an (N − 1)2 × (N − 1)2 matrix and B is an (N − 1)2 × 4(N − 1)
matrix. We rearrange also the rows of the matrix Fh so that the last 4(N−1)
rows correspond to the points inK. The matrix obtained is called Fh,K . Then
the matrix Fh,K can be written as two matrices E which is (N−1)2×4(N−1)

matrix that corresponds to all the rows in G̃h \K and 4(N − 1)× 4(N − 1)
matrix R that corresponds to all the rows in the D-set K. That is

Fh,K =

[
E
R

]
. (4.7)

The following statements are equivalent where the details about them can
be consulted in [43].
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(i) K is a D-set ;

(ii) The matrix A is invertible ;

(iii) The matrix R is invertible.

Definition. The infinity norm of the matrix M = {mij} is defined by

‖M‖∞ = max
i

∑
j

|mij| = max{‖Mv‖∞ : ‖v‖∞ ≤ 1}.

Similarly, using L2-norms of the vectors ‖w‖2 = (L−1
∑

j |wj|2)1/2, where L
is the number of components of the vector w, we define

‖M‖2 = max{‖Mv‖2 : ‖v‖∞ ≤ 1}.

We remark that the last norm is not the usual L2-operator norm, it is L∞

to L2 norm. The reason for the appearance of those norms lies in our choice
of the error norm, we assume that the data error (measurement error) is
uniformly bounded.

Lemma 7. The stability constants for a determining set K equal

s∞(K) = ‖A−1B‖∞ =
∥∥ER−1

∥∥
∞ and s2(K) =

∥∥∥∥[ I
A−1B

]∥∥∥∥
2

=

∥∥∥∥[ I
ER−1

]∥∥∥∥
2

.

The lemma follows readily from the definition. The first formula gives a
(rather pessimistic) bound for the stability constant.

Corollary. If K ⊂ G̃h is a D-set, then s∞(K) ≤ 4(N − 1)28(N−1)2.

Proof. We note that ‖A−1B‖∞ ≤ ‖A−1‖∞‖B‖∞ and ‖B‖∞ ≤ 8. To esti-
mate ‖A−1‖∞ we note that entries of A are integers and | det(A)| ≥ 1 since
det(A) �= 0. We estimate the cofactor Aij of A. Remind that the matrix
contains one 4 in each row, four −1, and zeros for the remaining entries.
Then by induction |Aij| ≤ 4 · 8q−2, where q is the size of the matrix A. Then
‖A−1‖∞ ≤ 4q · 8q−2.

We don’t know how precise the estimate above is and what the geometry
of the worst configuration of a D-set could be.
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4.2.2 Stability constants for model D-sets

In this section we study model D-sets like Λb,h and estimate their stability
constants. We show that the stability constants grow exponentially with N.
Thus the approximation estimates we get by solving exact linear systems
with noisy data are relatively poor. A regularization method is discussed in
the next section.

We start by looking at the extremal case when b is as small as possible,
we assume that N = 2n + 1 is odd and b = 1/2N . Let Λ∗,h = Λb,h. Clearly,
this set is obtained from the boundary Bh by replacing all the points on the
sides (x, 0) and (x, 1) by interior points (x, hn) and (x, h(n+1)) respectively.
It is clear that Λ∗,h is a D-set. We want to estimate s∞(Λ∗,h) and s2(Λ∗,h).

Definition. Let the sequence {ak} be defined by a0 = 1, a1 = 7 and

ak+1 = 6ak − ak−1, k ≥ 1. (4.8)

Then the kth term of the sequence is given by the formula

ak = c1λ
k
1 + c2λ

k
2,

where λ1and λ2 are the roots of the equation

λ2 − 6λ+ 1 = 0.

Solving for c1 and c2 and using the values of a0 and a1 we get

ak =

(
1 +

√
2

2

)(
3 + 2

√
2
)k

+

(
1−√

2

2

)(
3− 2

√
2
)k

.

Proposition 3. The uniform stability constant for the set Λ∗,h equals

s∞(Λ∗,h) = an, where h−1 = N = 2n+ 1.

Proof. Let u be a discrete harmonic function on G̃h such that |u| ≤ 1 on
Λ∗,h. Then we have

|u(hi, hn)| ≤ 1, |u(hi, h(n+ 1))| ≤ 1 and also |u(0, hj)| ≤ 1, |u(1, hj)| ≤ 1,

for all 1 ≤ i, j ≤ N − 1. From Δhu = 0 we also know that

u(x, h(n+ 2))− u(x, h(n+ 1)) =

3u(x, h(n+ 1))− u(x− h, h(n+ 1))− u(x+ h, h(n+ 1))− u(x, hn).
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Therefore for any x = hi, 1 ≤ i ≤ N − 1 we have

|u(x, h(n+ 2))− u(x, h(n+ 1))| ≤ 6. (4.9)

Now we want to show that for any x = hi, 1 ≤ i ≤ N−1, and k = 1, ..., n

|u(x, h(n+ k + 1))− u(x, h(n+ k))| ≤ ak − ak−1 by induction. (4.10)

If k = 1, then we get (4.9). Assume that (4.10) holds for any k < K. Then
also

|u(x, h(n+ k + 1))| ≤ ak, for k < K. (4.11)

Therefore

|u(x, h(n+K + 1))− u(x, h(n+K))| ≤
|u(x, h(n+K))− u(x, h(n+K − 1))|+

2 |u(x, h(n+K))|+ |u(x− h, h(n+K))|+ |u(x+ h, h(n+K))|
≤ aK−1 − aK−2 + 4aK−1 = 5aK−1 − aK−2 = aK − aK−1.

On the other hand, an example shows that if a discrete harmonic function
has alternative±1 values at the points (0, hj), (1, hj), (hi, hn), and (hi, h(n+
1)), then

|u(hi, hn)| = |u(hi, h(n+ 1))| = 1, for 0 ≤ i ≤ N,

|u(hi, h(n+ 2))| = a1, for 1 ≤ i ≤ N − 1,

|u(hi, h(n+ 3))| = a2, for 2 ≤ i ≤ N − 2

...

|u(hi, h(2n+ 1))| = an for i = n, n+ 1.

Therefore combining all the above inequalities we obtain s∞(Λ∗,h) = an.

Corollary. The L2-stability constant for Λ∗,h satisfies the inequalities

an(N + 1)−1 ≤ s2(Λ∗,h) ≤ an.
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The first inequality follows from the example described above while the
second one is obtained by comparing L2 and L∞ norms. The corollary implies
that s2(Λ∗,h) grows exponentially in N .

Our first model set Λ∗,h is an example of a set for which we have a simple
formula for the uniform stability constant. Measurements of the function
on this set correspond to measurements of u and its partial derivative uy on
the middle horizontal line of the square. For this case we should choose the
norm for the derivative more carefully. We refer the reader to [21, 42] for
estimates of the solutions of discrete Cauchy problem. We do similar but
more elementary estimates for model sets Λb,h with 0 < b < 1

2
in the next

sections. First we show that the stability constants still grow exponentially.
Along with the sequence {ak} defined by (4.8) we consider another se-

quence {ck} defined by c0 = 1, c1 = 5 and

ck+1 = 6ck − ck−1.

Proposition 4. Let Λb,h ⊂ G̃h, where h = 1/N and 1/2±b ∈ hZ. We define
l = N(1/2− b) ∈ Z+. Then the following estimates hold.

cl ≤ s∞(Λb,h) ≤ al, cl(N + 1)−1 ≤ s2(Λb,h) ≤ al.

Before we sketch the proof, which is similar to that of Proposition 3, we
note that

ck =

(
2 +

√
2

4

)(
3 + 2

√
2
)k

+

(
2−√

2

4

)(
3− 2

√
2
)k

. (4.12)

Thus we obtain

(3 + 2
√
2)N(1/2−b) ≈ s∞(Λb,h) ≥ s2(Λb,h) ≥ cN−1(3 + 2

√
2)N(1/2−b).

Proof. Let u be a discrete harmonic function on G̃ such that |u| ≤ 1 on Λb,h

and let also 1/2 + b = s/N. Then by the maximum principle we have

|u(x, h(s− 1))| ≤ 1, |u(x, hs)| ≤ 1,

when x = ih, 0 ≤ i ≤ N . As above we show by induction that |u(x, h(s+j)| ≤
aj it gives the estimate s∞(Λb,h) ≤ al, where l = N − s = N(1/2 − b). To
estimate s∞(Λb,h) from below we consider once again a discrete harmonic
function u that takes values ±1 on Λb,h with alternating signs. We have

|u(x, hs)| = 1 = c0, |u(x, h(s− 1))| ≤ 1, x = hi, 0 ≤ i ≤ N.

60



We claim that u(x, h(s+ j))−u(x, h(s+ j−1)) has the same sign as u(x, hs)
when j ≥ 0, x = hi, j ≤ i ≤ N − j and

|u(x, h(s+ j)− u(x, h(s+ j − 1)| ≥ cj − cj−1, |u(x, h(s+ j))| ≥ cj.

For j = 1 we get

u(x, h(s+1)−u(x, hs) = 3u(x, hs)−u(x+h, hs)−u(x−h, hs)−u(x, h(s−1)) =

5u(x, hs)− u(x, h(s− 1)).

Then u(x, h(s+ 1))− u(x, hs) has the same sign as u(x, hs) and |u(x, h(s+
1)) − u(x, hs)| ≥ 4. Clearly, |u(x, h(s + 1))| ≥ 5. Then, by induction we
obtain

u(x, h(s+j))−u(x, h(s+j−1)) = (u(x, h(s+ j − 1))− u(x, h(s+ j − 2)))+

2u(x, h(s+ j − 1)) + (−u(x+ h, h(s+ j − 1)) + (−u(x− h, h(s+ j − 1)),

all four summands have the same sign and

|u(x, h(s+ j)− u(x, h(s+ j − 1)| ≥ cj − cj−1 + 4cj = cj+1 − cj,

from which the estimate for s2(Λb,h) follows.

Another series of examples of D-sets with exponentially growing stability
constants is given by centered D-sets. Let us also note that while boundary
values of a harmonic functions are arbitrary, its values on a subset inside the
domain are restrictions of real analytic functions and it is not surprising that
the problem of reconstruction is very unstable.

The exponential growth of the stability constants implies that using the
naive approach with data error of order ε we get approximation error for the
discrete problem of order εAN . If we want any estimate for the approximation
that goes to zero when ε goes to zero, we should choose N ≤ C| log ε|.
However, the discretization error (that should be added to ε) is of order
h2 (see the discussion in the Section 4.4.1). Thus our final approximation
estimate blows up.

To improve this scheme we first prove some stability estimates under
a priori bounds and then use a regularization method. Instead of solving
the linear system exactly we consider approximate solution that minimizes
some norm. It gives good estimates with a priory boundedness of solution
(conditional stability). For general surveys of regularization techniques in
discrete problems we refer to [27, 39].
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4.3 Conditional stability

4.3.1 Statements

In this section we consider conditional stability estimates for the set Λb,h,
where N = h−1 and 1/2± b ∈ hZ. Let w be an h-discrete harmonic function.
We want to estimate the L2-norm of w over the square, assuming that w
is small on Λb,h and bounded by some constant uniformly. After a simple
reduction we suppose that w vanishes on the vertical part of the boundary
of the square and prove the logarithmic convexity estimates for the norms of
the function w over horizontal segments. The estimates are similar to those
obtained in [21], see also [42]. We use here a slightly different approach sep-
arating odd and even parts of the function. Further, we get better estimates
for norms over proper subdomains.

Let Vh be the points on the vertical sides of the square G̃h and Lb,h be the
horizontal part of the set Λb,h such that Λb,h = Vh ∪ Lb,h is a disjoint union.

Theorem 18. Suppose that N is odd and b ∈ (0, 1/2) is such that N/2+Nb ∈
Z. Let w be a discrete harmonic function on G̃h that satisfies |w| ≤ B and
supVh

|w| ≤ ε. Let also

2δ2 = ‖w‖22,Lb,h
=

(
1

N

N∑
j=0

|w(hj, 1/2− b)|2
)

+

(
1

N

N∑
j=0

|w(hj, 1/2 + b)|2
)
.

Then

‖w‖2
2,G̃h

≤ C

(
(B + ε)2 + (δ + ε)2

2 log ((B + ε)/(δ + ε))− A
+ (B + ε)2 h+ ε2

)
, (4.13)

where C and A are some constants that depend on b but not on h.

Clearly the right-hand side of (4.13) goes to zero as ε+ δ → 0 and h → 0.
We obtain also the following interior estimate.

Theorem 19. Let w satisfy the assumptions of the theorem and let

Ph,t = {(hj, hk) : j, k ∈ Z, hj ∈ [0, 1], hk ∈ [t, 1− t]},
where 0 < t < 1/2− b, t ∈ hZ. Then

‖w‖2,Ph,t
≤ C(B + ε)1−α(δ + ε)α, (4.14)

where C depends on b and α = t(1/2− b)−1.
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In order to prove (4.13) and (4.14) we first reduce the inequality to the
case when ε = 0. We express w as the sum of two functions w1 and w2, where
w1 is the solution of the discrete Dirichlet Problem⎧⎪⎨⎪⎩

Δhw1 = 0

w1|Vh
= w

w1|Hh
= 0.

Here Hh denotes the set of all points on the horizontal sides of the square
G̃h.

By the maximum principle ‖w1‖∞, ˜Gh
≤ ε. Therefore we have

‖w2‖∞, ˜Gh
= ‖w − w1‖∞, ˜Gh

≤ ‖w‖∞, ˜Gh
+ ‖w1‖∞, ˜Gh

≤ B + ε.

Moreover, w2(x, y) = 0 on Vh and

‖w2‖2,Lb,h
=

‖w − w1‖2,Lb,h
≤ ‖w‖2,Lb,h

+ ‖w1‖2,Lb,h
≤ (

2δ2
) 1

2 +
(
2ε2

) 1
2 =

√
2 (δ + ε) .

Then we obtain
‖w2‖22,Lb,h

≤ 2 (δ + ε)2 .

We prove (4.13) for the case ε = 0 in the next subsection. It gives the
following estimate for w2

‖w2‖22,G̃h
≤ C

(
(B + ε)2 + (δ + ε)2

2 log ((B + ε)/(δ + ε))− A
+ (B + ε)2 h

)
.

Then, since ‖w‖2
2, ˜Gh

≤ ‖w2‖22, ˜Gh
+ ‖w1‖22, ˜Gh

≤ ‖w2‖22, ˜Gh
+ ε, (4.13) follows.

Similarly, it suffices to prove (4.14) for the case ε = 0.

4.3.2 Logarithmic convexity

From now on till the end of this section we assume that |w| ≤ B, w = 0 on
Vh and

2δ2 = ‖w‖22,Lb,h
=

(
1

N

∑
j

|w(hj, 1/2− b)|2
)

+

(
1

N

∑
j

|w(hj, 1/2 + b)|2
)
.
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We divide w into two parts as

we(x, y) = (w(x, y)+w(x, 1−y))/2, and wo(x, y) = (w(x, y)−w(x, 1−y))/2.

Let N = 2n+ 1, for k = 1, 2, ..., n+ 1 we define the vectors

wk
e = { we(h, h(n+k)), we(2h, h(n+k)), . . . , we((N −1)h, h(n+k))} and

wk
o = { wo(h, h(n+ k)), wo(2h, h(n+ k)), . . . , wo((N − 1)h, h(n+ k))}.

Our aim is to estimate the L2- norm of wk = wk
o +wk

e . We use the notation

(me
k)

2 = ‖wk
e‖22 =

1

N

N−1∑
i=1

|we(hi, h(n+ k))|2

and similarly (mo
k)

2 = ‖wk
o‖22. Since we and w0 are discrete harmonic func-

tions, we have

wk+1
e = 2wk

e −wk−1
e + Lwk

e , wk+1
o = 2wk

o −wk−1
o + Lwk

o ,

where L is (N − 1)× (N − 1) symmetric, tridiagonal matrix given by

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 . . . 0
−1 2 −1 0 0 0 . . . 0
0 −1 2 −1 0 0 . . . 0
0 0 −1 2 −1 0 . . . 0
...

...
. . . . . . . . . . . .

...
0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the standard basis {vj} of normalized eigenvectors of L (see above for
our choice of normalization), vj = {√2 sin(πjl/N)}l=1,2,...,N−1, and by the
symmetry properties of we and wo, we obtain

wk
e =

N−1∑
j=1

cej cosh ajhk vj, wk
o =

N−1∑
j=1

coj sinh ajhk vj,

where cosh(ajh) = 2 − cos(πhj). We have a1 ≤ a2 ≤ ... ≤ aN−1 and a1 =
a1(h) ≥ a, where a is an absolute constant. Clearly, limh→0 a1(h) = π.
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We remind that a (discrete) function F : {1, 2, ..., L} → R+ is called
logarithmically convex if

F (j)2 ≤ F (j − 1)F (j + 1)

for j = 2, ..., L − 1. It is a standard exercise to check that this inequality
implies

F (j1)
j2−j0 ≤ F (j0)

j2−j1F (j2)
j1−j0 , 1 ≤ j0 ≤ j1 ≤ j2 ≤ L.

Setting b = (2l − 1)/2N we will first consider the “even part” we. We
have me

l ≤ δ and me
n+1 ≤ B. Further, we also have

(me
k)

2 =
∑
j

(cej cosh ajhk)
2.

Note that me
k is obviously an increasing function in k. Furthermore, (me

k)
2 is

a logarithmically convex function of k since it is a sum of positive logarith-
mically convex functions. Thus for l ≤ k ≤ n+ 1, it holds that

(me
k)

n+1−l ≤ (me
l )

(n+1−k)B(k−l).

We rewrite the above inequality as

(me
j+l)

2 ≤ (me
l )

2qj/(n+1−l), j = 0, ..., n+ 1− l,

where q =
(

B
me

l

)2

. Then we obtain

‖we‖22, ˜Gh
=

2N

(N + 1)2

n+1∑
k=1

(me
k)

2 =
2N

(N + 1)2

[
l−1∑
k=1

(me
k)

2 +
n+1∑
k=l

(me
k)

2

]
≤

2

N

[
(l − 1) (me

l )
2 +

n−l∑
j=0

(
me

j+l

)2
+
(
me

n+1

)2]
.

The middle sum can be estimated by the following integral (a similar estimate
can be found in [42]),

n−l∑
j=0

(me
j+l)

2 ≤

(me
l )

2

n−l∑
j=0

qj/(n+1−l) ≤ (n+ 1− l)(me
l )

2

∫ 1

0

qtdt = (n+ 1− l)(me
l )

2 q − 1

log q
.
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Therefore

‖we‖22, ˜Gh
≤ 2

N

[
(l − 1)δ2 + (n+ 1− l)

B2

2 log(B/δ)
+B2

]
.

To finish the proof we should repeat the calculations for wo. We have
that

(mo
k)

2 =
∑
j

(coj sinh ajhk)
2

is increasing in k but not logarithmically convex. However,

(mo
k)

2 +
1

2

∑
j

(coj)
2

is logarithmically convex. Note also that

δ2 ≥ (mo
l )

2 ≥ sinh a1hl
∑
j

(coj)
2 ≥ sinh ab

∑
j

(coj)
2,

from which we get 1
2

∑
j(c

o
j)

2 ≤ Cbδ
2, where Cb depends only on b. As above

we write

‖wo‖22, ˜Gh
=

2N

(N + 1)2

n+1∑
k=1

(mo
k)

2 =
2N

(N + 1)2

[
l−1∑
k=1

(mo
k)

2 +
n+1∑
k=l

(mo
k)

2

]
≤

2

N

[
(l − 1) (mo

l )
2 +

n−l∑
j=0

(
mo

j+l

)2
+
(
mo

n+1

)2]
.

Then the middle sum can be estimated by the logarithmic convexity

n−l∑
j=0

(
mo

j+l

)2 ≤ n−l∑
j=0

((
mo

j+l

)2
+ Cbδ

2
)
≤ [

(mo
l )

2 + Cbδ
2
] n−l∑

j=0

q̃
j

n+1−l ,

where q̃ = B2+Cbδ
2

δ2+Cbδ2
. Then arguing as before we obtain,

n−l∑
j=0

(
mo

j+l

)2 ≤ (n+ 1− l)
B2 + Cbδ

2

2 log (B/δ)− log (1 + Cb)
.
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Therefore we get

‖wo‖22, ˜Gh
≤ 4

N

[
(l − 1)δ2 + (n+ 1− l)

B2 + Cbδ
2

2 log(B/δ)− log(1 + Cb)
+B2

]
.

Finally, combining inequalities for even and odd parts and taking C and
A large enough, we obtain

‖w‖2
2, ˜Gh

≤ C

(
B2 + δ2

2 log(B/δ)− A
+B2h

)
,

from which (4.13) readily follows.

4.3.3 Interior estimate

Now we prove (4.14). We use the notations and techniques of the previous
computations. To estimate the norm over a subrectangle [0, 1]× [t, 1− t] we
let 1− t = (n+ l + s)h, s < n+ 1− l = p and consider

2

l + s

l+s∑
k=1

(me
k)

2 ≤ 2

l + s
(me

l )
2

(
l +

s∑
j=0

qj/p

)
≤ 2 (me

l )
2 qs/p

= 2 (me
l )

2

(
B2

(me
l )

2

)s/p

= 2δ2αB2(1−α),

where α = 1− s/p = t(1/2− b)−1. Thus

‖we‖22,Ph,t
≤ 4B2−2αδ2α.

Similarly, for the odd part we have

‖wo‖22,Ph,t
=

2

l + s

l+s∑
k=1

(mo
k)

2 =
2

l + s

[
l∑

k=1

(mo
k)

2 +
s∑

j=0

(
mo

j

)2]

≤ 2

l + s

[
l (mo

l )
2 +

s∑
j=0

(
(mo

l )
2 + Cbδ

2
)
q̃j/p

]
≤

2

l + s

[
lδ2 +

(
δ2 + Cbδ

2
)
s
]
q̃s/p =

2

l + s
δ2 (l + s+ sCb)

(
B2 + Cbδ

2

δ2 + Cbδ2

)s/p

≤

2

l + s
δ2 (l + s+ sCb)

(
2B2

δ2

)s/p

≤ C ′
bB

2 s
p δ2(1−s/p) = C ′

bB
2−2αδ2α,
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where C ′
b now depends on b. Finally, we have ‖w‖22,Ph,t

≤ C ′′
bB

2−2αδ2α and

(4.14) follows.

4.4 Regularization

4.4.1 Discretization error

We assume that U is a (continuous) harmonic function on [0, 1]× [0, 1] which
is (at least) α-Lipschitz up to the boundary for some 0 < α < 1, i.e.

|U(x1, y1)− U(x2, y2)| ≤ L
(
(x1 − x2)

2 + (y1 − y2)
2
)α/2

,

and bounded by some constant M . For any h = 1/N we define the dis-

cretization uh of U as the solution of the discrete Dirichlet problem on G̃h

which coincide with U at the boundary Bh. This is a simple example of
discretization of the Dirichlet problem that goes back to classical works of
Philips and Wiener (1923) and Courant, Friedrichs and Lewy (1928). The
discrete Laplace equation appears also in the finite element method for con-
tinuous Laplacian and various results on the approximation rate (depending
on the smoothness of the solution) are available. The standard estimate (see
for example [44]) says that the difference between U and uh is of order h2

provided that U has bounded fourth order derivatives. We don’t assume
such smoothness but only α-Lipschitz condition on the boundary. One of
the early results on the uniform convergence rate for this case is due Walsh
and Young, [49] and it gives error of order h2α/(α+3) when α ∈ (0, 1). We
assume that we have some error function e(h) such that

‖U − uh‖∞ ≤ e(h).

So if we for example know that U ∈ C4 on the closed square and a bound for
the derivatives is known, then e(h) = Ch2. If U is assumed to satisfy only
α-Lipschitz condition with a bound for the Lipschitz constant; then we take
e(h) = Chβ for some β > 0.

4.4.2 Convergence rate

Let U be a harmonic function on [0, 1]× [0, 1]. We assume that the values of
U are available on the set Λb with error ε. To reconstruct the function U we
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first choose h = h(ε), that may also depend on the smoothness of U . Then
we measure the data gh on Λb,h, and solve the following finite-dimensional
extremal problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δhv
h = 0,

‖vh − gh‖∞,Vh
≤ ε,

‖vh − gh‖2,Lb,h
≤ ε+ e(h),

‖vh‖∞, ˜Gh
→ min,

(4.15)

where Vh is the vertical part of Λb,h and Lb,h is its horizontal part.

Theorem 20. Let U be a bounded harmonic function, |U | ≤ M on [0, 1] ×
[0, 1], α-Lipschitz up to the boundary for some 0 < α < 1, and let gh be a
function on Λb,h such that

‖gh − U‖∞,Λb,h
≤ ε.

We define vh to be the solution of (4.15). Let ε0 = min{ε, e(h)} and suppose
that ε0/M is small enough. Then the estimate

‖U − vh‖2, ˜Gh
≤ CM (log(M/ε0)− A)−1/2 (4.16)

holds where U is restricted to the lattice (hZ)2 ∩ [0, 1]2 and C and A depend
on b.

Furthermore, for t ∈ (0, 1/2− b) we have

‖U − vh‖2,Ph,t
≤ CM1−αεα0 , (4.17)

where C depends on b and α = t(1/2− b)−1.

Proof. First, we note that uh satisfies the first three equations of (4.15) and
by the maximum principle ‖uh‖∞ ≤ M ; then ‖vh‖∞ ≤ M .

We know also that ‖uh − U‖∞ ≤ e(h) and we want to estimate ‖uh −
vh‖2, ˜Gh

. Let w = uh − vh, we have ‖w‖∞ ≤ 2M ,

‖w‖∞,Vh
≤ ‖uh − gh‖∞,Vh

+ ‖gh − vh‖∞,Vh
≤ 2ε, and

‖w‖2,Lb,h
≤ ‖uh − U‖2,Lb,h

+ ‖U − gh‖2,Lb,h
+ ‖gh − vh‖2,Lb,h

≤ 2(e(h) + ε).

By Theorem 18 we obtain

‖uh − vh‖2
2, ˜Gh

≤ C

(
M2 + e(h)2 + ε2

2 log ((M + ε)/(e(h) + ε))− A
+M2h+ ε2

)
.

For ε0/M small enough we get (4.16). Similarly, applying Theorem 19, we
get (4.17).
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The convergence errors suggest that we choose h such that e(h) is com-
parable to ε, for our regularity assumptions it means that log 1/h � log 1/ε.
Then we obtain ‖U − vh‖2 ≤ Cb,M(| log ε|)−1/2 for ε small enough and ‖U −
vh‖2,Ph,t

≤ Cb,Mεα. The last estimate and standard elliptic type arguments
imply a power-type estimate for supremum norm in proper subdomains.

4.4.3 L2-norms

We choose to work (partly) with the supremum norms in (4.15) since they
describe well the measurement error and give a clear argument for our reg-
ularization procedure. However, in practical computations L2-norms have
certain advantages and the aim of this subsection is to show that our main
results (with some minor changes) can be obtained when dealing with L2-
norms consistently. We consider now the following problem.⎧⎪⎨⎪⎩

Δhv
h = 0,

‖vh − gh‖2,Λb,h
≤ ε+ e(h),

‖vh‖2,Hh
→ min,

(4.18)

where Hh is the set of points on the horizontal sides of the square. Then we
state the following version of Theorem 20.

Theorem 21. Let U be a bounded harmonic function, |U | ≤ M on [0, 1] ×
[0, 1], α-Lipschitz up to the boundary for some 0 < α < 1, and let gh be a
function on Λh,b such that

‖gh − U‖2,Λb,h
≤ ε.

We define vh to be the solution of (4.18). Let ε0 = min{ε, e(h)} and suppose
that ε0 log 1/hM

−1 is small enough. Then the estimate

‖U − vh‖2, ˜Gh
≤ CM (log(M/ε0 log 1/h)− A)−1/2 (4.19)

holds where U is restricted to the lattice (hZ)2 ∩ [0, 1]2 and C and A depend
on b.

Moreover, for t ∈ (0, 1/2− b) we also have

‖U − vh‖2,Ph,t
≤ CM1−α(ε0 log 1/h)

α, (4.20)

where C depends on b and α = t(1/2− b)−1.
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The proof is similar to that of the proof of Theorem 20, but instead of the
maximum principle which allowed us to estimate the function w1 in Section
4.3.1 we apply the following estimate.

Lemma 8. Suppose that u is a discrete harmonic function on G̃h and u|Hh
=

0. Then ‖u‖2,Lb,h
≤ c0 log 1/h‖u‖2,Vh

, where c0 is an absolute constant.

If we compare to the case of supremum norms, we loose log 1/h in the
norm ( as a multiplicative factor), but since h is chosen in such a way that
log 1/h � log 1/ε, we still have ε1 = ε log 1/ε going to 0 as ε goes to zero, so
we don’t loose much in the final estimate.

Proof. Wemay assume that u(0, hj) = 0 for j = 0, 1, ..., N and that u(1, hj) =
u is an (N − 1)-vector with

‖u‖22 = N−1

N−1∑
j=1

|u(1, hj)|2 = d2.

As in Section 4.3.2, we consider the matrix L and its eigenvectors vj =
{√2 sin(πjl/N)}N−1

l=1 . We have u =
∑

j cjvj and
∑

j c
2
j = d2. Then

u(hk, hl) =
N−1∑
j=1

cj
sinh ajhk

sinh aj

√
2 sin πjhl,

where aj is the only positive solution of cosh ajh = 2− cos πhj.
We define the function α : [0, π] → [0,∞] by

coshα(t) = 2− cos t.

It is well defined since 2− cos t ≥ 1, α(0) = 0 and

α′(t) =
sin(t)

sinhα(t)
=

2 sin( t
2
) cos( t

2
)√

(2− cos(t))2 − 1
=

cos( t
2
)√

1 + sin2( t
2
)
> 0.

for all t ∈ [0, π) and α′(t) ≥ 1√
3
, t ∈ [

0, π
2

]
. Therefore

α(t) ≥ 1√
3
t, 0 ≤ t ≤ π

2
. (4.21)
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We note also that from the Taylor expansion of hyperbolic cosine and cosine
functions we get α(t) = t+ o(t3). Thus we have

lim
t→0

α(t)

t
= 1. (4.22)

Figure 4.2: Graph of α(t)

We have aj = h−1α(πjh), then 1/
√
3 ≤ a1 ≤ a2 ≤ ... ≤ aN−1. We

estimate the L2-norm of u over an arbitrary horizontal segment in [0, 1]×[0, 1],
applying the Cauchy–Schwarz inequality

N−1

N−1∑
k=1

|u(hk, hl)|2 = 2N−1

N−1∑
k=1

(
N−1∑
j=1

cj
sinh ajhk

sinh aj
sin πjhl

)2

≤

2N−1

N−1∑
k=1

(
N−1∑
j=1

c2j sin
2 πjhl

)(
N−1∑
j=1

sinh2 ajhk

sinh2 aj

)
≤

2N−1

N−1∑
j=1

c2j

N−1∑
j=1

N−1∑
k=1

sinh2 ajhk

sinh2 aj
≤ 2d2N−1

N−1∑
j=1

N−1∑
k=1

sinh2 ajhk

sinh2 aj
.

Now an elementary estimate gives for a > a0

N−1∑
k=1

sinh2 ahk

sinh2 a
≤ c(ah)−1e−ha.

Thus we obtain

N−1

N−1∑
k=1

|u(hk, hl)|2 ≤ 2cd2
N−1∑
j=1

e−haj

aj
.
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Finally, aj = h−1α(πjh) ≥ 1√
3
πj when j ≤ N/4 and aj ≥ πN

4
√
3
when j ≥ N/4.

This gives

N−1

N−1∑
k=1

|u(hk, hl)|2 ≤ c1d
2

⎛⎝N/4∑
j=1

e−πhj/
√
3

j
+ c2

⎞⎠ ≤ c3d
2 logN,

where c1, c2 and c3 are some absolute constants.

4.4.4 Concluding remarks

We discussed determining sets and reconstruction of harmonic function in
two-dimensional square. The same methods can be applied for higher dimen-
sional cubes. We refer the reader to [43] for generalization of determining
sets for higher dimensions. For our work, in particular, the regularization
for reconstruction from model sets can be repeated in higher dimensions.
We may also consider a slightly more general operators than the Laplacian.
Similar to that of in [21], we can repeat the argument for the solution of
the uniformly elliptic equations of the form div(a(x)∇U(x, y)) = 0, where
(x, y) ∈ R2 and a does not depend on the second coordinate.

We remark also that in computing stability constants in Section 4.2.2
one could calculate interior stability constants for proper subrectangles Ph,t

defined by

s2(K,Ph,t) = max
{
‖u‖2,Ph,t

, Δhu = 0 on Ih, |u| ≤ 1 on K
}
.

Repeating the arguments of Proposition 4, one would get s2(Λb,h, Ph,t) ≥
cl−sN

−1, where s = tN . Thus interior stability constant still grows exponen-
tially in N and the advantage of the regularization becomes so immediate.
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5 Quantitative unique continuation for
discrete harmonic functions

We suggest an elementary quantitative unique continuation argument for
harmonic functions that can be generalized to the discrete case of harmonic
functions on the lattice. The analog of the three balls theorem for discrete
harmonic functions that we obtain contains an additional term that depends
on the mesh size of the lattice and goes to zero when the mesh size goes to
zero.

5.1 Introduction

5.1.1 Motivation

In this Chapter we give a quantitative version of the following simple observa-
tion: a discrete harmonic functions on the lattice Zn may vanish identically
on a large square without being zero everywhere but there is a version of
three balls theorem for discrete harmonic functions on large scales.

Quantitative unique continuation is an important tool in the study of so-
lutions of elliptic and parabolic problems. It has many applications, including
stability estimates for the Cauchy problem, see [2]. The simplest quantita-
tive unique continuation statement is a three balls theorem. For classical
harmonic functions it follows from logarithmic convexity of the L2-norms,
that in turn is obtained using the rotational symmetry and ellipticity of the
Laplace operator and can be proved by expansions in eigenfunctions of the
Laplace–Beltrami operator on the sphere [33]. However, the logarithmic con-
vexity can be generalized to general elliptic equations and it was successfully
used in unique continuation problems [1, 23].

The situation with unique continuation changes drastically when one con-
siders discrete models for elliptic equations. It is easy to construct a discrete
harmonic function (even a discrete harmonic polynomial, see Chapter 2) on
a lattice Zn that vanishes on a large cube of the lattice without being zero
identically. On the other hand, we understand that some version of unique
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continuation should hold at least when we fix the domains and let the mesh
size of the lattice go to zero. An obstacle for an elementary estimate similar
to logarithmic convexity for continuous harmonic functions is that discrete
Laplacian is not rotationally symmetric.

Recently quantitative uniqueness (from Cauchy data) for discrete mod-
els of elliptic PDEs were obtained by Carleman type inequalities we refer
readers to [7, 19] for motivation and interesting results; we mention also an
earlier work [32] that contains discrete Carleman estimates. It is known that
the mesh size of the discretization appears in propagation of smallness in-
equalities obtained by this method. The Carleman inequalities are the most
common tool for quantitative unique continuation due to their flexibility,
they can be adjusted to very general setting. However, even for the simplest
case of the five-point discrete Laplacian on Z2 the quantitative uniqueness
by Carleman estimates is very technical. We suggest another approach that
is based on the analyticity of the Poisson kernel and thus can be applied only
in the case of good equations but is simple and gives direct constructive esti-
mates for discrete harmonic functions on n-dimensional lattices. It is based
on [24].

We consider the standard lattice (hZ)n in n-dimensional space Rn, we
always assume that N = h−1 is a positive integer. A function u : (hZ)n → R
is called h-discrete harmonic at a point x ∈ (hZ)n if

2nu(x) =
n∑

j=1

u(x+ hej) + u(x− hej),

where {ej} is the standard orthonormal basis for Rn. Different logarithmic
convexity estimates for discrete harmonic functions can be found in [21, 26,
25, 42], in all these cases the norms are taken over parallel segments or parallel
lines.

In this Chapter we obtain an analog of the three sphere theorem for
discrete harmonic functions. We define by Qd the cube [−d, d]n ⊂ Rn and by
Qh

d its discretization, Qh
d = Qd ∩ (hZ)n. More generally for any set E ⊂ Rn

we denote Eh = E ∩ (hZ)n. Then our main result is the following.

Theorem 22. Suppose that r < R < 1. Then there exist positive constants
C,N0, δ, α that depend on r, R with α, δ < 1 such that for any h = N−1,
N ∈ N, N > N0 and any h-discrete harmonic function u in Qh

1 that satisfies
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maxQh
r
|u(x)| ≤ ε and maxQh

1
|u(x)| ≤ M the following inequality holds:

max
Qh

R

|u(x)| ≤ C(εαM1−α + δ
√
NM).

The remaining part of the Chapter is organized in the following way.
First, we give a new proof of the three balls theorem for continuous harmonic
functions that can be adjusted to the discrete case. Then we continue to prove
the main result of the Chapter. For the case R < 2r < 2−3n−3 we suggest
simple formulas for α and δ, for other cases one has to iterate the estimate
in a standard way.

5.1.2 Continuous case

The proposition below is three balls theorem for harmonic functions. It is
well known that the standard approach is to obtain logarithmic convexity for
L2-norms and then use elliptic estimates to obtain L∞ estimates, see [33] for
details. We give another elementary proof that will be extended to discrete
situation in the next section. We work in n-dimensional Euclidean space Rn

and fix n, so our constants may depend on the dimension.

Proposition 5. Let 0 < r < R < 1/4. There exist constants C > 0 and
α ∈ (0, 1) such that for any harmonic function u in the unit ball with

max
|x|≤r

|u(x)| = ε, max
|x|≤1

|u(x)| = M,

the inequality
max
|x|=R

|u(x)| ≤ CεαM1−α (5.1)

holds.

Proof. We have

u(x) =

∫
Sn−1

P (x, y)u(y)dσ(y),

where P (x, y) = γn(1−|x|2)(|x− y|)−n is the standard Poisson kernel for the
unit ball. We fix a point x0 such that |x0| ≤ R. The idea of the proof is to
approximate P (x0, y) by a linear combination of the form

∑m
k=1 ckP (xk, y)

with |xk| ≤ r. We will need two estimates, one for the error rm(x0, y) of
the approximation and another for the sum of the absolute values of the
coefficients of the approximating linear combination.
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We choose points xk on the segment [0, rR−1x0], xk = tkrR
−1x0, tk ∈

(0, 1), and consider the standard Lagrange interpolation of the function
f(t) = P (trR−1x0, y), then

ck =
∏
j �=k

r−1R− tj
tk − tj

.

Considering the polynomial Hm(t) = (t− t1)...(t− tm), we have

|ck| ≤ (R/r)m|H ′
m(tk)|−1.

Now we choose t1, ..., tm to be the Chebyshev nodes, tk = cos
(
π 2k−1

2m

)
. Then

Hm(t) = 21−mTm(t), where Tm is the Chebyshev polynomial of the first kind.
We have H ′

m(t) = m21−mUm−1(t), where Um−1 is the Chebyshev polynomial
of the second kind, see for example [17, Chapter 2]. Therefore

Um−1(tk) = Um−1

(
cos

(
π
2k − 1

2m

))
=

sin
(
π 2k−1

2

)
sin

(
π 2k−1

2m

) =
(−1)k−1

sin
(
π 2k−1

2m

) .
Then |H ′

m(t)| ≥ m21−m and |ck| ≤ m−1(2R/r)m.
In order to estimate the error of the approximation, we use an analytic

extension of the function f(t) = P (trR−1x0, y) to the disk of radius 1/2r
centered at the origin on the complex plane, see for example [17, Chapter 4]
for the residue method in the interpolation error estimate. We have

f(z) = γn
1− r2R−2|x0|2z2(∑

j(rR
−1x0,jz − yj)2

)n/2
,

this extension is bounded by a constant An. We consider the function

Ω(z) =
f(z)Hm(R/r)

(z −R/r)Hm(z)

which is meromorphic in {|z| < 1/2r} and has simple poles at points R/r
and t1, ..., tm. Then by the residue theorem, we get (see also [17, Theorem
4.3.3]),

|rm(x0, y)| = |P (x0, y)−
m∑
k=1

ckP (xk, y)| = |f(R/r)−
m∑
k=1

ckf(tk)| =∣∣∣∣ 1

2πi

∫
|z|=1/2r

f(z)Hm(R/r)

(z −R/r)Hm(z)
dz

∣∣∣∣ ≤ An

1−R

(
2R

1− 2r

)m

.
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Thus we have the following two estimates.

m∑
k=1

|ck| ≤
(
2R

r

)m

= Bm, |rm(x0, y)| ≤ aqm,

for some B, a, q such that q < 1. Then we have

|u(x0)| =
∣∣∣∣∫

Sn−1

P (x0, y)u(y)dσ(y)

∣∣∣∣ ≤
m∑
k=1

|ck|
∣∣∣∣∫

Sn−1

P (xk, y)u(y)dσ(y)

∣∣∣∣+ ∣∣∣∣∫
Sn−1

rm(x0, y)u(y)dσ(y)

∣∣∣∣ ≤
m∑
k=1

|ck||u(xk)|+ cn max
|y|=1

|rm(x0, y)||u(y)| ≤ Bmε+ a1q
mM. (5.2)

To minimize the sum we choose m =
[
(logM − log ε) (logB − log q)−1]+ 1,

where [t] is the largest integer less than or equal to t, and obtain the required
inequality (5.1) with C = B + a1 = 2Rr−1 + Ancn(1 − R)−1 and α = 1 −
logB(logB − log q)−1.

The Chebyshev nodes is the standard choice in the interpolation prob-
lems, when we want to have a good control over the coefficients, more gen-
erally the Fekete points of a given compact set K ⊂ R can be chosen. They
appear also in the quantitative propagation of smallness from the sets of
positive capacity, see [34].

5.2 Discrete case

5.2.1 Poisson kernel and its holomorphic extension

We start by the following discrete version of the Poisson integral representa-
tion

u(x) =
∑

y∈∂Qh
1

u(y)Ph(x, y), (5.3)

where for each y ∈ ∂Qh
1 , the function Ph(x, y) is h-discrete harmonic in the

variable x in Qh
1 , and satisfies the boundary conditions Ph(y, y) = 1 and

Ph(z, y) = 0 for any z ∈ ∂Qh
1 \ {y}.
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We will write down an analytic expression for Ph(x, y). Note that since
we consider discrete function with finitely many values, its analytic extension
is not unique. Without loss of generality, we assume that y = (y1, ..., yn−1, 1).
For each K = (k1, ..., kn−1) ∈ ((0, 2N)∩Z)n−1 = �1, 2N − 1�n−1 we define ahK
to be the only positive solution of the equation

cosh
hahK
2

= n−
n−1∑
j=1

cos
πkjh

2
.

Then

fh
K(x) = sinh(ahK(xn + 1)/2)

n−1∏
j=1

sin(πkj(xj + 1)/2)

is h-discrete harmonic and vanishes on all sides of the cube except the one
where y lies. It is easy to check that

Ph(x, y) =

(
1

N

)n−1∑
K

n−1∏
j=1

sin

(
πkj

xj + 1

2

)
sin

(
πkj

yj + 1

2

)
sinh

(
ahK

xn+1
2

)
sinh ahK

,

where summation is taken over K ∈ �1, 2N − 1�n−1. Similar computations
were done in Section 2.2.3.

Proposition 6. For any y ∈ ∂Qh
1 and (x1, .., xj−1, xj+1, ..., xn) ∈ [−1/2, 1/2]n−1,

j = 1, ..., n, the function f(t) = Ph(x1, ..., xj−1, t, xj+1, ..., xn, y) has a holo-
morphic extension to the domain Ω = {z : −1/2 ≤ �z ≤ 1/2,−1/16 ≤ �z ≤
1/16} ⊂ C that satisfies |f(z)| ≤ CN1−n for any z ∈ Ω.

Proof. The holomorphic extension is given by the formula above. We need to
prove the estimate. We repeat some of the estimates in Chapter 2 subsection
2.2.3. First, we note that either hahK ≥ 2 or(

hahK
2

)2

≥ cosh
hahK
2

− 1 =
n−1∑
j=1

(1− cos
πkjh

2
) ≥ 1

4

n−1∑
j=1

k2
jh

2.

Thus either ahK ≥ 2N or ahK ≥ ‖K‖, where ‖K‖2 = ∑
j k

2
j ≥ n−1

(∑
j kj

)2

.
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We consider two cases j = n and j �= n. First, if j = n, then for
|�z| ≤ 1/2, we have

|f(z)| ≤ CN1−n
∑
K

exp(−ahK/4) ≤

CN1−n
∑
K

exp(−‖K‖/4) + CN1−n(2N)n exp(−N/2) ≤

CN1−n

( ∞∑
k=1

exp

(
− k

4
√
n

))n−1

+ CN1−n(2N)n exp(−N/2) ≤ CnN
1−n.

Otherwise, if j �= n, and for |�z| ≤ 1/16 we have that

|f(z)| ≤ CN1−n
∑
K

exp(πkj/32− ahK/4) ≤

CN1−n
∑
K

exp(−ahK/32) + CN1−n(2N)n exp(−N/4 + πN/16) ≤ CnN
1−n.

5.2.2 Proof of the main result

We also need a discrete version of Chebyshev’s nodes.

Lemma 9. Suppose that M > m2. Then there exists a polynomial Hm,M(t) =
(t− s1)...(t− sm), where sj ∈ M−1Z∩ [−1, 1] such that |H ′

m,M(sj)| ≥ m21−m

for any j = 1, ...,m.

Proof. Let tk = cos((2k − 1)π/2m) be the classical Chebyshev nodes. An
elementary estimate shows that |tj − tk| ≥ m−2 when j �= k. We choose
sj ∈ M−1Z such that |sj − 2tj + 1| ≤ (2M)−1. Then

|sj − sk| ≥ 2|tj − tk| −M−1 ≥ |tj − tk|.

We thus have

|H ′
m,M(sj)| =

∏
k �=j

|sj − sk| ≥
∏
k �=j

|tj − tk| ≥ m21−m.
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Combining the statements above and repeating the argument from the
previous section, we obtain the following.

Lemma 10. Suppose that r < R < 2r < 2−3n−3. Then there exist constants
A,B, q that depend on r, R with q < 1 such that for any h-discrete harmonic
function u in [−1, 1]n and any m <

√
rh−1 we have

max
Qh

R

|u(x)| ≤ A(Bm max
Qh

r

|u(x)|+ qm max
Qh

1

|u(x)|).

Proof. We may assume that r, R ∈ hZ. We consider the following chain of
rectangles R0 = [−r, r]n, R1 = [−R,R] × [−r, r]n−1,..., Rn = [−R,R]n. We
want to prolongate the estimate from Rj to Rj+1. Let x = (x1, ..., xj, ..., xn) ∈
∂Rj \ Rj−1, then r < |xj| ≤ R. For each y ∈ ∂Qh

1 we consider the Poisson
kernel Ph(x, y) as a function of xj. More precisely, we fix y ∈ ∂Qh

1 and define

f(t) = Ph(x1, ..., txj|xj|−1r, ..., xn, y).

Further, by Proposition 6, f can be extended to a holomorphic function in
the domain D = {z ∈ C : |�z| ≤ (2r)−1, |�z| ≤ (16r)−1}, where it satisfies
|f(z)| ≤ CN1−n.

We let M = Nr and choose s1, ..., sm as in Lemma 9. Applying the
Lagrange interpolation with nodes sj we approximate f(R/r) by

∑
k ckf(sk),

where

ck =
∏
j �=k

r−1R− sj
sk − sj

.

By Lemma 9 we get |ck| ≤ (r−1R + 1)m2m−1m−1. Then∑
k

|ck| ≤
(
2(r +R)

r

)m

.

The error of the approximation is

|rj(x, y)| = |P (x, y)−
∑
k

ckP (xk, y)| =∣∣∣∣ 12π
∫
∂D

f(z)Hm,M(R/r)

(z −R/r)Hm,M(z)
dz

∣∣∣∣ ≤ CN1−n(16(R + r))m.

We obtain maxRj
|u(x)| ≤ A1(B

m
1 maxRj−1

|u(x)| + qm1 maxQh
1
|u(x)|), where

q1 = 16(R + r) and B1 = 2 + 2Rr−1. Iterating this estimate n− 1 times we
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obtain a desired estimate with B = Bn
1 , q = q1B

n−1
1 and A = An

1B1/(B1−1).
We have to check that q < 1 and indeed

q = 16(R + r)2n−1(R + r)n−1r1−n = 2n+3(R + r)nr1−n < 23n+3r < 1.

Finally, we prove Theorem 22 for the case R < 2r < 2−3n−3. Take
m0 = [(logM − log ε)(logB − log q)−1] + 1. If m0 <

√
rh−1 then applying

Lemma 10 with m = m0, we obtain

max
Qh

R

|u(x)| ≤ CεαM1−α.

If m0 ≥
√
rh−1, then we apply the Lemma with m = [

√
rh−1] and get

max
Qh

R

|u(x)| ≤ A2q
mM ≤ Cδ

√
NM,

where δ = q
√
r < 1.

A standard argument with a chain of squares and iteration of the estimate
gives the following.

Corollary. Let Ω be a connected domain in Rn, O be an open subset of Ω,
and K ⊂ Ω be a compact set. Then there exists C, α and δ < 1 and N0 large
enough such that for any N ∈ Z, N > N0, h = N−1 and any h-harmonic
function u on Ωh we have

max
Kh

|u| ≤ C

((
maxOh |u|
maxΩh |u|

)α

+ δ
√
N

)
max
Ωh

|u|.

5.2.3 Concluding remarks

It is easy to see that a discrete version of three balls (or three cubes) theorem
should have an error term that depend on the mesh-size of the lattice. It
could be also reformulated in the following way. Given r < R < 1 there exist
C, α and a function d(N) such that d(N) → 0 as N → ∞ and any discrete
harmonic function u on [−N,N ] ∩ Zn satisfies the inequality

max
|x|≤NR

|u| ≤ C

(
max
|x|≤rN

|u|α max
|x|≤N

|u|1−α + d(N) max
|x|≤N

|u|
)
.
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We have proved that one can take d(N) = δ
√
N . It is clear that a zero

function on a cube can be extended non-trivially to a harmonic function on
Zn. For example from a square [−M,M ]2 one may extend the function to a
strip [−M,M ]×Z with arbitrary values at the points (±M, y) with |y| > M
on the sides of the strip, then lay-wise the function is uniquely extended to
a discrete harmonic function on Z2. The same argument works in higher
dimensions.

To give an estimate for d(N) from below, we construct a particular func-
tion with zero values on �−rN, rN�n and non-zero extension to �−N,N�n.
For simplicity we do the calculations for n = 2 and the case when r < 1/2 <
R, the example can be extended to higher dimensions and general situation
easily. Let u be zero on �−N,N�×�−N,−1� and let the first non-zero row on
�−N,N�×{0} be (−1, 0, ..., 0). In all the consequent rows the boundary val-
ues are taken to be zeros, so the next row is (0, 1, 0, ..., 0). We consider each
row as an 2N−1-vector of values of u at points {−N+1, ..., 0, ..., N−1}×{k}.
Then we have a sequence of 2N − 1 vectors w0 = 0, w1 = (1, 0, ..., 0) and
wk+1 = (A+2I)wk−wk−1, k ≥ 1, whereA is the tridiagonal (2N−1)×(2N−1)
matrix with values 2 on the main diagonal and −1 on diagonals right above
and below the main one. To estimate wk we repeat the standard computation
of eigenvalues and eigenvectors of A.

Clearly, for every j = 1, ..., 2N−1, the vector vj = {sin(jsπ/2N}1≤s≤2N−1

is an eigenvector forA with the corresponding eigenvalue λj = 2−2 cos(jπ/2N).
Moreover {vj}2N−1

j=1 form an orthogonal basis for R2N−1 with ‖vj‖2 =
√
N .

Then we have

w1 =
∑
j

κjvj, κj =
1√
N

sin(jπ/2N), and wk =
∑
j

κj

qkj − q−k
j

qj − q−1
j

vj,

where qj is one of the two positive real roots of the equation q2−(λj+2)q+1 =
0; 1/qj is the other root, we choose qj > 1. We have 0 < λ1 ≤ .. ≤ λ2N−1 < 4,
then 1 < q1 < q2 < ... < q2N−1 < 2 +

√
3. Finally,

|w(s)
k | =

∣∣∣∣∣
2N−1∑
j=1

1√
N

sin(jπ/2N) sin(jπs/2N)
qkj − q−k

j

qj − q−1
j

∣∣∣∣∣ ≤ (2 +
√
3)k

√
N.

Now when r < 1/2 < R we have u(x) = 0 on KrN and maxx∈KRN
|u(x)| ≥

1. Hence

d(N) ≥ (max
x∈KN

|u(x)|)−1 ≥ 1√
N
(2 +

√
3)−N .
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Thus the error term d(N) cannot go to zero faster than qN for q < 2 −√
3.

It would be interesting to find the correct asymptotic behavior of d(N).
Our interest to quantitative unique continuation comes partly from the

question of conditional stability of the discrete Cauchy problem. A general
scheme of applying three balls inequalities for such stability estimates is
described in [2]. It would be interesting to use it for the discrete case as well.
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APPENDIX

In this appendix we present the MATLAB code for the stability constants
s∞(Λ∗,h) for our model set Λ∗,h. The computations are based on the formula
in Lemma 7 of Chapter 4. We compute also an L2-stability constant s̃2(Λ∗,h)
of Λ∗,h, where

s̃2(K) = max
{
‖u‖2, ˜Gh

, Δhu = 0 in Ihand ‖u‖2,K ≤ 1
}
.

Note that it is different from the stability constant defined in Chapter
4.2.1. First we calculate the Laplacian matrix Lh using the Kronecker tensor
product. The rows of the matrix Lh correspond to the equations of the dis-
crete Laplacian and the columns correspond to the points in G̃h. This matrix
Lh has very simple representation in terms of the Kronecker tensor product.
The Kronecker tensor product of two A ∈ Rm×n, B ∈ Rp×q matrices is
defined as the matrix

kron(A,B) =

⎛⎜⎝a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎞⎟⎠ ∈ Rmp×nq.

Then we rearrange the columns of Lh such that the first N2 columns corre-
spond to the points in G̃h \ Λ∗,h and the last 4N columns correspond to the
points of the set Λ∗,h. The obtained matrix is denoted by

Lh,K = [AB],

where A is N2 × N2 matrix and B is an N2 × 4N. By Lemma 7 the sta-
bility constants s̃2(Λ∗,h) and s∞(Λ∗,h), for the model set Λ∗,h are given by

s∞(Λ∗,h) = ‖A−1B‖∞ s̃2(Λ∗,h) =

∥∥∥∥[ I
A−1B

]∥∥∥∥
2

.

The standard stability constant s∞(Λ∗,h) can also be computed using the
formula

ak =

(
1 +

√
2

2

)(
3 + 2

√
2
)k

+

(
1−√

2

2

)(
3− 2

√
2
)k

,

discussed in Chapter 4, Section 4.2.2.
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function [S]=STABILITYCONSTANT(N)

T1,N = −spdiags(ones(N, 1), 0, N,N+2)+2∗spdiags(ones(N, 1), 1, N,N+2)

−spdiags(ones(N, 1), 2, N,N + 2);

J = spdiags(ones(N, 1), 1, N,N + 2);
T2,N×N = kron(T1,N , J) + kron(J, T1,N);
L = T2,N×N(:, any(T2,N×N));
Lh = full (L);

A = Lh (:, 1 : N) ;
B = Lh (:, N + 1) ;
index=N + 2;
for row 1 : N

2
− 1

A = [A, Lh(:, index : index +N − 1)];
index = index +N ;
B = [B, Lh(:, index : index + 1)];
index = index +2;
end
B = [B, Lh(:, index : index + 2 ∗ (N + 2)− 3)];
index = index +2 ∗ (N + 2)− 2;
for row = 1 : N/2− 1
B = [B, Lh(:, index : index + 1)];
index = index +2;
A = [A, Lh(:, index : index +N − 1)];
index = index +N ;
end
B = [B, Lh(:, index)];
index = index +1;
A = [A, Lh(:, index : end)];
LhK = [A B];
s∞(Λ∗,h) = norm (inv(A) ∗B, inf) ; the uniform stability constant for the

set Λ∗,h.

s̃2(Λ∗,h) = norm

([
I

A−1B

]
, 2

)
; the L2- stability constant for the set

Λ∗,h.
The table below shows some values of the Stability constants s∞(Λ∗,h) and s̃2(Λ∗,h)

for N = 2, 4, 6, ..., 40. We refer Chapter 4, Lemma 7 for the detail.
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N s∞(Λ∗,h) s̃2(Λ∗,h)
2 7 6.1644
4 41 36.9210
6 329 220.1458
8 1.3930e+03 1.3046e+03
10 8.1190e+03 7.6966e+03
12 4.7321e+04 4.5267e+04
14 2.7581e+05 2.6569e+05
16 1.6075e+06 1.5571e+06
18 9.3693e+06 9.1165e+06
20 5.4608e+07 5.3332e+07
22 3.1828e+08 3.1181e+08
24 1.8551e+09 1.8222e+09
26 1.0812e+10 1.0645e+10
28 6.3018e+10 6.2167e+10
30 3.6730e+11 3.6297e+11
32 2.1408e+12 2.1188e+12
34 1.2477e+13 1.2366e+13
36 7.2723e+13 7.2166e+13
38 4.2387e+14 4.2108e+14
40 2.4708e+15 2.4566e+15

Table 5.1: Stability Constants for Model set Λ∗,h

From the table above we see that s∞(Λ∗,h) ≤ s̃2(Λ∗,h) and the ratio of the
standard stability constants s∞(Λ∗,h) to the L2-stability constant s̃2(Λ∗,h)
becomes close to 1 as N increases.

We have the following remarks for the MATHLAB code above.

1. For N > 40, the matrix A is close to singular or badly scaled. Therefore
the results may be inaccurate.
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2. The matrix

T1,N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 −1 0 0 0 0 0 . . . 0
0 −1 2 −1 0 0 0 0 . . . 0
0 0 −1 2 −1 0 0 0 . . . 0
0 0 0 −1 2 −1 0 0 . . . 0
0 0 0 0 −1 2 −1 0 . . . 0
...

...
...

...
. . . . . . . . . . . .

...
0 0 0 0 . . . −1 2 −1 0
0 0 0 0 . . . 0 −1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

is N × (N + 2) symmetric tridiagonal matrix.

3. The matrix

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 1 0 0 . . . 0
...

...
...

...
. . . . . . . . . . . .

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

is N × (N + 2) symmetric tridiagonal matrix.

4. T2,N×N is N2 × (N + 2)2 matrix with four zero columns obtained from
the Kronecker products of the matrices T1,N and J. The MATLAB code
T2,N×N(:, any(T2,N×N)) removes all the zero columns of T2,N×N to get
the discrete Laplacian matrix Lh.

5. LhK is an N2× (N2+4N) discrete Laplacian matrix obtained from Lh

after rearranging all the columns of the matrix Lh such that the first
N2 columns correspond to all the points in G̃h \Λ∗,h and the remaining
N2 + 4N columns correspond to all the points in the set Λ∗,h.
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