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Abstract
An important issue in the emerging field of multifrequency atomic force microscopy (MF-AFM) is the accurate and fast demodula-

tion of the cantilever-tip deflection signal. As this signal consists of multiple frequency components and noise processes, a lock-in

amplifier is typically employed for its narrowband response. However, this demodulator suffers inherent bandwidth limitations as

high-frequency mixing products must be filtered out and several must be operated in parallel. Many MF-AFM methods require

amplitude and phase demodulation at multiple frequencies of interest, enabling both z-axis feedback and phase contrast imaging to

be achieved. This article proposes a model-based multifrequency Lyapunov filter implemented on a field-programmable gate array

(FPGA) for high-speed MF-AFM demodulation. System descriptions and simulations are verified by experimental results demon-

strating high tracking bandwidths, strong off-mode rejection and minor sensitivity to cross-coupling effects. Additionally, a five-

frequency system operating at 3.5 MHz is implemented for higher harmonic amplitude and phase imaging up to 1 MHz.

490

Introduction
Atomic force microscopy (AFM) [1] has been integral in the

field of nanoscale engineering since its invention in 1986 by

Binnig et al. By sensing microcantilever tip–sample interac-

tions [2], atomic scale resolution imaging is achieved, which far

exceeds the optical diffraction limit. An image generated by

constant-force topography AFM depends entirely on its feed-
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back control loop. The composition of a sample is visualized in

three-dimensions by plotting the control signal against the

lateral scan trajectories of the nanopositioner.

In static-mode AFM (contact mode), the control loop attempts

to maintain a constant contact force [3]. Where as in dynamic

modes, for example intermittent-contact constant-amplitude

AFM [4], the control loop acts to maintain a constant cantilever

oscillation amplitude. This is achieved by feeding back the

demodulated fundamental frequency present in the deflection

signal. In intermittent-contact mode AFM [5], the tapping

amplitude is chosen such that only gentle tip–sample interac-

tions occur. This is particularly suitable for studying biological

samples, allowing for biophysical processes to be studied [6-8].

Multifrequency AFM (MF-AFM) methods allow for the study

of tip–sample interactions occurring at multiple frequencies [9].

This extends imaging information beyond the topography to a

range of nanomechanical properties including sample stiffness,

elasticity and adhesiveness [10]. The acquisition of these

observables requires tracking the amplitude and phase of addi-

tional frequencies of interest. These include higher harmonics

of the fundamental frequency [11], higher flexural eigenmodes

[12] and intermodulation products [13]. Higher harmonic

methods have demonstrated the ability to image relatively large

biological objects, such as cells [14,15], while bimodal AFM

has successfully imaged properties of protein complexes [16].

Intermodulation AFM is a novel extension to the bimodal

method that focuses on the mixing products of a slightly below

and above resonance bimodal drive. It has been shown to

achieve increased image contrast [17] and lead to further

insights into nanomechanical properties [18]. Regardless of

which particular MF-AFM method is employed, they each

require the demodulation of amplitude and phase to form

observables for the characterization of nanomechanical proper-

ties.

Due to the large bandwidth requirements of tracking high

frequencies in MF-AFM, every component of the z-axis feed-

back loop detailed in Figure 1 needs to be optimized for speed.

This includes the lateral and vertical nanopositioner for each

axis (x, y and z), cantilever, vertical feedback controller and

demodulator. In this article, the demodulator component is im-

proved with respect to its key performance metrics: tracking

bandwidth, sensitivity to other frequency components, and

implementation complexity. Tracking bandwidth is defined as

the point in a frequency response where the output of the

demodulator drops by −3 dB with respect to the input modu-

lating signal. Off-mode rejection (OMR) is a term that de-

scribes the attenuation of unwanted frequencies present in the

input signal, which lie outside the modeled carrier of interest.

Figure 1: Block diagram of the multifrequency AFM control loop.

It has been shown that conventional high-speed demodulation

techniques are incompatible with MF-AFM, due to the lack of

sensitivity to multiple frequency components [19]. These

include the peak detector [20], peak-hold [21] and RMS-to-DC

[22] conversion methods. A typical MF-AFM demodulator

employs multiple lock-in amplifiers (LIA) in parallel, as each

provides an accurate estimation of a particular frequency com-

ponent. However, low-pass filters are employed to diminish

mixing products, which severely limits the demodulator band-

width [23].

Motivated by improving MF-AFM demodulation capabilities,

previous work by the authors includes a multifrequency Kalman

filter [24]. It was shown to outperform a commercially avail-

able LIA in terms of both tracking bandwidth and noise perfor-

mance. However, a major disadvantage of the Kalman filter is

the large computational expense of each additional frequency

modeled. This reduces its realizable performance through limi-

tations of the sample rate. An estimator in the form of a

Lyapunov filter [25] was demonstrated to perform similarly to

the Kalman filter [26]. However, the Lyapunov filter complexi-

ty scales significantly better than the Kalman filter when

multiple frequencies are modeled [27].

This article extends previous work by providing a thorough per-

formance analysis of the multifrequency Lyapunov filter in

terms of tracking bandwidth, off-mode rejection and cross-cou-

pling effects. In addition, MF-AFM demodulation is demon-

strated by performing higher harmonic imaging with amplitude

and phase on both a stiff and compliant sample.

Lyapunov Filter
System modeling
A single-frequency cantilever deflection signal is modeled as a

sine wave with carrier frequency fc, time-varying amplitude A(t)

and phase (t) of the form
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(1)

For readability, explicit dependencies on time of the amplitude

A(t) and phase (t) are dropped from this point onward. By

extension, a deflection signal consisting of multiple frequencies

is modeled as

(2)

where i = 1, 2, …, n denotes the i-th modeled frequency.

Through the double-angle trigonometric identity, this model is

linearly parameterizable such that vector pairs within the state

vector x =  represent quadrature and

in-phase components of each particular modeled frequency.

That is, each individual sine wave is represented by

(3)

Based on the parametrization of the signals in Equation 3, the

time-varying amplitude and phase of a particular frequency is

recovered by

(4)

Filter description
The Lyapunov filter [28] is implemented as a linear observer as

shown in Figure 2. A key property of the filter is exponential

convergence of the estimated states [29], with the tunable loop

gain constant γ governing the speed of convergence. The filter

is shown to have a negative feedback loop in which integral

action regulates the error. By feeding back an estimate of the

input signal obtained from the parameterized states in the form

of Equation 3, an error signal is generated. Regulation of this

error through feedback leads to the much desired suppression of

the 2fc mixing components.

The update law for the single-frequency Lyapunov filter [28]

can be extended to a multifrequency form, resulting in

(5)

(6)

Figure 2: Block diagram of a single-frequency Lyapunov filter. The
pink shaded area highlights the calculation that can be done in parallel
for multiple frequencies.

where

(7)

and

(8)

In this form,  represents the estimated output and the ampli-

tude Ai and phase  are available by applying Equation 4 to

each quadrature and in-phase pair of . A key requirement to

ensure exponential convergence of  to x, is to guarantee that c

is persistently excited [29]. Convergence is shown for the

single-frequency filter in [28], and can easily be extended for

the multifrequency case. Furthermore, exponential convergence

of  means that  and  also converge.

Results and Discussion
Hardware
The Lyapunov filter was implemented on a high-speed FPGA to

achieve the necessary sample rate for accessing higher

harmonics during imaging. A Xilinx Kintex-7 KC705 evalua-

tion board (model: XC7K325T) paired with a DC-coupled high-

speed 4DSP input/output (I/O) card (model: FMC151) was

utilized. The FPGA clock is synchronized with the high-speed

I/O card at 250 MHz. The I/O card has a two-channel 14-bit

analog-to-digital converter (ADC) and a two-channel 16-bit

digital-to-analog converter (DAC), which sample at 250 MHz

and 800 MHz, respectively.
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Implementation
Figure 2 shows the block diagram of a single-frequency

Lyapunov filter (SF-LYAP). Here, the digital components re-

quired for FPGA implementation can be seen: multipliers,

adders, registers, sample rate control for feedback and a

programmable direct digital synthesizer (DDS). The DDS

generates the sine (in-phase) and cosine (quadrature) signals re-

quired to model carrier frequencies. It may be tuned through

control of its frequency word which is calculated by

(9)

where fout is the desired output frequency, FW represents the

binary word required to program the DDS, n is the length of

FW and fclk is the speed of the FPGA board.

A SF-LYAP was successfully implemented at a sampling rate

of fs = 5 MHz. As stability is of priority, the chosen data repre-

sentation is floating point in the standard IEEE 754 format. The

integration method used is backward Euler, as this ensures

stability when γ is large [30]. The output equation (Equation 4)

is realized with the Xilinx Coordinate Rotation Digital Comput-

er (CORDIC), set to a 16-bit configuration such that the ampli-

tude and phase are formatted for the I/O card. The carrier fre-

quency fc, γ and any necessary output gains for amplifying very

small signals during imaging are tunable in real-time using the

Xilinx Virtual Input Ouput (VIO) tool.

In Figure 3, the block diagram of the implemented multifre-

quency Lyapunov filter (MF-LYAP) is shown. Here, it can be

seen that an MF-LYAP involves several SF-LYAPs running in

parallel. Channel cross-coupling occurs in the combined output

feedback as dictated by the output equation (Equation 6). The

Lyapunov filters timing constraints for a five-frequency system

result in a maximum sampling rate of fs = 3.5 MHz. This is a

large improvement over the multifrequency Kalman filter [24],

which was 1.5 MHz for a three-frequency system. The Kalman

filter equations [24] can be shown to have a complexity of

, while that of the Lyapunov filter is  for n modeled

frequencies. This stark difference in complexity arises from the

computations required for the Kalman gain and covariance

matrix update.

Experimental setup
A LIA (Zürich Instruments HF2LI) was used in-conjunction

with a laboratory function generator (Agilent 33521A wave-

form generator) to experimentally verify the performance of the

implemented Lyapunov filter. These investigations include a

frequency response experiment to measure the tracking band-

Figure 3: Block diagram of a multifrequency Lyapunov filter.

width and channel cross-coupling. Additionally, off-mode rejec-

tion of channels in both high-speed and slow configurations was

explored through a carrier sweep.

Tracking bandwidth
The tracking bandwidth of the Lyapunov filter was character-

ized through frequency responses from both a simulated and ex-

perimentally implemented system. For each frequency response,

the modulating signal A(t) in Equation 1 was swept from DC to

1.5 MHz while the carrier frequency was held constant. The

tracking bandwidth experiment examines the relationship be-

tween the −3 dB point and γ for a 1 MHz carrier frequency and

γ values ranging between 5 × 104 and 1 × 107. Figure 4 shows

the results of (a) simulated and (b) experimental tracking fre-

quency responses, where it can be seen that the two systems

match closely. The similarity was achieved by maintaining a

consistent sample rate and integration method for both simula-

tion and experimental implementation. In Figure 4c, the simu-

lated and experimental −3 dB points are shown as a function of

the tunable loop constant γ. For both systems, the tracking

bandwidth approaches the carrier frequency fc.

Figure 5 demonstrates several cases in which the Lyapunov

filter is achieving a high tracking bandwidth of fc, the equiva-

lent of single cycle tracking. This was achieved for the five

carrier frequencies 100 kHz, 200 kHz, 500 kHz, 700 kHz and

1 MHz with γ values of 1.2 × 106, 2.2 × 106, 3.7 × 106,

4.4 × 106 and 5.1 × 106, respectively.

Cross-coupling
The effect of channel cross-coupling on the tracking bandwidth

was examined for both a simulated and experimentally imple-

mented system. For simplicity, cross-coupling was demon-

strated with a two-frequency MF-LYAP wherein the modeled

carrier frequencies are 100 kHz and 500 kHz for channels 1 and

2, respectively. Each channel is considered for two fixed



Beilstein J. Nanotechnol. 2018, 9, 490–498.

494

Figure 4: (a) Simulated and (b) experimentally obtained frequency
responses of the Lyapunov filter with a carrier frequency of 1 MHz and
varying tracking bandwidths, as indicated by the increasing γ values.
Results in (c) show the −3 dB tracking bandwidth of each system as a
function of γ.

Figure 5: Experimental frequency responses from a single-frequency
Lyapunov filter with five carrier frequencies tuned to a −3 dB tracking
bandwidth of fc.

tracking bandwidth settings, low (1 kHz) and high (50% of fc),

while the other channel is increased in speed.

Figure 6a–c shows that the tracking bandwidth of a channel will

increase from its original setting as the other channel is tuned

faster. Conversely, Figure 6d shows channel 2 slowing down as

channel 1 is increased in speed. This is explained by the fact

that channel 2 is set to a tracking bandwidth of 250 kHz

(50% fc), which is higher than the maximum obtainable speed

of channel 1. Throughout this investigation, the simulation and

experimental results agree. The results show that cross-cou-

pling effects are more pronounced in low-speed channels. They

are, however, negligible if tracking bandwidths of channels

remain below 10% of fc.

Figure 6: The effect of channel cross-coupling on tracking bandwidth
for a system based on two frequencies. The effect of the speed of
channel 2 on channel 1 set to (a) slow (1 kHz) and (b) high-speed
(50% fc). Similarly, the effect of the speed of channel 1 on a (c) slow
and (d) high-speed channel 2. The dashed line in each plot represents
a speed of 10% of fc.

Off-mode rejection
The off-mode rejection of the multifrequency Lyapunov filter

was analyzed by performing a single-tone sine sweep on the

input signal and recording the demodulated amplitude magni-

tude of each channel. For each frequency response, the carrier

frequency fc in Equation 1 was swept from DC to 1.25 MHz

with a constant amplitude A. This experiment used a five-fre-

quency MF-LYAP with channels set to carriers of 100 kHz,
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Figure 7: Experimental and simulated off-mode rejection frequency responses for both (a–e) fast demodulator (10% of fc) and (f–j) slow demodulator
(1 kHz) bandwidth settings.

200 kHz, 500 kHz, 700 kHz and 1 MHz for both a simulated

and experimentally implemented system.

Figure 7a–e shows off-mode rejection for a fast (10% of fc)

tracking bandwidth setting. For each channel, a full recovery

(0 dB) of the signal can be seen to occur at its modeled carrier

frequency, as expected. There is strong off-mode rejection

occurring at the other modeled carrier frequencies, due to output

feedback cross-coupling sharing state information between

channels. Figure 7f–j demonstrates off-mode rejection for a

slow (1 kHz) tracking bandwidth setting. Here, the narrowband

response is a direct result of the reduced γi values of each

channel. This causes a less distinct, but still visible, modeled

off-mode rejection at the other carrier frequencies. It can be

seen that the slower system achieves greater off-mode rejection

outside of the modeled frequencies than the fast system. Again,

a similar performance between the simulated and experimental

results can be observed. The less distinct off-mode rejection in

the experimental results compared to the simulations is due to a

finite DC offset from the DAC. This precludes the direct mea-

surement of signals smaller than this value.

AFM imaging
Imaging setup
The Lyapunov filter as a multifrequency AFM demodulator was

validated through a series of imaging experiments where it is

compared side-by-side to a lock-in amplifier. To ensure a fair

comparison, the demodulators were tuned to the same tracking

bandwidth in both experiments. This is required as the noise

performance has been shown to be a function of the tracking

bandwidth [19]. The lock-in amplifier is the state-of-the-art

multifrequency method due to its strong off-mode rejection,

however it can not achieve the same speed as the Lyapunov

filter due to post-mixing filtering [19]. As the high-speed supe-

riority of the Lyapunov filter is well established, it is compared

to the lock-in amplifier in a low-speed environment.

Using an NT-MDT NTEGRA AFM, amplitude and phase

higher harmonic imaging was performed with a NT-MDT

NSG01 and Bruker DMASP cantilever. These cantilevers were

found to have fundamental resonance frequencies of 168.8 kHz

and 46.1 kHz, respectively. The samples used are a z-calibra-

tion grating (NT-MDT TGZ3) with periodic height features of

approx. 500 nm and a blend of polystyrene (PS) and polyolefin

elastomer (LDPE) available from Bruker (PS-LDPE-12M). Due

to the different elastic moduli of the PS and LPDE regions, the

sample is widely used for qualitative imaging the material

contrast.

Imaging a TGZ3 calibration grating
Higher-harmonic amplitude images with the first, second, third,

sixth and seventh harmonics were obtained by the MF-LYAP

and multiple parallel LIAs. The frequency response of the

NSG01 cantilever in free air and the power spectrum of its

deflection signal during contact are shown in Figure 8. Here, the

fundamental and second resonance frequencies can be seen in

the cantilever frequency response. The deflection signal spec-

trum shows additional higher harmonics and minor intermodu-

lation products are present. These are due to non-linear atomic

forces exciting the cantilever during contact.
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Figure 9: Higher harmonic (amplitude) AFM imaging with a (a–f) lock-in amplifier and (g–l) multifrequency Lyapunov filter on a TGZ3 calibration stan-
dard.

Figure 8: Experimental frequency response of the NSG01 cantilever in
free air and the power spectrum of the tip deflection signal in contact
with the sample. MF-AFM higher harmonic images obtained with this
deflection signal are shown in Figure 9.

Amplitude imaging results are shown in Figure 9. As the sixth

and seventh harmonics are closely spaced to the second reso-

nance frequency of the cantilever, they provide an increased

signal-to-noise ratio. The MF-LYAP can be seen to perform

comparably to the LIA when tuned to similar measurement

bandwidth settings. When imaging with higher harmonics, the

off-mode rejection of each channel was tuned to suppress the

large fundamental frequency.

Imaging a PS/LPDE calibration grating
Higher-harmonic phase images were obtained for the first five

harmonics of a Bruker DMASP cantilever. The frequency

response of the cantilever in free air and the power spectrum of

its deflection signal during contact are shown in Figure 10.

Here, the fundamental resonance frequency and higher eigen-

modes can be seen in the cantilever frequency response. As

before, the deflection signal contains additional higher

harmonics and intermodulation products due to the non-linear

atomic excitation. Note that the DMASP cantilever uses inte-

grated piezoelectric actuation [31], which results in a clean fre-

quency response when compared to the base excited NSG01 as

seen in Figure 8.

Figure 10: Experimental frequency response of the DMASP cantilever
in free air and the power spectrum of the tip deflection signal in con-
tact with the sample. MF-AFM higher harmonic images obtained with
this deflection signal are shown in Figure 11.

The higher-harmonic phase imaging results are shown in

Figure 11. For both demodulators, we see a strong material

contrast between the PS and LPDE regions. This was expected

from the rich frequency content present in the deflection signal,

as visible in Figure 10. We note that the images show particu-

larly strong contrast for the second harmonic, which is due to its

proximity to the second mode of the cantilever. This fact is also

visible in the increased noise floor around that frequency in the

deflection signal. Similarly to the amplitude imaging, the large

fundamental frequency contribution required tuning higher

harmonics for increased off-mode rejection. For this reason, we

tuned the first harmonic demodulators to 1 kHz bandwidth (LIA

LPF 1 kHz, LYAP γ = 20 × 103 and the higher harmonics to

200 Hz (LIA LPF 200 Hz, LYAP γ = 2 × 103).

Conclusion
This article describes a multifrequency Lyapunov filter for

high-speed demodulation in MF-AFM. The performance and

flexibility of the proposed Lyapunov filter is demonstrated

through simulations and experiments. The filter may reach

tracking bandwidths up to the modeled carrier frequency, the

equivalent of single-cycle tracking. Additionally, the off-mode
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Figure 11: Higher-harmonic AFM imaging performed with the fundamental mode of the DMASP cantilever on a PS/LPDE polymer blend with mea-
surement bandwidths of 1 kHz and 200 Hz for the first and higher harmonics, respectively. (a,c): Topography in nanometers, (b) higher-harmonic
phase (°) images taken with parallel LIAs, (d) higher-harmonic phase (°) images taken with the MF-LYAP.

rejection of the system was found to be controlled by its band-

width as dictated by the tunable loop constant γ. The relation-

ship between γ and the bandwidth was shown to be linear, up to

the modeled carrier frequency. Channel cross-coupling, which

occurs due to output feedback, was found to cause distinct

rejection of other modeled frequencies during the off-mode

rejection experiments. An investigation into this cross-coupling

revealed it has negligible effect on the tracking bandwidth of

the system.

The multifrequency Lyapunov filter as a flexible, high-speed

demodulator was verified through higher harmonic MF-AFM

imaging for both amplitude and phase. This demonstrates the

filters ability to be used as a demodulator in various MF-AFM

techniques involving higher harmonic, higher eigenmode or

intermodulation frequency components. In the presented AFM

images, the proposed filter performed comparably to a state-of-

the-art lock-in amplifier setup. In comparison to the Kalman

filter, the Lyapunov filter is similar in terms of speed, off-mode

rejection and operation. However, it was found to be signifi-

cantly easier to implement, which is a priority when consid-

ering an extension to multiple frequencies.
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