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Abstract— This paper presents a 3D reactive collision avoid-
ance algorithm for vehicles with nonholonomic constraints.
The algorithm steers the heading and pitch angle of the
vehicle in order to maintain a constant avoidance angle to the
obstacle, thus ensuring a safe collision avoidance maneuver. The
flexibility provided by moving in three dimensions is utilized
by choosing an optimal pair of safe pitch and heading angles
for avoidance. Furthermore, the algorithm incorporates limits
on the allowed pitch angle, which are often present in practical
scenarios. The collision avoidance property is mathematically
proved, and the analysis is validated by several numerical
simulations.

I. INTRODUCTION

For unmanned vehicles operating without manned super-
vision, it is of vital importance to be able to react quickly
to detected obstacles. This is particularly true for vehicles
operating in 3D, such as unmanned aerial vehicles (UAVs),
which can fly at high speed, or for autonomous underwater
vehicles (AUVs), which operate in mostly unknown environ-
ments often characterized by difficult sensing conditions.

Reviews of different collision avoidance (CA) approaches
in 2D are given in [1] and [2]. The different approaches can
generally be divided into two groups [3]; motion planning
algorithms and reactive algorithms. The general motion plan-
ning problem with bounded velocities and multiple obstacles
has been shown to be NP-hard [4], and can be computation-
ally expensive. This can particularly be a problem in 3D,
where the added dimension extends the planning complexity
significantly. Reactive algorithms therefore seem promising
in such scenarios.

The artificial potential field approach for obstacle avoid-
ance has been in much use since it was proposed in [5].
There are, however, some stability issues identified by [6],
which the vector field histogram [7] seeks to counter by
choosing a safe direction from a polar histogram of merged
sensor measurements. Another potential field approach is the
navigation vector field [8], where local minima are avoided
by directly creating a gradient field with this in mind. The
potential field methods do not inherently consider vehicle
dynamics, and the performance of the algorithm on vehi-
cles with nonholonomic constraints is rarely analyzed. An
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example of a 2D algorithm incorporating vehicle dynamics
and constraints is the dynamic window algorithm [9], [10],
which searches through a set of valid vehicle trajectories to
find a safe control input.

In [11], a reactive algorithm employing a dipolar nav-
igation function resembling the artificial potential field is
used. The navigation function is generated so that there
is a single minimum at the target, and maxima at the
obstacles. The algorithm provably makes the vehicle reach
the target position while avoiding obstacles. However, there
is an underlying assumption that the vehicle is able to follow
the integral curves. Furthermore, actuator constraints are not
included, nor is there any analysis on the behavior of the
vehicle forward speed. In particular, it is not guaranteed that
the forward speed is always positive.

The velocity obstacle [12] and collision cone [13] ap-
proaches deal with moving obstacles in the plane. Several
extensions have been made to the velocity obstacle approach
to consider acceleration constraints and nonholonomic con-
straints [14], [15]. The velocity obstacle approach has been
used with much success. However, for vehicles with very
limited speed envelopes, it can become too restrictive.

A 3D extension to the velocity obstacle approach is
proposed for a UAV scenario in [16] and [17]. The problem
of selecting a reachable velocity is elegantly solved by
dividing the 3D space into a discrete set of planes, and
examining each plane. Hence, the vehicle can choose the best
velocity across multiple planes according to some criterion.
The dynamics of a vehicle controlled by the algorithm
is, however, not analyzed, and there is a concern with
oscillations when switching between the different avoidance
planes. Furthermore, the problems related to limited speed
envelopes remains unsolved.

Another reactive algorithm for nonholonomic vehicles
is presented in [18], where a constant avoidance angle is
maintained between the vehicle heading and the tangent
from the vehicle to the obstacle. The algorithm has a
low computational complexity and limited vehicle sensing
requirements. It is mathematically proved that the vehicle
avoids obstacles moving with constant velocity. There is,
however, a singularity in the algorithm for certain obstacle
speeds, and the algorithm can make the vehicle almost stop.
The latter is unfortunate for vehicles such as fixed-wing
aircraft, which has a limited flight envelope.

The algorithm in [18] is extended to 3D in [19]. Here, the
vehicle is made to move in a plane created from the vehicle’s
velocity vector and the obstacle center. The 2D algorithm of
[18] is then implemented in this plane. The approach is an



intuitive extension from 2D to 3D, and it is proved that the
algorithm is safe. However, the algorithm does not fully make
use of the flexibility offered by moving in three dimensions,
and it is not possible to limit vehicle pitch. Furthermore, as
with [18], the algorithm can make the vehicle speed close to
zero, which is particularly unfortunate in three dimensions.

The algorithm proposed by [20] extends the work of
[18] to accommodate vehicles that must move within a
limited speed envelope, and also avoids the singularity in
the analysis. Both [20] and [18] consider kinematic vehicles,
while in [21] the algorithm is extended to a marine vehicle
with underactuated dynamics.

The main contribution of this paper is a 3D reactive CA
algorithm for nonholonomic vehicles. The algorithm is an
extension of the 2D algorithm in [20]. The algorithm steers
the heading and pitch angle of the vehicle, and is able to
find safe angles for any given vehicle forward speed. It can
thus accommodate vehicles with a limited speed envelope,
which is particularly relevant in 3D scenarios for vehicles
such as UAVs and AUVs. To show the applicability to such
vehicles, we apply the algorithm to a vehicle that is restricted
to keep a constant forward speed. The algorithm can also be
used on vehicles without such restrictions, and will then give
a large amount of flexibility in designing the desired speed
trajectory.

We introduce an extended 3D vision cone, which is used
to define the set of safe heading and pitch angles, and to
define the criterion for transition between guidance mode
and CA mode. Unlike the 2D case, where the vehicle can
choose between two safe heading angles from the algorithm,
we have a continuum of safe heading and pitch angles in the
3D scenario. We will use this flexibility to define a general
optimization criterion for selecting an optimal pair of heading
and pitch angles. This allows for various implementations
with different weights on the resulting pitch and heading
movement. Furthermore, we show that the algorithm is
suitable for vehicles with limitations on the pitch angle,
which is the case for many AUVs and UAVs alike.

The remainder of this paper is organized as follows. In
Section II we give a brief introduction to some of the
mathematical concepts used in the paper. The vehicle and
the obstacle model are described in Section III, which also
states the sensor requirements and the control objective of the
system. Section IV defines the heading and pitch controllers,
as well as the guidance laws employed to steer the vehicle
towards a target when it is not in CA mode. Section V
describes the CA algorithm, which is analyzed in Section VI.
The analysis is validated by simulations in Section VII.
Finally, concluding remarks and thoughts on future work are
given in Section VIII.

II. MATHEMATICAL PRELIMINARIES

Throughout this paper we will use various reference
frames. A point p and vector v in reference frame a is
denoted pa and va, respectively. The rotation matrix from
reference frame a to a frame b is denoted Rb

a, so that
vb = Rb

av
a.

We decompose a rotation between reference frames into
three principal rotations using the Euler angles ϕ (roll), θ
(pitch) and ψ (yaw) [22]. Using the zyx-convention, we
define the rotation matrix RRRzyx(ϕ, θ, ψ) as

RRRzyx ,

cψcθ −sψcϕ+cψsθsϕ sψsϕ+cψcϕsθ

sψcθ cψcϕ+sϕsθsψ −cψsϕ+sθsψcϕ

−sθ cθsϕ cθcϕ

 , (1)

where cψ and sψ denote cos(ψ) and sin(ψ), respectively.
For convenience, we also define the rotation matrices
RRRzy(θ, ψ) , RRRzyx(0, θ, ψ) and RRRz(ψ) , RRRzyx(0, 0, ψ).

We will investigate a vehicle which is controlled by steer-
ing the heading and pitch angle, as modeled in Section III-A.
To this end, we define functions converting a 3D direction
into the corresponding heading and pitch. Hence, for a vector
v = [vx, vy, vz]

T , we define the functions

Ψ(v) = atan2(vy, vx), (2)

Θ(v) = − sin−1( vz
||v|| ). (3)

Hence, v can be written as

v = RRRzy (Θ(v),Ψ(v)) · [||v||, 0, 0]T . (4)

III. SYSTEM DESCRIPTION

A. Vehicle model

The vehicle is modeled on the kinematic level using the
Euler angles pitch (θv) and yaw (ψv) to describe the rotation
from the body frame b to the North-east-down frame n.

Assumption 1: The vehicle is passively stabilized in roll.
Assumption 2: The body-fixed forward speed uv and an-

gular velocities in yaw, rv , and pitch, qv , are assumed to be
directly controlled. The angular velocities are furthermore
limited by

rv ∈ [−rmax, rmax], (5a)
qv ∈ [−qmax, qmax], (5b)

where rmax > 0 and qmax > 0 are constant vehicle
parameters.
The vehicle model is then given by the following equations:

ṗnv = RRRnb (θv, ψv)ν
b
v , (6a)

θ̇v = qv, (6b)

ψ̇v = rv
cos(θv) , (6c)

where pnv is the vehicle position in the NED frame, νbv =
[uv, 0, 0]T is the vehicle velocity in the body frame andRRRnb =
RRRzy . Note that the last two elements of νbv , i.e. the sway and
heave velocities, are zero due to nonholonomic constraints
on the vehicle.

To avoid a singularity in the heading rate in (6c), we
impose a bound on the initial pitch:

Assumption 3: The initial pitch satisfies

θv(t0) ∈ [θmin, θmax], (7)

where θmin ∈ (−π/2, 0) and θmax ∈ (0, π/2) are constant
design parameters.
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Fig. 1. A sample of rays (dotted black) from the vision cone from the
vehicle (yellow) to the obstacle (red).

Remark 1: It is common to impose limits on the maxi-
mum and minimum pitch angle of vehicles such as AUVs
and many fixed wing aircraft. For AUVs, such limits can
increase the vehicle safety by ensuring that it does not move
too fast towards the sea floor or the surface. Similarly, aircraft
with such limits avoid going too fast towards the ground, and
can also avoid stalling scenarios.

Remark 2: Note that the pitch limits do not include zero,
in order to ensure that the vehicle is able to move both up
and down.

We will design the control system in Section IV and the
CA algorithm in Section V in such a way that Assumption 3
ensures that the pitch does not exceed these limits.

We also define the reference frame nv , which is oriented
along the NED frame and which origin coincides with the
origin of the body frame. This frame is thus a body-fixed
NED frame, and is used to represent the position of the
obstacle and the target relative to the vehicle.

B. Obstacle model

The obstacle is modeled as a static, spherical object of
radius Ro. The obstacle position in the NED frame is denoted
pno .

Remark 3: If the obstacle is not spherical, it can be
represented using the smallest covering sphere.

C. Sensing model

To implement the proposed CA algorithm, the vehicle
must be able to sense the distance do between itself and the
obstacle. In addition, the vehicle must be able to measure
the angles to the edge of the obstacle. These angles define
a three-dimensional vision cone Vo, which is illustrated in
Fig. 1. The apex angle of Vo is 2γa, where

γa , sin−1( Ro
Ro+do

). (8)

D. Control objectives

Let pnt be a target position in the NED frame. The
objective of the control system and the CA algorithm is
to make the vehicle come within an acceptance distance
da ≥ uv/rmax of the target position pnt at some unspecified
time tf ∈ [0,∞), i.e.

||pnvt (tf)|| ≤ da, (9)

where pnvt = pnt −pnv is the target position in the body-fixed
NED frame nv . This goal should be achieved while keeping
at least a minimum safety distance dsafe to the obstacle, i.e.
the distance do between the vehicle and the obstacle should
satisfy:

do(t) ≥ dsafe > 0 ∀t ∈ [t0, tf ]. (10)

To accommodate the pitch limitations often encountered in
practice as discussed in Remark 1, the control system should
bound the vehicle pitch:

θv(t) ∈ [θmin, θmax] ∀t ∈ [t0, tf ]. (11)

IV. CONTROL SYSTEM

The control system can be either in guidance mode, where
it drives the vehicle towards the target using the guidance
laws given in Section IV-B, or in CA mode where it actively
avoids an obstacle. In this section we describe the low-level
control laws and the guidance laws, while the CA law is
described in Section V. The rule for switching between the
two modes is given in Section V-C.

A. Flow frame control

We want the vehicle to reach the desired heading ψd and
pitch θd as fast as possible. Hence, we make it turn at the
maximum rate towards the desired direction:

r(ψd) ,


0 ψ̃ = 0,

rmax ψ̃ ∈ (−π, 0),

−rmax ψ̃ ∈ (0, π].

(12a)

q(θd) ,


0 θ̃ = 0,

qmax θ̃ ∈ (−π, 0),

−qmax θ̃ ∈ (0, π].

(12b)

The heading error variable ψ̃ , ψv − ψd and the pitch error
variable θ̃ , θv − θd are chosen to belong to the interval
ψ̃, θ̃ ∈ (−π, π]. This ensures that the vehicle always makes
the shortest possible turn towards ψd and θd. The desired
heading ψd and pitch θd are given in Section IV-B when the
control system is in guidance mode, and in Section V when
the control system is in CA mode.

B. Guidance laws

When the control system is in guidance mode, we choose
to use pure pursuit guidance laws [23] for the desired heading
and pitch. The heading guidance law is thus chosen as:

ψdg , Ψ(pnvt ), (13)

where Ψ is defined in (2), and ψdg ∈ [0, 2π) is the desired
heading in guidance mode.

The pitch guidance law is saturated to ensure that control
objective (11) is met:

θdg =


θmax Θ(pnvt ) > θmax,

Θ(pnvt ) Θ(pnvt ) ∈ [θmin, θmax],

θmin Θ(pnvt ) < θmin,

(14)

where Θ is defined in (3), and θdg ∈ [θmin, θmax] is the
desired pitch. If Θ(pnvt ) /∈ [θmin, θmax], the guidance law



will drive the vehicle towards the target at maximum or
minimum pitch, and then make the vehicle circle up or down
until ||pnvt (tf)|| ≤ da, and control objective (9) is met.

The desired velocity vector in guidance mode, vnvdg , is then
found from the guidance laws (13) and (14) as:

vnvdg , RRRzy(θdg, ψdg)νbv , (15)

where νbv = [uv, 0, 0]T as in Section III-A.

V. COLLISION AVOIDANCE ALGORITHM
In this section we define the CA algorithm. In Section V-

A we give the mathematical definiton of the algorithm in
general terms, while in Section V-B we provide an example
implementation. Finally, in Section V-C we give the rule for
deciding when the vehicle should enter and exit CA mode.

A. Algorithm definition

The CA algorithm is based on keeping a constant avoid-
ance angle to the obstacle. To this end, the vision cone Vo
is extended by increasing the apex angle by 2αo, where
αo ∈ [0, π/2) is a constant design parameter. The apex angle
of the extended vision cone Ve is then 2γe, where γe is

γe , γa + αo. (16)

The extended vision cone is illustrated in Fig. 2.
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Fig. 2. The extended vision cone (green) from the vehicle to the obstacle.

To safely avoid the obstacle, the vehicle should aim along
one of the rays of the extended vision cone. Hence there
is a continuum of candidates for the desired heading and
pitch during collision avoidance. This is unlike the two-
dimensional CA algorithm in [20], which provides only two
heading candidates, one to either side of the obstacle. The
three-dimensional case thus gives us added flexibility. We
will utilize this flexibility and make an optimal choice of
which ray along Ve the vehicle should follow.

To achieve this, we parametrize the directions along Ve
using a parameter φ, and define two continuous functions
ψVe(φ) and θVe(φ) to be the vehicle heading and pitch along
the ray defined by φ. We also define the variables ψ̃Ve(φ)
and θ̃Ve(φ) as

ψ̃Ve(φ) , ψv − ψVe(φ), ψ̃Ve(φ) ∈ (−π, π], (17a)

θ̃Ve(φ) , θv − θVe(φ), θ̃Ve(φ) ∈ (−π, π]. (17b)

These variables represent the difference between the current
vehicle direction and the direction of each ray along Ve, and
are collected in the error vector eVe(φ) , [ψ̃Ve(φ), θ̃Ve(φ)]T .

We let the cost for choosing a direction along Ve be
represented by some cost function C(eVe(φ)). The cost
function is required to be strictly increasing in the norm of
eVe , to ensure that the vehicle chooses the closest direction
in some sense. Furthermore, the value of C for any θv /∈
[θmin, θmax] is required to be higher than the value of C for
any θv ∈ [θmin, θmax], in order to give a higher cost to any
desired directions violating control objective (11).

To avoid the obstacle, we make the vehicle follow the
direction along Ve which minimizes C(eVe(φ)). We denote
the parameter of this direction φca, which is defined as:

φca , arg min
φ
C(eVe(φ)) (18)

The desired heading and pitch in collision avoidance are then

ψdca , ψVe(φca), (19a)

θdca , θVe(φca). (19b)

B. Implementation

It is possible to design the cost function C and
parametrization φ in several ways, to accommodate any
vehicle- or scenario-specific limitations or preferences. We
will now present one parametrization φ̂ of Ve, as well as a
cost function Ĉ.

To get the heading and pitch angle required by the vehicle
to follow a ray ρ along Ve, we will find the direction of ρ in
the nv frame. For convenience, we will first find the direction
in a body-fixed reference frame, bvo. This frame is created
by rotating the nv frame so that the x-axis of the bvo frame
points along the vehicle-obstacle line. In other words, a unit
vector pointing from the vehicle to the obstacle is given in
the nv frame as

unvo = RRRzyx(0, θvo, ψvo)ux, (20)

where θvo , Θ(pnvo ), ψvo , Ψ(pnvo ), pnvo is the position of
the obstacle in the nv frame and ux , [1, 0, 0]T . We let the
parameter φ̂ describe a rotation of a ray φ̂ ∈ [0, 2π) radians
around the x-axis of bvo. Thus, since the x-axis of bvo is the
symmetry axis of Ve, a unit vector along a ray ρ is given in
the bvo frame as

ubvoρ (φ̂) , RRRzyx(φ̂, 0, 0)RRRz(γe)ux. (21)

When ubvoρ (φ̂) is decomposed in the nv frame, we obtain

unvρ (φ̂) = RRRzyx(0, θvo, ψvo)RRRzyx(φ̂, 0, 0)RRRz(γe)ux

= RRRzyx(φ̂, θvo, ψvo)RRRz(γe)ux.
(22)

A vehicle, an obstacle and four rays of Ve are shown in the
bvo frame in Fig. 3. The heading and pitch required by the
vehicle to follow each ray are then

ψVe(φ̂) = Ψ(unvρ (φ̂)), (23a)

θVe(φ̂) = Θ(unvρ (φ̂)). (23b)
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Fig. 3. A vehicle and an obstacle in the bvo frame. The green lines are
rays of Ve, corresponding to φ̂ = 0 (right), φ̂ = π/2 (down), φ̂ = π (left)
and φ̂ = 3π/2 (up).

As cost function Ĉ, we define

Ĉ ,

{
|eVe |∞ θVe ∈ [θmin, θmax],

|eVe |∞ + 2π θVe /∈ [θmin, θmax].
(24)

Using this cost function to find ψdca and θdca (19) will
minimize the maximum amount of vertical or horizontal
control effort required, and will tend to make the vehicle
use both its control inputs to avoid the obstacle while at the
same time ensuring that the pitch stays within limit.

C. Switching rule

We define that the vehicle enters CA mode at a time t1
if the obstacle is closer than or equal to a chosen range,
dswitch, and the desired velocity vector vnvdg (t1) (15) from the
nominal guidance laws (13) and (14) is within the extended
vision cone Ve(t1):

vnvdg (t1) ∈ Ve(t1), (25a)

do(t1) ≤ dswitch ∈ (dsafe, dsense]. (25b)

Nominal guidance towards the target will resume at a time
t2 when vnvdg (t2) moves outside Ve(t2):

ψdg(t2) /∈ Ve(t2). (26)

VI. ANALYSIS

In this section we give an analysis of the CA algorithm
presented in Section V, applied to the vehicle described by
the model given in (6). The vehicle model is in closed loop
configuration with the heading and pitch controllers (12).
The vehicle is nominally moving towards a target position
pnt using the guidance laws (13) and (14). When the vehicle
encounters an obstacle, it switches into CA mode using the
switching criterion in Section V-C, and follows the heading
and pitch reference given by (19) to avoid the obstacle.

We will in particular derive bounds on the switching
distance dswitch in (25) and on the avoidance angle αo in (16),
which guarantee that the control objectives in Section III-D
are met.

A. Safety distance

We start by showing that by a proper choice of the
avoidance angle αo, we can guarantee that when the vehicle
follows the heading and pitch references (19) of the CA law,
the vehicle maintains at least the minimum safety distance
dsafe from the obstacle.

Lemma 1: If

αo ≥ cos−1
(

Ro
Ro+dsafe

)
, (27)

the initial obstacle distance do(t0) ≥ dsafe, and the vehicle
follows the CA heading law (19a) and pitch law (19b), then

do(t) ≥ dsafe ∀t ≥ t0. (28)
Proof: When the vehicle follows one of the rays of

the extended vision cone, the time derivative of the distance
do between the vehicle and the obstacle can be found
geometrically:

ḋo(t) = −uv cos(γa(t) + αo) (29)

= −uv cos
(

sin−1
(

Ro
Ro+do(t)

)
+ αo

)
. (30)

The obstacle distance is constant when γa(t) + αo = π/2,
which occurs when

do(t) = d̄ , Ro
cos(αo)

−Ro. (31)

When do(t) < d̄, ḋo(t) > 0, while when do(t) > d̄, ḋo(t) <
0. It follows that if dsafe = d̄ and do(t0) ≥ dsafe, then a vehicle
following (19a) and (19b) perfectly will not get closer than
dsafe to the obstacle.

B. Safe avoidance

We now show that if the vehicle is aligned with the
extended vision cone at some time t2, then it is guaranteed
to be safe as long as it is in CA mode.

Lemma 2: Consider a vehicle modeled by (6) and gov-
erned by the controllers (12), the guidance laws (13) and
(14) and the CA laws (19). Let there exist a time t2 when
the vehicle is in CA mode, do(t2) ≥ dsafe, ψv(t2) = ψdca
and θv(t2) = θdca. Finally, let there be a time t3 > t2 at
which the vehicle exits CA mode. Then, the distance to the
obstacle satisfies

do(t) ≥ dsafe ∀t ∈ [t2, t3]. (32)
Proof: When ψ̃ = 0 and θ̃ = 0, the vehicle is oriented

along a ray ρ̄ of the extended vision cone Ve. For clarity, we
observe the system in a plane P̄ containing ρ̄, the obstacle
center and the vehicle. The system observed in this plane
is illustrated in Fig. 4. The angle from the x-axis to ρ̄ is
denoted β, and can be decomposed into

β = γo + γa + α0. (33)

Here, γo is the angle from the x-axis to the vehicle-obstacle
line, and γa is the angle from this line to the vision cone Vo
from the vehicle to the obstacle. By construction, the x-axis
of the vehicle’s body frame b, denoted xb in the figure, lies
in P̄ , and the rotation angle from P̄ to b is denoted ψ̄, as
shown in Fig. 4.
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Fig. 4. The vehicle and the obstacle in the plane P̄ containing the ray ρ̄
and the obstacle center.

It follows from (33) that

β̇ = γ̇o + γ̇a. (34)

The angular velocity of γo can be found geometrically as

γ̇o = − uv
Ro+do

sin(ψ̄ − γo). (35)

The tangent angle γa is

γa = sin−1( Ro
Ro+do

), (36)

which gives

γ̇a = −ḋo
Ro

(Ro+do)
√

(Ro+do)2−R2
o
, (37)

where time derivative of do is

ḋo = −uv cos(ψ̄ − γo). (38)

We define the error variable ψ̄e as

ψ̄e = ψ̄ − β. (39)

By combining (35) and (37), and inserting for ψ̄ = ψ̄e + β,
we obtain the dynamics of ψ̄e:

˙̄ψe = r̄ + uv sin(ψ̄e+α0)√
(Ro+do)2−R2

o
, (40)

where r̄ , ˙̄ψ, which is set by the controllers in (12). When
ψ̄e = 0, ˙̄ψe becomes

˙̄ψe = r̄ + uv sin(α0)√
(Ro+do)2−R2

o
. (41)

The β̇ term is then positive since α0 ∈ (0, π2 ). The value of
r̄ lies in the interval [−r̄max, r̄max], where r̄max is found from
(12) as

r̄max ,
√
r2
max + q2

max. (42)

If β̇ > r̄max, it follows from (41) that ˙̄ψe > 0. Hence, the
vehicle direction will drift away from the extended vision
cone Ve. Lemma 1 implies that as long as the vehicle
maintains a direction of Ve, it will never come closer than the
distance dsafe to the obstacle. This can be seen from Figure 4,
where it is clear that a direction outside of ρ̄ will lead the
vehicle further away from the obstacle than following ρ̄.

The implementation of the cost function C(eVe(φ)) in
Section V can make the desired direction from collision
avoidance move away from the plane P̄ . In this case, since
the obstacle is convex, the vehicle direction will still glide

away from Ve. Hence, as long as there is a time t2 when
the vehicle is aligned with a ray of Ve, the vehicle distance
is guaranteed to be greater than dsafe while the vehicle is in
CA mode.

Remark 4: To get an intuitive understanding of Lemma 2,
consider a case where the vehicle is aligned with a ray along
the extended vision cone Ve, and never turns. The vehicle will
then continue in a straight line, past the obstacle.

C. Safe navigation

This section contains the main theorem of the paper, which
states that the vehicle will safely reach the target when
navigating an environment containing an obstacle. Before we
state the theorem, we make the assumptions that the vehicle
is able to start safely, and that the obstacle does not cover
the target.

Assumption 4: The initial distance between the vehicle
and the obstacle satisfies

do(t0) > dswitch. (43)
Assumption 5: The distance do,t(t) from the obstacle to

the target position pnt satisfies

do,t(t) >
Ro

cos(αo)
−Ro (44)

Remark 5: Vehicle safety is guaranteed even if this as-
sumption is not met, however it is then not ensured that the
target will be reached.

Theorem 1: Let Assumptions 1-5 hold, the avoidance an-
gle αo satisfy

αo ∈
[
cos−1

(
Ro

Ro+dsafe

)
,
π

2

)
, (45)

and the switching distance satisfy

dswitch ≥ uv
rmax

+ dsafe. (46)

Furthermore, let the vehicle be modeled by (6) and governed
by the controllers (12), the guidance laws (13) and (14) and
the CA laws (19). Then, there exists a time tf ≥ t0 such that

||pnvt (tf)|| ≤ da. (47)

Moreover,
do(t) ≥ dsafe ∀t ∈ [t0, tf ], (48)

and
θv(t) ∈ [θmin, θmax] ∀t ∈ [t0, tf ]. (49)

Hence, the control objectives (9), (10) and (11) are met.
Proof: Consider a time t1 ≥ t0, at which the vehicle

enters CA mode in accordance with (25). The vehicle then
chooses a direction which minimizes the cost function C, and
starts to turn towards this direction at the maximum yaw rate
rmax and pitch rate qmax.

In a worst case scenario, where the bounds on the vehicle
pitch makes the vehicle take the entire turn horizontally, the
change in yaw required by the vehicle to avoid the obstacle
is upper bounded by π/2 rad. The radius of a horizontal
turning circle of the vehicle is uv/rmax m. Hence, the vehicle
will move a maximum of uv/rmax m towards the obstacle
before reaching the extended vision cone Ve. The minimum



switching distance given by (46) thus ensures that there is a
time t2 > t1 at which the vehicle is aligned with a ray of
Ve, and that

do(t) ≥ dsafe ∀t ∈ [t0, t2]. (50)

At time t2, the conditions of Lemma 2 are met. Hence,
the obstacle distance will not be less than dsafe until a time
t3 > t2, when the direction towards the target comes outside
Ve. The switching rule in Section V-C gives that the control
system now enters guidance mode. Lemma 1 implies that
moving in a direction outside of Ve will never lead the
vehicle closer than dsafe to the obstacle. Thus it is ensured
that condition (48) is fulfilled.

The guidance laws in (13) and (14) steer the vehicle
towards the target at maximum turning rate. Hence, it is
ensured that there exist a time tf when ||pnvt (tf)|| ≤ da,
fulfilling condition (47).

As long as θv(t0) ∈ [θmin, θmax] and θd ∈ [θmin, θmax],
Assumption 2 and the pitch control law (12b) ensures that
θdg ∈ [θmin, θmax] ∀t ∈ [t0, tf ]. While the definition of C
ensures that θdca ∈ [θmin, θmax], the definition of the pitch
guidance law (14) ensures that θdg ∈ [θmin, θmax]. Thus, θd ∈
[θmin, θmax] ∀t ∈ [t0, tf ], and Assumption 3 ensures that
condition (49) is fulfilled.

Remark 6: Note that this proof also holds for a scenario
with multiple, consecutive obstacles. The condition then
would be that the inter-obstacle distance are at least 2dswitch,
so that each obstacle is avoided separately.

VII. SIMULATIONS

In this section we will present numerical simulations to
validate the analysis in Section VI. The simulations use the
parametrization φ̂ and cost function Ĉ presented i Section V-
B. The simulation parameters used in the simulations are
summarized in Table I.

TABLE I
SIMULATION PARAMETERS

rmax 0.1 rad/s θmin −25 ◦

qmax 0.1 rad/s θmax 25 ◦

uv 2 m/s pn
v (t0) [0, 0, 0]T (m)

Ro 10 m pn
t (t0) [150, 0, 0]T (m)

dsafe 5 m da 20 m

The avoidance angle αo was set using (45) to 41.4 ◦, while
the switching distance was set using (46) to dswitch= 25 m.

The obstacle position was set to pno = [70, yo,sim, zo,sim]T

(m), where yo,sim and zo,sim were set to increase incrementally
from −15 m to 15 m in steps of 1 m for each simulation,
creating a set of 961 simulations. The results of the sim-
ulations are summarized in Table II, where do,min denotes
the minimum obstacle distance during a simulation, θv,min
denotes the minimum pitch during a simulation, while θv,max
denotes the maximum pitch value.

The results in Table II verify the results of Theorem 1 in
that the vehicle always reaches the target, the safety distance
is never violated and the bounds on θv are upheld.

TABLE II
SIMULATION RESULTS

Min do,min 7.3 m Min tf − t0 65.3 s
Max do,min 14.6 m Max tf − t0 69.6 s
Min θv,min −25 ◦ Min θv,max 1.7 ◦

Max θv,min −1.7 ◦ Max θv,max 25 ◦
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Fig. 5. A scenario where the obstacle is straight ahead of the vehicle. The
vehicle is the yellow polyhedron, and the obstacle is the red sphere. The
blue line is the vehicle trajectory, while the target is marked by an ’X’.

An example scenario is shown in Fig. 5, where yo,sim =
zo,sim = 0 m. The obstacle is thus straight ahead of the
vehicle, and there are four possible direction minimizing Ĉ;
to the upper or lower right, and to the upper or lower left. The
choice becomes random, and in this case the vehicle moves
towards the lower left. The pitch is limited by θmin, and the
maneuver is dominated by horizontal movement. When the
line of sight to the target comes outside Ve, the vehicle exits
CA mode and continues under nominal guidance.

Another example is shown in Figure. 6, where yo,sim = 4 m
and zo,sim 5 m. The direction along Ve minimizing Ĉ is then
to the upper left of the vehicle. The pitch is now limited by
θmax. The vehicle proceeds towards the target under nominal
guidance once the vehicle-target line comes outside of Ve.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a 3D reactive collision avoidance
algorithm for nonholonomic vehicles. During the collision
avoidance maneuver, the algorithm makes the vehicle keep a
constant avoidance angle to the obstacle by steering the vehi-
cle heading and pitch. The algorithm includes bounds on the
allowed vehicle pitch, and ensures that they are upheld. Such
bounds are commonly seen in real life scenarios involving,
for example, fixed wing aircraft or AUVs. Furthermore, a
general optimality criterion has been presented for choosing
an optimal, in some sense, safe vehicle direction. Thus, it



15

10

5

0

-5

150

z 
[m

]

100

time = 30 s

x [m]
50

10
y [m]

0-100

15

10

5

0

-5

0

z 
[m

]

50

time = 50 s

x [m]
100

-100
y [m]

10150

Fig. 6. A scenario where yo,sim = 4 m and zo,sim 5 m.

is possible to implement different weights on horizontal and
vertical turning maneuvers, and it is possible to implement
costs to comply with any rules of the road.

The main theorem of the paper states the minimum
distance before the obstacle the vehicle needs to start to
turn in order to ensure collision avoidance, and gives the
minimum required avoidance angle the vehicle must keep to
the obstacle in order to stay at least a minimum distance
away from it. The results are verified by several simulations.

While the work in this paper only considers a single ob-
stacle, it is possible to extend it to a multi-obstacle scenario.
The mathematical analysis holds for a sparse scenario where
the vehicle only needs to consider one obstacle at a time.
For a more dense scenario, the extended vision cones for the
obstacles within range must be merged. Implementing and
analyzing such a scenario is a topic for future work.

The obstacle considered in this paper has been assumed
to be static. A natural next step in the development of
the presented algorithm is to include dynamic obstacles. A
multiagent scenario with other agents employing the same
algorithm is also of interest. In such a case, the function
for choosing a safe direction can be augmented to include
rules of the road. Finally, a topic for future research will
be to incorporate a more complete vehicle model. This can
include underactuated dynamics, which can give the vehicle
underactuated velocity components in addition to the directly
controlled forward speed.
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