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Abstract—Collision avoidance systems are a key ingredient in
developing autonomous surface vehicles (ASVs). Such systems
require real-time information about the environment, which can
be obtained from transponder-based systems or exteroceptive
sensors located on the ASV. In this paper, we present a closed-
loop collision avoidance (COLAV) system using a maritime
radar for detecting target ships, implemented on a 26 foot high-
speed ASV. The system was validated in full-scale experiments
in Trondheimsfjorden, Norway, in May 2017. The probabilistic
data association filter (PDAF) is used for tracking target vessels.
The output from the PDAF is processed through a least-squares
retrodiction procedure in order to provide the COLAV system
with sufficiently accurate course estimates. A tracking inter-
face provides estimates of target states to the COLAV system,
which is based on the dynamic window (DW) algorithm. DW
is a reactive COLAV algorithm originally designed for ground
vehicles, and we therefore make a number of modifications
to adapt it for use with high-speed ASVs. The closed-loop
experiments demonstrated successful COLAV with this system,
but also disclosed several challenges arising from both the DW
algorithm and the tracking system, motivating for further work.
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1. INTRODUCTION
The cost efficiency and safety of marine operations such as
seabed surveying, surveillance, passenger and goods trans-
port have potential for improvement by moving in the di-
rection of more automatic and autonomous operations. An
enabling technology for this to happen is autonomous colli-
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sion avoidance (COLAV). For autonomous surface vehicles
(ASVs), COLAV is a complex task involving challenges with
perception, planning and regulations.

COLAV algorithms may in general be divided into reactive
and deliberate approaches. Reactive algorithms consider a
limited amount of information, often just currently available
sensor data, making the algorithms computationally cheap at
the cost of possibly producing sub-optimal behavior. The
dynamic window (DW) algorithm [13], [10] and the ve-
locity obstacle (VO) algorithm [16] are examples of reac-
tive COLAV algorithms. Deliberate algorithms usually use
greater amounts of information and plan in a longer temporal
setting, making the algorithms more optimal in a global sense
at the cost of increased computational requirements. To be
able to both react to sudden changes in the environment and
performing meaningful long-term maneuvers, reactive and
deliberate algorithms can be combined in a hybrid architec-
ture [18].

ASVs are in general required to follow the International Reg-
ulations for Preventing Collisions at Sea (COLREGS), which
act as “rules of the road” for avoiding collisions at sea [4].
Reactive COLAV is intended as a “last line of defense”
in close-quarter situations, where deliberate algorithms fail
in resolving the situation. In such situations, it may be
necessary to violate COLREGS to avoid collision. In fact,
COLREGS require a vessel to violate the rules if collision
cannot be avoided without violating the rules. Hence, we do
not consider COLREGS in these experiments.

For perception, a transponder-based communication system
may be used. An example of such a system is the automatic
identification system (AIS), which is used to transmit the
position and velocity of a vessel to other vessels. Passenger
ships and vessels with gross tonnage over 300 are obliged to
carry AIS transponders. AIS is being used for navigation at
sea, and can obviously provide useful information about other
vessels’ whereabouts and intentions to a COLAV system.
However, since AIS depends on satellite navigation and data
input from the user, it may contain inaccurate or invalid data
[14]. The information is also restricted to vessels equipped
with AIS transponders. Although lower-cost transponders
for smaller vessels (AIS class B) exist, many vessels such
as leisure craft and kayaks are not equipped with AIS. This
also extends to other objects in water such as navigational
aids and debris. Transmitted information may also be faulty,
either by accidental errors such as transmission failures or
through intentional actions or negligence by the crew [14].

Other means of perception include exteroceptive sensors such
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as radars, lidars and cameras. The main advantage of these
sensors are that they do not depend on other ships to transmit
information, but instead transmit a signal and wait for a re-
turn, or passively capture information from the environment.
This makes detection of kayaks and other small obstacles
possible, but the measurements may be affected by clutter.
The sensors may also have limited range, which means that
objects can be very close before they are detected. This is
usually not an issue for radars. There are several reports
of use of exteroceptive sensors for maritime COLAV. The
complementary properties of different sensors are thoroughly
discussed in [6], with experimental validation. In [20], a
maritime broadband radar intended for smaller recreational
vessels is used for tracking in the joint probabilistic data
association (JPDA) and interacting multiple model (IMM)
framework.

Many target tracking models parametrize the target states as
north and east position and velocity, while COLAV methods
often use the total speed and course of the target. This may
lead to fluctuations in these values, and the course angle in
particular can fluctuate more than it should.

There are several solutions that can be applied to obtain better
course estimates. One could argue that course and speed,
instead of the linear world frame-parameterized velocity vec-
tor, should be used in the state vector. This would lead to a
nonlinear process model. It is not clear that such a model
would give improved performance. More refined models
such as the Best-Norton model [2] require additional tuning
to work well. Current research by the authors is exploring
the utility of particle filtering for heading estimation [11].
Another approach would be to use multiple models within an
IMM framework as in [20]. However, IMM is known to have
limited effect when the so-called maneuvering index [15] is
low. This can often be the case in maritime COLAV, when
ships move relatively slowly compared to the measurement
noise. In these cases, it may be feasible to smooth the target
estimates using a form of retrodiction [5].

In this article, we report on a full-scale experiment where the
DW algorithm was used in conjunction with a probabilistic
data association filter (PDAF) radar-tracking filter to perform
autonomous COLAV. A number of modifications to the DW
algorithm in order to adapt the algorithm for use with high-
speed ASVs are presented. We highlight a number of chal-
lenges arising from the results, motivating for further work.

The rest of the paper is structured as follows: Section 2
describes the platform used for the experiments. Section 3
describes the tracking system. Section 4 describes the DW
algorithm, and the modifications applied to it. Section 5
describes the interface between the tracking and COLAV sys-
tems, while Section 6 show the results. Finally, concluding
remarks and possibilities for further work are presented in
Section 7.

2. EXPERIMENTAL PLATFORM
The vessel used in the experiments described in this paper is
the dual-use Maritime Robotics Telemetron ASV, shown in
Fig. 1. The ASV was equipped with a high grade navigation
system from Kongsberg Seatex, supplemented by real-time
GNSS corrections (CPOS) from the Norwegian mapping au-
thority [22]. Conservative performance estimates for the nav-
igation system are given in Table 1. Given the performance
of the Seapath navigation system, navigation uncertainty is

Figure 1. The Telemetron ASV, a dual-use vessel for both
manned and unmanned operations. Courtesy of Maritime

Robotics.

Table 1. Telemetron ASV specifications.

Component Description
Vessel hull Polarcirkel Sport 845

Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of

throttle valve
Rudder control Hydraulic actuation of outboard

engine angle with proportional-
derivate (PD) feedback control
on engine angle

Navigation system Kongsberg Seatex Seapath 330+
Heading/roll/pitch

accuracy 0.1◦ RMS
Position accuracy 0.1 m RMS

Radar Simrad Broadband 4GTM Radar
Processing platform Intel R© i7 3.4 GHz CPU, running

Ubuntu 16.04 Linux

of minor impact to the target tracking system, and will be
neglected. This is supported by simulation studies in [23] and
[3] which indicated that navigation uncertainty would have to
be significantly higher to have noticeable impact. The vessel
tracking and control system is implemented in the robot
operating system (ROS) [19], and the vessel actuators are
interfaced via a proprietary interface developed by Maritime
Robotics. A summary of the vessel parameters is given in
Table 1.

The Telemetron vessel operates at speeds of up to 18 m/s,
which makes modeling and control of the vessel difficult
since it operates in both the displacement, semi-displacement
and planing regions [12]. In [8], a control-oriented model
of the Telemetron ASV was developed, together with exper-
imental validation of vessel controllers based on the vessel
model. The model is defined in 2DOF using the speed over
ground (SOG) and rate of turn (ROT) as states, denoted
as U [m/s] and r [rad/s], respectively. The DW algo-
rithm specifies a desired velocity which the vessel should
follow. We therefore employ a velocity controller for SOG
and ROT combining a proportional integral (PI) feedback
controller with model-based feedforward of a desired velocity
and acceleration shown to have good performance for the
Telemetron ASV [8].
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Table 2. Tracking module parameters used in the
experiments.

Parameter Value Comment
Tr 2.4 s Radar revolution time
q 0.5 m/s2 Process noise standard devia-

tion
r 6.86 m Measurement noise standard

deviation
Ns 5 Retrodiction window length

3. TARGET TRACKING: THEORY AND
IMPLEMENTATION

The core algorithm of the target tracking system is the proba-
bilistic data association filter (PDAF), which is a single target
tracking method which calculates the association probabil-
ities for each measurement in the validation region of the
target of interest [1]. It is not a multitarget method, but a
parallel bank of PDAFs will be able to handle targets that are
sufficiently temporally and/or spatially spaced. This covers
the majority of the situations encountered in commercial ship
traffic, and is thus chosen for its simplicity. The PDAF
requires point measurements with known measurement noise
covariance. The radar listed in Table 1 provides an array
of spokes consisting of resolution cells with intensity infor-
mation. The radar data must be processed in a detection,
projection and clustering pipeline before it can be used in the
PDAF. This pipeline is described in detail in [24]. The target
motion and measurement model is the nearly constant veloc-
ity (NCV) model [17] with position measurements, given by

xk+1 = F (Tr)xk + vk, p(vk) = N (vk; 0,Q(Tr)), (1)

zk = Hxk +wk, p(wk) = N (wk; 0, r2I), (2)

where x = [pN vN pE vE ]
T is the state vector, con-

taining position and velocity in north and east directions and
v is the process noise. The variable z is the position mea-
surement, whilew is the measurement noise with covariance
r2I where I is the identity matrix. The matrix H extracts
the position elements of the state vector, while the matrices
F (Tr) andQ(Tr) are given as

F (Tr) =

1 Tr 0 0
0 1 0 0
0 0 1 Tr
0 0 0 1

 , (3)

Q(Tr) = q2

T
4
r /4 T 3

r /2 0 0
T 3
r /2 T 2

r 0 0
0 0 T 4

r /4 T 3
r /2

0 0 T 3
r /2 T 2

r

 . (4)

In addition to the radar sampling time Tr, which is given by
the radar revolution time, the NCV model is parametrized
by the covariance of the white noise acceleration q2. This
simple model reduces the risk of overfitting and tailoring the
model to a specific target. A suitable value for the white
noise acceleration standard deviation q was determinted to
be 0.5 m/s2 through an analysis of covariance consistency,
by considering AIS data from several vessels, including the
Telemetron ASV [24]. This is a fairly large process noise
value, which ensures good resilience against track-loss but

also inevitably leads to some fluctuations in the course esti-
mates, as shown in Fig. 6. The course angle is the angle of
the velocity vector, measured clockwise from straight north,
and is calculated as arctan2(vE , vN ) where arctan2 is the
four-quadrant arctangent function.

Improved target course estimation

Several methods for improved course estimation was dis-
cussed in section 1. In this case, the target maneuvering index
is found to be 0.42 from the values in Table 2, which falls
below the limit of where the IMM estimator is preferred over
the regular Kalman filter estimator [15]. Since the assumed
target dynamics are moderately slow, the speed and course
estimates will be improved using a retrodiction procedure.

Assume that the target, for the last Ns scans, have been
moving in a straight line. The motion model for these steps
can be written

xk+1 = F (Tr)xk, k ∈ [K†,K], (5)

where K is the latest timestamp of the estimate of the target,
and K† = K−Ns + 1 is the start of the retrodiction interval.
On this form, the motion of the target for the last Ns scans
are parametrized by a constant velocity and an initial position
xK† . The estimate from the PDAF is written as

x̂k|k = F (tk − tK†)xK† + ek, p(ek) = N (ek; 0,P k|k)
(6)

where x̂k|k and P k|k is the posterior estimate of the PDAF.
The retrodicted estimate of xK† can be calculated by a
standard least-squares calculation,

x̄K† = (F Tr P rF r)
−1F Tr P rx̂r, (7)

where

x̂r =


x̂K†|K†

x̂K†+1|K†+1

...
x̂K|K

 ,F r =


I

F (tK†+1 − tK†)
...

F (tK − tK†)

 , (8)

P r = diag(PK†|K† ,PK†+1|K†+1 . . . ,PK|K), (9)

The retrodicted estimate of xK† can then be used to calculate
the estimate of the target at following timesteps, using (5).

We emphasize that the retrodiction is only used as a post-
processing step for the output to the collision avoidance
method, and not as an integral part of the tracking and pre-
diction. Nevertheless, the estimates of the target used in the
COLAV-algorithm will be affected if the target maneuvers.
There are two main factors that will affect the safety of the
system. The first is the time it takes to detect the maneuver
in the retrodiction method, and the second is the safety
regions of the ASV. The maneuver detection will depend on
the retrodiction time. With the tracking system parameters
shown in Table 2, this amounts to about 12 seconds. This
corresponds to 60 meters with a target velocity of 5 m/s.
This means that the collision and safety regions described in
Section 4 are significantly larger than the distance covered
by the target during a turn. Should this not be the case, the
ASV can take precautionary measures such as increasing the
collision or safety regions, or decreasing its velocity.
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4. DYNAMIC WINDOW: THEORY AND
IMPLEMENTATION

The dynamic window (DW) algorithm was introduced as a
COLAV algorithm for indoor ground robots in 1997 [13].
The algorithm originally assumes that the vehicle is subject
to constant acceleration limits, and predicts future trajectories
using straight lines and circles. ASVs have nonlinear dy-
namics, which result in time-varying acceleration constraints.
Moreover, the dynamics of an ASV is far more complex
than that of an indoor ground robot, rendering the original
prediction approach inaccurate. A modified DW algorithm
for autonomous underwater vehicles (AUVs) moving in the
horizontal plane is presented in [10], proposing a solution to
these issues. This algorithm searches for feasible velocity
pairs consisting of a desired surge speed u and yaw rate r,
and chooses the optimal velocity pair based on an objective
function. A set of feasible velocities is created by joining
three search spaces, which then is sampled and used for
predicting vessel trajectories with a prediction horizon Tp.
The dynamic window contains velocities reachable during a
time window T while respecting actuator rate saturations, and
is defined as:

Vd =
{

(u, r) ∈ R× R
∣∣∣u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} , (10)

where u∗ and r∗ are the current surge speed and yaw rate,
and umin, umax and rmin, rmax are time-varying acceleration
limits. The set of possible velocities is defined as:

Vs =
{

(u, r) ∈ R× R
∣∣∣g(u, r) ≥ 0

}
, (11)

where g(u, r) is positive for velocities that are possible to
reach with respect to actuator magnitude saturations.

Two regions are defined around the obstacles, namely the
collision and safety regions. The collision region is a circle,
which if entered is treated as a collision. The safety region is
a new circle outside of the collision region, which is allowed
(but not desirable) to enter, hence acting as a safety margin.
The set of admissible velocities only include velocities which
allow the vehicle to stop before entering the collision region,
and is defined as:

Va =
{

(u, r) ∈ R× R
∣∣u ≤√2ρ′(u, r)|u̇min|

∧|r| ≤
{ √

2ρ′(u, r)|ṙmax| , r < 0√
2ρ′(u, r)|ṙmin| , r ≥ 0

}
, (12)

where ρ′(u, r) represents the along-trajectory distance to the
collision region at the next time instant the algorithm is run,
given the velocity pair (u, r). Finally, the optimal velocity
pair is selected through maximizing an objective function:

(ud, rd) = argmax
(u,r)∈Vr

G(u, r;u′d, r
′
d), (13)

where Vr = Vd ∩ Vs ∩ Va, and G(u, r;u′d, r
′
d) is defined as:

G(u, r;u′d, r
′
d) = α·yawrate(u, r, r′d) + β ·dist(u, r)

+ γ ·velocity(u, r, u′d), (14)

where u′d and r′d are inputs to the algorithm, generated by
a line of sight (LOS) guidance system [12], and α, β, γ >

0 are tuning parameters. The yawrate(·) and velocity(·)
terms assign value to choosing a velocity pair close to the
desired velocity (u′d, r

′
d), while the dist(·) term motivate the

algorithm to keep distance to obstacles based on the along-
trajectory distance to the safety region. These are defined as:

yawrate(u, r, r′d) = 1− |r′d − r|
max
r∈Vr

(|r′d − r|)
, (15)

velocity(u, r, u′d) = 1− |u′d − u|
max
u∈Vr

(|u′d − u|)
, (16)

dist(u, r) =
ρ̄(u, r)

1
Tp

∫ Tp

0
‖χ(u, r, t)‖2 dt

, (17)

where χ(u, r, t) is the predicted vessel body velocity and
ρ̄(u, r) represents the along-trajectory distance to the safety
region, both given the velocity pair (u, r).

The maximization in (13) is performed discretely by uni-
formly sampling the dynamic window Vd, and removing the
velocity pairs which are not elements of Vs and Va. In
this process, predicted trajectories for the velocity pairs are
generated using a model of the vehicle closed-loop error
dynamics. See [10] for more details on the modified DW
algorithm.

There are several differences between the AUV application
in [10] and the ASV platform described in Section 2:

1. The model of the Telemetron ASV is formulated in 2DOF
using SOG and ROT, instead of 3DOF using surge, sway and
yaw as in [10].
2. The control system requires a continuously differentiable
velocity trajectory to employ acceleration feed-forward.
3. The Telemetron ASV is not well captured by the AUV
model used in [10].

The first issue is handled by redefining the DW algorithm for
SOG and ROT. This requires a way to model the sideslip of
the vessel, to be able to simulate the vessel kinematics [8].
For these experiments, we assume that the sideslip is small
enough to be neglected. During the identification experiments
in [8], we observed that the sideslip stays below 10◦ when
operating the ASV at moderate speeds without extreme ma-
neuvers.

The second issue is tackled by changing the way we generate
the velocity pairs. Instead of sampling the dynamic window,
we define a dynamic acceleration window:

Ad =
{

(U̇ , ṙ) ∈ R× R
∣∣∣U̇ ∈ [U̇min, U̇max]

∧ṙ ∈ [ṙmin, ṙmax]} , (18)

which we sample to obtain a list of acceleration pairs. We
then define an acceleration trajectory as a piecewise linear
trajectory. For a SOG acceleration sample U̇ ′, the trajectory
is defined as:

U̇(t) =


U̇0 + U̇ ′−U̇0

Tact
t , 0 ≤ t < Tact

U̇ ′ , Tact ≤ t < Tacc
U̇ ′ − U̇ ′

Tact
(t− Tacc) , Tacc ≤ t < Tacc + Tact

0 , otherwise,
(19)
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Figure 2. SOG acceleration trajectories for 5 samples in Ad.

where Tact is the time allowed for changing the actuator
settings and Tacc is the time for acceleration, which should
be equal to the sample time of the algorithm to allow for
continuous accelerations. A collection of 5 SOG acceleration
trajectories with U̇0 = 0 m/s2, Tact = 0.7 s and Tacc = 1 s is
shown in Fig. 2. Trajectories for ROT acceleration is obtained
in a similar way.

The third issue is handled by simply using a kinematic
model to obtain velocity and position trajectories given the
acceleration trajectories. This relies on the velocity controller
being able to track the desired trajectory, without too much
bias introduced from external disturbances. Based on the
experimental validation of the velocity controllers in [8], we
believe that they will be able to quite closely track the desired
velocity, and therefore justify this approach. In addition, the
DW algorithm will be run at a quite high rate, which reduces
the impact of external disturbances.

In addition, it has been found that using only the distance to
the safety region in the distance term (17) of the objective
function (14) may lead to the vessel being trapped in the
safety region [21], [7], essentially disabling the COLAV
aspect of the algorithm. To improve on this, an alternative
distance term including the amount of a trajectory residing
inside the safety region is proposed in [21]. This distance
term does, however, rely on a part of the trajectory residing
outside of the safety region, which may not be the case if the
safety region is large. We therefore interchange the dist(·)
term with a more complex one similar to the one in [21], but
also including the distance to the collision region:

dist(U, r) = κ
ρ̄(U, r) + ρ(U, r)

1
T

∫ T
0
Udt

+ (1− κ)

∑N
n=1

λ(U,r,n)√
n∑N

n=1
1√
n

.

(20)
Here, the function λ(U, r, n) is 1 if point n of the predicted
trajectory resides inside the safety region, and 0 otherwise,
while κ ∈ (0, 1) is a tuning parameter. The variables ρ̄(U, r)
and ρ(U, r) are the along-trajectory distance to the safety and
collision regions, respectively, both given the velocity pair
(U, r). For more details, see [10] and [21].

In the experiments we ran the DW algorithm every second
using 225 m and 350 m as the collision and safety region
sizes, respectively. Further tuning parameters are shown in
Table 3.

5. TARGET TRACKING AND COLLISION
AVOIDANCE INTERFACE

Successfully closing the loop between the target tracking
and COLAV systems requires that these two modules com-

Table 3. COLAV tuning parameters for the experiments.

Parameter Value Comment
Tp 30 s Planning horizon length
Tact 0.7 s Actuator ramp time
Tacc 1.0 s Acceleration time
α 1.0 Yawrate function weight
β 4.0 Distance function weight
γ 1.0 Velocity function weight

Radar

AIS
Track-
manager

LOS
guidance

Dynamic
window

Vessel
controllers

Other
sensors

Figure 3. Diagram illustrating the target tracking and
COLAV interface.

municate in some way. The target tracking module has
to provide the COLAV module with estimated target tracks
in some manner. This can be posed as a software design
problem, with many possible solutions. One way of enabling
communication would be to implement the target tracking
and COLAV functionality in one integrated module, handling
communication implicitly within this module by sharing
state. This is flexible and has the advantage of requiring
very little explicit design, but at the same time makes the
implementation less modular, harder to test and more difficult
to develop and maintain as a team. An explicit interface has
the additional flexibility of abstracting which sensor/sensors
the target estimates originate from, and what kind of COLAV
functionality the estimates are used for.

Within the ROS software framework, there are two main ways
of communicating between separate software modules. The
first is an asynchronous publish-subscribe mechanism, and
the second is a synchronous request-response mechanism.
We have chosen to use the latter model, such that the COLAV
module requests a list of all known targets at specific times,
i.e. a list of target trajectories that are discretized in time.
This places the burden of track management, prediction and
possibly interpolation in the target tracking module. All these
functions are arguably naturally encapsulated within a target
tracking framework. The interface is shown in Fig. 3.

6. CLOSED-LOOP COLLISION AVOIDANCE
EXPERIMENTS

The combined tracking and COLAV system was tested in the
Trondheimsfjord on the 15th to 19th of May 2017.

Scenario description

During the experiments, we tested a number of head-on
situations with a target vessel under our control. The target
vessel was a 17 foot motorboat constructed in glass fibre
and equipped with a radar reflector to improve the visibility
on the radar, as shown in Fig. 4. The target vessel was
also equipped with an emulated AIS transponder using an

5



Figure 4. The 17 foot long target vessel, equipped with a
radar reflector to improve radar visibility.

Android phone to transmit the vessel position, course and
speed in the AIS format over the mobile network to the
processing platform onboard the ASV. We also performed
some COLAV experiments using the emulated AIS, but in
the experiments presented here we only used it for ground
truth. The experiments were performed with a constant
desired SOG of 4 m/s, while the guidance system attempts to
follow a straight line towards the initial position of the target
vessel. The target vessel was manually steered at a speed of
approximately 5 m/s, attempting to keep a constant course
towards the initial position of the ASV. The scenarios were
initiated with a distance of at least 900 m between the ASV
and the target vessel.

Experimental results

The first experiment was performed using the PDAF tracking
states for vessel prediction. From Fig. 5, we see that the ASV
traveled too close to the target vessel, finally entering the
collision region, which caused the experiment to be aborted
for safety reasons. The reason for this was the large variations
in course and speed estimates of the target ship, which when
used in an NCV model results in large variations in the
predicted future trajectory of the target vessel. This further
results in that the ASV travels closer than it should to the
target ship, as the DW algorithm in some iterations believes
that the target vessel moves in another direction than the
actual direction of travel. Finally, the target vessel is so close
that there is no option to avoid entering the collision region,
failing the experiment. It is quite apparent from the estimated
target course in Fig. 6 that the predicted target trajectory will
fluctuate a lot. This is also confirmed by Fig. 7 showing the
distance at closest point of approach (DCPA) for the target
vessel, noting that this is dependent on which trajectory the
DW algorithm chooses. One should also note that when
entering the collision region, all velocity pairs are considered
inadmissible, in practice deactivating the DW algorithm.

The second experiment was performed using the retrodicted
tracking states for vessel prediction. In this case, the ASV
avoided the collision region, rendering the experiment as a
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Figure 5. Experiment 1: North-east trajectory of the ASV
and the target vessel, together with the PDAF position
estimate used in the experiment. The experiment was

aborted since the ASV traveled too close to the target vessel,
moving into the collision region shown in red. The green

circle show the safety region.
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Figure 6. Experiment 1: Course estimate of the target
vessel, with and without retrodiction. In this experiment, the
PDAF estimate was used for predicting the target trajectory.
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Figure 7. Experiment 1: DCPA for the target vessel. The
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respectively.
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Figure 8. Experiment 2: North-east trajectory of the ASV
and the target vessel, together with the retrodicted position
estimate used in the experiment. The collision and safety

regions are shown in red and green, respectively.
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Figure 9. Experiment 2: Course estimate of the target
vessel, with and without retrodiction. In this experiment, the

retrodicted estimate was used for predicting the target
trajectory.

success. From Fig. 8, we see that the ASV successfully avoids
the target vessel, before returning towards the path specified
by the LOS guidance system. Figures 9 and 10 show the
target course estimate and DCPA for the second experiment,
showing the same trends as for the first experiment.

Fig. 11 shows the distance between the ASV and the target
vessel for both experiments. It is clear that using a retrodicted
target course and speed estimate improves the performance of
the closed-loop COLAV system.

7. CONCLUSION
We have experimentally tested a closed-loop COLAV system
consisting of a radar-based tracking system using PDAF and
a COLAV system based on the DW algorithm. The system
successfully avoided collision with a target vessel when using
a retrodiction filter to generate smooth estimates of the target
vessel course and speed, but failed when not applying such
a filter. This highlights the requirements for the input to the
COLAV system. The tracking system should hence be able to
provide smooth estimates of the target course and speed, but
the COLAV system should also be able to handle inaccurate
estimates of target vessels to increase the robustness of the
closed-loop system. In practice, the DW algorithm became
deactivated when the ASV entered the collision region, since
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Figure 10. Experiment 2: DCPA for the target vessel. The
collision and safety regions are shown in red and green,

respectively.
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Figure 11. Distance to the target vessel for both
experiments, with the collision and safety regions shown
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this causes all velocity pairs to be considered inadmissible.
The COLAV system should steer the ASV to avoid this
situation, but variations in the tracking estimates can still put
the ASV in this position, revealing an important shortcoming
of the DW algorithm.

Future work will investigate the potential for improvements
in speed and course estimates through multiple model filter-
ing, fixed-lag smoothing techniques and/or nonlinear motion
models. The results also motivate for modifications to the
DW algorithm, or the development of a new algorithm more
robust to variations in the tracking estimates. An attractive
topic is also to combine the reactive COLAV system with the
deliberate COLAV algorithm in [9].
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