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Abstract— This paper presents an algorithm that makes an
underactuated marine vehicle follow a straight line path while
in the presence of a constant ocean current. When following
the path, the vehicle maintains a desired surge speed which is
measured relative to the water, and which may be constant or
time-varying. The algorithm is an integral line-of-sight guidance
law where the lookahead distance is designed to depend
linearly on the desired relative surge speed of the vehicle.
This dependency makes it possible to keep the maneuvering
demands of the vehicle limited, even when the vehicle surge
speed is large. It is shown that if the desired relative surge
speed is constant along the path, the resulting error dynamics
has a uniformly semiglobally exponentially stable equilibrium
at the origin, thus achieving the path following and velocity
control objectives. Furthermore, in the case of a general, time-
varying desired speed trajectory, it is shown that the solutions
of the system remain bounded. The results are supported by
simulations, as well as experiments with an unmanned surface
vehicle.

I. INTRODUCTION

Precise path following is a requirement for several kinds
of marine operations, such as sea bed surveying, underwater
pipeline inspection and sub sea photography. To achieve
such tasks, the vehicles will rely on a guidance system
that steers the vehicle onto the path. These tasks can often
be achieved by following a set of straight line segments.
However, the desired speed along the path will vary. For
example, during a transit task the vehicle may drive as
fast as possible, while during a task involving underwater
photography the speed needs to be quite low to avoid blurry
images. Furthermore, many marine vehicles are underactu-
ated and can be modeled as vehicles equipped with stern
propellers and steering rudders only. This gives a control
force in the forward direction (surge), and a control moment
for orientation (yaw), but no sideways (sway) control force.
In this paper we investigate a guidance law for straight-line
path following for underactuated vehicles at varying desired
forward speed.

Path following for underactuated marine vehicles has been
considered for instance in [1]–[5]. The line-of-sight (LOS)
family of guidance laws steers the vehicle towards a point
on the path ahead of the it, and have proven well suited
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for underactuated vehicles. The algorithm was presented
[6], and it was shown in [7] that the algorithm provided
uniform global κ-exponential stability (i.e. uniform global
asymptotic stability (UGAS) and uniform local exponential
stability (ULES) [8]) of the path error and the state errors
of a simple vehicle model in 3 degrees of freedom (3-DOF).
More complete models of the vehicles were analyzed in [9]
and [10], while [11] proved uniform semiglobal exponential
stability (USGES) of the LOS guidance.

Integral action was added in the integral line-of-sight
(ILOS) guidance law in [12], where global stability was
proved in the presence of a constant ocean current. By
considering the vehicle velocity measured relative to the
water, it was possible to extend this result to global κ-
exponential stability in [13], and further to USGES in [14].
This is as close to uniform global exponential stability
(UGES) which it is possible to get with LOS and ILOS
guidance laws, as there is a trigonometric saturation in the
kinematic representation.

An important design parameter for (I)LOS guidance laws
is the lookahead distance ∆. In [15], the speed dependency of
the optimal lookahead distance for a given vessel employing
the LOS guidance law was investigated. It was shown that
the optimal ∆ increases with increasing surge speed of the
vehicle. This matches with intuition, as a longer lookahead
distance will give smoother turns at higher speed. In particu-
lar, it is to be expected that the overshoot of the system will
be reduced, even in the presence of slow heading controllers.
Furthermore, this also matches with how an experienced
helmsman would steer a ship; the faster the ship goes, the
further ahead the helmsman will look. Hence, in this paper,
we propose a lookahead distance that increases linearly with
the desired relative surge speed, urd.

Most of the previous work on (I)LOS guidance laws
has assumed a constant urd. However, when the lookahead
distance varies with urd, it is natural to investigate the
case when urd is time-varying. Such a scenario occurs, for
example, when an (I)LOS guidance law is combined with a
desired surge speed trajectory to obtain trajectory tracking,
as in [16] and [17], or formation control, as in [18]–[20].

In [16] and [17], a LOS guidance law is used to steer
the vehicle heading, while a surge speed law is used to
obtain trajectory following along the path. Straight-line paths
and a constant lookahead distance are considered in [16],
which proves that the system, including the dynamics, is
κ-exponentially stable. More general curved paths, and a
lookahead distance that varies with the desired trajectory
following speed are considered in [17], which shows local



exponential convergence for straight line paths, and ultimate
boundedness for paths of limited curvature. In the latter
paper, however, vehicle dynamics are not included.

In [18], a group of underactuated marine vehicles is kept
in a formation following a straight line path. Each vehicle
uses the LOS guidance law to converge to a desired offset
of the path, while the desired surge speed trajectory makes
the vehicles keep a desired relative along-track distance,
while making the formation converge to a desired, constant
along-track speed. Vehicle dynamics are considered, and
it is proved that the vehicles converge to the formation
exponentially.

When a vehicle follows a straight path using the ILOS
guidance law in the presence of a constant ocean current,
the vehicle heading will converge to a steady state value
that exactly compensates for the current by making the
vehicle side-slip along the path. However, if the vehicle speed
changes along the path, the heading required to compensate
for the current will not be constant, and there will not be
an equilibrium point of the system unless the desired surge
speed settles at a constant value. This is the case during the
transient phase of the formation control algorithm presented
in [19] and [20], where the vehicle heading is steered by
the ILOS guidance law, and exponential convergence of the
system was proved.

In this paper we consider a single vessel, with kinematics
and dynamics modeled in 3-DOF. The vessel should follow
a straight-line path in the presence of an ocean current
that is uniform in time and space, and to this end we
employ an ILOS guidance scheme. However, unlike the
ILOS guidance presented in [12], we allow the lookahead
distance to increase linearly with the desired surge speed
urd, thus making the vehicle make slower, smoother turns at
high speed, reducing overshoot. It is thus possible to make
the vehicle converge to the desired path without overshoot
for a broad range of values of urd, without having to tune
the guidance law each time urd changes. For the special
case when urd is constant, we show that the system is
USGES. Furthermore, we show that the solutions of the
system remain ultimately bounded when urd is time-varying.
Unlike previous works, we do not look at a specific function
for urd. Rather, we let urd be a general function, with no
required bound on the size of the time derivative of urd.
Thus, the result can be used for any desired surge trajectory,
including but not limited to those used for trajectory tracking
in [17] or formation control in [19].

This paper is organized as follows. Section II gives a
mathematical description of the system involved, while the
control system is presented in Section III and the resulting
error dynamics derived in Section IV. In Section V we show
that the system achieves USGES when urd is constant, while
in Section VI we show that the solutions of the system are
ultimately bounded when urd is time-varying. The guidance
law is applied to a simulated underwater vehicle operation
in the horizontal plane in Section VII, and experiments on
an unmanned surface vehicle are described in Section VIII.
Finally, some concluding remarks are given in Section IX.

II. SYSTEM DESCRIPTION

A. System Model

We use a 3-DOF model of the vehicle, where the posi-
tion and orientation in an inertial frame i is contained in
ppp , [x, y, ψ]T . The body-fixed velocity of the vessel is
represented by ννν , [u, v, r]T , where u is the surge speed, v
is the sway speed and r is the yaw rate.

We assume that the ocean current is bounded:
Assumption 1: The ocean current, represented as vvvc ,

[Vx, Vy, 0]T in the i frame, is uniform in space and time
and bounded by a constant Vmax ≥ ‖vvvc‖.

The current velocity in the body frame b is νννc =
RRRT (ψ)vvvc = [uc, vc, 0]T , whereRRR(ψ) is the principal rotation
matrix for a rotation by an angle ψ around the z axis. The
body-fixed relative velocity is then given by νννr , ννν − νννc =
[ur, vr, r]

T , where ur is the relative surge speed and vr is
the relative sway speed. We represent the vehicle in terms
of these relative velocities as described in [21]:

ṗpp = RRR(ψ)νννr + vvvc, (1a)
MMMν̇ννr +CCC(νννr)νννr +DDDνννr = BBBfff. (1b)

Here,MMM = MMMT > 0 is the mass and inertia matrix including
hydrodynamic added mass, CCC is the Coriolis and centripetal
matrix, DDD > 0 is the linear hydrodynamic damping matrix
and BBB ∈ R3×2 is the actuator configuration matrix. The
control vector fff , [Tu, Tr]

T contains the surge thrust Tu
and the rudder angle Tr.

The matrix CCC is obtained from MMM as described in [21],
while the other system matrices can be expressed as:

MMM ,

m11 0 0
0 m22 m23

0 m23 m33

 , (2)

DDD ,

d11 0 0
0 d22 d23

0 d32 d33

 ,BBB ,

b11 0
0 b22

0 b33

 . (3)

To obtain these matrices we have assumed that the vehicle
is port-starboard symmetric. Furthermore, we have assumed
that the origin of frame b is located at a point (x∗g, 0), where
x∗g is the pivot point of the vehicle. The control input τr
is thus removed from the sway dynamics, i.e. MMM−1BfBfBf =
[τu, 0, τr]

T , where τu is the control force in surge and τr is
the control moment in yaw.

B. System Model in Component Form

The vehicle model (1) can be represented in component
form:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (4a)
ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (4b)

ψ̇ = r, (4c)

u̇r = Fur (vr, r)−
d11

m11
ur + τu, (4d)

v̇r = X(ur)r + Y (ur)vr, (4e)
ṙ = Fr(ur, vr, r) + τr. (4f)



where the functions Fur
(vr, r), X(ur), Y (ur) and

Fr(ur, vr, r) are defined in Appendix I.

C. Desired surge speed

The desired surge speed, urd, can be time-varying, and
satisfies the following assumptions:

Assumption 2: The desired surge speed is bounded by
urd ∈ [urd,m, urd,M ], where urd,m and urd,M are positive
constants and urd,m > Vmax.

Assumption 3: The time derivative of urd, u̇rd, is piece-
wise continuous in t and bounded.
In order to analyze the effect of the time-varying part of urd,
we divide urd into a constant and a time-varying component:

urd(t) = uc + ut(t), (5)

such that u̇c = 0 and u̇t = u̇rd.
The following assumption is made on Y (ur):
Assumption 4: The function Y (ur) satisfies

Y (ur) ≤ −Ymin < 0, ∀ur ∈ [urd,m, urd,M ]. (6)

Remark 1: The negativity of Y (ur) is justified by noticing
that Y (ur) > 0 would imply that the system is undamped or
nominally unstable in sway, which is generally not the case
by the mechanical design of the vehicle.
Furthermore, the function X(ur) is a linear function in ur
as seen in (50), hence it is bounded by

|X(ur)| ≤ Xmax, ∀ur ∈ [urd,m, urd,M ]. (7)

D. Control objective

The control objective is to make the vehicle modeled by
(1) converge to a straight-line path in the presence of the
unknown ocean current vvvc, while maintaining the desired
relative surge speed urd(t).

To simplify the analysis, and without any loss of gen-
erality, the inertial reference frame i is placed such that
its x-axis is aligned with the desired path P , such that
P , {(x, y) ∈ R2 : y = 0}. The objectives of the control
system are then formalized as

lim
t→∞

y(t) = 0, (8a)

lim
t→∞

ur(t) = urd(t). (8b)

III. CONTROL SYSTEM

In this section we present an ILOS guidance scheme, along
with the surge and yaw control laws, for solving the path
following control problem presented in the previous section.
The lookahead distance in the ILOS law is designed to
increase linearly with the desired relative surge speed, in
order to avoid sharp turns and oscillations at high speeds.

A. The ILOS guidance law

The desired heading ψd is given by an ILOS guidance
law:

ψd , − tan−1(
y + σyint

k∆urd
), k∆ > 0, σ > 0, (9a)

ẏint ,
k∆urdy

(y + σyint)2 + (k∆urd)2
. (9b)

The look-ahead gain k∆ and the integral gain σ are constant
design parameters. The integral effect creates a nonzero
desired heading even when the cross-track error y is zero,
which compensates for the effect of the ocean current. The
integral term growth rate (9b) decreases for large cross-track
errors, reducing the risk of wind-up effects.

Unlike the guidance law presented in [12], this guidance
law is designed to depend on the desired relative surge speed,
urd, such that the lookahead distance is given as ∆(urd) ,
k∆urd. By looking farther ahead for large urd, the required
maneuvering capabilities of the vehicle at high speed are
reduced. Thus, the guidance law is designed to make the
vehicle approach the path more gently, and to reduce the
demands on the yaw controller and actuators.

Remark 2: We use the desired relative surge speed, rather
than the measured relative surge speed, to decrease the cou-
pling between the vehicle surge dynamics and the guidance
law.

B. Surge and yaw controllers

Surge and yaw are controlled using the feedback lineariz-
ing controllers described in [22]:

τu = −Fur (vr, r) +
d11

m11
urd + u̇rd − kur

(ur − urd),
(10)

τr = −Fr(ur, vr, r) + ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d),
(11)

where kur , kψ and kr are constant, positive gains.

IV. ERROR DYNAMICS

In this section we describe the error dynamics around the
equilibrium point obtained when the desired surge speed is
constant. For brevity, we will henceforth use the notation
Xuxx = X(uxx) and Y uxx = Y (uxx).

A. Actuated dynamics

The error signals of the actuated variables surge, yaw and
yaw rate are collected in ζζζ , [ũr, ψ̃,

˙̃
ψ]T , where ũr , ur −

urd, ψ̃ = ψ−ψd and ˙̃
ψ , r− ψ̇d. When the control laws in

surge (10) and yaw (11) are applied to the system (4c), (4d)
and (4f), the error dynamics of ζζζ becomes:

ζ̇ζζ =

−kur
− d11

m11
0 0

0 0 1
0 −kψ −kr

ζζζ , ΣΣΣζζζ. (12)

Since the term d11/m11 and the gains kur
, kψ and kr are

all strictly positive, ΣΣΣ is Hurwitz and the origin, ζζζ = 000, is
UGES.



B. Underactuated dynamics
The underactuated y−vr dynamics are obtained from (4b),

(4e) and (9b):

ẏint =
k∆urdy

(y + σyint)2 + (k∆urd)2
, (13a)

ẏ = ur sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd) + Vy, (13b)

v̇r = X(ũr + urd)(
˙̃
ψ + ψ̇d) + Y (ũr + urd)vr. (13c)

The heading required to compensate for the current varies
with urd. Hence, there is no equilibrium point of (13) when
u̇rd 6= 0. However, in the case when urd is constant for each
line segment, that is when urd = uc, then the equilibrium
point of (13) on the manifold ζζζ = 000 is given by

yeq
int =

k∆

σ

Vy√
1− V 2

y

u2
c

, yeq = 0, veq
r = 0. (14)

The error dynamics around this point is obtained by
performing a change of variables:

e1 , yint − yeq
int, e2 , y + σe1, e3 , vr. (15)

Factorizing with respect to ζζζ, allows us to express the
interconnected dynamics of (12) and (13) in cascaded form:

ėee = AAA(e2)eee+BBB(e2) +GGG(e2) +HHH(e2, e3, ψd, ζζζ)ζζζ, (16a)

ζ̇ζζ = ΣΣΣζζζ, (16b)

where eee , [e1, e2, e3]T , AAA is given in (18) while

BBB ,

 0
Vyf(e2)

−k∆urdX
urdVy

h(e2) f(e2)

 . (17)

The function h(e2) is defined as

h(e2) , (e2 + σyeq
int)

2 + (k∆urd)
2, (19)

and f(e2) is defined as

f(e2) , 1−
√

(σyeq
int)

2 + (k∆urd)2√
h(e2)

. (20)

Note that f(e2) is bounded by:

|f(e2)| ≤ |e2|√
h(e2)

. (21)

The terms that vanish when ζζζ = 0 are collected in HHH:

HHH ,

 0 0
1 0

−k∆urdX(ũr+urd)
h(e2) 1

[hhhTe2
hhhTe3

]
, (22)

where hhhe2 and hhhe3 are given in Appendix I. The vector GGG
contains the terms that vanish when u̇rd = u̇t = 0 and, by
(5), ut = 0:

GGG ,


0

− σyeq
int√
h(e2)

ut

Xurdk∆

h(e2)

[(
ρ√
h(e2)

− Vy
)
ut + (σyeq

int + e2)u̇rd

]
 ,
(23)

where ρ = (ut + 2uc)σy
eq
int.

V. CONSTANT DESIRED SURGE SPEED

This section analyzes the stability properties of the system
when urd is constant, which means that urd = uc, ut = 0
and u̇rd = 0. We use the analysis to find analytical bounds
on the ILOS parameters k∆ and σ, ensuring USGES of the
equilibrium point of the closed-loop error dynamics.

A. Stability of the nominal system

When u̇rd = ut = 0 we have that GGG = 0 as seen from
(23). The nominal system of the cascade in (16) is then given
by

ėee = AAA(e2)eee+BBB(e2). (24)

Lemma 1: If Assumptions 1 to 2 hold, u̇rd = 0, and the
look-ahead distance gain k∆ and the integral gain σ satisfy

k∆ >
|Xmax|
|Ymin|urd,m

[
5

4

urd,M + Vmax + σ

urd,m − Vmax − σ
+ 1

]
, (25)

0 < σ < urd,m − Vmax, (26)

then the equilibrium point of (24) is USGES.
Proof: The proof follows along the lines of [14], [22],

while making use of the results in [23] to prove USGES.
Consider the Lyapunov function candidate (LFC):

V , 1
2σ

2e2
1 + 1

2e
2
2 + 1

2µe
2
3, µ > 0. (27)

Using Assumption 1 to 4, and equations (7) and (21), the
following bound can be found for V̇ :

V̇ ≤ − 1

h(e2)
(L1(eee13) + L2(eee23)) , (28)

where eee13 , [|e1|, |e3|]T and eee23 , [|e2|, |e3|]T . L1 is

L1 , eeeT13QQQ1eee
T
13, (29)

where QQQ1 is

QQQ1 ,

 k∆σ
3urd,m − 1

2

µσ2
√
h(e2)|Xmax|
k∆urd,m

− 1
2

µσ2
√
h(e2)|Xmax|
k∆urd,m

µηh(e2)
(
|Ymin| − |Xmax|

k∆urd,m

)


(30)
and 0 < η < 1. L2 is defined as

L2 , k∆urd,meee
T
23QQQ2eee23, (31)

where QQQ2 is

QQQ2 ,

[
β −α

√
h(e2)

−α
√
h(e2) h(e2)α(2α−1)

β

]
. (32)

Here, β , urd,m − Vmax − σ and α is given by

α , (1−η)
(urd,m − Vmax − σ)(k∆urd,m|Ymin| − |Xmax|)

|Xmax|(urd,M + Vmax + σ)
.

(33)
The parameter µ is chosen as

µ ,
(k∆urd,m)2(2α− 1)

|Xmax|(urd,M + Vmax + σ)
. (34)



AAA ,


−σk∆urd

h(e2)
k∆urd

h(e2) 0

−σ
2k∆u

2
rd

h(e2)
σk∆urd

h(e2) −
urd√
h(e2)

k∆urd√
h(e2)

σ2k2
∆u

2
rdX

urd

h(e2)2

(
k∆u

2
rdX

urd

h(e2)3/2 − σk2
∆u

2
rdX

urd

h(e2)2

) (
Y urd − k2

∆u
2
rdX

urd

h(e2)3/2

)
 (18)

If QQQ1 and QQQ2 are positive definite, then V̇ is negative
definite. Positive definiteness of QQQ1 is ensured when

k∆ >
|Xmax|
|Ymin|urd,m

, (35)

µ <
4ηk2

∆urd,m (k∆urd,m|Ymin| − |Xmax|)
σ|Xmax|2

. (36)

Condition (35) is met as long as (25) holds. It can be shown
that η ≥ 1/5 is a sufficient condition for µ to satisfy (36).
Thus, without loss of generality, η is set to 1/5, and positive
definiteness of QQQ1 is ensured.

Positive definiteness of QQQ2 is ensured if β > 0 and α > 1.
Assumption 2 and (26) ensure that β > 0, while conditions
(25) and (26) ensure that α > 1.

LetQQQ be the symmetric 3×3 matrix defined from L1(eee13)
and L2(eee23) so that

eeeTQQQeee = L1(eee13) + L2(eee23). (37)

Since both QQQ1 and QQQ2 are positive definite, so is QQQ. Hence,
the following bound holds:

V̇ ≤ − 1

h(e2)
qmin||eee||2, (38)

where qmin , λmin(QQQ), the minimum eigenvalue of QQQ. In
any ball Br , {|e2| < r} , r > 0 the function h(e2) is upper
bounded as

h(e2) ≤ (r + σyeq
int)

2 + (k∆urd)
2 := c(r). (39)

Hence, for any r > 0

V̇ ≤ −qmin

c(r)
||eee||2 (40)

Thus, the conditions of [23, Theorem 5] is fulfilled with
k1 = 1

2 min{σ2, 1, µ}, k2 = 1
2 max{σ2, 1, µ} and k3 = qmin

c(r) .
Hence, the equilibrium point eee = 0= 0= 0 is USGES as defined in
[23, Definition 1].

B. Stability property of the closed-loop system

Theorem 1: If Assumptions 1 to 2 hold, u̇rd = 0, and the
look-ahead distance gain k∆ and the integral gain σ satisfy

k∆ >
|Xmax|
|Ymin|urd,m

[
5

4

urd,M + Vmax + σ

urd,m − Vmax − σ
+ 1

]
, (41)

0 < σ < urd,m − Vmax, (42)

then the controllers (10) and (11), where ψd is given by
(9), guarantee achievement of the control objectives (8).
Furthermore, the equilibrium point of the error dynamics (16)
is USGES and UGAS.

Proof: The system (16) is a cascaded system, where
(16b) perturbs the dynamics (16a) through the interconnec-
tion matrix HHH . The interconnection matrix HHH can be shown

to satisfy ‖HHH‖ ≤ θ1(‖ζζζ‖)(|y|+|yint|+|vr|)+θ2(‖ζζζ‖), where
θ1(·) and θ2(·) are some continuous non-negative functions.
The perturbing system is UGES as shown in Section IV-
A, and the nominal system is USGES by Lemma 1. Hence
all the conditions of [24, Proposition 2.3] are satisfied,
guaranteeing USGES and UGAS of the origin of (16).

VI. TIME-VARYING DESIRED SURGE SPEED

In this section we allow urd to vary with time: u̇rd 6= 0
and ut 6= 0. As noted in Section IV-B, there is no equilibrium
point of the system in this case. However, inspired by
the approach in [19], we will treat the time-varying ut
component of urd as a disturbance. It can then be proved
that the solutions of the system remain bounded around the
equilibrium point obtained in (14). To this end we will apply
Lemma 12 from [23].

In this section, we will use the constants k1 ,
1
2 min{σ2, 1, µ}, k2 , 1

2 max{σ2, 1, µ}, k3 , qmin

c(r) and
k4 , 2k2, where k1 to k3 are obtained from the proof of
Lemma 1.

A. Boundeness of the nominal system

Since u̇rd 6= 0, the nominal system of the cascade (16)
becomes:

ėee = AAA(e2)eee+BBB(e2) +GGG(e2). (43)

Lemma 2: Assume that the conditions of Theorem 1 are
satisfied, with the exception that u̇rd 6= 0. Then there exists
a positive constant δ, a constant c ∈ (0, 1) and a time T ≥ 0,
such that the solutions of (43) satisfy

||eee(t)|| ≤
√
k2

k1
||eee(t0)||e−

(1−c)k3
2∗k2

(t−t0) (44)

∀t0 ≤ t ≤ t0 + T , and

||eee(t)|| ≤ k4

k3

√
k2

k1

δ

c
∀t ≥ t0 + T. (45)

Proof: The partial derivative of (27) is bounded by∥∥∥∥∂V∂eee
∥∥∥∥ ≤ max{σ2, 1, µ} ‖eee‖ . (46)

Hence, condition (32) of [23, Lemma 12] is satisfied with
k4 = max{σ2, 1, µ} = 2k2 and a = 2. It remains to show
that ‖GGG‖ is bounded for large ‖eee‖. We do this by noticing
that the denominators in GGG are strictly positive functions of
higher order of e2 than the numerators. Hence, it is always
possible to choose an r̄ > 0 large enough so that in a ball
Br̄ , {|e2| < r̄}, we have that

‖GGG‖ ≤ δ < k3

k4

√
k1

k2
r̄c, (47)



for some δ > 0 and c ∈ (0, 1). Hence, the conditions of
[23, Lemma 12] are satisfied, and the solutions of (43) are
uniformly globally bounded by (44) and (45).

Notice that the solutions of (45) are bounded regardless
of the maximum magnitude of u̇rd.

B. Boundeness of the complete system

Finally, we will show that the complete cascade (16) is
uniformly bounded as well.

Theorem 2: Assume that the conditions of Theorem 1 are
satisfied, with the exception that u̇rd 6= 0. Then the solutions
of the cascaded system (16) are uniformly bounded.

Proof: We define the constant δ̄ as the bound on ||eee(t)||
in (45):

δ̄ ,
k4

k3

√
k2

k1

δ

c
. (48)

It follows from (44) that the ball Bδ̄ is UGAS. Furthermore,
the interconnection matrixHHH can be shown to satisfy ‖HHH‖ ≤
θ3(‖ζζζ‖)(|y|+ |yint|+ |vr|) + θ4(‖ζζζ‖), where θ3(·) and θ4(·)
are some continuous non-negative functions. The perturbing
system (16b) is UGES as shown in Section IV-A. Hence all
the conditions of [24, Proposition 2.3] are satisfied, which
implies that the set Bδ̄ ∪ {000} is UGAS. This also implies
that the solutions of the complete cascade (16) are uniformly
globally bounded, which concludes the proof.

VII. SIMULATIONS

In this section we present the results from numerical
simulations of a system where the ILOS guidance law with
speed-dependent lookahead distance (9) is applied to an
underactuated AUV operating in the horizontal plane. The
path is aligned with the x axis, and the AUV is modeled in
3-DOF as in (1).

The desired relative surge speeds are in the range
urd ∈ [1.5, 2.5] m/s. The current is set to vvvc =
[0 m/s, 0.4 m/s, 0 rad/s], which fulfills Assumption 1 and
2. It can be verified that Assumption 4 is satisfied with
Ymin = 1.01 s−1, and that Xmax = 1.84 s−1. The integral
gain is σ = 0.3 m/s, which satisfies (42). From these
parameters, a lower limit on k∆ is found from (41) as
k∆ = 7.34 s. The surge controller gain is set to kur

= 0.5,
while the heading controller gains are kψ = 0.025 and
kr = 0.1. Thus, the yaw dynamics of the vehicle are quite
slow, to simulate the effect of low-speed actuators.

In the first simulation scenario, we look at the effect
of increasing k∆. The desired relative surge speed is kept
constant at urd = 2.5 m/s, while k∆ goes from 8 s to 14 s in
steps of 2 s. The initial position of the vehicle is 50 m away
from the path, pointing straight towards the path with the
initial relative surge speed set to ur = urd. The cross track
error for the different values of k∆ are shown in Figure 1. It
can be seen that for lower values of k∆ there is an overshoot,
which disappears for k∆ = 12 s. The system remains stable
for all values of k∆, though, which verifies Theorem 1.

In the next simulation we use a fixed k∆ = 12 s, but vary
the desired relative surge speed from 1.5 m/s to 2.5 m/s in
steps of 0.5 m/s. For each run, the vehicle initial position is
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Fig. 1. The cross-track error y for increasing values of k∆ with
urd = 2.5 m/s.
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Fig. 2. The cross-track error y for increasing values of urd with k∆ = 12 s

set to 20urd m away from the path, with the initial relative
surge speed set to ur = urd. Thus, the vehicle will use
approximately the same amount of time to reach the path,
making the results easier to compare. The cross track error
of the three runs are displayed in Figure 2, and it can be seen
that in each case the vehicle converges to the path without
any overshoot.

Figure 3 shows the result from a scenario where the
lookahead distance was kept constant at k∆urd = 30 m. It
can be seen that the convergence times when urd = 2.0 m
and urd = 1.5 m are significantly slower compared to the
convergence times in Figure 2.

In the last scenario, we simulate a case with time-varying
urd. Here urd = uc+ut, where uc = 2.0 m/s and ut is a sine
wave with amplitude 0.5 m and period 60 s. From Figure 4,
it is clear that the cross-track error converges to a bounded
set around y = 0. Thus, the simulation verifies Lemma 2 for
this particular case.

VIII. EXPERIMENTAL RESULTS

In this section we present the results from experiments
at sea. The experiments where carried out on the Odin un-
manned surface vehicle (USV), which is depicted in Figure 5.
The vehicle developed by FFI and Kongsberg Maritime, is
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Fig. 3. The cross-track error y for increasing values of urd with constant
lookahead distance ∆ = 30 m
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Fig. 4. The cross-track error y for a time-varying urd.

Fig. 5. The Odin USV

11 m long and 3.5 m wide, and is propelled by a dual waterjet
system. At maneuvering speeds, the vehicle is underactuated.
The ILOS guidance law was implemented with k∆ varying
from 6 s to 12 s, and integral gain σ = 0.02 m/s. The vehicle
heading is controlled by a PD controller, which has been
tuned to provide asymptotic stability of the heading.

The USV was tasked to follow a square pattern at different
forward velocities. The waypoint switching distance was
set to 9urd m. Thus, the initial conditions for each line
was similar to the initial conditions used in the simulations
in Section VII, with the vehicle approaching the line at a
perpendicular angle with initial offset increasing with desired
surge speed.

Figure 7 displays the cross-track error for two lines with
urd = 6 m/s and k∆ = 6 s and 12 s. In both cases, the cross-
track error converges towards zero, however the overshoot is
slightly larger for k∆ = 6 s.
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Fig. 6. The vehicle position relative to the starting position during a run
with urd = 6 m/s. The size of the vehicle has been increased in the figure.
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Fig. 7. The cross-track error for k∆ = 6 s and 12 s with urd = 2.5 m/s.
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Fig. 8. The cross-track error for increasing values of urd with k∆ = 6 s

Figure 8 shows the cross-track error during four lines with
urd increasing from 4 m/s to 10 m/s with a lookahead gain
of k∆ = 6 s. In each case, the cross-track error reaches
0 m after approximately 11 s. We see that the overshoot
increases slightly with increasing speed. A larger value of k∆

would likely decrease this effect, as would a larger switching
distance between waypoints.

IX. CONCLUSIONS

In this paper we have investigated an ILOS guidance
law where the lookahead distance increases linearly with
the desired surge speed urd. The work is motivated by the
need to keep the maneuvering demands on a vehicle within
acceptable limits, even when the surge speed is large. This is
of particular importance if the dynamics of the vehicle yaw
controller and actuators are slow with respect to the surge
speed, in which case a small lookahead distance can lead to
significant overshoot and oscillatory behavior.

Both the case when urd is constant along the path and
the case where urd is time-varying have been explored. For
a constant urd, we derive a lower bound on the lookahead
gain and an upper bound on the ILOS integral gain in order
to guarantee USGES of the system. In the case of a time-
varying urd, we have proved that the solutions of the system
remain bounded for bounded urd. This holds for general urd
trajectories, with the only assumption that it is lower bounded
above the level of the maximum ocean current, so that the
vehicle is able to move forward also when it is heading
directly against the ocean currents.

The stability and boundedness results have been verified
in simulations of an underwater vehicle with slow yaw
dynamics, moving in the horizontal plane. In particular, the
simulations show how a lookahead distance that is linearly
increasing with urd results in convergence to the desired path
without overshoot for several values of urd. This is achieved
without having to tune the guidance law each time urd



changes. A simulation with a time-varying urd has also been
presented, demonstrating that the cross-track error remains
bounded in this case.

The ILOS guidance law with speed-dependent lookahead
distance has also been implemented on the Odin USV, which
has been used for experimental verification of the stability
properties. We show that by increasing the lookahead dis-
tance linearly with urd the increase in overshoot at higher
speeds are limited, and that the vehicle converges to the path
for high and low values of urd.
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APPENDIX I
FUNCTIONAL EXPRESSIONS

Fur
(vr, r) , 1

m11
(m22vr +m23r)r (49)

X(ur) ,
m2

23−m11m33

m22m33−m2
23
ur + d33m23−d23m33

m22m33−m2
23

(50)

Y (ur) ,
(m22−m11)m23

m22m33−m2
23
ur − d22m33−d32m23

m22m33−m2
23

(51)

Fr(ur, vr, r) ,
m23d22−m22(d32+(m22−m11ur)

m22m33−m2
23

vr

+m23(d23−m11ur)−m22(d33+m23ur)
m22m33−m2

23
r

The functions hhhe2 , [he21, he22, he23]T is defined as

he21 = sin(ψ̃ + ψd), he23 = 0,

he22 = urd

[
sin(ψ̃)

ψ̃
cos(ψd) + cos(ψ̃)−1

ψ̃
sin(ψd)

]
+ e3

[
cos(ψ̃)−1

ψ̃
cos(ψd)− sin(ψ̃)

ψ̃
sin(ψd)

]
,

(52)

and hhhe3 , [he31, he32, he33]T is

he31 = X(ũr+urd)−Xurd

ũr
k∆γ(e1, e2, e3)

+ e3
Y (ũr+urd)−Y urd

ũr
,

he32 = 0, he33 = X(ũr + urd).

(53)

The limits of he22 for ψ̃ → 0 and he31 as ũr → 0 exist
and are finite. The expression γ(e1, e2, e3) used in he31 is
defined as

γ(e1, e2, e3) , u2
rd

(e2+σyeq
int)−k∆e3

h(e2)3/2 − urdVy

h(e2)

− σk∆u
2
rd

h(e2)2 (e2 − e1σ) +
u̇rd(σyeq

int+e2)

h(e2)

(54)


