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Abstract

The main objectives of this thesis are the estimation/filtering and decision
making problems with a Bayesian inversion point of view, and in geophysical
systems. In addition, determining the information content in the measured
data is also a challenge in estimation problems, and we use the dimension
reduction techniques to deal with this problem. The main applications of
the proposed algorithms are for reservoir characterization, and the seismic
amplitude versus offset (AVO) data is the most used measurement.

The first part of this thesis tries to address some of the existing problems
in the state estimation of high dimensional and complex systems. Our
first proposal is a robustified Gaussian mixture filter. Simulations show
promising results and the performance of the proposed filter is at least
as good as the ensemble Kalman filter (EnKF) and particle filter (PF). In
addition, we extend the traditional KF and EnKF for capturing the skewness
of the distributions. They automatically converge to the KF or EnKF if
there is no skewness in the probability density function (pdf). Simulation
results confirm our claim, and they seem to have better performance in the
presence of skewness. Furthermore, we investigate the nature of geophysical
observations from a filtering point of view by testing several data reduction
techniques. We show how to assess the information content in the data,
compress the data, and use this compressed data in a reservoir conditioning
setting. The methods we present are generic; they apply equally well to all
geophysical attributes regardless of representation and can be applied with
any filtering algorithm. The last part of this thesis relates to the value of
information (VOI) analysis and decision making. We extend the previous
method for computing the VOI of seismic AVO data by using a closed skew
normal pdf model instead of the Gaussian. The previous method is an
special case of the proposed method, and simulation results seems to result
in more reliable decisions.
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Chapter 1

Introduction

1.1 Motivation and Background

Statistics is a part of mathematical sciences which deals with uncertain
quantities. Dealing with uncertain variables is problem specific. The statis-
tical inference may consist of various tasks such as reducing the uncertainty
range, estimating the conditional probability density function (pdf) or some
statistics such as mean and variance, decision making under uncertainty etc.
Among them, estimation of latent variables using noisy and incomplete ob-
servations is one of the most important problems in engineering and science.

Assume that the parameters of a system are modeled in the state space
form with a set of differential or difference equations. This model contains
lots of uncertainty because of un-modeled dynamics, modeling error, sim-
plification errors etc. Moreover, the measurement sensors and tools provide
incomplete and noisy observations. The estimation problem is now defined
as inferring all system parameters using the available observations. Gener-
ally speaking, the estimation procedure increases the accuracy of parameters
(by reducing the associated prior uncertainty).

In order to go into more details, it is better to explain one of the most
used systems in this thesis. Consider a petroleum reservoir with n1 × n2 ×
n3 grid cells, a single injection well and a single production well. The
water is pumped into the injection well for replacing and moving oil to
the production well. The simulator works on fluid dynamics laws, and
it contains some parameters such as porosity, permeability and saturation
(see Figure 1.1). Based on fluid dynamics, the flow is faster where the
permeability (porosity) is high. The values of these parameters depend on
the geological and geophysical characteristics of the reservoir.

Assume the parameters of interest at time t are arranged in a state

1
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Figure 1.1: The reservoir description: upper plots are the reference porosity and
permeability from SPE10 data set; lower left plot shows the position of the injection
and production wells; the lower left plot is the saturation after 100 days of running
the simulator and the lower right plot is the saturation after 400 days.

vector xt ∈ �nx×1. The fluid laws present the dynamics of the reservoir
parameters as partial differential equations (PDE), which may be written
in an explicit form as xt = f(xt−1;ηt). This equation is also known as
the process model. Here, the nonlinear function f(·) : �(nx+nη)×1 → �nx×1

is the dynamic equation and ηt ∈ �nη×1 is the process noise with known
pdf. The process noise includes the uncertainties in the modeling (i.e. un-
modeled dynamics). In this thesis, we assume additive process noise, i.e.
xt = f(xt−1) + ηt.

The Society of Petroleum Engineers (SPE) organized a series of projects,
known as SPE comparative projects, in order to provide benchmark data
sets which can be used to compare the performance of different algorithms
and methods applied for petroleum reservoir evaluation. The 10th SPE com-
parative project is the latest one in this series, and known as the SPE10 data
set (Christie and Blunt, 2001). The SPE10 data set consists of porosity and
permeability for 60×220×85 Cartesian grid cells. By using this data set as
the input to a reservoir flow solver (simulator), the saturation of that reser-
voir can be used for further evaluations. There are several commercial and
non-commercial reservoir simulators (e.g. ECLIPSE by GeoQuest). In this
thesis, we will use the MATLAB Reservoir Simulation Toolbox (MRST),
see Lie et al. (2012), as flow solver for the saturation (More details about
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Figure 1.2: Zero-offset reflectivity (left plot) and AVO gradient (right plot) versus
saturation and porosity.

the simulator are available at http://www.sintef.no/Projectweb/MRST/).
In addition, assume that at each time t some measurements, dt ∈ �nd×1

are available by the sensors. These measurements relate to the system state
by dt = h(xt; εt), where h(·) : �(nx+nε)×1 → �nd×1 is the measurement
equations and εt ∈ �nε×1 is the observation noise. Throughout this thesis,
the observation noise is assumed to be additive, dt = h(xt) + εt.

Geophysical data are directly or indirectly informative of important sub-
surface parameters. Seismic measurements, for example, may provide a rich
source of information about structures, lithologies and hydrocarbon indica-
tors. The seismic amplitude versus offset (AVO) data is related to the
reservoir saturation and porosity through rock physics relations (for more
details see Mavko et al. (2003)). In most of this thesis, the data dt consist
of zero-offset reflectivity and AVO gradient at top reservoir (see Figure 1.2).
We assume that the observations are made at all lattice cells. We assume
conditional independent data: the seismic AVO data at one grid cell only
depends on the saturation and porosity at that cell. The expected value
of the AVO data is displayed in Figure 1.2, as a function of porosity and
saturation. Assimilation of these data reduces the uncertainty, improves
prediction of the reservoir and production. For instance small observation
of zero-offset reflectivity and large observation of AVO gradient indicate
large porosity and saturation. The likelihood is slightly nonlinear, but we
linearize the measurement equation using first order Taylor series expansion
to get h (xt) ≈ h0 +Hxt, where h0 ∈ �nd×1 and H ∈ �nd×nx .
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Figure 1.3: Graphical representation of state variables xt, at discrete time points
t = 0, 1, . . . and observations dt, t = 1, 2, . . .. The process model is assumed to
follow a Markov structure. The data are assumed to be conditionally indepen-
dent, given the state variable at the indicated time steps. The filtering problem
characterizes the distribution of states over time, given all currently available data.

The reservoir dynamics and observation equations in the state space
form then becomes:

xt = f(xt−1) + ηt,

dt = h(xt) + εt. (1.1)

We use the state space formulation with the usual conditional inde-
pendence assumptions. This means that the conditional distribution of
xt, given all previous state and observation variables, only depends on the
state at time t − 1. Moreover, the conditional distribution of observation
dt, given the state at that time and all previous states and observations,
only depends on the state at time t. Mathematically these two assumptions
entail that the conditional distributions are π(xt|X t−1,Dt−1) = π(xt|xt−1)
and π(dt|X t,Dt−1) = π(dt|xt), respectively (see Figure 1.3). Here, X t =
[x0,x1, · · · ,xt] and Dt = [d1,d2, · · · ,dt] denote the collection of states and
data respectively.

The main goal of this thesis is monitoring the state variables (here, the
saturation is the most important one) over time. State variable monitoring
can be defined in an estimation setting by estimating the posterior distri-
bution π(xt|Dt). In the prediction context, it is also defined as finding the
prediction distribution π(xt+1|Dt). In this thesis, the Bayesian inversion
is the main approach for finding the posterior and prediction distribution.
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Figure 1.4: Illustration of Bayesian inversion. The upper left plot is the prior
distribution, the lower left plot is the likelihood, and the right plot is the resulting
posterior.

Bayesian inversion directly relates to the filtering, prediction and decision
making problems. There are some difficulties in the Bayesian inversion for
very high dimensional and complicated systems. Consequently, similar dif-
ficulties exist for Bayesian inversion based algorithms (i.e. the filtering and
prediction problems), and in this thesis we try to introduce and address
some of them.

1.2 Bayesian Inversion

The scientists are very interested in reducing the uncertainty associated
with the prior pdf denoted π(x). This is achieved by assimilating some
measurements which relate to x. More generally speaking, one updates the
distribution of latent variables given observations d. The result is known
as the posterior distribution π(x|d). Bayes’ rule is very helpful for dealing
with conditional distributions. It says that the posterior distribution of the
latent variables given observations is proportional to the likelihood times
the prior. In geoscience and petroleum engineering this problem is known
as Bayesian inversion. Consider π(d|x) as the likelihood of the seismic
AVO data, given the reservoir variables. Bayes’ theorem combines prior
information π(x) and current observations, in the probability domain, in
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order to get the posterior distribution of the variables of interest:

π(x|d) ∝ π(d|x)π(x). (1.2)

Figure 1.4 shows a schematic diagram of a Bayesian inversion problem
from a distributional point of view. The prior knowledge (upper left plot)
is here a bivariate distribution. Bayes rule adds the information content of
the likelihood distribution (lower left plot) to it. The posterior distribution
is shown in the right plot, and we see that the uncertainties are reduced.

Bayesian inversion solely or as a part of other problems plays an im-
portant role in the data assimilation/state estimation or decision making
problems. Thus, we highlight those problems with Bayesian inversion as an
ingredient in the following sections.

Before going into more details, we summarize the challenges in this set-
ting:

• The first challenge is the state estimation over time in high dimen-
sional systems. Most of the filtering methods in high dimensional
system are ensemble based. In these methods, a limited number of
ensembles, say 100 − 200, is used. The reason is that the forward
propagation of ensembles is very time consuming (i.e. couple of days).
Thus, for real time implementation we should restrict the algorithms
to use this limited number of ensembles. On the other hand, the ac-
tual probability distribution of practical systems is complicated (i.e.
skewed, multi-modal) and the Gaussian assumption (which is used in
many ensemble based filters) may fail. Many ensemble members are
required to estimate the complicated distributions. It is a dilemma,
and the filtering algorithm proposal(s) should work sufficiently accu-
rate with this limited number of ensembles.

• Another challenging problem in data assimilation is the existence of
collinear or highly correlated data. These correlated data sets cause
problems related to rank deficiency and overfitting. Hence, reducing
the dimensionality of the data, by extracting the useful information
and discarding the noise (prior to assimilation), is natural to consider.

• Finally, in decision making problems (i.e. decision on drilling/not
drilling new wells for finding hidden pockets of oil) we use for example
seismic AVO measurements to make better, informed, decisions. The
seismic AVO data requires data processing before use. Different data
processing levels directly relates to the price of data. Thus, we should
find the optimal data processing level such that it is accurate to an
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acceptable level, and also it is not so expensive. This relates to the
value of information.

Different parts of this thesis propose some novel algorithms or extend
the previous algorithms to address these challenges. In all tasks, Bayesian
inversion plays an important role. Thus, various flavors of equation ( 1.2)
become useful throughout the thesis.

1.3 Filtering Problem as a Spatio-temporal Bayesian

Inversion

Filtering or state estimation (also known as data assimilation) applies Bayesian
inversion over time. At each time t, it finds the updated distribution of the
state given all observations π(xt|Dt). In constructing this, we will rely on
the conditional independence assumptions imposed via equation (1.1). The
filtering problem can be defined as a recursive Bayesian estimation problem:

π(xt|Dt) =
π(dt|xt)π(xt|Dt−1)

π(dt|Dt−1)

π(xt|Dt) ∝ π(dt|xt)π(xt|Dt−1) ∝ π(dt|xt)

∫
π(xt,xt−1|Dt−1)dxt−1

∝ π(dt|xt)

∫
π(xt|xt−1,Dt−1)π(xt−1|Dt−1)dxt−1

∝ π(dt|xt)

∫
π(xt|xt−1)π(xt−1|Dt−1)dxt−1 (1.3)

It consists of two steps, i) prediction, and ii) update. The posterior
distribution at the previous time step π (xt−1|Dt−1) is considered as the
prior for the prediction step. The predictive distribution in equation (1.3)
is achieved by π (xt|Dt−1) =

∫
π (xt|xt−1) π (xt−1|Dt−1) dxt−1. Where

π (xt|xt−1) is evaluated according to the process model and process noise
distribution. The update step uses π(xt|Dt−1) as prior and π(dt|xt) as like-
lihood in Bayes rule. This step is also known as the correction step because
the predicted values are corrected based on measurements dt.

Recursive Bayesian estimation is the exact solution to the filtering prob-
lem. Unfortunately, this solution is not applicable to most practical systems
because it contains complicated multi-dimensional integrals. However, these
integrals can be simplified by putting some limitations on the system as-
sumptions, i.e. linear models and Gaussian distributions.
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The Kalman filter (KF) is the optimal solution to the recursive Bayesian
estimation for a system with linear dynamics and observation, Gaussian
initial conditions, and independent Gaussian process and observation noise
(Kalman, 1960). Jazwinsky (1970) extended the KF to handle the state
estimation in nonlinear systems. The extended Kalman filter (EKF) uses the
KF on the first order Taylor series approximation of the nonlinear equations
(Jazwinsky, 1970). Although the EKF is the most used variant of the KF,
it has some intrinsic deficiency. For example, if the system nonlinearity
is high, the EKF may diverge. Besides, EKF requires the Jacobian. So,
the exact equations of the system should be available (white box model).
Thus, it is not applicable to black box models, where only the input/output
information of the system is available.

Sigma point Kalman filters (SPKF) were proposed to handle the defi-
ciencies of EKF in nonlinear systems (Julier and Uhlmann, 1997; Ito and
Xiong, 2000; Nørgaard et al., 2000). These filters are based on nonlinear
sampling propagation and a discretized representation of the sample space
of the state variables (Merwe and Wan, 2001; Rezaie et al., 2007). The
filters work well with black box models because they just need to know the
input/output relationships of the system without detail information of equa-
tions. Such approaches have shown relevant for low to medium size system
dimensions, but for high dimensional systems they become computationally
infeasible.

The ensemble Kalman filter (EnKF) was introduced as a sampling repre-
sentation for very high dimensional systems, see e.g. Evensen (2003), Sakov
and Oke (2008) and Evensen (2009). It incorporates the nonlinear process
model, whereas a Gaussian approximation is used for the updating with
respect to new measurements. This approach has been very useful for prac-
tical applications, but the filter solution may be biased or underestimate
uncertainty.

The key ingredient of the previous Kalman based filters is the Gaus-
sian assumption. So, they can not handle complicated distributions accu-
rately and may diverge. The Particle filter (PF) was proposed to address
complicated distributions (Doucet et al., 2001). The PF is a Monte Carlo
(MC) based algorithm which approximates the posterior distribution with
weighted samples (Doucet et al., 2001). The PF converges to the optimal
filtering distribution under weak regularity conditions, when the sample size
goes to infinity. The PF works well for small dimension systems, but for
high dimensional systems it suffers from sample degeneracy, i.e. all sam-
ples collapse to one sample. In theory one can overcome this problem by
increasing the number of MC samples, but this has to increase faster than
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Figure 1.5: The principal components for a two dimensional example (Hastie
et al., 2009)

the system dimension, and for most high dimensional practical purposes the
computational burden becomes too large (Doucet and Johansen, 2011).

Thus, we can summarize the two major problems as i) real time state
estimation in high dimensional systems with limited number of samples, and
ii) complicated distributions. The first two papers in this thesis address
these challenges to some extent. The simulations show promising results
and it seems they have better or equal performance with some of the earlier
proposed filters.

1.4 Dimension Reduction in Data assimilation and
Integration

In recent years repeated seismic surveys have become more frequent and
quantitative methods that can be used to integrate the information found
in these surveys into reservoir models are called for. One major challenge
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in data assimilation is determining the information content in the measured
data. Collinear and highly correlated measurements do not provide more
information and further causes rank deficiency problems and model over-
fitting. Thus, finding the most informative data is vital. In the statistical
literature, this is a well-known problem and dimension reduction methods
have been proposed to deal with the situation (Hastie et al., 2009).

Principle component analysis (PCA) is one of the most frequently used
dimension reduction techniques. Its implementation is straight forward by
using singular value decomposition (SVD). PCA focuses on finding the
structure of data ensemble matrix. By finding the structure of data, we
mean that PCA finds the directions which data has maximum variability
(for more details see Hastie et al. (2009)). Thus, the first principal compo-
nent is defined as a vector which represents the first maximum variability
direction of data, the second principal component is the direction of the
second maximum variability of data etc. By transforming these data from
data space to PC space the structure of the data and its actual dimension
are found and we can remove the less significant part of the data by remov-
ing the last PCs (Figure 1.5 presents the concept of PC direction and data
variability).

One challenge when conditioning on seismic data, is the potentially large
data dimension, nd 	 1. This follows because of potentially high compu-
tational demands for the assisted filtering algorithms and the possibility of
a dramatic model overfitting. When considering MC based techniques such
as the EnKF, all the information regarding the prior and posterior distri-
bution can be extracted from the ensemble of realizations. The same is
true for the ensemble of forecasted data, found by evaluating the likelihood
model (For example the likelihood π(dt|xt) is Gaussian if εt is a Gaussian
noise in equation (1.1)). Although the dimension of the data (production
and/or seismic) can be high, all of them are not useful. According to linear
algebra, the rank of the a matrix is less than or equal to the smaller matrix
dimension. So, if the ensemble of forecasted data is arranged in a matrix,
the rank is equal to the minimum of the ensemble size and the data dimen-
sion. In addition, there is possibly a high spatial and temporal correlation
in this forecasted data. This implies that the true rank of the ensemble of
forecasted data can be significantly smaller than the data dimension. Paper
III in this thesis relates to the dimension reduction of the geophysical data
and removing the non-informative data before conditioning.
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1.5 Value of Information

Rather than reducing the data size, one may ask if accurate processing
and dense data acquisition was really necessary. More data will reduce
uncertainty, but will it help the decision making?

Value of information (VOI) analysis relates to making better decisions
under uncertainty (Raiffa, 1968; Howard, 1996). It is an old concept in the
petroleum industry (Grayson et al., 1962), and it seems to have gained more
interest in recent years (Branco et al., 2005; Bickel et al., 2008; Bratvold
et al., 2009; Bhattacharjya et al., 2010). The VOI is useful in several
petroleum applications where one considers purchasing more data before
making a decision. The data comes with a price, and one might ask if it is
really worth it, or which data to acquire at the current stage?

The VOI is defined as the maximum cost that we should pay for new in-
formation. If the price of data is larger than the VOI, the data are not worth
purchasing (Bratvold et al., 2009). The calculation is tied to the underly-
ing decision problem (Say, drill or not), and based on expected monetary
units. Consider the expected revenues WITH additional information minus
the expected revenues WITHOUT additional information. The former is
sometimes called posterior value, while the latter is the prior value. The
VOI is defined as:

VOI = Posterior Value− Prior Value. (1.4)

Here, the prior value is positive only if the expected revenues are larger
than the costs, i.e. max{E[R(x)]− C, 0}. Similarly for the Posterior Value
=
∫
max{E[R(x)|d] − C, 0}π(d)dd. Here, R(x) is the revenue which is a

function of the state, and C is the cost. The state vector here consists of the
saturation and porosity as the reservoir parameters. In addition the data
is the seismic AVO attributes, which are informative of the saturation and
porosity values. The decision may usually be done at multiple locations,
and data carry information across space, because of dependencies. For eval-
uating the expectations in equation (1.4) we need the related distribution.
For the posterior value, we are integrating over all possible data, and for
each data we compute a conditional expectation. Finding the distribution,
and the expected value rely on a Bayesian inversion problem.

The evaluation of geophysical information sources depends on input
modeling assumptions. Reservoir parameters and seismic amplitudes are
often skewed and by using models which capture the skewness of distri-
butions, the input assumptions are less restrictive and the VOI analysis is
more reliable (Figure 1.6). Eidsvik et al. (2008) proposed an algorithm
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Figure 1.6: A graphical description of distribution fitting based on the SPE10
data, for saturation (upper left plot), porosity (upper right plot), zero-offset reflec-
tivity (lower left plot) and AVO gradient (lower right plot), where the solid curve
is the empirical distribution, dash curve is the fitted Gaussian and dash-dot is the
fitted skewed.

for the VOI analysis of the seismic AVO and/or controlled source electro-
magnetic (CSEM) data with Gaussian assumption for reservoir parameters
and measurements. But, as Figure 1.6 shows, the reservoir parameters and
seismic amplitude measurements are skewed and non-Gaussian. By using
models which capture the skewness of distributions, the input assumptions
are better-fitting. Bayesian inversion of the seismic AVO data and the VOI
analysis are then more reliable. Paper IV in this thesis relates to the VOI
analysis of seismic AVO data with more flexible input modeling assump-
tion. This extension results in more reliable decisions if the distributions
are skewed.

1.6 Outline of the Papers

In this section, we are going to briefly explain the main contribution of
the papers and the implementation results. Note that these papers were
presented at several international conferences, URE annual meeting, stu-
dent seminars in Department of Mathematical Sciences at NTNU, Statoil
company and Department of Energy Resource Engineering at Stanford Uni-
versity.
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Paper I: Shrinked (1−α) ensemble Kalman filter and α Gaus-
sian mixture filter

Javad Rezaie and Jo Eidsvik

Published in Computational Geoscience

In this paper, we outline a method going between the EnKF and the
PF. We are interested in maintaining the robust properties of the EnKF
in order to avoid degeneracy. At the same time we encourage useful the-
oretical properties as the sample size increases. The filtering method we
propose here fits a Gaussian mixture distribution to the predictive distribu-
tion. With additive noise terms for the dynamical model, it is a special case
of the PF, and the algorithm is asymptotically correct when the number of
samples, B, goes to infinity (Pitt and Shephard, 1999). Assuming the mean
of predicted samples is a robust estimator, our construction shrinks the pre-
dicted particles towards this mean. We use a tuning parameter α to control
the degree of shrinkage. The extreme cases are the PF (α = 1) and the
EnKF (α = 0). When the number of samples increases, the α goes towards
1. The covariance of the predictive distribution is controlled by scaling the
covariance of elements in the mixture. If the main computational cost is
the forward propagation, which is often the case in high dimensional appli-
cations such as fluid flow simulation, the computation time of our method
is at the order of the EnKF.

We test the proposed filter on a simulation study for target tracking,
on the Lorenz 40 model, and on a reservoir simulation example. Results
indicate that the filter works better or as well as Gaussian mixture PF and
the EnKF for systems with different dimensions and complexities.

This work was published in Computational Geoscience, 16(3):837-852,
2012.

Paper II: Kalman Filter Variants in the Closed Skew Normal
Setting

Javad Rezaie and Jo Eidsvik

In revision

In this paper, we extend the KF to capture possible skewness of dis-
tributions. The proposed filter is based on the closed skew normal (CSN)
distributions. The CSN distribution is an extension of the Gaussian dis-
tribution (Azzalini and Dalla-Valle, 1996; Gupta et al., 2004). The CSN
distribution consists of the Gaussian distribution as a special case.
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The general recursive Bayesian filtering method is defined in this setting.
Different filtering methods are derived for linear and nonlinear systems. In
particular we derive the KF and the EnKF as special cases of the proposed
filters. Finally we implement the proposed methods on a synthetic linear
system, re-entering a body to the atmosphere at very high altitude and
velocity, and a seismic history matching case studies. Simulation results
show the good performance of the proposed methods compared with the
KF and EnKF.

This work is in revision.

Paper III: Reducing the Dimensionality of Geophysical Data
in Conjunction with Seismic History Matching

Javad Rezaie, Jon Sætrom and Eivind Smørgrav

Published in the proceedings of the 74th EAGE Conference & Exhibition
incorporating SPE EUROPEC 2012, Copenhagen, Denmark, SPE153924.

In this paper, we study the data dimension reduction problem using
a Bayesian approach, where the statistical properties of the reservoir can
be described through an ensemble of realizations generated from the pos-
terior distribution of the variables of interest. When considering ensemble
based methods for high dimensional data, the rank of the ensemble of the
forecasted data is at most equal to its size of 20-200 members. However,
in practice there are collinearities between the ensemble members, which
means that the effective rank can be dramatically smaller than the data
dimension. This implies that we can essentially represent high dimensional
data, such as time-lapse seismic data, in terms of a few scalars.

We therefore apply dimension reduction techniques to efficiently handle
problems related to the data dimensionality. We considered both basis
vector and pixel based approaches. The proposed algorithms are applied on
a reservoir model inspired by a North Sea oil field as the test benchmark. We
find that the basis vector approach based on PCA is particularly promising,
resulting from the versatility and robustness of the method. PCA applies
equally well for any ensemble based history matching algorithm, while the
pixel based methods are designed mainly for the EnKF.

This work was published in the proceedings of the SPE EUROPEC 2012,
SPE-153924.
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Paper IV: Value of Information Analysis and Bayesian Inver-
sion for Closed Skew-Normal Distributions: Applications to
Seismic Amplitude Versus Offset Data

Javad Rezaie, Jo Eidsvik and Tapan Mukerji

In revision

In this paper, we introduce skewed distributions for the modeling of
reservoir parameters and geophysical measurements. We fit CSN models
to the SPE10 data set and check the sensitivity of the VOI to the model
parameters. The Gaussian assumption directs the decision maker to wrong
decisions when the data processing cost is in between the evaluated VOIs
of the Gaussian and the CSN. Simulation results show that by increasing
the variance and/or skewness parameters of data distribution, the VOI de-
creases, and it is more sensitive to variance than skewness.

One of the computational challenges in the VOI calculation is evaluation
of the integrals. We use analytical approximations, and MC approximations
for calculation. Besides, we use the power of parallel computing and graphics
processing units (GPUs) for computation speed up.

This work is in revision.

1.7 Ideas for Future Work

The four parts of this thesis are connected in the way they use Bayesian
updating to assimilate geophysical data. Hence, they focus on different
modeling challenges and techniques. These ideas can be used independently
or as a part of another algorithm. Thus, combining some of these ideas
together or tie-in with other algorithms can be defined as future works.
The following ideas are proposed as the future research.

In the VOI part, we work on the VOI analysis of the seismic AVO data.
In this part of the thesis, the VOI may help us decide whether to purchase
the new data or not. Consider a case where one a priori decided to purchase
the data, but the decision making problem is defined as when is the optimal
time of conditioning? In the other words, we have the opportunities to
condition on the seismic AVO data at different time steps, and we are going
to find the time step(s) that has the best conditioning result. Actually, for
this problem we must combine the VOI analysis and the filtering problem.
Here, we can define different cost functions for optimization. It is obvious
that the best results are achieved by conditioning at all time steps. But,
we have some more limitations, i.e. the total data price, computation time
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etc. In preliminary simulation results, we assume that we are allowed to do
one conditioning in a time window. By this restriction, we found that the
maximum VOI occurs when we have the first maximum correction between
the prior and the posterior of the reservoir parameters. This time index is
where the saturation goes to the steady state region.

The skewed version of the SPKFs in a CSN setting can also be con-
sidered as future research. (Julier, 1998) tried to incorporate the skewness
of latent variables into the sigma point selection of the famous unscented
Kalman filter (UKF), because the UKF was originally designed to capture
the first and second order moments of random variables with a proofed ac-
curacy level Julier and Uhlmann (1997). The problem with this proposal is
the number of sigma points (discretization points in the algorithm), which
is in the order of O(n3) for an n dimensional system. Since the number
of sigma points then gets huge for medium size systems, it is practically
inconvenient. But, by combining the idea of the CSN filter into the UKF
the number of necessary sigma points reduces dramatically. According to
this idea, we proposed a method to estimate the CSN distribution param-
eters using some deterministically chosen ensemble members named sigma
points. Furthermore, we can combine the skewed UKF and the Bayesian
inversion results of Rimstad and Omre (2012b,a), which uses an extended
version of the CSN, including multi-modal distributions.
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Chapter 2

Shrinked (1− α) ensemble
Kalman filter and α

Gaussian mixture filter

Abstract. State estimation in high dimensional systems remains a chal-
lenging part of real time analysis. The ensemble Kalman filter addresses
this challenge by using Gaussian approximations constructed from a num-
ber of samples. This method has been a large success in many applications.
Unfortunately, for some cases, Gaussian approximations are no longer valid,
and the filter does not work so well. In this paper, we use the idea of
the ensemble Kalman filter together with the more theoretically valid par-
ticle filter. We outline a Gaussian mixture approach based on shrinking
the predicted samples to overcome sample degeneracy, while maintaining
non-Gaussian nature. A tuning parameter determines the degree of shrink-
age. The computational cost is similar to the ensemble Kalman filter. We
compare several filtering methods on three different cases: a target tracking
model, the Lorenz 40 model, and a reservoir simulation example conditional
on seismic and electromagnetic data.

2.1 Introduction

State estimation is an important problem in engineering and science. If
we represent the system dynamics (differential or difference equations) in
state space form, the measurements are transformed, noisy, and become an
incomplete representation of the system state. Filtering methods extract



22
Shrinked (1− α) ensemble Kalman filter and α Gaussian mixture

filter

the probability distribution of the state at every time point, given all mea-
surements until that time. For dynamic systems, it is natural to perform
the estimation process as soon as new observations arrive. Thus, recursive
Bayesian estimation algorithms are powerful for dealing with filtering prob-
lems. This consists of sequentially going forward in time according to a
two-step routine: (a) a forward propagation step using the system dynam-
ics, and (b) an updating step when the new data gets available. Step a is
known as the prediction problem, while step b is the filtering problem.

The celebrated Kalman filter (KF) is the optimal solution to the recur-
sive estimation challenge under certain model restrictions (Kalman, 1960).
These assumptions include linear dynamics and observation model, Gaus-
sian initial conditions, and independent Gaussian process and observation
noise. For non-linear systems, we can use linearization and apply the KF
update for the resulting system. This is known as the extended Kalman
filter (EKF) (Jazwinsky, 1970). If system non-linearity is high, the EKF
may diverge. Sigma point Kalman filters were proposed to overcome some
of the weak points of linearized filters (Julier and Uhlmann, 1997; Ito and
Xiong, 2000; Nørgaard et al., 2000; Merwe and Wan, 2001). They have very
good performance for small- to medium-sized systems; but for high dimen-
sional systems, the computational burden becomes too large. The ensemble
Kalman filter (EnKF) uses Monte Carlo realizations along with a Gaussian
approximation in the updating step. It has shown very good results for high
dimensional systems (Evensen, 2003, 2009).

All the algorithms mentioned above have a Gaussian approximation as
the key ingredient. Even though the algorithms have been successful for high
dimensional non-linear problems, one cannot really justify a Gaussian ap-
proximation in these problems, apart from using computational convenience
as an argument. Noteably, there are no asymptotic results saying that the
EnKF converges to the optimal filtering distribution when the number of
samples goes to infinity. The particle filter (PF) is a Monte Carlo-based algo-
rithm which approximates the posterior distribution with weighted samples
(Doucet et al., 2001). Under weak regularity conditions, the PF converges
to the optimal filtering distribution when the sample size goes to infinity.
The conditions are similar to that of importance sampling. One must be
able to draw samples from a proposal mechanism, and since the method
relies on constructing weighted filtering samples, the proposal distribution
cannot have lighter tails than the target filtering distribution (see Doucet
and Johansen (2011)). The PF works well for small dimension systems with
general non-Gaussian and non-linear models, but for high dimensional sys-
tems, it suffers from sample degeneracy, i.e. all samples collapse to one



2.1. Introduction 23

sample. In theory, one can overcome this problem by increasing the number
of Monte Carlo samples; but this has to increase faster than the system
dimension, and for most high dimensional practical purposes, the computa-
tional burden becomes too large (Doucet and Johansen, 2011). There are
Gaussian mixture-based filters (Anderson and Moore, 1979) which use EKF
for constructing each Gaussian mixture, but this approach is not asymptot-
ically correct because EKF just uses first-order Taylor series expansion, and
it looses the sparsity of random variables (Wan et al., 2000).

In this paper, we outline a method going between the EnKF and the
PF. We are interested in maintaining the robust properties of the EnKF
in order to avoid degeneracy. At the same time, we encourage useful the-
oretical properties as the sample size increases. The filtering method we
propose here fits a Gaussian mixture distribution to the predictive distri-
bution. With additive noise terms for the dynamical model, it is a special
case of PF, and the algorithm is asymptotically correct when the number
of samples, B, goes to infinity (Pitt and Shephard, 1999). Assuming the
mean of predicted samples is a robust estimator, our construction shrinks
the predicted particles towards this mean. We use a tuning parameter α to
control the degree of shrinkage. The extreme cases are the PF (α = 1) and
the EnKF (α = 0). When the number of samples increases, the shrinkage α
goes towards 1. The covariance of the predictive distribution is controlled
by scaling the covariance of elements in the mixture. If the main com-
putational cost is the forward propagation, which is often the case in high
dimensional applications such as fluid flow simulation, the computation time
of our method is at the order of the EnKF.

Some recent publications are similar, but different to the current paper:
Sætrom and Omre (2011) change the EnKF updating schemes based on
shrinkage methods known from multi-variate linear regression such as partial
least square regression and principal component regression. Their method
reduces the collinearity between the samples, but the proposed method suf-
fers from the same Gaussian assumptions as standard EnKF. The method
proposed in Stordal et al. (2010) shrinks the updating weights, while we
shrink the samples and get a natural modification of the weights as a nat-
ural consequence. Dovera and Rossa (2011), extend the standard EnKF
to a mixture of Gaussians for the predictive distribution. They consider
only multi-modal problems. We attempt to handle the more general non-
Gaussian cases. In Hoteit et al. (2008) and Hoteit et al. (2011), methods for
combining the KF and PF are proposed. They first update the propagated
samples using the KF scheme and modify weights according to a PF selec-
tion using the updated samples. We apply a different intermediate version
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of the EnKF and PF. Leeuwen (2010) and Leeuwen (2011) proposes a PF
with an intelligent selection of the proposal distribution. The filter is similar
to the EnKF updating part with a nudging noise or relaxation term. The
predicted samples are guided to high likelihood regions, and sample degen-
eracy is avoided. In practice, it may be hard to choose the relaxation term,
which is case-specific and depends on the number of forward propagation
steps for each updating or assimilation step.

The main contribution of our paper is a method of shrinking predictive
samples to maintain flexibility in the distribution while avoiding degeneracy.
This new approach is different from all of the above because the shrinkage
allows another intermediate step between the EnKF and a particular PF.
The updating and the weights follow directly from the degree of shrink-
age. The degree of shrinkage is the only tuning parameter. Moreover, it
is not restricted to bimodal systems, and it is applicable to systems with
one or more forward propagation steps before conditioning on the obser-
vations. The paper is organized as follows: In Section 2.2, we define the
model assumptions used in this paper. Section 2.3 outlines the α shrinked
ensemble particle filter. Section 2.4 provides examples from target tracking,
the Lorenz 40 model, and a reservoir simulation example.

2.2 Notation and Modeling Assumptions

Denote the state variable at time t by xt, and let Xt = (x1, . . . ,xt) be the
collection of the state variables from time 1 to the current time t. Further,
the observations at time t are denoted yt, and Y t = (y1, . . . ,yt) is the
collection of observations at this current time step. We assume continuous
state and observation variables, i.e. xt ∈ Rn and yt ∈ Rm, where the
dimensions n and m tend to get large in most modern applications.

We use a state space formulation with the usual conditional indepen-
dence assumptions. This means that the conditional probability density
function of xt, given all previous state and observation variables, only
depends on the state at time t − 1. Moreover, the conditional distri-
bution of observation yt, given the state at that time and all previous
states and observations, only depends on the state at time t. Mathemat-
ically, these two assumptions entail that the conditional distributions are
π(xt|X t−1,Y t−1) = π(xt|xt−1) and π(yt|Xt,Y t−1) = π(yt|xt), respec-
tively. The joint density of Y t and X t can then be factorized using the
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conditional independence assumptions:

π(Y t,X t) =
t∏

i=1

π(yi|xi)
t∏

i=2

π(xi|xi−1)π(x1). (2.1)

Here, π(x1) is the specified probability density function for the initial state
variable. The joint model is defined once we have specified this initial
distribution, along with the density for the dynamic propagation model
π(xt|xt−1) and the likelihood model π(yt|xt). Depending on the dynamic
model and the information content in the data, there will often be a tran-
sient phase for small t, revealing the initial conditions.

We next specify our particular assumptions about the forward propa-
gation and the likelihood model. Generically, we let N(x;μ,Σ) denote the
Gaussian probability density function of random variable x, with mean μ

and covariance matrix Σ. We model the dynamics of the system in the
following way:

π(xt|xt−1) = N(xt;gt(xt−1),P ), (2.2)

where the expectation term is defined by a non-linear function gt(·). This
function is usually the computationally hard part, involving a forward prop-
agation of complex physical phenomena. For instance, in a reservoir simula-
tion application, this function consists of numerical solutions of the partial
differential equations for fluid flow in porous media. The covariance ma-
trix P can incorporate non-modeled physics, and may be a result of using
coarse scales in a simulator or of compensating for simplified physics, such
as a treating certain physical properties as fixed in the dynamical model.
We assume a linear likelihood model, with additive Gaussian noise, i.e.,

π(yt|xt) = N(yt;H txt,R) . (2.3)

The matrix Ht is defined by the data acquisition of the problem, while R

is the covariance matrix of the measurement noise. Whereas the dynami-
cal model could be very non-linear, the likelihood is assumed linear. In a
physical application, this assumption for the likelihood entails that a mea-
surement equation is well known and can be solved analytically. In the
simplest case, we have m = n and H t = In, indicating that we measure the
state directly, with additive noise. Note that we let the function gt depend
on the time variable, and the same holds for the expectation operator Ht in
the likelihood. For simplicity, we specify the covariance matrices P and R

as fixed over time, but this is easily generalized. If the expectation term in
the likelihood is weakly non-linear, one can linearize it at each stage of the
filtering scheme. Some asymptotic properties derived below would then not
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hold in general. Nevertheless, we get a solution as a mixture of approximate
Gaussians.

The filtering task consists of sequential propagation and updating as we
obtain new observations. At time t− 1, consider that we have the updated
(filtering) distribution of the state given all observations until that time,
denoted by the density π(xt−1|y1, ...,yt−1) = π(xt−1|Y t−1). The one-step
prediction density is constructed from the dynamical model

π(xt|Y t−1) =

∫
π(xt|xt−1)π(xt−1|Y t−1)dxt−1, (2.4)

where the model assumptions simplify the integrand according to π(xt|xt−1,
Y t−1) = π(xt|xt−1). When the new observation yt is available, we combine
the system dynamics and the likelihood in Bayes rule for the updating:

π(xt|Y t) =
π(yt|xt)π(xt|Y t−1)

π(yt|Y t−1)
∝ π(yt|xt)π(xt|Y t−1), (2.5)

where the conditional independence assumption of the data yt is used, given
the state xt. This recursive Bayesian method gives the exact solution to
the general filtering problem; but for practical applications, we cannot im-
plement it for large systems because we must calculate multi-dimensional
complicated integrals. Thus, some simplified conditions on the system dy-
namics and observations inducing some consistent approximations have to
be considered.

A sampling approximation of the filtering distribution can be established
using Monte Carlo realizations (Fishman, 1996). Suppose we have B inde-
pendent and identically distributed samples x1

t−1, ...,x
B
t−1 from π(xt−1|Y t−1).

The sample approximation to the filtering distribution at time t− 1 is then

π(xt−1|Y t−1) =
1

B

B∑
b=1

δ
(
xt−1 − xb

t−1

)
, (2.6)

with the Dirac function δ(x) = 1 if x = 0, and δ(x) = 0 otherwise. For the
prediction step, all B samples are run through the dynamical model, i.e.,
gt

(
xb
t−1

)
, b = 1, ..., B. In several applications, the gt(·) evaluation is so time-

consuming that this forward propagation can only be run about B ∼ 100
times. In the next section, we discuss various approaches for recursively
updating this size-B sample approximation of the predictive and filtering
distributions.
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2.3 Shrinked Gaussian Mixture Filters

The algorithms presented below differ in the construction of a predictive
density, and the induced filtering density. We first present a particular PF,
which is exact when the sample size B → ∞. The PF is represented by a
marginalized Gaussian mixture distribution and denoted by the Gaussian
mixture filter (GMF). In the practical situation, B cannot get large enough,
and this filter will degenerate for high dimensional systems. The (square-
root) EnKF algorithm is next presented as a collapsed Gaussian mixture,
with all mean values in the mixture being identical. Finally, we outline the
shrinkage idea to overcome sample degeneracy, while maintaining asymp-
totic sample properties when B goes to infinity. We approximate the pre-
dictive distribution with a mixture of Gaussians having mixture component
mean values between that of the GMF and the EnKF. A tuning parame-
ter, α, is used to adjust the particles between the two extremes given by
the GMF and overall mean (EnKF). We denote the resulting filter by the
robustified Gaussian mixture filter (RGMF).

2.3.1 Gaussian mixture Monte Carlo filter

The prediction formula is given in Eq. 2.4. In our model formulation, with
the sample approximation in Eq. 2.6, this prediction step becomes an in-
tegral over a Gaussian weighted with B Dirac functions. The prediction
distribution is thus a mixture of B Gaussian densities:

π(xt|Y t−1)

=

∫
N(xt;gt(xt−1),P )π(xt−1|Y t−1)dxt−1

=
1

B

B∑
b=1

∫
N
(
xt;gt(xt−1),P

)
δ
(
xt−1 − xb

t−1

)
dxt−1

=
1

B

B∑
b=1

N
(
xt;gt

(
xb
t−1

)
,P
)

=

B∑
b=1

π(b|Y t−1)π(xt|Y t−1, b), (2.7)

where π(b|Y t−1) =
1
B

is used to clarify the identically weighted components
b = 1, 2, ..., B in the mixture. Note that we have one mixture component
for every sample. Clustering of samples is also possible, giving less mixture
components than samples; however, this requires a criteria for clustering of
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samples (see Frei and Künsch (2013)). In the development below, we do not
consider this topic further.

The filtering step becomes

π(xt|Y t) ∝ N(yt;H txt,R)π(xt|Y t−1)

π(xt|Y t) =

B∑
b=1

N
(
xt; x̂

b
t ,St

)
π(b|Y t), (2.8)

where x̂b
t and St are the updated mean and covariance matrix, given com-

ponent b, i.e., π(xt|Y t, b). This Gaussian density is obtained by the usual
KF formula for fixed component b:

x̂b
t = gt

(
xb
t−1

)
+ PH

′

tQ
−1
t

(
yt −H tgt

(
xb
t−1

))
,

St = P − PH
′

tQ
−1
t H tP , Qt = H tPH

′

t +R. (2.9)

The weights wb = π(b|Y t) ∝ π(yt|Y t−1, b)π(b|Y t−1), where π(yt|Y t−1, b)
is a Gaussian marginalized over xt. Since expression (2.8) must be a prob-
ability density, the weights wb are required to sum to 1. We get

wb =
N
(
yt;H tgt

(
xb
t−1

)
,Qt

)
∑B

c=1N
(
yt;H tgt

(
xc
t−1

)
,Qt

) . (2.10)

The GMF defined by the above formulas now proceeds by repeating the
following B times:

1. Sample a component b from length B probability vector (w1, ..., wB).

2. Sample xb
t ∼ N

(
xt; x̂

b
t ,St

)
.

A Dirac representation for π(xt|Y t) is given by the equally weighted B
samples. This procedure continues, from time t to t + 1, according to the
dynamical model gt(·), just like our starting point in Eq. 2.7 at time t− 1.
Step 1 of the algorithm above is done by drawing a uniform u ∼ U(0, 1)
and picking the smallest index b such that

∑b
c=1 wc > u. Step 2 above can

either be done by direct Cholesky factorization. Then one first generates
a correlated zero-mean Gaussian using the Cholesky factor (square-root) of
St and afterwards adds the mean value x̂b

t . Alternatively, one can (a) draw
prior variate x∗bt ∼ N

(
x∗bt ;gt

(
xb
t−1

)
,P
)
; (b) draw y∗bt ∼ N

(
y∗bt ;yt,R

)
; and

(c) set sample x b
t = x∗bt + PH

′

tQ
−1
t

(
y∗t −H tx

∗b
t

)
. The resulting sample is

Gaussian with the correct mean and covariance.
The filtering distributions are Gaussian mixtures, where the Monte Carlo

step is used to propagate the particles forward in time. Note that under
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the modeling assumptions with H t linear and Gaussian error terms, the
updated Gaussian mixture for π(xt|Y t) is exact, given the B-sample Dirac
representation of π(xt−1|Y t−1). The resulting PF, called GMF here, is much
more stable than the standard bootstrap PF (Doucet et al., 2001), since we
have marginalized over xt in the weights wb. In contrast, the bootstrap PF
weighs the forward propagated particles according to the likelihood, and
the weights wb are then less uniform. Still, the Monte Carlo sample ap-
proximation applied in the GMF might not be so good for small B. The
weights wb could be very non-uniform in high dimensional systems, and
sample degeneracy would occur. Clearly, if one H tgt

(
xb
t−1

)
is much closer

to the data yt than the others, the associated wb in Eq. 2.10 is close to
1, while all other weights are near 0. The mixture is then focused on one
component, and the approach underestimates the variability of the distri-
bution. These effects, of course, depend on the number of particles B, the
non-linearity gt(·), and the covariance matrix Qt. Heuristically, in high di-
mension, say with a diagonal Qt, none of the particles H tgt

(
xb
t−1

)
are close

to the data yt, but the closest is much closer than the second closest. The
squared mismatch distances, summed over m data dimensions,are given by∑m

j=1Q
−1
t,jj

(
yjt−Hjgt,j

(
xbt−1

))2
, which will blow up linearly with dimension.

One alternative is, of course, to increase the sample size B. However,
this sample size B must typically increase faster than the dimension, and
for some non-linear problems, the B cannot be very large because of the
computation time of gt(·). Other tricks that slow down degeneracy include
tapering or localization of the covariance matrix, which effectively reduces
the dimension.

2.3.2 Ensemble Kalman filter as a collapsed Gaussian mix-
ture

The EnKF is based on a Gaussian approximation to the predictive dis-
tribution π(xt|Y t−1). For our model, this entails matching the mean and
covariance matrix of the predictive Gaussian mixture distribution in Eq. 2.7.
Assuming the additive noise (with covariance matrix P ) in the dynamical
model, the forecasted or predicted mean and covariance in the EnKF is
given by the following:

x̄t =
1

B

B∑
b=1

gt
(
xb
t−1

)

P̄ t = P +
1

B

B∑
b=1

(
gt
(
xb
t−1

)
− x̄t

)(
gt

(
xb
t−1

)
− x̄t

)′
, (2.11)
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where we have used the formula for double covariance V ar(X) =
E(V ar(X|b))+V ar(E(X|b)), conditioning on the mixture components. The
predictive distribution used in an EnKF update becomes

π̂(xt|Y t−1) = N(xt; x̄t, P̄ t)

=
1

B

B∑
b=1

N(xt; x̄t, P̄ t), (2.12)

where we have regarded it as a Gaussian mixture of B terms, all with the
same mean and covariance. Thus, this mixture density has collapsed to a
single Gaussian.

The updated distribution for the EnKF is

π̂(xt|Y t) =
π(yt|xt)π̂(xt|Y t−1)

π(yt|Y t−1)

π̂(xt|Y t) ∝ N(yt;H txt,R)N(xt; x̄t, P̄ t)

π̂(xt|Y t) = N
(
xt; x̄t + P̄ tH

′

tQ̄
−1
t (yt −H tx̄t), S̄t

)
S̄t = P̄ t − P̄ tH

′

tQ̄
−1
t H tP̄ t,

Q̄t = H tP̄ tH
′

t +R. (2.13)

Sampling from this updated distribution is achieved by drawing B i.i.d
Gaussian variables from π̂(xt|Y t). We use Cholesky factorization to draw
the updated samples, as described in the previous subsection. For the al-
ternative sampling method, the prior samples in stage a are now directly
available. Stage b of perturbing the data variate and stage c of forming
the linear combination give a statistically equivalent method for generating
updated samples.

The EnKF is robust in the sense that no degeneracy occurs. Viewed as a
collapsed mixture of Gaussians,all the weights are constant, equal to 1

B
. All

the particles in the predictive distribution have collapsed to the mean, and
the components have the same covariance matrix. However, one cannot find
theoretical justification for the Gaussian approximation of the prediction
density. If this assumption is reasonable, the filter will perform very well.
If the approximation is too far from the true non-Gaussian distribution, the
filter will introduce bias and possibly diverge. In high dimensional systems,
this does not seem to happen so often, and the practical aspects of the
EnKF have shown very useful.
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2.3.3 Robustified Gaussian mixture Monte Carlo filter

We now present the robustified Gaussian mixture filter, that aims to sta-
bilize the GMF from Section 2.3.1, using the EnKF in Section 2.3.2 as a
guide. Definition for b = 1, ..., B

zb
t = αgt

(
xb
t−1

)
+ (1− α)x̄t, (2.14)

where zb
t are shrinked versions of the predictive particles. We can in-

terpret the shrinkage as follows: For the two dimensional case, if Z =
αX1 + (1 − α)X2; 0 ≤ α ≤ 1, then Z is a point between X1 and X2

on the straight line which connects X1 and X2 (see Fig. 2.1). As a re-
sult (with a predicted sample point of view), the new predicted sample
zb
t = αgt

(
xb
t−1

)
+ (1 − α)x̄t is a sample on the hyperplane which connects

gt

(
xb
t−1

)
to x̄t, and the position of this sample is between gt

(
xb
t−1

)
and x̄t

on the same hyperplane. The interpretation of Eq. 2.14 then is that the
predicted particles are shrinked towards the mean. Using α = 0, the shrink-
ing is large, and the result is the EnKF. Using α = 1, there is no shrinkage,
and the result is the GMF. Again, we do not use any clustering (Frei and
Künsch, 2013). We have one mixture component for every sample.

Figure 2.2 illustrates the predictive densities of the GMF, EnKF, and
RGMF for a particular 0 < α < 1.

Associated with the shrinkage, we compute a predictive covariance ma-
trix for every mixture component. We construct the predictive covariance
matrix such that the total covariance matches that of the Gaussian mix-
ture distribution in Eq. 2.7, just like what is done for the EnKF. That is,
the predictive distribution in the RGMF has components π̃(xt|Y t−1, b) =
N
(
xt; z̃

b
t , P̃ t

)
, for b = 1, .., B, where P̃ t defines the second-order properties

of the predictive distribution. Note that for the shrinked variables we have
zb
t − z̄t = α

(
gt
(
xb
t−1

)
− x̄t

)
. Then, by using the formula for double co-

variance, conditioning on the mixture components, we can ensure that the
following holds:

P̃ t + α2 1

B

B∑
b=1

(
gt

(
xb
t−1

)
− x̄t

)(
gt

(
xb
t−1

)
− x̄t

)′

= P +
1

B

B∑
b=1

(
gt

(
xb
t−1

)
− x̄t

)(
gt

(
xb
t−1

)
− x̄t

)′
. (2.15)

For this to be valid, the component-wise covariance matrix for the
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Figure 2.1: A graphicaldescription of shrinkage zb
t
= αg

t

(
xb
t−1

)
+(1−α)x̄t ; the

shrunk samples move on the line (dotted line) which connect the ensemble mean
(square) to the ensemble members (dotted points)

shrinked mixture becomes

P̃ t = P + (1− α2)
1

B

B∑
b=1

(
gt

(
xb
t−1

)
− x̄t

)(
gt

(
xb
t−1

)
− x̄t

)′
. (2.16)

The predictive distribution for the robustified version is a mixture over
these mean and variances, such that

π̃(xt|Y t−1) =
1

B

B∑
b=1

N
(
xt;z

b
t , P̃ t

)
. (2.17)

The updating proceeds as for the GMF, with

π̃(xt|Y t) ∝ N(yt;H txt,R)π̃(xt|Y t−1),

π̃(xt|Y t) =
B∑
b=1

w̃bN
(
xt; x̃

b
t , S̃t

)
, (2.18)

where x̃b
t and S̃t are the updated mean and variance, given particle b,
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i.e.,

x̃b
t = zb

t + P̃ tH
′

tQ̃
−1
t

(
yt −H tz

b
t

)
S̃t = P̃ t − P̃ tH

′

tQ̃
−1
t H tP̃ t, Q̃t = H tP̃ tH

′

t +R. (2.19)

Naturally, all matrices in this expression depend on the shrinkage pa-
rameter α. The weights are now given by the following:

w̃b =
N
(
yt;H tz

b
t , Q̃t

)
∑B

c=1N
(
yt;H tz

c
t , Q̃t

) . (2.20)

The GMF gives a very wiggly predictive density plot, while the EnKF
is a Gaussian density. Now, if the data match one of the spikes, the particle
associated with this spike would get a very large weight wb in the GMF.
This could cause degeneracy. The RGMF is smoother and closer to the
Gaussian curve representing the EnKF. If the data match one of the spikes
in the GMF representation, the associated increase in the weight for the
RGMF, denoted by w̃b, would not get that much larger than the remaining
weights.

The robustification occurs because of the shrinkage. First, the zb
ts are

more similar than the gt

(
xb
t−1

)
. Second, the variance Q̃t > Qt and thus the

weights become more uniform. The parameter α gives us some flexibility:
small α entails a solution close to the Gaussian predictive density (like
EnKF), while a large α is close to the GMF solution. One option is to tune
α at every time t, i.e., α → αt. The tuning can be done using the weights
w̃b = w̃b(α). The variance of the weights can be used as an indicator of
sample degeneracy. When most samples are more or less equally weighted,
we are far away from sample degeneracy, and the variance of the weights
is low. If one or a few samples are much more likely to get sampled, some
weights are large and the rest, very small. Consequently, the variance of the
weights is high. We use the effective sample size (ESS) as an indicator for
sample degeneracy. If the ESS is below a specified level, too many weights
are negligible. Both the ESS and the variance of the weights capture the
sample degeneracy, and they are related. Here, the ESS is defined by the
following:

ESS(w̃) =

B∑
b=1

[
Bδ

(
w̃b ≥

1

B

)
+Bw̃bδ

(
w̃b ≤

1

B

)]
. (2.21)

The Dirac function is defined as δ(x) = 1 if x = true, and δ(x) = 0
otherwise.
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EnKF

RGMF

GMF

Figure 2.2: The predictive distribution from EnKF (solid line), GMF (dashed
line), and RGMF (dotted line)

We can use the ESS to tune the level of shrinkage. We start with small
α and increase the α parameter until the ESS is above a threshold: for
instance, a fixed fraction, say t1 =

B
5 .

Pseudo algorithm 1:

– Set α = ε.

– Tol = 0.

– Repeat until Tol = 1

1. Compute w̃ = (w̃1, ..., w̃B).

2. Compute effective sample size ESS(w̃).

3. If ESS(w̃) < t1 set Tol=1 and return α = α − ε. Otherwise
α = α+ ε.

The tuning parameter ε could be 0.1 or similar. Alternatively, one could
start with the GMF and decrease α until the ESS goes above the threshold.
Trade-off between the two exists too, such as guiding the algorithm by the
α from the previous time step.

One could certainly use alternative criteria for tuning the shrinkage pa-
rameter α. Since the properties of the PF are well understood, we would
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Figure 2.3: Effective sample size (ESS) for different shrinkage values α versus sys-
tem dimension. For constant α, the ESS decreases as system dimension increases;
for constant system dimension, the ESS decreases with increasing α

like to ensure a similar asymptotic behavior for the RGMF. As B → ∞, one
expects that the tuned α goes towards 1, and then the asymptotic proper-
ties are valid because we are in the PF domain. It is, thus, interesting to
study the variability in the weights w̃b in Eq. 2.20, as a function of number
of ensembles B and tuning parameter α. The weights naturally depend on
the model gt(·), the process noise covariance matrix P and the observa-
tion noise covariance matrix R, and on the tuning parameter α. Implicitly,
the state dimension n and the observation dimension m become very im-
portant, like discussed above. Since the different particles have different
mean values gt

(
xbt−1

)
, it is very hard to derive theoretical properties for

the weights. Moreover, the particles zb
t are dependent because they are all

shrinked towards the common mean.

Instead, we use simulation to study the variance of the weights. We use
a Gaussian model of dimension n = m for both process and data variables.
We use one time step t = 1 only, generating gt(x

b) ∼ N
(
x; 0

¯
, k2In

)
, b =

1, ..., B,. We set k = 1 and x1 ∼ 1
B

∑B
b=1 N

(
x1;gt(x

b), In

)
. The likeli-

hood is y1 ∼ N(y1;x1, In). We study the effect of dimension n varying
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from 5 to 100. The number of particles is , and we repeat the process 25
times to compute an average ESS under each B=100 parameter setting (see
Fig. 2.3). For large α, the effective sample size decreases quickly, indicating
a degeneracy in the weights. When α is close to 0, the updating is more
like an EnKF, and the ESS remains larger; but in high dimensions, an α
slightly larger than 0 gives different filtering distributions than the EnKF.

2.4 Simulation

In this part, we compare the proposed algorithm with EnKF and GMF. We
consider four different cases: the first two are single-sensor single-target and
multi-sensor multi-target tracking examples, where the posterior distribu-
tions are multi-modal. The third one is the famous Lorenz 40 model, and
the last one is a synthetic reservoir simulator example. For each case, we
vary the level of shrinkage and ensemble size to check the performance of
the algorithms.

In the examples, we compare the different algorithms in terms of mean
square error (MSE),continuously ranked probability score (CRPS), and prob-
ability distribution coverage. Here, at any time t, we have MSE(t) =∑

j

(
x̂j,t − xtruej,t

)2
, where x̂j,t is the estimated mean of the filtering dis-

tribution, and the sum is over all n state dimensions. An integrated MSE
is achieved by summing out t. Further, the CRPS is defined by CRPS(t) =∑

j

(
F̂ (yj,t) − I

(
yj,t < yobsj,t

))2
(Gneiting et al., 2005). Here, F̂ (.) is the

empirical cumulative predictive distribution for data at time t, given all for-
mer data Y t−1. Smaller values of CRPS means better predictive power. It
shows that we often match the observed value, and that we have a narrow
prediction band. The sum is over all m observation dimension, and an in-
tegrated CRPS is obtained by summing over all times t. The probability
distribution coverage is defined as the proportion of times the fitted filtering
distribution percentiles cover the true state, over a number of replicates.

2.4.1 Tracking targets with bimodal distributions

These examples describe the position and velocity of planes or ships moving
in two dimensions. If we imagine a monitoring system for planes or ships,
their positions are measured by radar /sonar. The targets move in a depen-
dent pattern, i.e., if one turns, others likely turn as well. In this simulation,
we consider two cases: one-sensor one-target and ten-sensor ten-target. We
let xt = [xt ẋt yt ẏt]

′
be the state vector of one target. For one target,

(xt yt) is the north and east positions, and similarly, (ẋt ẏt) is the north
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and east velocity. The absolute velocity is vt =
√
ẋ2t + ẏ2t , while the target

is moving at a bearing ηt = arctan
(
yt
xt

)
.

With constant velocities, a target moves in a straight line, and the dy-
namical model is linear. We consider a situation where a target maneuvers
(30 degrees) to the west whenever the velocity vt becomes smaller than a
threshold c. This model is non-linear, and the dynamics can be phrased
by π(xt|xt−1) ∼ N(xt;gt(xt−1),P ). Using a time step dT , the one-target
dynamics for large velocity is

gt(xt−1) =

⎡
⎢⎢⎣
1 dT 0 0
0 1 0 1
0 0 1 dT
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
xt−1
ẋt−1
yt−1
ẏt−1

⎤
⎥⎥⎦ (2.22)

while for small velocity, it is

gt(xt−1) =

⎡
⎢⎢⎢⎢⎣
xt−1 + dT cos(ηt)vt−1

cos(ηt)vt−1
yt−1 + dT sin(ηt)vt−1

sin(ηt)vt−1

⎤
⎥⎥⎥⎥⎦ (2.23)

ηt =
π

6
+ ηt−1, if vt−1 < c. (2.24)

Thus, bearing ηt of one target at time t changes westward when the
absolute velocity is small. This has an effect on the north and east velocity,
whereas the absolute velocity vt = vt−1 remains the same, as expected. As a
consequence, the predictions of the north and east positions will tend to be
skewed or multi-modal when the distribution for velocity is near the critical
velocity c.

The process noise covariance matrix is P = diag([0.52, 22, 0.52, 22]),
and initial conditions are drawn from N(x0;μ0,P 0), where μ0 = [1000, 75,
1000, 75]

′
and P 0 = 100P . We introduce a fixed correlation of 0.9 between

all targets, and the joint covariance is a block diagonal in the multi-target
situation.

We observe the north and east positions at every time point, with Gaus-
sian additive noise. Thus, the likelihood model for position data is linear and
can be phrased by π(yt|xt) ∼ N(yt;H txt,R), where R = diag([52 52])
and

H t =

[
1 0 0 0
0 0 1 0

]
. (2.25)
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Table 2.1: Comparison of different filters for one-sensor one-target case

Values EnKF GMF RGMF

α 0.00001
CRPS(STD) 144(1.5) 140(1.4) 144(1.6)
MSE(STD) 281(26) 87(6.5) 282(26)
Coverage(%) 75 87 75

α 0.2
CRPS(STD) - - 143(1.6)
MSE(STD) - - 272(26)
Coverage(%) - - 74

α 0.5
CRPS(STD) - - 140(1.4)
MSE(STD) - - 230(14)
Coverage(%) - - 76

α 0.8
CRPS(STD) - - 131(1.3)
MSE(STD) - - 164(8)
Coverage(%) - - 85

α 0.99
CRPS(STD) - - 140(1.5)
MSE(STD) - - 83(7)
Coverage(%) - - 89

STD standard deviation

One-sensor one-target case

In this case, we assume that we have one moving target and one radar/sonar
sensor measuring the target position in the Cartesian plane.

The main goal of this example is to evaluate the performance of each
filter for estimating a general distribution when the system dimension is
low (system dimension is n = 4 for this case), and there is no sign of
sample degeneracy. The number of ensemble members is B = 500, and
we repeat the simulation for 500 replicates in order to reduce Monte Carlo
error. We predict that GMF should be the best, because for low dimensional
systems, it can approximate general filtering distributions without sample
degeneracy. Moreover, we have a large number of samples here (B = 500).
We tested with smaller Bs, and sometimes, the GMF diverges, even for such
small dimensions.

Table 2.1 and Figs. 2.4 and 2.5 present the simulation results for a
selected α. We see that our prediction about GMF is correct, and it is the
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GMF
EnKF

RGMF

Figure 2.4: One-sensor one-target: distribution coverage for α = 0.8, EnKF
(dashed square line) has the lowest coverage, GMF (solid circle line) has the highest
coverage, and the RGMF (dashed dotted star line) is in between but reaches the
coverage of GMF as time goes

best in terms of MSE, CRPS, and probability distribution coverage (nominal
level is 90%). When α is close to 1, the RGMFs performance is close to
GMF. This result is natural since it is close to the GMF for large values
of α. By looking at Table 2.1, we also see that when α ≈ 0, the RGMFs
estimation accuracy is close to EnKF. This result is also predictable because
the shrinked samples goes to the predicted ensemble mean.

Figure 2.4 tells us that the percentile coverage distribution starts from
a high value (98%) then reduces rapidly. The high initial coverage is caused
by the initial state variables. It is noticeable that after some time steps,
the percentile coverage for GMF and RGMF reduces with a lower rate than
EnKF. This occurs because the posterior distribution is non-Gaussian, and
the EnKF does not approximate it very well.

Figure 2.5 shows the MSE and associated confidence intervals, which
are calculated using bootstrapping of samples. The GMF has the lowest
trend. We can see similar results for CRPS. Simulation results show that
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5% EnKF

95% RGMF

RGMF
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5% RGMF

5% GMF
95% GMF

Figure 2.5: One-sensor one-target: MSE for α = 0.8, EnKF (dashed square line)
has the highest MSE with 95% confidence interval, GMF (solid circle line) has
the lowest MSE, and the RGMF (dashed dotted star line) is in between EnKF and
GMF

by choosing different values for α, we can change the performance of the
filter: being close to GMF when α increases to 1 and close to EnKF for α
near 0. It has different performance from EnKF and GMF for 0 < α < 1.

Ten-sensor ten-target case

In this case, we increase the system dimension by increasing the number
of targets and sensors. Now, we are going to check the proposed method
for dealing with sample degeneracy in higher dimensional system. We know
that the GMF suffers from sample degeneracy when the system dimension
increases, and we predict that it should have the worst performance in this
example. We also know that EnKF tends to work well in high dimensional
systems. In Table 2.2 and Figs. 2.6 and 2.7, we see that the GMF now has
the worst performance as we predicted, while EnKF works well. We see that
the proposed method works well for this case without sample degeneracy.
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Table 2.2: Comparison of different filters for ten-sensor ten-target case

Values EnKF GMF RGMF

α 0
CRPS(STD) 1389(6.9) 2311(12.7) 1389(6.6)
MSE(STD) 257(8.1) 581(28.5) 259(7.3)
Coverage(%) 87 25 87

α 0.1
CRPS(STD) - - 1390(7.3)
MSE(STD) - - 259(8.7)
Coverage(%) - - 86

α 0.4
CRPS(STD) - - 1389(7.2)
MSE(STD) - - 246(6.7)
Coverage(%) - - 87

α 0.7
CRPS(STD) - - 1513(8.8)
MSE(STD) - - 264(13.3)
Coverage(%) - - 83

α 1
CRPS(STD) - - 2319(12)
MSE(STD) - - 594(27.3)
Coverage(%) - - 26

STD standard deviations

Figure 2.6 shows that the percentile coverage (nominal 90%) for the
GMF is high at the beginning, because the initial samples are independent,
and the distributions are close to the Gaussian distribution. But after some
time steps, the coverage drops because of sample collapse (the ESS is low).
We have a similar behavior for the MSE (Fig. 2.7).

For small to medium values of α, the performance of the RGMF is
as good as the EnKF. According to Table 2.2, for some values (such as
α = 0.4), the RGMF is the best in the MSE sense. Besides, Table 2.2 shows
that the RGMF is close to the EnKF for a wide range of shrinkage levels
(0 < α < 0.8). For larger αs, the RGMF goes to the GMF. When α = 0, the
performance of RGMF is a little bit different from EnKF. This is because
of Monte Carlo error. We have a similar story for the performance of GMF
and RGMF when α = 1.

Note that the coverage is better for this ten-sensor ten-target than for
single-target situation. We believe this occurs because the ten-target model
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EnKF
RGMF
GMF

Figure 2.6: Ten-sensor ten-target: distribution coverage for α = 0.15, GMF (solid
circle line) has the lowest coverage, and also the coverage of EnKF (dash square
line) and RGMF (dashed dotted star line) is almost equal

contains more Gaussianity, in the sense that only one or some targets maneu-
ver at a time, and thus the non-linearity is averaged over more dimensions.

2.4.2 Lorenz 40 model

The Lorenz40 model is a highly non-linear model with state dimension n =
40 (Sakov and Oke, 2008). It consists of 40 ordinary differential equations
with cyclic boundary condition as follows:

λ̇i = (λi+1 − λi−2)λi−1 − λi + 8, i = 1, ..., 40;

λ0 = λ40, λ−1 = λ39, λ41 = λ1. (2.26)

This model is discretized by the standard fourth-order Runge–Kutta
scheme, and the system states xt relate to the solution of the above system
as xt = λ0.05t, t = 1, 2, ... where λt = [λ1(t), λ2(t), ..., λ40(t)]

′
. The system

dynamics are perturbed with Gaussian noise with mean 0 and standard
deviation 0.05. The system state is measured by

yt = xt +N(0, I40). (2.27)
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Figure 2.7: Ten-sensor ten-target: MSE for α = 0.6, GMF (solid circle line) has
the highest MSE with 95% credible interval, and also the MSE of EnKF (dashed
square line) and RGMF (dashed dotted star line) is almost equal

We have these measurements at each time step. The initial ensemble mem-
bers are selected randomly from a set of 10,000 model states obtained from
one continuous integration at t = 1000, 1001, ..., 11000 (Sakov and Oke,
2008).

In this simulation, we evaluate the proposed method on this famous
test in data assimilation. For this example, we choose a constant value for
α (instead of adaptive α selection) in order to simultaneously check the
sensitivity of the algorithm with respect to the value of α and also the
number of ensembles (Figs. 2.8 and 2.9). The comparison of GMF, EnKF,
and RGMF is done for different cost functions and evaluation criteria such as
the total MSE, percentile posterior distribution coverage, and the variance
of the weights.

In Fig. 2.8, we display a three-dimensional plot of total MSE versus
ensemble size and the tuning parameter α, averaged for the time interval
[900 1000] of the Lorenz model. We note that the MSE tends to decrease
with larger ensemble size. According to Fig. 2.8, for small sample size, the
smallest MSE occurs for the EnKF (α = 0). The GMFs result (α = 1) is the
worst because the sample size B must be very high for the GMF to obtain
the best result. It is not surprising because we know that GMF diverges
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Figure 2.8: Lorenz 40: total MSE versus the ensemble size and tuning parameter
α, averaged for the interval [900 1000]

when system dimension is proportionally high (40 for this case), since it
suffers from sample degeneracy.

In some cases, when we increase the number of samples, the number
of collinear samples increases too, and this results in poorer estimation
accuracy. For instance, when α = 0 (EnKF), by changing the number of
ensembles from 90 to 100, the total MSE increases. Also, for the GMF case
(i.e., α = 1), the MSE increases as the number of samples goes from 150
to 200. According to Fig. 2.8, the best result in total MSE sense is when
α = 0.15 and the number of samples is 200. Choosing the optimal value for
the tuning parameter α is highly dependent on sample size, and its optimal
value depends on both system complexity and number of samples.

Figure 2.9 shows the filter results in the percentile posterior distribution
coverage sense. The distribution coverages are too small, but they increase
as a function of sample size B. Based on this figure, we have the best
coverage for 0.15 ≤ α ≤ 0.3. Thus, the RGMF performs the best in this
range of shrinkage values. For constant sample size, the coverage distribu-
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Figure 2.9: Lorenz 40: distribution coverage versus the ensemble size and tuning
parameter α, averaged for the interval [900 1000]

tion is like a convex polynomial function of the tuning parameter α (such
as second-order polynomial function), where its maximum value is around
α = 0.15. Also, increasing the number of ensembles does not always lead to
increased distribution coverage because of sample collinearity. For instance,
when α = 0.45, and we increase the number of samples from 70 to 80 or
when α = 0 (EnKF) and the number of samples is changed from 90 to 100,
the posterior distribution coverage decreases.

The coverage is so low because of small process noise covariance. It in-
creases rapidly when we set the process noise to a larger value. For instance,
when we increase the process noise standard deviation from 0.05 to 0.1, the
percentile coverage distribution increases to about 80%. The parameters
used in Sakov and Oke (2008) describe a hard case.

We know that the variance of the weights is 0 for the EnKF, because all
weights are equal. For high α, the variance of the weights is much higher.
However, when the ensemble size is high, the variance of the weights does
not change so much for different αs.
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Figure 2.10: Saturation for one run at the third time step (after 300 days)

2.4.3 Saturation estimation based on seismic
and electromagnetic data

We next explore the performance of the proposed method on a high dimen-
sional system. Besides, the proposed adaptive method for choosing α is
used. The example we consider comes from a reservoir simulation model
with a single injection well and a single production well (Lie et al., 2010).
The injection well is located at the lower left corner (Fig. 2.10), and wa-
ter is pumped into this well for replacing and moving oil to the production
well, which is located at the upper right corner. Based on fluid dynamics,
the flow is faster where the permeability (porosity) is high. There is some
heterogeneity in the initial oil saturation in the reservoir. Figure 2.10 shows
the saturation profile after 300 days for one realization of the reservoir sim-
ulator, while Fig. 2.11 shows the associated oil production over the first
300 days.

The simulator works on fluid dynamics laws, and it contains some pa-
rameters such as porosity, permeability, and saturation. The values of these
parameters depend on the geophysical characteristics of the reservoir. As-
suming the whole reservoir is a combination of cells in a lattice, we are
interested in estimating the porosity, permeability, and saturation for each
cell. We use a 25 × 25 lattice in our example. The system state vector
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Figure 2.11: Production rate over 300 days at the well in the upper right corner
of the grid

consists of porosity, permeability, and saturation for each cell. For this
example, we assume that the porosity and permeability are known and
constant, and we consider the spatial saturation distribution as a random
vector developing over time. The noise covariance in the dynamic model
is P = P t = P (xt,xt−1) = diag(|xt − xt−1|), where xt is the state vec-
tor of logistic saturations at all 25 × 25 = 625 cells. Logistic saturation
transforms the variables on the real line. The initial distribution for the
logistic saturation is a Gaussian random field, with a correlation length of
about ten cells. At the first time step, this distribution is updated using
data from the baseline seismic survey. The dynamic model gt is the nu-
merical solution of the PDE for fluid flow, and t = 1, 2, 3 are the three
discretization points, using a 100-day time step, i.e., t = 1 means 100 days,
etc. (Lie et al., 2010). More details about the simulator are available at
http://www.sintef.no/Projectweb/MRST/.

The data consists of seismic and electromagnetic observations (see
Fig. 2.12), and these are repeated over time. We assume that initially at
time 0, a baseline survey is performed, and a monitoring survey is performed
at days 100, 200, and 300 (i.e., at time steps 1, 2, and 3). Two seismic at-
tributes and electromagnetic resistivity are obtained and interpolated along
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Figure 2.12: Expected response of seismic amplitude data (two left plots) and
electromagnetic resistivity data (right plot) for different values of saturation (first
axis) and for changing porosity

the top reservoir described by the lattice. The data are informative of
the reservoir variables. Seismic attributes are very informative about the
porosity and partly saturation, while the electromagnetic data carries coarse
scale information about saturation. The likelihood is a function of satura-
tion (Mavko et al., 2003), and the expected response is shown in Fig. 2.12.
These expected seismic responses are obtained using a Reuss fluid mixing
model and Gassmann’s formula for fluid substitution. The electromagnetic
resistivity level is calculated by Archie’s polynomial law (Eidsvik et al.,
2008). The observations are made at all lattice cells, and its dimension is
m = 3 × 252. The likelihood is slightly non-linear, but we linearize it by
using first-order Taylor series expansion. This means that we fit Gaussian
approximations at each sample member in all of our algorithms.

In order to check the effect of the number of ensembles on the estimation
performance, we consider two different ensemble sizes, namely B = 100 and
B = 200. A comparison between EnKF and RGMF is done over MSE,
CRPS, and percentile coverage distribution, averaged over 40 replicates.
This entails that we run a simulator 40 times, and for each of these runs,
we compute the EnKF and RGMF filtering distributions at all time steps.
First, we use only the seismic data. Consequently, the expected response
only contains the seismic equations which relate the saturations, as state
vector, to the observations of size 2× 625. We run the simulator and filters,
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Table 2.3: Filter performance for estimating saturation conditioned on seismic
amplitude data

Values EnKF RGMF

Number of ensembles(B) 100 100
CRPS(STD) 4.1e4(4.2) 4.0e4(3.3)
MSE(STD) 2.6e-2(1.3e-4) 2.9e-2(1.6e-4)
Coverage(%) 76.4 84.0

Number of ensembles(B) 200 200
CRPS(STD) 4.1e4(3.8) 4.0e4(4.3)
MSE(STD) 2.5e-2(2.1e-4) 2.7e-2(1.4e-4)
Coverage(%) 77.0 85.7

We used an adaptive shrinkage parameter α
STD standard deviations

and every 100 days, when the seismic data are available, we condition the
saturation variables on this data set.

Table 2.3 shows the MSE, CRPS, and coverage for ensemble sizes B =
100 and B = 200 for the EnKF and RGMF. The RGMF is based on the
proposed adaptive α selection method. The results are averaged over all 625
variables on the lattice and over the three time steps. When we increase
B, the MSE and CRPS decreases, while the coverage increases and gets
closer to the nominal level of 95%. This holds for both EnKF and RGMF.
However, doubling the ensembles size gives twice the computation burden.
In comparison, the RGMF is not a large burden, since the reservoir simulator
is the most time-consuming part of the algorithms. The CRPS is slightly
smaller for the RGMF; this means that the RGMF has a sharper prediction
of the true saturation. The total MSE of EnKF is actually smaller than that
of RGMF. A more detailed analysis of the MSE trend of both filters over the
three time steps shows that the MSE of the RGMF is higher only at time
step t = 1. Both at times 2 and 3, the EnKF has a higher MSE than RGMF
(see Fig. 2.13). It seems the EnKF in this case works as overshrinking in
the first step and possibly pays for this in the later stages. When we turn to
the distributional point of view by comparing distribution coverage values,
the RGMF is clearly better than the EnKF (the distribution coverage of the
RGMF is higher than the EnKF by a factor of 8%). The coverage probability
is, in some senses, more important than the previous indicators, because it
tells us how much we can rely on our filtering distributions. It measures
how often the true state is covered by our estimate and uncertainty bounds.
Moreover, the coverage calculation for the RGMF is based on using the
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Figure 2.13: Estimation MSE when the ensemble size is B = 100 and the esti-
mation is only based on seismic data

mixture of Gaussian, and this would capture skewed posterior distributions.

We use the estimated saturation from each filter to estimate the oil
production rate. The results show that the estimated production rate by
RGMC has lower MSE and better coverage than EnKF. Inflation would
likely improve the average coverage probabilities of the EnKF (Evensen,
2009), but this heuristic approach gives too large variance for some param-
eters and still too small for others, so the marginal coverage would perhaps
not improve much.

Here, the α value is tuned at each step of the RGMF algorithm. Some-
times, the shrinkage parameter goes down to almost 0 (we set a threshold
at 0.005), and this corresponds to the EnKF algorithm. At other times, it
adapts to values of 0.4–0.1, but levels of about 0.01–0.05% are most com-
mon. Just like for the Lorenz 40 example, we see a tendency of higher α
values for B = 200 than for B = 100. In particular, the upper tail of the α
distribution over time and replicates is much heavier for B = 200, i.e., it is
more common to get shrinkage in the range of α = 0.4− 0.1. Nevertheless,
in this high dimensional example, B must probably be much higher to get
high α values closer to that of the GMF.
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Figure 2.14: Saturation prediction error at the fourth time step (after 400 days)
when the ensemble size is B = 100 and only seismic observations used
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Figure 2.14 shows the saturation prediction error at the fourth step
(after 400 days). That is, we propagate sample into the future. No-
tably, for both methods, the errors are highest near the front of the wa-
ter flow. The display shows that the saturation prediction error, which
is the difference between predicted saturation and the truth, has smaller
range for the RGMF (−0.021 < ErrRGMF

prediction < 0.139) than for the EnKF

(−0.024 < ErrEnKF
prediction < 0.149). This means that predictive capability of

the RGMF is good. There are some small artifacts in the prediction plots,
caused by the truncation and noise level in the dynamical model. This is a
common challenge when merging numerical solution of PDEs and statistical
Monte Carlo sampling.

For the second case, we now use our observations on seismic and elec-
tromagnetic data sets. Thus, the response vector consists of both seismic
and electromagnetic measurements, at all lattice cells, and the likelihood
(Fig. 2.12) relates the saturation (state vector) to the size m = 3 × 252

observation vector at each time step. Simulation results show that the MSE
and CRPS are clearly reduced for both EnKF and RGMF (the MSE for the
EnKF reduces to 1.6e–2 and for the RGMF, to 1.5e–2). This is natural be-
cause we have more information. The CRPS value of EnKF is now slightly
lower than for RGMF. The coverage goes down from before (76% for the
EnKF and 77% for the RGMC). This seems to be a result of high correlation
and much collinearity. The adaptive α now typically ends up near 0− 0.05,
i.e., a slightly lower level than for the case without electromagnetic data.

2.5 Closing remarks

We have studied a filtering method going between the EnKF and the particle
filter. Our modeling setup allows us to phrase the sample approximation
as a Gaussian mixture. Nevertheless, the Gaussian mixture filter resulting
from this approach will degenerate because of the sampling approximation.
The robustified procedure we outline in this paper shrinks samples towards
the ensemble mean, while maintaining some flexibility in the distribution.
The degree of shrinkage is the only tuning parameter in our algorithm. The
mixture mean, covariance, and weights follow automatically. Our suggested
algorithm is a natural intermediate version of the EnKF and the Gaussian
mixture filter in this situation.

We tested the robustified Gaussian mixture filter on a simulation study
for target tracking, on the Lorenz 40 model, and on a reservoir simulation
example. Results indicate that the robustified filter works better or as
well as the Gaussian mixture particle filter and ensemble Kalman filter for
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systems with different dimensions and complexities.

In the reservoir simulation example, we used the (default) permeability
field for the reservoir simulator developed by SINTEF http://www.sintef.no
/Projectweb/MRST/ . For a real situation, the permeability field could
show more heterogeneity. The differences between the EnKF and RGMF
would become larger if we, for instance, have large uncertainty in the satura-
tion variables near channel zones. Intuitively, this causes some realizations
to move much faster ahead than others. This induces relevant bimodality
or skewness that is not captured by a Gaussian predictive distribution.

In future work, we plan to apply the methods to reservoir models that
parametrically characterize features of the reservoir rather than work on
a grid. This feature approach gives enormous dimension reduction, but
typically induces severe non-Gaussianity. We believe our methods could
have the largest potential in such applications.
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