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Abstract

This paper presents a new feedback real-time optimization (RTO) strategy for

steady-state optimality that directly uses transient measurements. The proposed RTO

scheme is based on controlling the estimated steady-state gradient of the cost function

using feedback. The steady-state gradient is estimated using a novel method based

on linearizing a nonlinear dynamic model around the current operating point. The

gradient is controlled to zero using standard feedback controllers, for example, a PI-

controller. In case of disturbances, the proposed method is able to adjust quickly to

the new optimal operation. The advantage of the proposed feedback RTO strategy

compared to standard steady-state real-time optimization is that it reaches the opti-

mum much faster and without the need to wait for steady-state to update the model.

The advantage compared to dynamic RTO and the closely related economic NMPC,

is that the computational cost is much reduced and the tuning is simpler. Finally, it

is significantly faster than classical extremum-seeking control and does not require the

measurement of the cost function and additional process excitation.
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Introduction

Real-time optimization is traditionally based on rigorous steady-state process models that

are used by a numerical optimization solver to compute the optimal inputs and setpoints.

The optimization problem needs to be re-solved every time a disturbance occurs. This step is

also know as “data reconciliation”. Since steady-state process models are used, it is necessary

to wait so the plant has settled to a new steady-state before updating the model parameters

and estimating the disturbances. It was noted by Darby et al. 1 that this steady-state wait-

time is one of the fundamental limitations of the traditional RTO approach.

In the past two decades or so, there have been developments on several alternatives to the

traditional RTO. A good classification and overview of the different RTO schemes is found in

Chachuat et al. 2 , François et al. 3 and the references therein. Recently, to address the problem

of the steady-state wait-time associated with the traditional steady-state RTO, a hybrid RTO

approach was proposed by Krishnamoorthy et al. 4 . Here, the model adaptation is done using

a dynamic model and transient measurements, whereas the optimization is performed using

a static model. The hybrid RTO approach thus requires solving a numerical optimization

problem in order to compute the optimal setpoints. It also requires regular maintenance of

both the dynamic model and its static counterpart.

With the recent surge of developments in the so-called direct input adaptation methods

, where the optimization problem is converted to a feedback control problem,2,3 we here

propose to convert the hybrid RTO strategy proposed by Krishnamoorthy et al. 4 into a

feedback steady-state RTO strategy. This is based on the principle that optimal operation

can be achieved by controlling the estimated steady-state gradient from the inputs to the cost

at a constant setpoint of zero. The proposed method involves a novel non-obvious method

for estimating the steady-state gradient by linearizing a nonlinear dynamic model which is

updated using transient measurements. To be more specific, the nonlinear dynamic model

is used to estimate the states and parameters by means of a dynamic estimation scheme in

the same fashion as in the hybrid and dynamic RTO approaches. However, instead of using
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the updated model in an optimization problem, the state and the parameter estimates are

used to linearize the updated dynamic model from the inputs to the cost. This linearized

dynamic model is then used to obtain the mentioned non-obvious estimate of the steady-

state gradient at the current operating point (Theorem 1). Optimal operation is achieved by

controlling the estimated steady-state gradient to constant setpoint of zero by any feedback

controller.

The concept of achieving optimal operation by keeping a particular variable at a constant

setpoint is also the idea behind self-optimizing control, which is another direct input adap-

tation method , see Skogestad 5 and Jäschke et al. 6 . It was also noted by Skogestad 5 that

the ideal self-optimizing variable would be the steady-state gradient from the cost to the

input, which when kept constant at a setpoint of zero, leads to optimal operation (thereby

satisfying the necessary condition for optimality), which complements the idea behind our

proposed method.

The concept of estimating and driving the steady-state cost gradients to zero is also the

same used in methods such as extremum seeking control,7,8 necessary-conditions of optimal-

ity (NCO) tracking controllers,9 and “hill-climbing” controllers.10 However, these methods

are model-free and hence requires additional perturbations for accurate gradient estimation.

The main disadvantages of such methods are that they require the cost to be measured

directly and generally give prohibitively slow convergence to the optimum.11,12

The main contribution of this paper is a novel gradient estimation method (Theorem 1) ,

which is used in a feedback-based RTO strategy using transient measurements. The proposed

method is demonstrated using a CSTR case study. The proposed method is compared with

the traditional static RTO, dynamic RTO and the newer hybrid RTO approach. It is also

compared with two direct input adaptation methods, namely self-optimizing control and

extremum seeking control.
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Proposed Method

In this section, we present the feedback steady-state RTO strategy. Consider a continuous-

time nonlinear process,

ẋ = f(x(t),u(t),d(t)) (1)

y(t) = h(x(t),u(t))

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the states, process inputs and process measurements

respectively. d ∈ Rnd is the set of process disturbances. f : Rnx×Rnu×Rnd → Rnx describes

the differential equations and the measurement model is given by h : Rnx × Rnu → Rny .

Let the cost that has to be optimized J : Rnx × Rnu → R be given by,

J(t) = g(x(t),u(t)) (2)

Note that the measurement model and the cost function are not directly affected by the dis-

turbances but are affected via the states. According to the plantwide control procedure,5 we

also assume that any active constraints are tightly regulated and the nu degrees of freedom

considered here are the remaining unconstrained degrees of freedom available for optimiza-

tion.

Assumption 1. (2) is sufficiently continuous and twice differentiable such that for any d,

(2) has a minimum at u = u∗. According to the Karush-Kuhn- Tucker (KKT) conditions,

the following then holds:

∂J

∂u
(u∗,d) = Ju(u∗,d) = 0 (3)

∂2J

∂u2
(u∗,d) = Juu(u∗,d) ≥ 0 (4)

Without loss of generality, we can assume that the optimization problem is a minimization
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problem.

The optimization problem can be converted to a feedback control problem by controlling

the steady-state gradient Ju to a constant setpoint of Ju
sp = 0. The main challenge is

then to estimate the steady-state gradient efficiently. There are many different data-based

gradient estimation algorithms that estimate the steady-state gradient using steady-state

measurements, see Srinivasan et al. 13 . In this paper, we propose to estimate the steady-state

gradient using a nonlinear dynamic model and the process measurements ymeas by means of

a combined state and parameter estimation framework. In this way, we can estimate the

exact gradients around the current operating point.

Any state estimation scheme may be used to estimate the states x̂ and the unmeasured

disturbances d̂ using the dynamic model of the plant and the measurements ymeas. In this

paper, for the sake of demonstration, we use an augmented extended Kalman filter (EKF)

for combined state and parameter estimation, see Simon 14 for detailed description of the

extended Kalman filter.

Once the states and unmeasured disturbances are estimated, (2) is linearized to obtain

a local linear dynamic model from the inputs u to the objective function J . Let x̃(t), ũ(t)

and d̃(t) denote the original dynamic trajectory that would result if we keep u unchanged

(i.e. no control). Let ∆u(t) represent the additional control input and ∆x(t) the resulting

change in the states,

x(t) = x̃(t) + ∆x(t)

u(t) = ũ(t) + ∆u(t) (5)

d(t) = d̃(t) + ∆d(t)

where we assume ũ(t) = û(t0) (constant) and d̃(t) = d̂(t0) (constant) and t0 denotes the

current time. Note that ∆d(t) = 0 because the control input does not affect the disturbances.

For control purposes, the local linear dynamic model from the inputs to the cost in terms of
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the deviation variables is then be given by,

∆ẋ = A∆x(t) +B∆u(t) (6)

∆J(t) = C∆x(t) +D∆u(t)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ R1×nx and D ∈ R1×nu . The system matrices are

evaluated around the current estimates x̂ and d̂,

A =
∂f(x,u,d)

∂x

∣∣∣∣∣
x=x̂(t0),d=d̂(t0)

B =
∂f(x,u,d)

∂u

∣∣∣∣∣
x=x̂(t0),d=d̂(t0)

C =
∂g(x,u)

∂x

∣∣∣∣∣
x=x̂(t0),d=d̂(t0)

D =
∂g(x,u)

∂u

∣∣∣∣∣
x=x̂(t0),d=d̂(t0)

Note that, since we do not assume full state feedback, we need some nonlinear observer to

estimate the states x̂ in order to evaluate the aforementioned Jacobians. Nonlinear observers

may not be required if we have full state feedback information to compute the Jacobians,

but this is seldom the case.

Theorem 1. Given a nonlinear dynamic system (1) and (2) and assumption 1 holds, the

model from the decision variables u to the cost J can be linearized around the current operat-

ing point using any nonlinear observer to get (6) and the corresponding steady state gradient

is then

Ĵu = −CA−1B +D (7)

The process can be driven to its optimum by controlling the estimated steady-state gradient

to constant setpoint of zero using any feedback control law u = K(Ĵu).

6
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Proof. In (6), ∆x(t), ∆u(t) and ∆J(t) are deviation variables. Let ∆u(t) = δu be a small

step change in the input occurring at t = 0, which will result in a steady-state change for the

system as t → ∞. This will occur when ∆ẋ = 0 and by eliminating ∆x(t) it follows from

(6) that the steady-state change in the cost is

δJ = lim
t→∞

∆J(t) =
(
−CA−1B +D

)
δu (8)

Here, the steady-state gradient is defined as Ju = δJ
δu

and (7) follows. Driving the estimated

steady-state gradients to a constant setpoint of zero ensures satisfying the necessary condition

of optimality.

The proposed method is schematically represented in Fig.1. It can be seen that steady-

state gradient is obtained from the dynamic model and not from the steady-state model as

would be the conventional approach. With a dynamic model we are able to use the transient

measurements to estimate the steady-state gradient.

Process

_x = f(x;u;d)
y = h(x;u)

x̂; d̂

ymeasy

n
y

Ĵu = −CA−1B +D

Ju

sp = 0

u

d

Gradient
Estimation

Linearize

model from

u to J

state and
parameter
estimation

A B

C D

Feedback
Controller
(e.g. PID)

Figure 1: Block diagram of the proposed method

Note that we have used the dynamic model from u to J . To tune the controller, another

dynamic model from the inputs u to the gradient Ĵu is required. The steady-state gain

of this model is the Hessian Juu which is constant if the optimal surface is quadratic and

according to Assumption 1 the Hessian does not change sign. In any case, this model is not
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the focus of this article. More discussions on controller tuning are provided in the discussions

section.

The combined state and parameter estimation framework using extended Kalman filter

is discussed in detail by Simon 14 .

Note that, although we use an extended Kalman filter to demonstrate the proposed

method in the example, any observer may be used to estimate the states and the parameters.

Using the estimated states, the dynamic model may be linearized and the steady state

gradient estimated using (6) - (7), which is the key point in the proposed method.

Illustrative example

In this section, we test the the proposed method using a continuous stirred tank reactor

(CSTR) process from Economou et al. 15 (Fig. 2). This case study has been widely used in

academic research.16–18 The proposed method is compared to traditional steady-state RTO,

hybrid RTO and dynamic RTO. It also benchmark against two existing direct-adaptation-

based method, namely self-optimizing control and extremum seeking control.

Exothermic Reactor

The CSTR case study consists of a reversible exothermic reaction where component A is

converted to component B (A
 B) and the reaction rate is given as r = k1CA−k2CB where

k1 = C1e
−E1
RT and k2 = C2e

−E2
RT . The dynamic model consists of two mass balances and

an energy balance:

dCA
dt

=
1

τ
(CA,i − CA)− r where τ =

M

F
(9a)

dCB
dt

=
1

τ
(CB,i − CB) + r (9b)

dT

dt
=

1

τ
(Ti − T ) +

−∆Hrx

ρCp
r (9c)

8
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Here, CA and CB are concentrations of the two components in the reactor whereas CA,i and

CB,i are in the inflow. Ti is the inlet temperature and T is the reaction temperature. Other

model parameters for the process are given in Table 1.

A *) B

CA;i CB;i

Ti

T CA

CB

Figure 2: Case 1: Exothermic reactor process

Table 1: Nominal values for CSTR process

Description Value Unit

F ∗ Feed rate 1 molmin−1

C1 Constant 5000 s−1

C2 Constant 106 s−1

Cp Heat capacity 1000 cal kg−1K−1

E1 Activation energy 104 calmol−1

E2 Activation energy 15000 calmol−1

C∗
A,i Inlet A concentration 1 mol L−1

C∗
B,i Inlet B concentration 0 mol L−1

R Universal Gas Constant 1.987 calmol−1K−1

∆Hrx Heat of reaction -5000 calmol−1

ρ Density 1 kg L−1

τ Time constant 1 min

The cost function to be minimize is defined as16

J = −[2.009CB − (1.657× 10−3Ti)
2]. (10)

The manipulated variable is u = Ti, the temperature in the inlet stream. The state variables

are the concentrations and reactor temperature xT = [CA CB T ], the disturbances are

9
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assumed to be the feed concentrations dT = [CA,i CB,i], and the available measurements are

yT = [CA CB T Ti].

Feedback steady-state RTO

The proposed feedback RTO strategy described in section 2 is now implemented for the

CSTR case study. For the state estimation, we use an extended Kalman filter as described

by Simon 14 . The disturbances dT = [CA,i CB,i] are assumed to be unmeasured and are

estimated together with the states in the extended Kalman filter. A simple PI controller is

used to control the estimated steady-state gradient to a constant setpoint of Ju
sp = 0. The PI

controller gains are tuned using SIMC tuning rules with the proportional gain Kp = 4317.6

and integral time TI = 60s. The process is simulated with a total simulation time of 2400s

with disturbances in CA,i from 1 molL−1 to 2 molL−1 at time t = 400s and CB,i from 0

molL−1 to 2 molL−1 at time t = 1409s. The measurements are assumed to be available with

a sampling rate of 1s.

Optimization-based approaches

In this subsection, the simulation results of the proposed method are compared with other

optimization-based approaches, namely traditional static RTO (SRTO), dynamic RTO (DRTO)

and hybrid RTO (HRTO) for the same disturbances as mentioned above. The traditional

static RTO, dynamic RTO and the hybrid RTO structures were used to compute the opti-

mal input temperature computed. Note that, in practice, this could correspond to a setpoint

under the assumption of tight control at the lower regulatory control level.

Traditional static RTO (SRTO) In this approach, before we can estimate the distur-

bances and update the model, we need to ensure that the system is operating in steady-state.

This is done using a steady-state detection (SSD) algorithm that is commonly used in in-

dustrial RTO system.19 The resulting steady-state wait time is a fundamental limitation in

10
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many processes and the plant may be operated sub-optimally for significant periods of time

before the model can be updated and the new optimal operation re-computed.

Hybrid RTO (HRTO) As mentioned earlier, in order to address the steady-state wait

time issue of traditional RTO approach, a hybrid RTO approach was proposed,4 where

a dynamic nonlinear model is used online to estimate the parameters and disturbances.

The updated static model is then used by a static optimizer to compute the optimal inlet

temperature as shown in Fig.3. In this case study, we use the same extended Kalman filter as

the one used in the proposed feedback RTO method for the dynamic model adaptation. We

then compare the performance of the proposed feedback RTO to the hybrid RTO approach.

These two approaches only differ in the fact that in hybrid RTO, a static optimization

problem is solved to compute the optimal inlet temperature, whereas in the proposed method

optimization is done via feedback.

Process

_x = f(x;u;d)
y = h(x;u)

d̂

ymeasy

n
y

u

d

state and
parameter
estimation

min J
0 = f(x;u; d̂)

x̂
ysp

steady-state
optimization

y = h(x;u)
s.t.

Feedback
Controller
(e.g. PID)

Figure 3: Block diagram of the Hybrid RTO scheme proposed by Krishnamoorthy et al. 4 .

Dynamic RTO (DRTO) Recently there has been a surge of research activity towards

dynamic optimization and centralized integrated optimization and control such as economic

nonlinear model predictive control (EMPC), which is also closely related to dynamic RTO.

Since the proposed method uses a nonlinear dynamic model online, a natural question that
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may arise is why not use the same dynamic models also for optimization. For the sake of

completeness, we therefore compare the performance of the proposed method with dynamic

RTO.

For the dynamic RTO, the same extended Kalman filter as in the proposed feedback RTO

method and hybrid RTO was used to update the dynamic model online. The updated non-

linear dynamic model was then used in the dynamic optimization problem with a prediction

horizon of 20 min and a sampling time of 10s.

Comparison of RTO methods

The cost J and the optimal control input u provided by the proposed feedback RTO method,

static RTO, hybrid RTO and dynamic RTO are shown in Fig.4a and Fig.4b, respectively.

It can be clearly seen that for the static RTO (black dash-dotted lines), the steady-state

wait time delays the model adaptation and hence the system operates sub optimally for

significant time periods. Once the process reaches steady-state and the model is updated,

we see that the steady-state RTO brings the system to the ideal optimal operation. For

example, in this simulation case, it takes around 400s after each disturbances for the SRTO

to update the optimal operating point. The change in the cost observed during the transients,

before the new optimum point is re-computed, is due to the natural drift in the system. This

is more clearly seen after the second disturbance at time t = 1400s.

Hybrid RTO (cyan solid lines) and dynamic RTO (green solid lines) provide similar

performance as the new proposed feedback RTO strategy (red solid lines), due to the fact that

all these three approaches use transient measurements and a nonlinear dynamic model online.

These three methods however differ in the way the optimization is performed. As mentioned

earlier, dynamic RTO solves a dynamic optimization problem using the updated nonlinear

dynamic model, hybrid RTO solves a static optimization problem using the updated static

counterpart of the model, whereas feedback RTO estimates the steady state gradient by

linearizing the nonlinear dynamic model and controls the estimated steady-state gradients

12
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(a)

(b)

(c)

Figure 4: Simulation results of the proposed feedback RTO method (red solid lines) com-
pared to traditional static RTO (black dash-dotted lines), hybrid RTO (cyan solid lines) and
dynamic RTO (greed solid lines) for disturbance in CA,i at time t = 400s and CB,i at time
t = 1400s. (a) Plot comparing the cost function. (b) Plot comparing the input usage. (c)
Plot comparing the integrated loss.
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to a constant setpoint of zero.

The integrated loss is given by

Lint(t) =

∫ t

0

(Jopt,SS(t)− J(t)) dt. (11)

To compare the different approaches further, the integrated loss for the different RTO ap-

proaches are shown in Fig.4c and also noted in Table.2 for t = 2400s.

We note here that until time t = 1400s, the new feedback RTO method has the lowest

loss of 73.73$ closely followed by DRTO and hybrid RTO with a loss of 73.81$ and 74.77$,

respectively. Following the second disturbance, the integrated loss for the interval t = 1400s

to t = 2400s is the lowest for the DRTO with 247.69$. The new feedback RTO has a very

similar loss of 248.07$ followed by hybrid RTO with an integrated loss of 257.97$. The

static RTO is much worse with a loss of 355.78$. This is mainly because of the fact that

in the new feedback RTO approach, optimization is done via feedback and hence can be

implemented at higher sampling rate. The static, dynamic and hybrid RTO approaches

requires additional computation time to solve the optimization problem online, and hence

may be implemented at slower sampling rates. As mentioned earlier, in our case study, the

feedback RTO approach is implemented every 1s as opposed to static, dynamic and hybrid

RTO approaches which are solved every 10s. This is clearly shown in Fig.5a, where the

control input from Fig.4b is magnified between time 350s to 550s. Following the disturbance

at t = 400s, the static, dynamic and hybrid RTO updates the setpoint at time step t = 410s

unlike the feedback RTO, which updates the new control input already at time t = 401s

giving it an advantage over other RTO methods. As a result, the new feedback RTO method

has the lowest integrated loss up to time t = 1400s. The control input between time 1300s

to 1500s is shown in Fig.5b, where following the disturbance at t = 1409s, new proposed

feedback RTO, the static, dynamic and hybrid RTO, all update the optimal control input

at time step t = 1410s simultaneously. Therefore the DRTO has the best integrated loss as
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expected. This example clearly shows the importance of being able to implement a controller

at higher sampling rates.

(a)

(b)

Figure 5: Magnified plot of the control input from Fig.4b between time (a) 350s to 550s and
(b) 1300s to 1500s.

The simulations are performed on a workstation with the Intel Core i7-6600U CPU (dual-

core with the base clock of 2.60GHz and turbo-boost of 3.40GHz ), and 16GB memory. The

average computation times for the different RTO approaches are also compared in Table 2.

The proposed feedback RTO method is the least computationally intensive method due to

the fact the optimization is done via feedback, and as expected, dynamic RTO is the most

computationally intensive.
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Table 2: Average computation time and integrated loss at the end of simulation time for the
proposed method compared with traditional static RTO, hybrid RTO and economic MPC.

Computation Integrated Integrated
time loss t = 1400s loss t = 2400s
[s] [$] [$]

New method 0.004 73.73 248.07
SRTO 0.007 75.75 355.78
HRTO 0.01 74.77 257.97
DRTO 0.14 73.81 247.69

(a)

(b)

Figure 6: Simulation results of the proposed feedback RTOmethod (red solid lines) compared
to self-optimizing control (blue solid lines) for disturbance in CA,i at time t = 400s and CB,i
at time t = 1400s. (a) Plot comparing the cost function. (b) Plot comparing the input usage.
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Comparison with direct-input adaptation methods

In this subsection, we compare the proposed method with two direct input adaptation based

methods, namely, self-optimizing control and extremum seeking control.

Self-optimizing control (SOC) Since we have 3 measurements, 2 disturbances and 1

control input, the nullspace method can be used to identify the self-optimizing variable.

For the case-study considered here, the optimal selection matrix computed using nullspace

method (around the nominal optimal point when dT = [CA,i CB,i] = [1.0 0.0]) is given by

H =

[
−0.7688 0.6394 0.0046

]
, see Alstad 16, Ch.4. The resulting self-optimizing variable

c = −0.7688CA+0.6394CB+0.0046T is controlled to a constant setpoint of cs = 1.9012. The

PI controller tunings used in the self-optimizing control structure were tuned using SIMC

rules with proportional gain Kp = 188.65 and integral time TI = 75s.

The simulations were performed with the same disturbances as in the previous case.

The objective function for the two methods are shown in Fig.6a and the corresponding

control input usage is shown in Fig.6b. When compared to self-optimizing control, we can

see that there is an optimality gap when the disturbances occur. This is because self-

optimizing control is based on linearization around the nominal optimal point, as opposed

to linearization around the current operating point in the proposed feedback RTO approach.

Because of the nonlinear nature of the processes, the economic performance degrades for

operating points far from the nominal optimal point hence leading to steady-state losses.

Extremum seeking control (ESC) The concept of estimating and driving the steady-

state gradient to zero in the proposed feedback RTO strategy is also used in data-driven

methods such as extremum seeking control and NCO-tracking. However, the methods are

fundamentally different, and complementary rather than competing.

For the sake of brevity, we restrict our comparison to extremum seeking control. We

consider the least-square based extremum seeking control proposed by Hunnekens et al. 20
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because it has been shown to provide better performance than classical extremum seeking

control.20,21 The least square based extremum seeking controller also estimates the gradi-

ent rather than just the sign of the gradient.22 The least-square based extremum seeking

controller estimates the steady-state gradient using the measured cost and input data with

the moving window of fixed length in the past. The gradient estimated by the least square

method is then driven to zero using a simple integral action. The integral gain was chosen

to be KESC = 2.

Due to the slow convergence of the extremum seeking controller, the process with simu-

lated with a total simulation time of 600min with disturbances in CA,i from 1 molL−1 to 2

molL−1 at time t = 10800s and CB,i from 0 molL−1 to 2 molL−1 at time t = 21600s. The re-

sults using extremum seeking control are compared with that the of the proposed method in

Fig.7a. It can be seen that the extremum seeking controller reaches the optimal point, how-

ever, the convergence to the optimum point is very slow compared to the proposed method.

The proposed method has a fast action to the disturbances and hence reaches the optimum

significantly faster than the extremum seeking controller. The integrated loss compared to

the ideal steady-state optimum (11) shown in Fig.7c reflects this.

It should be added this is a simulation example, because strictly speaking it may not be

possible to directly measure an economic cost J with several terms. The simple cost in (10)

may be computed by measuring individually the composition CB and the inlet temperature

Ti, but more generally for process systems, direct measurement of all the terms and adding

them together is not accurate. This is discussed further in the discussions section.

Other multivariable case studies

In addition to the CSTR case study, the new proposed feedback RTO method has been

successfully applied to a 3-bed ammonia reactor case study by Bonnowitz et al. 23 and to an

oil and gas production optimization problem by Krishnamoorthy et al. 24 . In all these case

studies, the new feedback RTO method was compared with other optimization methods and
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(a)

(b)

(c)

(d)

Figure 7: Comparison of the proposed feedback RTO method (red solid lines) with extremum
seeking control (black dashed lines) for disturbance in CA,i at time t = 10800s and CB,i at
time t = 21600s. (a) Plot comparing the cost function. (b) Plot comparing the input usage.
(c) Plot comparing the integrated loss. (d) Plot comparing the estimated gradients.
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was shown to provide consistent results as in the CSTR case study shown in this paper. It is

worth noting that both these cases studies are multivariable processes, where the steady-state

gradients must be estimated and controlled to zero.

For example, let’s consider the ammonia reactor process studied by Bonnowitz et al. 23 ,

which consists of 3 ammonia reactor beds. The optimization problem is concerned with

computing the three optimal feeds in order to maximize the reaction extent. The proposed

method was applied to this system, where the steady-state gradients of the cost with respect

to the three inputs were estimated using (7). The reader is referred to Bonnowitz et al. 23 for

more detailed information about the process and the simulation results, which shows that

the proposed method works also for multi-input processes that are coupled together.

Discussion

Comparison with optimization-based approaches

With the traditional steady-state RTO approach, it was seen clearly that the steady-state

wait time resulted in suboptimal operation, clearly motivating the need for alternative RTO

strategies that can use transient measurements. Dynamic optimization frameworks, such as

DRTO and economic MPC that use transient measurements, provide the optimal solution,

but it comes at the cost of solving computationally intensive optimization problems as noted

in Table.2. This is even worse for large-scale systems where the sample time will be restricted

by the computational time. Indeed, the computational delay has also been shown to result

in performance degradation or even instability.25

The feedback RTO strategy proposed in this paper is closely related to the recently

proposed hybrid RTO scheme4 and has similar performance (see Fig.4a). The main difference

is that in the new strategy, the steady-state gradient is obtained as part of the solution to

the estimation problem and the optimization is then solved by feedback control rather than

numerically solving a steady-state optimization problem. Thus we avoid maintaining the
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steady-state models in addition to the dynamic model.( i.e. avoids duplication of models

and it avoids the numerical optimization).

However, a drawback of the proposed method is that it cannot handle changes in the

active constraint set as easily as optimization-based methods. Changes in active constraint

set would require redesign and re-tuning of the feedback controllers.

Comparison with self-optimizing control

Self-optimizing control is based on linearization around the nominal optimal point. The

economic performance degrades for operating points far from the nominal optimal point due

to the nonlinear nature of the process. This is reason for the sustained steady-state loss of

self-optimizing control seen in the simulation results. The proposed method however, is based

on linearization around the current operating point and hence does not lead to steady-state

losses. The price for this performance improvement is the use of the model online instead of

offline. In other words ,the proposed method requires computational power for the nonlinear

observers which are not required in the standard self-optimizing control. However, nonlinear

observers such as extended Kalman filters can be used, as demonstrated in the simulations,

which are known to be simple to implement and computationally fast.26 The EKF used in

the simulations had an average computation time of 0.0036s.

Comparison with extremum seeking control

As mentioned earlier, extremum seeking control estimates the steady-state gradient by fitting

a local linear static model using the cost measurements. Therefore, transient measurements

cannot be used for the gradient estimation. On the other hand, since our proposed method

linearizes the nonlinear dynamic system to get a local linear dynamic model, it does not

require a timescale separation for the gradient estimation. Hence the convergence to the

optimum is significantly faster compared to the extremum seeking control, as demonstrated

in our simulation results.

21

Page 21 of 33

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



In order to address the issue of time-scale separation in extremum seeking control, Mc-

Farlane and Bacon 27 also considered using a local linear dynamic model to estimate the

steady-state gradient. They proposed to identify a linear dynamic model directly from the

measurements, as opposed to estimating the states using a nonlinear dynamic model as in

our proposed method. Therefore, the method by McFarlane and Bacon 27 is a data-based

approach that requires persistent and sufficient excitation to identify the local linear dy-

namic system. On the other hand, our proposed approach of estimating the states using a

nonlinear dynamic model and linearizing around the state estimates does not require any

additional perturbation (but at the cost of modelling effort).

However, it is also important to note that extremum seeking (and NCO-tracking) ap-

proaches can handle structural uncertainty. The proposed method, like any other model-

based method, works well only when the model is structurally correct. We do note that,

in the presence of plant-model mismatch, the proposed method may lead to an optimality

gap, leading to some steady state loss, unlike the model-free approaches, which would per-

form better. Therefore, extremum seeking or NCO-tracking methods (including modifier

adaptation) methods should be considered to handle structural mismatch.

However, in practice, extremum seeking methods may not be completely model-free and

may then suffer from structural errors, although it will be different from when using model-

based optimization. The reason is that a direct measurement of the cost J is often not

possible, especially if J is an economic cost with many terms, and it may then be necessary

to use model-based methods to estimate one or more terms in the cost J . Typically the cost

function for a process plant is of the form,

J = cqQ+ cfF − cp1P1 − cp2P2 (12)

where Q, F , P1 and P2 are flows in [kg/s] of utility, feed and products 1 and 2 respectively,

and cq, cf , cp1, cp2 are the corresponding prices in [$/kg]. In many cases, for example in
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refineries, the operating profit is made by shifting smaller amounts of the feed to the most

valuable product (1 or 2), and very accurate measurements would be needed for the flows

(F, P1, P2) to capture this. In practice, the best way to get accurate flows is to estimate

them using a nonlinear process model, e.g., using data reconciliation. This means that

for optimization of larger process systems, a extremum seeking or NCO tracking controller

will not be truly model free, because a model is needed to get an acceptable measurement

(estimate) of the cost.

In addition, one main advantage of the proposed method is that it acts on a fast timescale,

thus reaching the optimal point (or near-optimal point in the case of model mismatch) sig-

nificantly faster than model-free approaches which are known to have very slow convergence.

In such cases, model-free methods like ESC or NCO tracking that act in the slow timescale

can be placed on top of the proposed method to account for the plant-model mismatch (e.g.

Jäschke and Skogestad 17 , Straus et al. 28).

Table 4 summarizes the advantages and disadvantages of the proposed method compared

to other tools commonly used for real-time optimization. With this comparison we want to

stress that our new proposed method is not a replacement of any other method but rather

adds to the toolbox of available methods for economic optimization.

Tuning

As mentioned earlier, the steady-state gradient is controlled to a constant setpoint of zero

using feedback controllers. The controller tuning is briefly discussed in this section. For the

CSTR case study, PI controllers were used. The PI controllers were tuned using the SIMC

PID tuning rules.29 For each input, let the process model from the corresponding gradient

y = Ju to the input u be approximated by a first order process. For a scalar case,

Ju =
k

(τ1s+ 1)
e
−θs

u (13)
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where, τ1 is the dominant time constant, θ is the effective time delay and k is the is the

steady-state gain. These three parameters can be found experimentally or from the dynamic

model.29 Note that the process dynamics include both the effect of the process itself and

the estimator, see Figure 1. In our case we found experimentally by simulations that k =

2.25 × 10−4, τ1 = 60s, θ = 1s. The time delay for the process is very small, and mainly

caused by the sampling time of 1 s.

In general, the steady-state gain is equal to the Hessian, K = Juu, which according to

Assumption 1 should not change sign. The Hessian Juu was computed for the CSTR case

study and it was verified that this assumptions holds. In particular, the value of K = Juu for

the three steady-states shown in Fig. 4 were Juu = 2.25×10−4 (nominal), Juu = 3.89×10−4

and Juu = 6.33× 10−4, respectively. The gain increases by a factor of 3, which may lead to

instability, but if robust PID tunings are used, tuning the controller at the nominal point

should be sufficient. For a PI-controller,

c(s) = KC +
KI

s
(14)

the SIMC-rules give the proportional and integral gain29

KC =
1

k

τ1
τc + θ

KI =
KC

TI
(15)

where the integral time is TI = min(τ1, 4(τc + θ)) and τc is the desired closed-loop time

response time constant which is the sole tuning parameter.29

It is generally recommended to select τc ≥ θ 29 to avoid instability and a larger τc gives

less aggressive control and more robustness. In our case, the controlled variable is Ju (the

gradient), but there is little need to control Ju tightly because it is not an important variable

in itself. Therefore, to get better robustness we recommend selecting a larger value for τc
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(assuming that τ1 > θ, which is usually the case):

τc ≥ τ1 (16)

Selecting τc > τ1 means that the closed-loop response is slower than the open-loop response.

This avoids excessive use of the input u and the system is more robust with respect to

gain variations. This is confirmed by the simulations in Fig.8b for three different choices of

τc. With τc = 10s � τ1 = 60s, we get aggressive input changes with large overshoots in

u = Tin for both disturbances. The control of gradient is good (Fig.8c), but this in itself

is not important, and the improvement in profit J is fairly small compared to the choice

τc = τ1 = 60s, which is the nominal value used previously. The integrated loss when τc = 10s

was 245.99$ as opposed to 248.07$ when τc = τ1 = 60s. With τc = 4τ1 the input change is

even smoother, but the performance in terms of the profit (J) is almost the same (with an

integrated loss of 259.07$).

Stability Robustness

The stability of the system is determined by the closed-loop stability involving the plant

input u (manipulated variable) and the estimated gradient Ju as the plant output y. Thus,

the overall plant for this analysis includes the real process, the estimator (extended Kalman

Filter in our case) and the “measurement” y = Ju = CA−1B + D. In this case we use a

simple PI-controller and the conventional linear measures for analyzing robustness are to

compute the gain margin, phase margin or delay margin, or H-infinity measures such as the

peak of the sensitivity function, MS.

The gain and phase margins at the three different steady-states are shown for the three

alternative PI-controllers in Table 3. Note that the gain margin varies from 17.3-6.14 for the

least robust controller with τc = 10s, which is still much larger than the expected variations in

the process gain (which is about a factor 3 from 2.25×10−4 to 6.33×10−4 ). This is of course
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(a)

(b)

(c)

Figure 8: Effect of controller tuning (τc) for the new method. (a) Objective function J . (b)
Control input u. (c) Estimated gradient Ĵu.
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a nonlinear plant and the conventional linear analysis of closed-loop stability will have the

same limitations as it has for any nonlinear plant. It is also possible to consider nonlinear

controllers for the plant, but it does not seem necessary because of the large robustness

margins for the linear controllers.

Table 3: Gain and Phase Margins at the different steady-states for the three PI controllers
with varying τc.

Gain Margin Phase Margin

Steady- τc=10s 17.3 84.8◦
state τc=60s 95.8 89.1◦
1 τc=240s 379 89.8◦

Steady- τc=10s 9.99 81.0◦
state τc=60s 55.4 88.4◦
2 τc=240s 219 89.6◦

Steady- τc=10s 6.14 75.3◦
state τc=60s 34.1 87.4◦
3 τc=240s 135 89.3◦

In summary, stability is not an important concern for the tuning of the controllers in our

case. The important issue is the trade-off between input usage and the speed of response.

This was also observed in the other case studies.23,24

Conclusion

To conclude, we propose a novel model-based direct input adaptation approach, where the

steady state gradient Ju is estimated as Ĵu = −CA−1B + D by linearizing the nonlinear

model around the current operating point. The nonlinear model and thus the steady-state

gradient is updated using transient measurements. It is based on well-known components in

the control theory, namely state estimation and simple feedback control. Since a dynamic

model is linearized around the current operating point, the method does not need to wait

for the process to reach steady-state before updating the next move. The proposed method

also does not require additional perturbations for the gradient estimation as opposed to
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Table 4: Advantages and disadvantages of the proposed method compared to other RTO
approaches

self- extremum new proposed economic
optimizing seeking method Static RTO Hybrid RTO MPC/
controla controlb (Feedback RTO) Dynamic RTOc

Cost Measured No Yes No No No No

Model
static model

Model-free
dynamic model static model static and dynamic model

used offline used online used online dynamic model used online
used online

perturbation No Yes No No No No

Transient Yes No Yes No Yes Yesmeasurements

Long-term near-optimal Optimale Optimald Optimald,f Optimald Optimald
performance

Convergence time very fast very slow fast slowf fast fastg

Handle change in No No No Yes Yes Yes
active constraints

Numerical No No No static static dynamicsolver

Computational very very low intermediate intermediate high
cost low low

a SOC is complementary to the other methods that should ideally be used in combination.
b NCO tracking also has similar properties but can also track changes in active constraints in addition.
c Economic MPC typically has non-economic control objectives in addition to the economic objectives in
the cost function, whereas DRTO has only economic objectives.
d If model is structurally correct.
e requires time scale separation between system dynamics, dither and convergence. Sub-optimal operation
for long periods following disturbances.
f Slow due to steady-state wait time. Sub-optimal operation for long periods following disturbances.
g limited by computation time.
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extremum seeking control. By using the model online, the proposed method can reduce

steady-state losses associated with self-optimizing control. The proposed feedback RTO

method is similar to the recently proposed hybrid RTO (HRTO),4 but involves a novel way

of estimating the steady-state gradient and instead solves the optimization by feedback. This

is robust and simple and avoids maintaining a steady-state model. The proposed method is

tested in simulations, and compared to commonly used optimization-based approaches and

direct-input adaptation based approaches. The simulation results show that the proposed

method is accurate, fast and easy to implement. The proposed method thus adds on to

the existing tool box of approaches for real-time optimization, and can be useful for certain

cases.
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