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Abstract— This paper proposes a computationally efficient al-
gorithm for robust multistage model predictive control (MPC).
In multistage scenario MPC, the evolution of uncertainty in
the prediction horizon is represented via a scenario tree. The
resulting large-scale optimization problem can be decomposed
into several smaller subproblems where, for example, each
subproblem solves a single scenario. Since the different sce-
narios differ only in the uncertain parameters, the distributed
scenario MPC problem can be cast as a parametric nonlinear
programming (NLP) problem. By using the NLP sensitivity,
we do not need to solve all the subproblems as full NLPs.
Instead they can be solved exploiting the parametric nature by a
path-following predictor-corrector algorithm that approximates
the NLP. This results in a computationally efficient multistage
scenario MPC framework. Simulation results show that the
sensitivity-based distributed multistage MPC provides a very
good approximation of the fully centralized scenario MPC.

I. INTRODUCTION

Model Predictive Control (MPC) under uncertainty has
been receiving significant attention recently, and several
different approaches have been proposed to handle the
uncertainty. One such approach is the multistage scenario
MPC, which was introduced as “feedback min-max MPC”
in [1] and later developed further for nonlinear systems as
“multistage MPC” in [2], which will be the main focus of
this paper. In multistage scenario MPC, the uncertainty set
is sampled to obtain a finite number of realizations of the
uncertain parameters, and the evolution of the uncertainty in
the prediction horizon is represented via a scenario tree. The
notion of feedback is then explicitly considered by allowing
the different optimal control trajectories to vary for each
scenario (closed-loop optimization).

It is important to note that the multistage scenario MPC
considered in this work must not be confused with other
scenario-based MPC approaches proposed in [3], [4], [5] etc.
One of the main difference between these approaches and
the multistage MPC used in this work is that, they compute
a single control trajectory over all the scenarios. Hence,
there is no notion of feedback in the optimization problem
(open-loop optimization with closed loop implementation).
In contrast, the multistage MPC approach computes different
control trajectories for different scenarios subject to the
non-anticipativity constraints (closed-loop optimization with
closed-loop implementation) [1], [2]. The authors in [6] and
[1] also noted that in the presence of uncertainty, a better
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strategy is to optimize over different control trajectories
rather than a single control trajectory.

However, the main drawback of the multistage scenario
MPC applied here, is the computational cost. The problem
size grows exponentially as the

« number of uncertain parameters increases,

o number of finite realizations of the uncertainty in-

creases,

« length of the prediction horizon increases.

Solving large nonlinear optimization problems can thus be
prohibitively expensive in many applications. One way to
address this issue is by blocking the uncertainty evolution
after a certain number of samples (known as robust horizon)
in the prediction horizon as described and justified in [2].

Another way to address the issue of computational cost
is by solving a distributed scenario optimization problem.
Different scenario decomposition approaches were proposed
recently to exploit the fact that each scenario in the sce-
nario tree is an independent problem except for the non-
anticipativity constraints, which couples the different sce-
narios. Hence the different subproblems can be solved inde-
pendently (in parallel), and a master problem can be used to
co-ordinate the different scenarios iteratively.

Dual decomposition strategies for distributed multistage
scenario optimization were presented in [7], where the
individual subproblems are solved by relaxing the non-
anticipativity constraints. The master problem iteratively
adjusts the Lagrange multiplier (the dual variables) to co-
ordinate the different scenarios. The non-anticipativity con-
straints are only satisfied upon convergence of the dual
master variable. Such methods can however, take relatively
large number of iterations to converge and hence cannot
be implemented in real time. In such cases, the authors in
[8] proposed to use an aggregated variable such that the
worst-case constraint violation for the individual scenarios
are minimized.

Recently, we proposed a primal decomposition approach
[9] which, unlike the dual decomposition approaches, ensures
that the non-anticipativity constraints are always feasible
throughout the master problem iterations, since it produces
a primal feasible solution with monotonically decreasing
objective value at each iteration [10]. This is an attractive
property for closed-loop implementation of MPC.

To this end, both the dual and the primal decomposi-
tion approaches involve solving each scenario independently
and a master problem co-ordinates the different scenarios.
Although performance improvements have been reported
by decomposing the scenario decomposition approaches in



[71,[8] and [9], it still requires solving a nonlinear program-
ming problem (NLP) for each scenario. Even with today’s
computing power, solving nonlinear dynamic optimization
problems online can be computationally intensive.

In this paper, we propose to further improve the scenario
decomposition algorithms by using NLP sensitivity-based
path-following approaches [11], [12]. Since the scenarios
differ only in the uncertain parameters, we propose to re-
cast the scenario decomposition problem in the framework
of parametric NLP. Here, using the solution of one full NLP,
the subsequent scenario subproblems are solved by tracking
the optimal path along the parameter range that leads to
the scenarios by a sequence of predictor-corrector QPs. In
simple terms, each of these QPs tells us how the optimal
solution changes when the parameter changes by a small
value, and the NLP solution change for a larger parameter
change can be found by solving several QPs. We apply this
idea to the distributed multistage scenario MPC problem to
compute how the optimal solution changes from one scenario
to the other.

The main contribution of this paper is the use of an
NLP sensitivity-based path-following method to efficiently
solve the distributed multistage scenario MPC algorithm.
The main result is presented as a Corollary of Theorem 1
and Algorithm 1. To the best of our knowledge, parametric
optimization concepts have not been used previously to solve
scenario decomposition problems for multistage scenario
MPC.

The reminder of the paper is organized as follows. We
briefly introduce the multistage scenario MPC problem in
Section II. In Section III, we present the sensitivity-based
distributed scenario MPC with a path-following algorithm
(main result). The proposed method is demonstrated on a
chemical reactor case example in Section IV.

II. MULTISTAGE SCENARIO MPC
A. Centralized Approach (Cnrp)

Consider a discrete-time nonlinear system
Xpt1 = £(xp, ug, py,) (1)

where x € R" represents the states, u € R" represents
the control inputs and p € R™» represents the uncertain
parameters. Further, f : R x R™* x R"» — R"= represents
the system equations. We assume that the uncertain param-
eters have a known distribution p € U/. To account for the
uncertainty, the uncertainty space U is discretized to get M
discrete realizations of (1) at each time sample. A scenario
tree is then generated that represents the evolution of the
uncertainty in the prediction horizon. The path from the root
node to a leaf node is called a scenario. The branching at
each time step results in exponential growth of the number
of scenarios, resulting in a very large optimization problem.
For that reason, the branching is often stopped after a certain
time period, known as robust horizon N,, after which the
uncertain parameters as treated as constants. Accordingly,
we then have S = M scenarios.

The resulting dynamic optimization problem is then writ-
ten as,

S N—-1
00 91 D SECETE] B
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st Xpg1,; = £(Xk 55 k5, Py ;) (2b)
g(Xk.j, Uk j, Py ;) <0 (2¢)
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where the subscript (k,j) represents the j** scenario at
time sample k. J(xj,ux ;) is the cost function and
g(Xk,j, Uk j, Py, ;) represents the nonlinear inequality con-
straints. The initial conditions are enforced in (2d), where &
denotes the state measurements/estimates at the current time
step. To keep the presentation simple, we assume full state
feedback without measurement noise. The non-anticipativity
constraints are enforced in (2e) which implies that the states
that branch at the same parent node, must have the same
control input. Note that u; here represents the sequence
of optimal control inputs for the ;' scenario, i.e. u; =

T S
[uf;---ul_, ;" € R™N and E; is given by
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Let 1, (5,j4+1) denote the number of common nodes between
two consecutive scenarios j and j + 1, then Ej ;11 €
R™"0.G.i+1) XN a5 described in [9] and [13]. An added
advantage of formulating the non-anticipativity constraints
using this chain structure is that it results in sparse structures,
which can be exploited by many solvers as explained in [13].
The reader is referred to [14] for recursive feasibility of the
multistage scenario MPC problem.

B. Distributed Multistage Scenario MPC (Dyrp)

It can be seen from (2) that the cost is additively sep-
arable in the scenarios and that the different scenarios
are independent except for the non-anticipativity constraints
(2e)Computing separate state and control trajectories Xy ;
and ug ; in (2) for each scenario j then facilitates paral-
lel computations, where the different scenarios are decom-
posed into smaller subproblems. A master problem then co-
ordinates the different subproblems. As motivated in [9],
unlike dual decomposition, primal decomposition always
ensures feasibility of the non-anticipativity constraints during
the master problem iterations, which is crucial for closed
loop implementation. Therefore, we only consider primal
decomposition in this work and refer the reader to [7], [8]
and [13] for dual decomposition approaches.



Primal decomposition iterates directly on the coupling
variables [10]. By introducing a new auxiliary coupling
variable ¢; € R™, VI € {1,..., Eﬁ;l M™=1} to ensure
non-anticipativity constraints, the subproblem for each ;"
scenario can be formulated as

®(ti,p;) = min ZJmmmj (4a)
st Xpy15 = f(Xk,j7uk,japk,j) (4b)
g(Xk,j> Uk j, Py ;) <0 (40)

Xo)]‘ = :i: (4d)

Ejuj=t Vke{0,---,N—1} (de)

where t is used to enforce non-anticipativity constraints and
is given by
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and ¢; ;41 € R™"0.(.3+1 is composed of auxiliary variables
t; € R™ as described in detail in [9]. The master problem
to update the auxiliary variables ¢; is then given by,

s
min y_ ®(t,p;) (6)
j=1
Proposition 1: The solution to the master problem (6) can
be expressed as the gradient descent step,

S N,.
th=ti+ad_N),  Vie{l,....,> M™ '} (7
j=1 m=1

Proof: The descent direction for the master problem
(6) is given by the subgradient —Vy, ®(t;,p;) = Zle Ajs
where A; is the Lagrange multiplier that corresponds to the
non-anticipativity constraints (4e). Equation (7) then pro-
vides a gradient descent direction to the master problem with
a suitable step length «.. See [10],[15] for more information.
|
The master problem and the scenario subproblems are iter-
atively solved until ¢; converges. One commonly used stop-
ping criteria is that the change in ¢; between two subsequent
iterations, denoted by At; = ||t — ¢;|| must be less than a
certain user-defined tolerance € as described in Algorithm 1
and also in [9].

III. SENSITIVITY-BASED DISTRIBUTED MULTISTAGE
SCENARIO MPC
A. Sensitivity in Parametric NLP

To keep the presentation simple, we now reformulate (4)
as a generic parametric NLP of the form,

H}}n j(X’ p)
s.t. ci(X,p) =0, Vie E (8)
ci(X,p) <0, Viel

where X € R"X denotes the optimization (primal) variables
of (4), p € R" is the vector of uncertain parameters and the
objective function is denoted by J : R"X x R"» — R. The
equality and inequality constraints ¢ : R"X xR"» — R"c are
denoted by the sets E = {1,...,v} and I = {v+1,...,n.},

respectively.
The Lagrangian of (8) is defined as
L(X, A, p) =T (X,p) + A c(X, p) ©)

where A is the vector of Lagrange multipliers (dual variable).
The Karush-Kuhn-Tucker (KKT) conditions for this problem
can be stated as

VxL(X,Ap) = 0,
¢i(X,p) = 0,i€E,
ci(X,p) < 0,iel, (10)
M (X,p) = 0,iel,
A > 0,i€ell

Definition 1 (KKT point): Any point (X*, A*) that satis-

fies the KKT conditions (10) for a given parameter vector p
is called a KKT point for p.
The active inequality constraints in (8) are denoted by the
set A(X,p) = {c (X,p) =0,i €I} and the active set is
then given by E U A. For a given KKT point (X™*, A*), the
active set A has two subsets, namely a weakly active set
Ao (X, N\, p) ={i € A(X,p) | A; =0} and a strong active
set AL (X, \,p)={i € A(X,p) | A > 0}. Consequently,
the inactive set A_ (X, A\, p) = {¢; (X,p) < 0,7 € I} is the
complement of set A.

A constraint qualification is required to hold in order for
the KKT conditions to be a necessary condition of optimal-
ity and in this work we consider the linear independence
constraint qualification (LICQ) which is defined as follows.

Definition 2 (LICQ): Given a vector p and a point X, the
linear independence constraint qualification (LICQ) holds at
(X, p) if the set of vectors {Vxc; (X,P)}icrua(x p) ar€
linearly independent.

Definition 3 (SSOSC): The strong second order sufficient
condition (SSOSC) holds at any KKT point (X A*),
if dH(X,A\p)d > 0 for all d # 0 such that
Vx¢i (X,p)"d =0 for i € EUA,, where the Hessian
of the Lagrangian (9) is given by

The LICQ and SSOSC guarantees that a KKT point is a
strict local minimum.

Assumption 1: X satisfies the KKT conditions (10) for
a given parameter vector p, and the linear independence
constraint qualification (LICQ) and strong second order
sufficient condition (SSOSC) hold at (X, py).
The reader is referred to Lemma 1 in [13] for detailed
description on how the assumption of LICQ and positive
definiteness of the Hessian translates to the multistage sce-
nario MPC problem (4).



Theorem 1: Let J,c be twice differentiable in p and X
near a solution of (8) (X ™, p,) and let Assumption 1 hold,
then the solution (X ™(p), A*(p)) is Lipschitz continuous in
the neighbourhood of (X*, A\*, p,) and the solution X*(p)
is directionally differentiable. Additionally, the directional
derivative uniquely solves the following quadratic problem

(QP):

1
min o AXTVix L (X", po, A") AX

+ AXTV xp L (X* po, \*) Ap (11)
s.t.
Vxeci (X*,pO)T AX
JerCi(X"‘,po)TAp:O i€ Ay UE,
Vxe (X* po)t AX
+ Ve (X*,p0) Ap <0 i € Ag
Proof: See [16] and [17, Section 5.2]. |

The theorem above implies that a quadratic programming
(QP) problem (11), often referred as pure-predictor QP,
can be solved instead of a full NLP problem, in order to
compute an approximate solution of (8) in the neighborhood
of perturbation p,. This is the key to the sensitivity-based
approach that we now use to efficiently solve the distributed
multistage scenario MPC problem.

B. Path-following predictor-corrector QP

A corrector term can be added to the objective function
in (11) to improve the approximation accuracy, as shown
in [12]. With the technical assumptions that the parameter
enters linearly in the constraints, we can formulate the
following QP.

1
min - o AXTV% L (X* po + Ap, A\*) AX

+ AXTVxp, L (X*, po + Ap,A\*) Ap
+VxJTAX (12)
s.t.
ci (X*,py + Ap) + Vpe; (X*,py + Ap)" Ap+
Vxei (X*,py+Ap)  AX =0 ,ic Al UE,
¢i (X*,py + Ap) + Vpe; (X*,py + Ap)" Ap
+Vxe (X*,py+ Ap)T AX <0 ,i€e A

The QP formulation (12) is known as the predictor-
corrector QP. It can be thought of a combination of a first-
order sensitivity step and an SQP step towards the solution
for the new parameter value. In the small neighborhood of
Py, the predictor-corrector QP formulation was shown to
provide good approximations of the NLP solution. However,
the different models M used in the scenario optimization
need not necessarily be in the small neighbourhood of each
other. Therefore, in order to allow for large perturbations (i.e.
large Ap, we propose to apply a path-following approach
[12], where we solve a series of QP problems sequentially

similar to an Euler integration scheme for ordinary differen-
tial equations. !

Given an optimal solution X*(p;_ ;) for a parameter
vector p;_;, we want to compute the optimal solution for a
parameter vector p;. The path-following predictor-corrector
QP then updates X for the parameter sequence p according
to

p(ve)=(1- Vﬁ)pj—l + VP (13)

where vy = 0 until it reaches v, = 1. In other words vy =
0 <1 <wvy <--- <y, = 1. Given a sufficiently small step
Av, the path-following predictor-corrector QP, after solving a
series of QP problems, provides the optimal solution X *(p;)
for a parameter vector p;. In this paper, for simplicity, we
use a fixed step size Av = vy 1 — V.

C. Sensitivity-based path-following distributed multistage
scenario MPC

Based on these developments, we are now ready to for-
mulate the sensitivity-based distributed multistage scenario
MPC algorithm.

Assumption 2: There exists a continuous path of unique
optimal solutions between the subproblems ®(¢;, p;_;) and
®(t;,p i ).

Corollary 1 (Main result): Let  [X*(p;_1), X" (p;_1)]
be the solution for one scenario subproblem obtained by
solving the NLP @(tl,pj_l) and let Assumptions (1) and (2)
hold. Further, let D, be in the neighbourhood of Pj_1> then
the solution for all other scenario subproblems ®(t;,p;)
with the same set of auxiliary variables ¢; is Lipschitz
continuous in the neighbourhood of [X™*(p; ), A" (p,_,)]
and can be obtained by repeatedly solving the predictor-
corrector QP (12).

Proof: Since the only difference between the scenarios
®(t;,pj_1) and ®(t;,p;) is the parameter vector p,, it
follows from Theorem 1 that the NLP problem ®(t;,p,)
can be approximated by repeatedly solving the QP problem
(12) for a small parameter perturbation Ap along the path
from p,_, to p,. [ |
Corollary 1 above suggests that instead of solving S number
of NLPs, the multistage scenario MPC problem can be
solved using M~ number of NLPs and the remaining
subproblems can be solved as QPs. The number of common
nodes between two consecutive scenarios n, (11 is used
to check if the two scenarios have the same set of auxiliary
variables ¢;. The sensitivity-based distributed scenario MPC
algorithm then consists of the following three steps.

1) For a given primal master variable ¢;, solve the NLP
problem ®(¢;,p; ;) for one subproblem with the
parameter vector p;_ to obtain the optimal primal and
dual variables X™(p;_;) and A*(p;_), respectively.

2) For the subsequent scenario subproblems with the
same set of auxiliary variables, compute an approxima-
tion of the NLP problem ®(%;, p;) using the QP (12) in
a path-following manner as described in Section III-B.

Note that the path-following in [12] was applied to advance step MPC,
whereas in this paper, we apply it to the distributed scenario MPC problem.



3) Using the computed Lagrange multipliers correspond-
ing to the non-anticipativity constraints (4e) A\ C A
from all the subproblems, update the primal master
variable ¢; according to (7).

A sketch of the proposed sensitivity-based multistage sce-
nario MPC procedure is described in Algorithm 1.

Algorithm 1 Sensitivity-based distributed multistage sce-
nario MPC
Define tolerance € > 0, Av < 1.
Input: At each time step, initial state &, initial t? and At; >
€, initial «

while At; > e do
for j=1,2,...,5 do
if (] = ].) \ (no,(j—l,j) S Nr — 1) then
[X*(p;), \*(p;)] < solution NLP ®(t;, p;)
> Approximate NLP using QP (12).
[AX*, X" (p;)] < QPPF(X™, X", p;_1,p;).
Set X*(p;) = X" (p,;_,) + AX".
end if
end for
Update ;" = ¢, + 0‘(2?:1 Aj)
Update At; = ||t — ||
end while

else

function QP_PF(X " (p;_1), A" (P;_1),Pj_1,P;)
Define A .
Set v,, = 0.
while v, < 1 do
[AX™ X*] <—solution QP (12) with p = p (vy)
X" =X"4+AX"
Vitl < Ve + Av
pvs)=(1- Vﬁ)pj—l + VkPj
end while
return AX™* \*
end function

Output: X*(p;),Vj € {1,...,5}

IV. ILLUSTRATIVE EXAMPLE

In this work, we consider an exothermic chemical reactor
case study from [18] that is widely used in process control
literature, where component A is converted to product B
(A = B). The reaction rate is given as r = k;C4 — koCp
where k1 = Cle%ETl and kg = Cge%?. The dynamic model
consists of two mass balances and an energy balance:

. 1
CA = f(CA’i —CA) —-Tr

(14a)
T
. 1
Cp = ;(CB,i — CB) +7r (14b)
. 1 —AH,,
T—;(TZ——T)—&- o, r (14¢)

where time constant 7 = 60s, C'4 and Cp are concentrations
of the two components in the reactor and C'y ; and Cp; are

in the inflow. Tj is the inlet temperature and 7' is the reaction
temperature. Other model parameters for the process can be
found in [18]. The objective is to compute the optimal inlet
temperature 7; such that we can minimize the operational
cost while keeping the reactor temperature 7' < 425K. We
assume the concentration of component B in the feed stream
is uncertain and consider five discrete realizations, namely,
Cp.i € {0,0.05,0.1,0.15,0.2}molL.

We use a multistage scenario MPC with a prediction
horizon of T' = 300s divided equally into N = 20 samples.
The system model (14) is discretized using third order
direct collocation and the resulting finite horizon multistage
MPC problem was implemented in MATLAB using CasADi
algorithmic differentiation tool version 3.1.0 [19]. The NLP
problem was solved using the IPOPT solver and the QP
problems were solved using TOMLAB MINOS. The opti-
mization problem then consists,

1) J(Xk,ja u;w') = (7200903 + (1657 X 1073Ti)2)’

2) discretized system model,

3) uncertain parameter p = C'p, discretized into M =5

finite models, namely, Cs, € {0,0.05,0.1,0.15,0.2} ,

4) process constraints g(xy, ;, U ;) = I — 425, and

5) non-anticipativity constraints (2e).

We note that in the considered case study, the constraint
T < 425K becomes active at steady state only when Cp, €
{0,0.05} and not when C, € {0.1,0.15,0.2}. Therefore the
active constraint set changes between the different scenarios.
The true realization of C'p, used in the simulations changes
from Cp, = 0.15molL™! to Cp, = 0.05molL~! at time
t = 300s.

1) Simulation 1: In the first simulation we consider a
robust horizon of N, = 1 and hence we have S = 5
scenarios. We first compute the solution of a fully centralized
approach (C'yrp), i.e. (2) to be used as a benchmark. The
multistage scenario MPC is then solved using the primal
decomposition approach i.e. (4), where all the scenario
subproblems are solved as NLP problems (Dyrp). We
then solve the optimization problem using the proposed
path-following QP (pf-QP), where the first scenario was
solved as NLP problem and the subsequent four scenarios
are solved using the path-following predictor-corrector QP
(12) as described in Algorithm 1 with a fixed step size
Av = 0.5. Hence two QPs were solved to approximate
each subproblem. For the distributed scenario approaches,
the tolerance was chosen to be ¢ = 0.001 and a feasibility
ensuring backtracking algorithm was used to select a suitable
step length .

The closed loop implemented solution for the proposed
sensitivity-based distributed scenario MPC are compared
with the fully centralized scenario MPC (Cnrp) and the
distributed scenario MPC solved using full NLPs (Dypp)
along with the corresponding absolute errors in Fig.1a.

2) Simulation2: In the second simulation we consider
the same problem, but a robust horizon of N, = 2 lead-
ing to a scenario tree with S = 25 scenarios. By using
the path-following predictor-corrector QP (12), we solve 5
scenarios using NLPs and 20 scenarios were solved using
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Fig. 1: Closed loop simulation results for fully centralized approach
Cnrp (Thick gray lines), distributed approach with full NLP
Dnrp (solid red lines) and the proposed path-following approach
pf-QP (black dashed lines) for (a) N, = 1, S = 5 scenarios (b)
N, = 2, § = 25 scenarios. The corresponding absolute errors are
plotted in the right hand side subplots.

path-following QPs. The closed loop implemented solution
for the proposed sensitivity-based distributed scenario MPC
(pf-QP) are compared with the fully centralized scenario
MPC (Cnrp) and the distributed scenario MPC solved
using full NLPs (Dyrp). The closed-loop results and the
corresponding absolute errors are shown in Fig.1b.

The average CPU times for each subproblem for the
two simulation cases are reported in Table I. Note that the
computation time depends heavily on the implementation and
computation time of the QP may be further improved by
using dedicated high performance QP solvers instead of an
off-the shelf solver.

The simulation results in Fig.1a and Fig.1b clearly demon-
strates that the proposed sensitivity-based distributed Sce-
nario MPC is able to provide a very good approximation

TABLE I: CPU times (in sec)

| | N, =1 | N, =2 |

| | max avg min | max avg min |
NLP 0.137  0.073 0.053 0.127  0.085 0.077
pf-QP | 0.093 0.011 0.0082 | 0.062 0.024 0.012

of the centralized scenario MPC and full NLP distributed
scenario MPC. The simulations also demonstrate that the
proposed approach can handle changes in active constraint
set between the different subproblems.
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