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Abstract. The purpose of this short note is to provide a new and very short
proof of a result by Sudakov [10], offering an important improvement of the

classical result by Kolmogorov–Riesz on compact subsets of Lebesgue spaces.

Introduction

The classical compactness theorem of Kolmogorov–Riesz reads as follows [5]:
A subset F of Lp(Rn), with 1 ≤ p <∞, is totally bounded if, and only if,

(a) F is bounded,
(b) for every ε > 0 there is some R so that, for every f ∈ F ,∫

|x|>R

|f(x)|p dx < εp,

(c) for every ε > 0 there is some ρ > 0 so that, for every f ∈ F and y ∈ Rn

with |y| < ρ, ∫
Rn

|f(x+ y)− f(x)|p dx < εp.

The purpose of the current paper is to show that the boundedness condition (a) is
redundant.

This was discovered by Sudakov [10] in 1957, but the paper appears undeservedly
to have been lost in obscurity. We want to revive the result and present a novel
and very short proof of the redundancy of (a).

The Kolmogorov–Riesz compactness theorem was discovered by Kolmogorov [7]
in 1931. He stated the result for a subset of Lp(Rn), with 1 < p < ∞, and the
functions in the subset all supported in a common compact set (thus essentially
replacing Rn by a bounded subset of Rn). Tamarkin [11] extended the result to
the case of unbounded support by adding the assumption (b), and Tulajkov [12]
extended the result to include p = 1. At the same time M. Riesz [9] proved a similar
result. See [5, 6] for a historical account of this result, various generalizations, and
a proof.

The fact that condition (a) is not needed was only discovered in 1957 by Sudakov
[10]. The late discovery of this fact is probably due to a mistake by Tamarkin [11],
who presented an erroneous “example” in which (b) and (c) are claimed to be true,
but (a) is false.1 Sudakov [10] states that Tamarkin’s mistake was discovered by
Natanson, but gives no reference. The result by Sudakov has recently been revisited
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1His example was as follows. Consider the family F = {fn}n∈N ⊂ Lp(R), where fn(x) =

(f(x) + n)1(0,1)(x) for any f ∈ Lp(R). Clearly, F satisfies (b), but neither condition (a) nor (c),

and F is not totally bounded.

1



2 HANCHE-OLSEN, HOLDEN, AND MALINNIKOVA

in the context of metric measure spaces in [4]. See also [2, 8]. These proofs all rely
intrinsically on the approach by Sudakov, but are applied to more general spaces.

The Kolmogorov–Riesz compactness theorem is really a classical textbook result,
and it is always stated as giving necessary and sufficient conditions for a subset of
a Lebesgue space to be compact. The fact that one condition is not needed should
be more widely known, and this is our reason for publishing this result.

The improved Kolmogorov–Riesz–Sudakov compactness result

Thanks to Sudakov’s discovery, the original Kolmogorov–Riesz theorem admits
the following improvement:

Theorem 1 (Kolmogorov–Riesz–Sudakov). Let 1 ≤ p <∞. A subset F of Lp(Rn)
is totally bounded if, and only if,

(i) for every ε > 0 there is some R so that, for every f ∈ F ,∫
|x|>R

|f(x)|p dx < εp,

(ii) for every ε > 0 there is some ρ > 0 so that, for every f ∈ F and y ∈ Rn

with |y| < ρ, ∫
Rn

|f(x+ y)− f(x)|p dx < εp.

Remark. Observe that in the case where F is a subset of Lp(Ω), where Ω is a
bounded subset of Rn, only the condition of “Lp equicontinuity”, that is, condition
(ii), is necessary and sufficient for F to be totally bounded. However, this condition
must be interpreted with care, by identifying Lp(Ω) with a subspace of Lp(Rn).
Thus the behavior of functions in F at the boundary of Ω will influence whether
(ii) holds or not. This can be illustrated by the failure of Tamarkin’s example; see
the footnote in the introduction.

Before embarking on the proof, we establish some notation. Throughout, Br(x)
denotes the open ball of radius r centered at x ∈ Rn. We sometimes write Br

instead of Br(0). We write 1A for the characteristic function of a set A ⊆ Rn. The
translation operator Ty is defined by Tyf(x) = f(x−y). When Ω ⊆ Rn, we identify
Lp(Ω) with the set of functions in Lp(Rn) vanishing outside Ω. We write X1 for
the closed unit ball of any normed space X.

In light of the classical Kolmogorov–Riesz theorem, see, e.g., [5], the following is
all that is required to prove Theorem 1:

Proof that (b) and (c) imply (a). Assume that conditions (b) and (c) are satisfied.
Due to condition (b) we only need to bound the norm uniformly on some sufficiently
large ball. The idea is that by (c), small translation are uniformly close to the
identity in the Lp(Rn) norm. By restricting to a ball, and repeating the small
translation, we can get an estimate of the norm on a ball by the norm on a translated
ball that is contained in the domain of integration in (b), which gives the uniform
bound we want.

More precisely, fix ε = 1 and let R > 0 and ρ > 0 be the corresponding quantities
given by (b) and (c). For any f ∈ F , using the triangle inequality and a translation,
we infer

‖f1BR(z)‖p ≤ ‖(Tyf − f)1BR(z)‖p + ‖f1BR(z−y)‖p
≤ ‖(Tyf − f)‖p + ‖f1BR(z−y)‖p
≤ 1 + ‖f1BR(z−y)‖p.
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Here y ∈ Rn is any nonzero vector with |y| < ρ. By induction, we find that

‖f1BR(0)‖p ≤ N + ‖f1BR(−Ny)‖p.
Choosing N so that N |y| > 2R, we see that BR(−Ny) ∩BR(0) = ∅, and

‖f‖p = ‖f1BR(0)‖p + ‖f1Rn\BR(0)‖p ≤ N + 2,

uniformly in f .
�

Sudakov states the theorem with the translate Tyf in (ii) replaced by the Steklov
mean

Shf(x) = |Bh|−1
∫
Bh

f(x+ y) dy = |Bh|−1f ∗ 1Bh
(x)

for sufficiently small h, where |Bh| denotes the volume of Bh. Clearly, the revised
condition follows from (ii), but the converse is far from obvious. We show that
Sudakov’s condition can also be used instead of (ii) to estimate the Lp-norm:

Theorem 2 (Kolmogorov–Riesz–Sudakov). Theorem 1 holds with condition (ii)
replaced by :

(ii’ ) For every ε > 0 there is some ρ > 0 so that, for every f ∈ F and h with
0 < h < ρ, ∫

Rn

|f(x)− Shf(x)|p dx < εp.

We will need a lemma.

Lemma 3. Assume that p and q are conjugate exponents with 1 ≤ p <∞, and that
φ ∈ Lq(Rn) has compact support. If p = 1, assume further that φ is continuous.
Let K ⊂ Rn be compact. Then the map Φ: Lp(K)→ Lp(Rn) defined by Φf = φ ∗ f
is compact.

Proof. First note that y 7→ Tyφ is a continuous map Rn → Lq(Rn) (see, e.g., [3,
Prop. 20.1]). It immediately follows that the set of functions {φ∗f | f ∈ Lp(Rn)1 }
is equicontinuous, since

|φ ∗ f(x− y)− φ ∗ f(x)| = |(Tyφ− φ) ∗ f(x)|
≤ ‖Tyφ− φ‖q · ‖f‖p ≤ ‖Tyφ− φ‖q

for any f ∈ Lp(Rn)1 (the continuity of φ when p = 1 is required in order to make
‖Tyφ − φ‖q small even in that case). A similar estimate shows that this set of
functions is uniformly bounded. Since all functions φ ∗ f with f ∈ Lp(K) are
supported by the compact set K + suppφ, we can now employ the Arzelà–Ascoli
theorem to conclude that {φ ∗ f | f ∈ Lp(K)1 } is totally bounded in the uniform
norm. Again, because of the shared compact support, this implies compactness in
Lp(Rn). �

Proof of Theorem 2. In the proof of Theorem 1, we employed repeated translations
to move the support of T−Nyf outside a large ball. Here we use instead repeated
applications of the convolution operator (the Steklov mean) Sh for a similar purpose,
getting some weighted average of f . We cannot move the whole weight to the
complement of some fixed ball as before, however. Instead, we notice that the total
weight is one, but some fixed part of it is moved to this complement.

To make this presice, we start by fixing R as given by (i) and ρ as given by (ii’ ),
both with ε = 1. Let 0 < h < ρ, and put φ = |Bh|−11Bh

. Select a natural number
N so that Nh > 2R, and put

ψ = φ∗N = φ ∗ · · · ∗ φ︸ ︷︷ ︸
N times

.
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Writing the N -fold convolution as an (N − 1)-fold integral over z1, . . . , zN−1 ∈ Rn

and setting zN = x− z1 − · · · − zN−1, we can write this as

ψ(x) =

∫
· · ·
∫

z1+···+zN=x

φ(z1) · · ·φ(zN ) dz1 · · · dzN−1,

from which it follows that ψ(x) > 0 when |x| < Nh, and ψ(x) = 0 otherwise. Note
also that

∫
Rn ψ dx = 1.

Now fix some f ∈ F , and define

A(y) = ‖f1BR(y)‖p =
(∫

BR

|f(x+ y)|p dx
)1/p

.

Our task is to find a bound for A(0), independent of f . Together with (i), this will
establish a uniform bound on ‖f‖p for f ∈ F .

The function A is continuous, since we can also write A(y) = ‖(Tyf)1BR(0)‖p.
Further, condition (i) implies that A(y) < 1 for |y| ≥ 2R, so A is certainly bounded.
Let M = supy∈Rn A(y).

To estimate A(y), we break it up as follows:

(1) A(y) ≤ ‖(f ∗ ψ)1BR(y)‖p + ‖(f ∗ ψ − f)1BR(y)‖p.

For the first term, the continuous Minkowski inequality (see, e.g., [3, Prop. 4.3
(p. 227)]) yields

‖(f ∗ ψ)1BR(y)‖p =

(∫
BR(y)

∣∣∣∫
Rn

f(x− u)ψ(u) du
∣∣∣p dx)1/p

≤
∫
Rn

(∫
BR(y)

|f(x− u)p| dx
)1/p

ψ(u) du

= A ∗ ψ(y).

As for the second term of (1), first note that condition (ii’ ) with ε = 1 can be
written ‖f ∗ φ − f‖p < 1. Furthermore, ‖g ∗ φ‖p ≤ ‖g‖p for any g ∈ Lp(Rn) (as
seen, e.g., by another application of the continuous Minkowski inequality). Thus
we find ‖f ∗ φ∗(k+1) − f ∗ φ∗k‖p ≤ ‖(f ∗ φ − f) ∗ φ∗k‖p ≤ ‖f ∗ φ − f‖p < 1, so we
have

(2) ‖f ∗ φ∗k − f‖p ≤ k (f ∈ F).

In particular, ‖f ∗ ψ − f‖p ≤ N , and so (1) reduces to

A ≤ A ∗ ψ +N.

However,

A ∗ ψ(y) =

∫
Rn

A(u)ψ(y − u) du

≤M
∫
B2R

ψ(y − u) du+

∫
R\B2R

ψ(y − u) du

≤Mγ + 1,

where

γ = max
y∈Rn

∫
B2R

ψ(y − u) du < 1.

Indeed, note that the above integral is a continuous function of y, with compact
support, so it achieves its maximum. But the integral is always less than 1, because
the integrand is strictly positive in a ball of radius Nh > 2R.
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To summarize, we have M = supy A(y) ≤ Mγ + 1 + N , and therefore M ≤
(1 +N)/(1− γ). Since this estimate is independent of f , we have now proved that
F is bounded in Lp(Rn).

To finish the proof, let ε > 0, once more pick R > 0 and ρ > 0 according to
conditions (i) and (ii’ ), and let φ = |Bh|−11Bh

, where 0 < h < ρ. Define the linear
map ΦR : F → Lp(Rn) by

ΦRf = (f1BR
) ∗ φ ∗ φ

(we may replace φ ∗ φ by φ, if p 6= 1). It is compact, by Lemma 3. Therefore, since
F is bounded, ΦRF is totally bounded. Now, for any f ∈ F ,

‖f − ΦRf‖p ≤ ‖f − f ∗ φ ∗ φ‖p + ‖(f − f1BR
) ∗ φ ∗ φ‖p < 2ε+ ε = 3ε.

Here the first norm estimate comes from (2), while the second one is due to (i) and
the general fact that ‖g ∗ φ‖p ≤ ‖g‖p.

Thus any member of F is within a distance 3ε of some member of the totally
bounded set ΦRF , and so F itself is totally bounded. �

Review of the original proof of Sudakov

For the benefit of the reader we review Sudakov’s original argument, which is
interesting for two reasons. First of all it is quite different from other proofs of this
theorem, and, furthermore, it uses only conditions (i) and (ii’ ) without involving
the uniform boundedness. We start by stating and proving two general results.

Theorem 4 (Mazur, see [1, p. 466]). Let G be a bounded subset of a Banach space
X. Assume that (Uk) is a sequence of compact operators on X converging to the
identity operator in the strong operator topology, i.e., ‖Ukx−x‖ → 0 for all x ∈ X.
Then G is totally bounded if, and only if, ‖Ukx− x‖ → 0 uniformly for x ∈ G.

Proof. First, assume that ‖Ukx−x‖ → 0 uniformly for x ∈ G. Then for any ε > 0,
there is some k so that dist(x, UkG) < ε for all x ∈ G. The image UkG is totally
bounded, because G is bounded and Uk is compact. The total boundedness of G
follows.

Conversely, assume G is totally bounded. Apply the Banach–Steinhaus theorem
to get a uniform bound ‖Uk‖ ≤ M for all k. If ε > 0, there is an ε-net F ⊆ G:
A finite set so that every point in G is within a distance ε from some member of F .
If k is large enough, ‖Uky − y‖ ≤ ε for all y ∈ F . For any x ∈ G, then, there is
some y ∈ F with ‖y − x‖ < ε, and so

‖Ukx− x‖ ≤ ‖Uk(x− y)‖+ ‖Uky − y‖+ ‖y − x‖ < Mε+ ε+ ε = (M + 2)ε.

Since M is fixed and ε is arbitrary, ‖Ukx− x‖ → 0 uniformly for x ∈ G. �

Lemma 5 (Sudakov [10]). Assume that X is a Banach space, and G ⊆ X. Assume
also that U is a compact operator on X so that 1 is not an eigenvalue of U , and
‖Ux− x‖ ≤M <∞ for all x ∈ G. Then G is bounded.

Proof. Since U is compact and 1 is not an eigenvalue, 1 /∈ σ(U), and so U − I is
invertible. So for any x ∈ G, ‖x‖ ≤ ‖(U − I)−1‖ · ‖Ux− x‖ ≤ ‖(U − I)−1‖M . �

A different proof of Theorem 2. We prove only that (i) and (ii’ ) imply total bound-
edness. For the other direction, refer to the earlier proof (see page 3).

For any ε > 1, choose R according to condition (i), and define a continuous
cutoff function vR:

vR(x) =


1 |x| < R+ 1,

R+ 2− |x| R+ 1 ≤ |x| ≤ R+ 2,

0 |x| > R+ 2.
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Thus ‖f − fvR‖p < ε for any f ∈ F . If we can show that FvR is totally bounded
for every R > 0, it immediately follows that F is totally bounded.

We now observe that condition (ii’ ) is still satisfied if F is replaced by FvR. To
see this, note that

‖fvR − Sh(fvR)‖p ≤ ‖(f − Shf)vR‖p + ‖(Shf)vR − Sh(fvR)‖p
≤ ‖f − Shf‖p + ‖(Shf)vR − Sh(fvR)‖p.

Next,

Shf(x)vR(x)− Sh(fvR)(x) = |Bh(x)|−1
∫
Bh(x)

f(y)
(
vR(x)− vR(y)

)
dy.

Note that |vR(x) − vR(y)| ≤ |x − y| < h whenever y ∈ Bh(x), and furthermore
vR(x) − vR(y) = 0 if in addition |x| ≤ R, provided we ensure that h < 1. Under
this assumption, then,

|Shf(x)vR(x)− Sh(fvR)| ≤ hSh|f1R\BR
|(x),

and therefore

‖(Shf)vR − Sh(fvR)‖p ≤ h‖Sh|f1R\BR
|‖p ≤ h‖f1R\BR

‖p < h.

And so we get
‖fvR − Sh(fvR)‖p ≤ ‖f − (Shf)‖p + h,

and it follows that FvR does indeed satisfy (ii’ ). Thus we can replace F with FvR
in the remainder of the proof.

From now on, we assume without loss of generality that supp f ⊆ K for all f ∈ F ,
where K ⊂ R is compact. Let φk = |B1/k|−11B1/k

. Then f ∗ φk = S1/kf → f in
the Lp norm, uniformly for f ∈ F ; and the same is true for f ∗ φk ∗ φk.

Define the operator Φk : Lp(K) → Lp(K) by Φkf = (f ∗ φk ∗ φk)1K . Lemma 3
ensures that Φk is compact.

We claim that 1 is not an eigenvalue of Φk. Assuming this, we can use Lemma 5
to conclude that F is bounded, and then Mazur’s theorem (Theorem 4) implies
that F is totally bounded, thus finishing the proof.

To prove the claim, assume the contrary, and let a nonzero f ∈ Lp(K) satisfy
f = (f ∗ψ)1K , where ψ = φk ∗φk. Without loss of generality, we may assume that
f(x) > 0 for some x. Note that f ∗ψ is continuous, and so f has a maximum value
c > 0. Let C ⊆ K be the compact set {x ∈ Rn | f = c }, and consider any point x
on the boundary of C. Then we have

c = f(x) =

∫
Rn

f(x− y)ψ(y) dy.

Since f ≤ c, and f(x− y) < c for y in some open set in which ψ(y) > 0, we get∫
Rn

f(x− y)ψ(y) dy < c

∫
Rn

ψ(y) dy = c,

and so we arrive at the contradiction c < c. This completes the proof. �
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