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Coralline algae constitute a cosmopolitan group of calcifying rhodophytes (red algae) that display characteristic 
optical fingerprints due to light absorption by specific light-harvesting pigments. The spectrally conspicuous nature 
of coralline algae makes them potential candidates for optical remote sensing surveys, and recently, a novel optical 
remote sensing technique has entered the scene of marine research: underwater hyperspectral imaging (UHI). The 
aim of the study was to characterize the spectral properties of different coralline algal species, and to assess the 
potential of UHI as a coralline algal identification and mapping tool. Four species of coralline algae were investigated: 
Corallina officinalis, Lithothamnion glaciale, Phymatolithon lenormandii, and Phymatolithon tenue. Important 
coralline algal pigments were identified using spectrophotometry and high-performance liquid chromatography 
(HPLC). Reflectance spectra of all species were obtained using both a spectrometer and UHI. Multivariate statistical 
analyses were performed on the reflectance data to identify spectral differences between species and instruments. 
In addition, supervised classification of coralline algae in UHI transects recorded both in vivo and in situ was carried 
out. R-phycoerythrin and chlorophyll a were found to be the most dominant coralline algal pigments. The analyzed 
species of coralline algae displayed highly similar reflectance spectra, and dips in reflectance corresponding to the 
absorbance peaks of R-phycoerythrin and chlorophyll a were identified in all spectra. Wavelengths corresponding 
to R-phycoerythrin light absorbance were the greatest contributors to interspecific spectral differences, but the 
investigated coralline algal species could not be spectrally distinguished with great accuracy. Optical signatures 
recorded using different instruments were comparable, but inter-instrumental spectral differences were found to 
be greater than interspecific differences. Supervised UHI classification was unable to accurately map different 
coralline algal species due to the similarity of the optical fingerprints, but as a group, coralline algae could easily be 
identified. In the future, large-scale UHI surveys of coralline algal habitats should be carried out using platforms such 
as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) to enhance our understanding 
of this widespread and ecologically important organism group. 

OCIS codes: (280.1415) Biological sensing and sensors; (110.4234) Multispectral and hyperspectral imaging; (010.4450) Oceanic optics. 
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1. INTRODUCTION 

A. Coralline algae 

Coralline algae are multicellular rhodophytes (red algae) belonging 
to the order Corallinales [1]. With a distribution ranging from tropical 
latitudes to the high Arctic, they can be found in euphotic waters all over 
the world [2]. A characteristic trait of coralline algae is that they deposit 
calcium carbonate in the form of calcite [1, 3]. By depositing calcium 
carbonate, coralline algae create hard and sometimes three-
dimensional structures, which may serve as habitats for other 

organisms. For this reason, they are considered important ecosystem 
engineers [2, 4-6]. 

As photoautotrophs [7], coralline algae rely on sunlight for survival. 
They are known to be efficient light harvesters, and have in clear oceanic 
waters been found at depths >250 m [8]. In terms of light harvesting, 
multicellular red algae have in general been shown to display highly 
similar absorbance spectra (i.e. optical signatures) [9]. Like most 
photoautotrophs, red algae partially rely on chlorophyll a (chl a) for light 
absorption [9]. Red algal chl a displays in vivo absorbance maxima at 
437-439 nm (blue) and 678-681 nm (red), and a satellite band 
absorbance peak at ~630 nm (orange) [9, 10]. In addition to chl a, 

mailto:aksel.a.mogstad@ntnu.no


phycobiliproteins contribute significantly to red algal light absorption. 
Phycobiliproteins are water-soluble pigments found in cyanobacteria, 
cryptomonads and red algae [11, 12], that mainly absorb light in the 
green region of the visible light spectrum (400-700 nm). Three major 
phycobiliprotein groups can be found in red algae: allophycocyanins, 
phycocyanins and phycoerythrins [13]. Of these, phycoerythrins are the 
most abundant [12]. Macrophytic red algae such as coralline algae are 
characterized by high contents of the phycoerythrin R-phycoerythrin 
(R-PE) [14]. R-PE strongly absorbs light in the blue-green region of the 
visible light spectrum, and displays absorbance maxima at 495-499 nm 
and 565-566 nm [15-17]. 

Currently, there exist several incentives for upscaling research on 
coralline algae. As ecosystem engineers [2, 4-6], their ecological 
importance is one of them. A conservation-related aspect, is that 
coralline algae as calcifiers may be adversely affected by ocean 
acidification [7, 18, 19]. Additionally, there is currently an interest in 
using coralline algae as biomarkers for assessing the impacts of 
discharges from oil platform drill cuttings on benthic habitats [20-22]. 
Regarding distribution, coralline algae are poorly mapped in certain 
regions of their range, including the Great Barrier Reef [23], the Arctic 
and the subarctic [6]. In a 2001 review paper by Foster [2], a need for 
long-term field studies of coralline algal habitats is also expressed. 
Because phycobiliproteins like R-PE are confined to a small range of 
organisms [11, 12], coralline algae can be considered spectrally 
conspicuous and therefore favorable targets for optical remote sensing. 
Underwater hyperspectral imaging represents a novel, optical remote 
sensing technique for marine environments [24, 25], which may be 
suitable for assessing coralline algae. 

B. Underwater hyperspectral imaging 

Over the past decades, hyperspectral imaging has become an 
established remote sensing technique for environmental mapping and 
monitoring [26-29]. The technique can be considered a form of 
spectroscopy capable of recording images as well as optical signatures. 
Hyperspectral imagers deployed on platforms such as airplanes and 
satellites have the ability to acquire high-resolution spectral data, which 
can be used for supervised classification of areas and objects of interest 
(OOIs). From aerial and space-borne platforms, hyperspectral image 
acquisition relies on the ambient light field generated by the sun. It can 
therefore be regarded as a passive imaging technique [30]. Dependency 
on ambient light has up until now restricted hyperspectral imaging to 
terrestrial and shallow-water environments. This is due to the optical 
properties of water, which quickly attenuate light as a function of depth 
[31]. Recently, an active version of the technique equipped with its own 
light source and a waterproof housing has however entered the scene 
of marine research: underwater hyperspectral imaging (UHI) [24]. 
Being independent of ambient light, UHI may be used for identifying, 
visualizing and mapping biogeochemical seafloor structures, which up 
until now have been out of reach from hyperspectral imagers. 

The underwater hyperspectral imager is a push broom, camera-
equipped spectrometer that receives light through a thin entrance slit. 
[32, 33]. During the process of capturing a hyperspectral image frame, 
light entering the instrument is diffracted into separate wavelengths, 
and projected onto the camera sensor as a contiguous spectrum. Each 
pixel row on the camera sensor parallel to the slit hence captures a 
picture of the slit at a particular wavelength. By tilting the frame 90° and 
instead collectively interpreting all the pixel rows as monochromatic 
levels of the same pixel row, the result is one hyperspectral pixel row 
corresponding to the light entrance slit, featuring detected intensities 
for all the utilized wavelengths [32]. In order to record image transects, 
the instrument is moved across the target area with the slit oriented 
perpendicularly to the direction of movement (push broom technique). 
As the instrument is moved, the camera continuously captures slit 

frames at a set frame rate. An individual frame represents one cell (slit 
image) of the target area, and these frames are merged together to form 
continuous transects (photomosaic images) with a width dependent on 
slit width and the hyperspectral imager’s altitude over the target area 
[32]. A transect can alternatively be interpreted as an image cube, where 
the x-, y- and z-axes respectively represent direction of movement, slit 
width and spectral levels [32]. Since each UHI pixel is assigned its own 
contiguous light spectrum, the spectral resolution and amount of 
information that can be obtained from an image transect is vastly 
increased [24]. As a result, UHI can detect subtle and otherwise 
unnoticeable spectral properties of a given OOI, and record object-
specific optical fingerprints. Optical fingerprinting increases 
classification accuracy, and can be used for both qualitative and 
quantitative mapping during post-processing [24]. 

In addition to the spectral properties, spatial and radiometric 
properties also influence the resolution of underwater hyperspectral 
imagery [24]. The spatial resolution provided by UHI varies with 
altitude and sensor quality. Due to the rapid attenuation of light in the 
marine environment [31], underwater hyperspectral imagers are 
confined to scanning altitudes <10 m above the OOI. The focal plane of 
underwater hyperspectral imagers can be adjusted to distinguish 
between small-scale objects on a sub-meter scale, but even within the 
narrow underwater scanning range, the spatial resolution varies 
considerably with altitude. As a reference, a camera scanning distance 
of 2 m can potentially yield a spatial resolution close to 2 mm [24]. The 
exposure and color quality of UHI is partially determined by the 
imager’s radiometric resolution (dynamic range in bits per pixel). 
Radiometric resolution varies between camera sensors, but is usually 
found within the interval of 8-16 bits per pixel [33]. A higher number of 
bits per pixel (e.g. 16) results in a broader dynamic range, and thus more 
accurate image depiction. However, high radiometric resolution also 
produces large data files, which may be hard to process and require 
extensive storage capacity. This tradeoff between quality and 
processability needs to be adjusted according to operational goals and 
computer processing capacity [24]. 

Being relatively compact instruments, underwater hyperspectral 
imagers are versatile in terms of deployment. Stationary platforms, such 
as tripods or rails with moving carts, mounted on the seafloor represent 
one of the most basic alternatives [24, 33, 34]. Mobile platforms 
equipped with dynamic positioning systems [35, 36] provide another 
layer of complexity by permitting larger areal coverage, and the 
possibility of temporal re-visitation through geolocation [24, 37]. 
Examples of mobile platforms used as UHI carriers include remotely 
operated vehicles (ROVs) and autonomous underwater vehicles 
(AUVs). Both represent state-of-the-art, instrument-carrying platforms 
for ocean exploration [37], with a survey range spanning from deep-sea 
trenches [38, 39] to ice-covered polar oceans [40-42]. The compatibility 
with underwater platforms capable of pushing exploration boundaries 
emphasizes the potential of UHI as a marine identification, mapping and 
monitoring tool, and suggests that the technology could play an 
important role for marine science in the future. 

UHI technology has proven successful at visualizing and mapping a 
variety of OOIs and habitats. The versatility in application can partly be 
attributed to compact instrument design, providing flexibility in terms 
of deployment. From stationary platforms, underwater hyperspectral 
imagers may provide detailed imagery on small scales. In Hopavågen, 
Agdenes, Norway (April 2010), an underwater hyperspectral imager 
deployed on a rail-and-cart-based platform was for instance used to 
spectrally distinguish between various biogeochemical objects 
submerged for the occasion [24]. In Australia, tripod-based UHI 
operated by scuba divers has been used to assess the spectral 
characteristics of corals, stromatolites and sea grass in situ [33]. 
Although hyperspectral imagery from stationary platforms may be 



highly informative, the true potential of UHI as a mapping tool first 
becomes apparent from mobile platforms such as ROVs. One of the 
benefits associated with ROV-based UHI mapping is its ability to cover 
larger areas that additionally may be beyond the reach of scuba diving 
and stationary platforms. ROV-based UHI was first attempted in 2012, 
and has since then been used for visualizing deep-water corals and 
archaeological sites in the Trondheimsfjord (Norway), coralline algal 
beds off Svalbard, and manganese nodules at 4,200 m depth in the 
Pacific Ocean [33, 37, 43]. With one successful pilot trial carried out [44], 
AUV-based UHI may provide yet another level of possibilities by 
permitting even larger areal coverage and increasing the degree of 
autonomy associated with hyperspectral image acquisition. 
Implementing UHI in AUV-based surveys could be considered the next 
step in underwater hyperspectral mapping, and will likely expand the 
technology’s application potential in the future [33]. 

C. Optical properties of seawater 

Due to the optical properties of seawater and its constituents, light is 
rapidly attenuated in the marine environment [31]. Two ways of 
looking at the optical properties are as apparent optical properties 
(AOPs), and inherent optical properties (IOPs). The AOPs are the optical 
properties of the medium in context with the geometrical structure of 
the ambient light field [45]. AOPs are measured with passive sensors, 
typically utilizing the light field generated by the sun [24]. In contrast, 
the IOPs are the optical properties of the medium alone, irrespective of 
the ambient light field [45]. IOPs are measured with active sensors 
equipped with a light source of known intensity and spectral 
composition (e.g. underwater hyperspectral imagers) [32]. 
Independence of ambient light makes IOPs especially relevant for dark 
environments [32], such as deep waters and the Arctic during the polar 
night. It also makes IOPs easier to interpret, because behavior of light is 
more readily quantifiable when the properties of the light source are 
known in detail [24]. 

D. Optical fingerprinting 

During the process of optical fingerprinting, upwelling radiance and 
relative reflectance represent important physical parameters. 
Hyperspectral imagers measure upwelling radiance for each utilized 
wavelength of light [𝐿u(𝜆), W m–2 nm–1 sr–1]. When the spectral 
downwelling irradiance [𝐸d(𝜆), W m–2 nm–1] from the light source is 
known and all surfaces are assumed to behave as Lambertian reflectors, 
relative reflectance at a given wavelength [𝑅(𝜆), 0-1, where 1 
represents 100% reflection] can be calculated with the following 
equation [24, 32]. 

𝑅(𝜆) =
𝜋𝐿u(𝜆)

𝐸d(𝜆)
 (1) 

Because 𝑅(𝜆) is the ratio of 𝜋𝐿u(𝜆) to 𝐸d(𝜆), it depends on light 
attenuation, and thus the IOPs of the water column, the light source 
spectrum and the light source intensity. In terms of IOPs, total volume 
attenuation (light beam attenuation) of a specific wavelength [𝑐(𝜆), 
m–1] is the sum of light absorption [𝑎(𝜆)] and scattering [𝛽(𝜆)] in the 
medium [32]. Phytoplankton and water itself contribute to both 
absorption and scattering of photons, whereas colored dissolved 
organic matter (cDOM) and total suspended matter (TSM) contribute to 
absorption and scattering, respectively [32]. As the degree of 
attenuation increases exponentially with distance, the optical 
fingerprint of an OOI may vary substantially with both turbidity and 
scanning altitude [24]. One possible way of correcting for light source 
properties and the water column’s impact on measurements and 
calculations, is applying a radiative transfer model on the acquired 

spectral data [25, 46]. Another way is to deploy a reflectance plaque 
(reflectance standard) of known properties on the target area. Ideally, 
such a plaque should reflect light equally across the entire spectrum of 
visible light, so that attenuation of all wavelengths can be accounted for 
[24]. Knowing the upwelling radiance from a reference plaque 
[𝐿u ref(𝜆)] and assuming all surfaces behave as Lambertian reflectors, 
𝑅(𝜆) can be obtained with the equation 

𝑅(𝜆) =
𝐿u OOI(𝜆)

𝐿u ref(𝜆)
, (2) 

where 𝐿u OOI(𝜆) represents the spectral upwelling radiance from the 
OOI [33, 34]. One potential downside to using Eq. 2 for reflectance 
estimation is that it fails to take into account the effects of light 
backscattered within the water column. These effects can be considered 
negligible when the distance between the sensor and the OOI is 
sufficiently short, but as the scanning distance increases, so does the 
impact of backscattered light on recorded measurements [47]. During 
post-processing of hyperspectral data, optical fingerprints can be used 
for qualitative as well as quantitative mapping. Hyperspectral mapping 
may be achieved by storing optical fingerprints of known organisms 
and OOIs as training sites in a spectral library, based on which 
supervised classification can be carried out [24, 48]. Classification can be 
based on both 𝐿u(𝜆) and 𝑅(𝜆) spectra, but if the same training sites are 
to be used for multiple transects, 𝑅(𝜆)-based classification may be 
necessary to account for differences in IOPs and scanning altitude. 
During supervised classification, any pixel with an optical signature 
sufficiently close to the fingerprint of a library training site will be 
labelled as belonging to the respective OOI [49]. The spectra in the 
library hence allow for automated mapping of multiple OOIs in an 
efficient manner [34]. 

E. Experimental aims 

The aim of this study was to assess the spectral characteristics of four 
coralline algal species, and to evaluate the potential of UHI as a coralline 
algal identification and mapping tool. Although multiple studies have 
previously featured spectral measurements of coralline algae [48, 50-
53], species-specific comparisons of coralline algal optical signatures 
have to the authors’ knowledge rarely been published. Previous studies 
have typically been carried out in shallow-water coral reef 
environments, and estimated the spectral reflectance of cm-dam-scale 
seafloor areas using either spectrometers in situ or aerial/space-borne 
imagery. In these studies, coralline algae have rightfully been 
characterized as one spectral group, owing to the purpose of the given 
study or limitations with respect to spatial resolution. For the purpose 
of the current study, species-specific spectral characteristics of coralline 
algae were however of interest due to the high spatial resolution of UHI, 
which permits even small (<1 cm) OOIs to be represented by multiple 
pixels. In the current study, spectrophotometry and high-performance 
liquid chromatography (HPLC) was used to verify the presence of 
important coralline algal pigments. The optical fingerprints of all four 
species were recorded in the form of 𝐿u(𝜆), using both a spectrometer 
and UHI. 𝐿u(𝜆) spectra from the two techniques were converted into 
𝑅(𝜆) to permit inter-instrumental as well as interspecific spectral 
comparisons. Multivariate statistical analyses were performed on 
various subsets of the 𝑅(𝜆) data to identify the main wavelengths 
responsible for differences between species and instruments. Finally, 
using supervised classification, the coralline algal mapping potential of 
UHI was assessed both in vivo and in situ. Ultimately, the results of the 
study were used to answer whether 1) coralline algal 𝑅(𝜆) could be 
related to pigment composition; 2) coralline algal species could be 
spectrally distinguished even though they are known to display similar 
optical properties [9]; 3) optical fingerprints recorded using different 



instruments were comparable; and 4) UHI could be used to identify and 
map coralline algae. 

2. MATERIALS AND METHODS 

A. Laboratory-based spectral analyses 

All laboratory-based spectral analyses were carried out at 
Trondheim Biological Station (TBS), at the Norwegian University of 
Science and Technology (NTNU). In the analyses, four species of 
coralline algae were investigated (Fig. 1): Corallina officinalis (Linnaeus, 
1758), Lithothamnion glaciale (Kjellmann, 1883), Phymatolithon 
lenormandii (Areschoug, 1852) and Phymatolithon tenue (Rosenvinge, 
1893). The former three were sampled in Hopavågen (63°35'N 9°32'E), 
Agdenes, Norway, in April 2016. All specimens from Hopavågen were 
sampled at depths between 1-5 m by scuba and freediving. 
Phymatolithon tenue was obtained from Trygghamna (78°14'N 
13°50'E), Svalbard, Norway, in August 2016. Specimens of P. tenue were 
sampled at a depth of approximately 25 m by scuba diving. 

 

Fig. 1. The four coralline algal species analyzed spectrally: Corallina 
officinalis (a), Lithothamnion glaciale (b), Phymatolithon lenormandii (c) 
and Phymatolithon tenue (d). 

Because the P. tenue specimens had to be transported by airplane 
from Svalbard to TBS, their health state was assessed upon arrival. The 
assessment was made using a pulse amplitude modulated (PAM) 
fluorometer (DIVING-PAM, Heinz Walz GmbH, Germany) according to 
the procedure described in Wägele and Johnsen (2001) [54]. Before the 
measurements, an autozero of the DIVING-PAM was performed. 
Measuring light frequency of chl a fluorescence was set to 0.6 kHz, which 
yielded non-actinic irradiance at 655 nm. Measuring light intensity was 
set to 10 (~0.15 µmol photons m–2 s–1), whereas saturation flash 
intensity to close all photosystem (PS) II reaction centers was set to 12 
(4,000 µmol photons m–2 s–1). The operational quantum yield of chl a 
fluorescence from PS II (𝜑PS II

′ ) was measured under dim light 
conditions (~1 µmol photons m–2 s–1). Measurements showed that P. 
tenue’s 𝜑PS II

′  was 0.42 ± 0.07 (SD, n = 6), which proved the specimens 
were in good condition [21]. 

Prior to the analyses, the coralline algae were kept in a plastic crate 
flow-through system at TBS. The system was continuously provided 
sand-filtered seawater from a depth of 100 m, and held a temperature 
of 7-8°C. Dim sunlight provided illumination during daytime, and during 
midday, the system’s underwater ambient light field was measured to 

~1 µmol photons m–2 s–1. Light intensity (irradiance from 400-700 nm) 
was measured using the DIVING-PAM irradiance sensor. 

To verify the identity of characteristic coralline algal pigments, the 
pigment composition of P. tenue was assessed using both 
spectrophotometry (section 2.A.1.) and HPLC (section 2.A.2.). Ideally, 
the pigment composition of all four species should have been assessed, 
but due to limited laboratory access, only P. tenue pigments were 
characterized. The P. tenue pigments were considered representative 
also for the remaining three species, as red algae are known to display 
similar optical signatures [9]. The spectrophotometry was performed in 
seawater solvent, with the aim of identifying water-soluble 
phycobiliproteins in vivo. The remaining constituent pigments were 
investigated in vitro, using HPLC. Of the obtained coralline algae, six 
specimens of each species were chosen for 𝑅(𝜆) analysis. Specimen-
specific optical signatures [𝐿u(𝜆) spectra] were recorded using both a 
spectrometer and UHI, and based on these signatures, mean 𝑅(𝜆) 
spectra (n = 6) were calculated for each species, for both techniques. 

1. In vivo spectrophotometric pigment analysis 

A qualitative spectrophotometric analysis of water-soluble pigments 
in P. tenue was performed using a Unicam UV500 spectrophotometer 
(Thermo Fisher Scientific Inc., USA). Two algal specimens were crushed 
in separate mortars, containing approximately 100 mL of sand-filtered 
seawater each. The sand-filtered seawater served as both solvent and 
buffer. A 1-cm cuvette was used to characterize the pigments present in 
n = 3 syringe-filtered (0.2 µm, to remove particles), 3-mL 
phycobiliprotein extracts from each mortar (n = 6 extracts total). 
Absorbance in the cuvette samples was measured at 1-nm spectral 
resolution within the interval of 350-800 nm. The data were exported 
to Excel (Microsoft Corp., USA), where the absorbance spectrum from 
each cuvette sample was normalized by dividing all values by the 
respective sample’s mean absorbance across all wavelengths. 
Normalized data were imported into the statistical software R, where a 
mean normalized absorbance spectrum (n = 6) with associated 95% 
confidence interval was calculated and visualized within the interval of 
400-700 nm. 

2. In vitro HPLC pigment analysis 

Non-polar pigments in n = 6 P. tenue specimens were analyzed 
qualitatively in vitro, using a Hewlett Packard 1100 series HPLC system 
(Hewlett Packard Inc., USA), equipped with a diode array absorbance 
detector, according to Rodriguez et al. (2006) [55]. Phymatolithon tenue 
pigments were identified based on retention time and respective 
absorbance spectra, which were recorded at 1-nm spectral resolution 
within the interval of 350-700 nm. The data were exported to Excel, 
where each pigment-specific absorbance spectrum from each vial was 
normalized by dividing all values by the respective spectrum’s mean 
absorbance across all wavelengths. Normalized data from the most 
dominant pigments were imported into the statistical software R, 
where mean normalized absorbance spectra (n = 6) with associated 
95% confidence intervals were calculated and visualized within the 
interval of 400-700 nm. 

3. In vivo spectrometer analysis 

For the spectrometer analysis, a SpectroClip-JAZ-TR spectrometer 
(JAZ spectrometer, Ocean Optics Inc., USA) with a spectral resolution of 
approximately 0.3 nm, and a spectral range of 350-1,100 nm was used. 
All measurements were made using a QR400-7-VIS-BX reflection probe 
(Ocean Optics Inc., USA) connected to the spectrometer through an 
optical fiber bundle. The same bundle provided light to the tip of the 
reflection probe from a 20 W HL-2000-HP halogen light source (Ocean 
Optics Inc., USA). Spectrometer data (i.e. optical signatures) were 



recorded using the software OceanView 1.5.2 (Ocean Optics Inc., USA). 
To optimize the signal-to-noise ratio, the integration time of each 
spectrometer scan was set to 3,000 µs, and boxcar width was set to 3. 
Boxcar smoothing averages adjacent pixels to increase signal-to-noise 
ratio at the expense of optical resolution [56]. A boxcar width of 3 
implied that 7 pixels were averaged (3 to the left + 1 center + 3 to the 
right), which was considered a reasonable tradeoff between signal-to-
noise ratio and optical resolution in the current study. In order to further 
smooth the spectral curves, scans to average per spectrometer 
measurement was set to 10. All spectrometer measurements were 
recorded perpendicularly to the OOI, at a distance of 2 cm. At this 
distance, the sampling area was ~0.79 cm2 [57]. The measurements 
were recorded in a dark room to minimize the amounts of stray light 
interfering with the results. Remaining stray light was subtracted from 
the measurements using OceanView’s “Dark spectrum” function. 

As the spectrometer raw data were in the form of 𝐿u(𝜆), a spectrally 
neutral reference plaque was required for conversion into 𝑅(𝜆) (Eq. 2). 
To carry out the conversion, a calibrated Spectralon (Labsphere Inc., 
USA) reflecting all wavelengths between 400-700 nm equally (~99%) 
was used in combination with a sanded (avoiding specular reflection), 
white polyethylene (PE) disk. The reason why the PE disk had to be 
included was that the Spectralon was unable to withstand immersion 
due to its porous material changing optical properties when saturated 
with water. Prior to the algal spectrometer analysis, the dry-state optical 
signatures of both reference plaques, as well as the in-water, immersed-
state optical signature of the PE disk, were measured six times at a 
distance of 2 cm. Based on these measurements, a mean optical 
signature (n = 6) was assigned each reference plaque for each relevant 
set of conditions: 𝐿u Spectralon dry(𝜆), 𝐿u PE dry(𝜆) and 𝐿u PE immersed(𝜆). 

To account for the utilization of two reference plaques, Eq. 2 had to be 
modified before 𝑅(𝜆) could be calculated. This was done by multiplying 
𝑅(𝜆) with the ratio of 𝐿u PE dry(𝜆) to 𝐿u Spectralon dry(𝜆), from now on 

referred to as PE:S(𝜆), as well as the known 𝑅(𝜆) of the Spectralon 
(~0.99). Assuming that the measured optical signatures represented 
the actual optical signatures of the reference plaques, 𝑅(𝜆) of the 
coralline algae could thus be calculated using the equation 

𝑅(𝜆) =
𝐿u OOI(𝜆)

𝐿u PE immersed(𝜆)
×

𝐿u PE dry(𝜆)

𝐿u Spectralon dry(𝜆)
× 𝑅Spectralon(𝜆), (3) 

which further simplifies to 

𝑅(𝜆) =
𝐿u OOI(𝜆) × PE:S(𝜆) × 0.99

𝐿u PE immersed(𝜆)
. (4) 

Upon acquiring the reference data necessary for 𝑅(𝜆) conversion, 
the coralline algae were analyzed with the spectrometer species by 
species. For each species, six specimens were examined under water, 
with the spectrometer at a distance of 2 cm. Together with the spectral 
data from the reference plaques, all algal optical signatures were 
exported from OceanView to Excel, where raw data were converted into 
𝑅(𝜆) using Eq. 4. Importing the 𝑅(𝜆)-converted data into the statistical 
software R, mean 𝑅(𝜆) spectra (n = 6) with associated 95% confidence 
intervals were calculated for all algal species. Because the spectrometer 
analysis was carried out under highly controlled conditions, with 
minimal distance between the algae and the sensor, the JAZ 
spectrometer 𝑅(𝜆) spectra were considered the control. 

4. In vivo UHI analysis 

The laboratory-based UHI analysis was performed using the 
hyperspectral imager UHI-1 (1st generation). UHI-1 was developed by 
Ecotone AS and is a solid-state hyperspectral imager fit into a 36 x 11 cm 

cylindrical underwater housing, depth rated to 1,000 m. Copper wiring 
supplies power at 12 V, 0.4 A, while optical fiber bundles are responsible 
for signal transduction and electronic communication. Within UHI-1, a 
CCD-equipped (charge-coupled device) camera captures hyperspectral 
image frames through an 8-mm fore lens. For this study, UHI-1’s lens 
aperture was set to f/2.8. The imager’s spectral range spans from 380-
800 nm, and with a 12-bit radiometric resolution, a dynamic range of 
4,096 different intensities may be assigned each wavelength, detailed in 
Johnsen et al. (2016) [33]. 

In order to record hyperspectral image transects, UHI-1 was 
mounted on a motorized aluminum rig overlying a 2.0 x 1.0 x 1.5 m 
white plastic tank filled with sand-filtered seawater. The rig had been 
specifically designed for laboratory-based UHI applications by Ecotone 
AS, and was capable of moving the imager back and forth at different 
altitudes and speeds. In terms of lighting, the rig was equipped with two 
250 W halogen lamps (220 V, one placed 13 cm away from the imager 
on each side) arranged in parallel to the light entrance slit of UHI-1. Once 
mounted, the imager was immersed to a scanning altitude of 40 cm. For 
each coralline algal species, the six specimens previously analyzed with 
the JAZ spectrometer were lined up directly beneath the imager’s path 
of movement. In addition to the coralline algae, a sanded, white PE 
reference disk was placed at the bottom of the tank for 𝑅(𝜆) conversion 
during post-processing. Upon setup completion, imaging adjustments 
and transect recordings were made using the software SpectralDAQ 
(Specim, Spectral Imaging Ltd., Finland). For the purpose of this survey, 
spectral resolution was set to 1 nm, while spatial resolution was set to 
800 pixels per slit frame. The imager’s frame rate was set to 44 Hz, 
whereas the exposure time was set to 21.7 ms. Transects were recorded 
by moving UHI-1 across the target area at a speed of approximately 6 
cm s–1. Recorded transects were stored as RAW files on an external hard 
drive. 

Hyperspectral image transects were processed using the software 
ENVI 5.3.1 (Exelis Visual Information Solutions Inc., USA) in 
combination with Excel and the statistical software R. RAW files 
containing spectral information in the form of digital counts were 
converted into 𝐿u(𝜆), using the ENVI plug-in HYPERMAP developed by 
Ecotone AS. The 𝐿u(𝜆)-converted transects had a spatial resolution of 
~0.75 mm, and from the transects, a 32-pixel region of interest (ROI, 
~0.18 cm2) was extracted from each specimen of each algal species. In 
addition, a 150-pixel ROI (~0.84 cm2) was extracted from the white PE 
reference disk. The mean optical signatures of all ROIs were imported 
into Excel, where specimen-specific algal 𝑅(𝜆) was calculated using Eq. 
4. The reason why 𝑅(𝜆) was calculated external to ENVI was to make 
𝑅(𝜆) estimates from UHI as comparable as possible to estimates from 
the JAZ spectrometer. For the purpose of these 𝑅(𝜆) calculations, 𝐿u(𝜆) 
from the 150-pixel PE reference ROI served as 𝐿u PE immersed(𝜆), 
whereas values for PE:S(𝜆) and 𝑅Spectralon(𝜆) were identical to the 

ones used in the JAZ spectrometer analysis. 𝑅(𝜆)-converted data were 
imported into the statistical software R, and based on intraspecific 𝑅(𝜆) 
values, mean 𝑅(𝜆) spectra (n = 6) with associated 95% confidence 
intervals were calculated for all algal species. 

B. Field-based spectral analysis 

Hyperspectral field data were collected during a polar night cruise to 
Svalbard in January 2016, with RV Helmer Hanssen (University of 
Tromsø). An underwater hyperspectral imager was deployed on 
NTNU’s ROV Minerva [35, 58], and underwater hyperspectral image 
transects were recorded at 25-30 m depth in Trygghamna (78°14'N 
13°50'E). Minerva was equipped with two 500 W high-intensity 
discharge (HID) lamps and a high-definition (HD) video camera for 
navigation and ground truthing. The observed benthic community was 
to a large degree dominated by coralline algae (no other macroalgal 
groups were observed), and based on video footage from Minerva, the 



algae were classified as likely belonging to the species P. tenue (Fig. 2). 
Optical signatures of n = 6 algal specimens were extracted from the 
hyperspectral data, and based on these, a mean 𝑅(𝜆) spectrum was 
calculated for the species. 

 

Fig. 2. ROV video footage from the January 2016 polar night cruise to 
Svalbard. The figure shows a frame grab from Trygghamna (78°14'N 
13°50'E) containing the coralline algal species Phymatolithon tenue. 

1. In situ UHI analysis 

Field transects were recorded using the underwater hyperspectral 
imager UHI-2 (2nd generation). UHI-2 was developed by Ecotone AS, 
and is compared to UHI-1 a larger solid-state sensor, designed to fit into 
a 50 x 15.8 cm cylindrical underwater housing depth rated to 1,000 m. 
UHI-2 requires power at 12 V, 5 A, and like for UHI-1, copper wiring and 
optical fiber bundles are responsible for power supply and data 
transmission. Hyperspectral slit frames are captured through an 8-mm 
fore lens, and projected onto a scientific complementary metal-oxide 
semiconductor (sCMOS) camera sensor. For this study, UHI-2’s lens 
aperture was set to f/2.8. The spectral range of UHI-2 is the same as for 
UHI-1 (380-800 nm), but the dynamic range is considerably larger: at 
16-bit radiometric resolution, 65,536 different intensities may be 
assigned each utilized wavelength, further detailed in Johnsen et al. 
(2016) [33]. 

Prior to hyperspectral image acquisition, UHI-2 was mounted on the 
port side of Minerva, with the light entrance slit oriented in port-
starboard direction. Two downward pointing, 250 W halogen lamps 
oriented 35 cm aft and fore of the imager provided UHI lighting. To 
permit conversion of hyperspectral field data into 𝑅(𝜆) during post-
processing, a spectrally neutral reference plaque was deployed on the 
seafloor. To accomplish this, a weighed down, black and white PE disk 
was brought to the survey site, using one of Minerva’s manipulator 
arms. Once the survey site had been reached, the PE disk was dropped 
onto a flat area of interest. Using the SpectralDAQ software, the spectral 
resolution of UHI-2 was set to 2 nm, while spatial resolution was set to 
800 pixels per slit frame. Frame rate and exposure time were set to 16 
Hz and 25 ms, respectively. Minerva was manually maneuvered in 
straight transect lines across the area of interest, and hyperspectral 
imagery was recorded at an altitude of 1-2 m. All hyperspectral image 
transects were stored as RAW files on an external hard drive. 

The obtained field data were processed in the same manner as data 
from the in vivo UHI analysis. In order to acquire algal 𝑅(𝜆) data 
comparable to that from the JAZ spectrometer and UHI-1, a 3.75 x 1.40 
m hyperspectral image transect recorded at ~25 m depth, at a steady 
altitude of 1.5 m was chosen for analysis. The chosen transect had a 
spatial resolution of ~1.75 mm, and contained both coralline algae and 
the PE reference disk. Using ENVI 5.3.1 and HYPERMAP, the RAW 
transect file was converted into 𝐿u(𝜆). 32-pixel ROIs (~0.98 cm2 per 
ROI) were extracted from six algal specimens, and a 150-pixel ROI 
(~4.59 cm2) was extracted from the white area of the PE reference disk. 

Mean optical signatures of all ROIs were exported to Excel, and 
converted into 𝑅(𝜆) using Eq. 4 according to the procedure described 
for the in vivo UHI analysis. 𝑅(𝜆)-converted algal data were exported to 
the statistical software R, where a mean 𝑅(𝜆) spectrum (n = 6) was 
calculated together with its 95% confidence interval. 

C. Statistical comparison of reflectance spectra 

In order to acquire a statistical overview of how different instruments 
and algal species related to each other spectrally, principal component 
analyses (PCAs) [59] were performed on three selections of 𝑅(𝜆) data 
within the interval of 400-700 nm. The three data selections chosen for 
analysis were interspecific JAZ spectrometer 𝑅(𝜆), inter-instrumental 
Phymatolithon tenue 𝑅(𝜆) and all obtained 𝑅(𝜆) data combined. With 
in situ data from UHI-2 being limiting, the PCAs had to be performed at 
approximately 2-nm spectral resolution. At this resolution, 155 
wavelength variables were available. Because different instruments 
utilized marginally different wavelengths for recording light spectra, 
wavelengths from one instrument had to be matched with the closest 
corresponding wavelengths of the others. In the current study, the 
maximal wavelength difference between instruments was 0.53 nm. The 
PCAs were performed in the statistical software R, using the prcomp 
function from the built-in stats package. In order to reduce the impact of 
wavelengths where 𝑅(𝜆) varied excessively between instruments (i.e. 
wavelengths were 𝑅(𝜆) estimates were considered to be erroneous), 
data were standardized to mean = 0 (centered mean) and variance = 1 
(scaled variance). The analyses were thus performed on correlation 
matrices. Results of the PCAs were visualized in biplots [60], using the 
ggbiplot function from the ggbiplot package available from GitHub 
(GitHub Inc., USA). In addition, the facto_summarize function from the 
factoextra package (GitHub) was used to quantify the relative 
contribution (%) of all wavelengths to variance explained by principal 
components (PCs) 1 and 2. 

D. Supervised classification of coralline algae 

Supervised classification of coralline algae in two hyperspectral 
image transects was carried out in ENVI. Both transects contained 
spectral data that had previously been used in the current study. The 
first transect chosen for classification had been used in the in vivo UHI-1 
analysis, and contained the coralline algal species C. officinalis, L. glaciale 
and P. lenormandii. The second transect chosen for classification had 
been used in the in situ UHI-2 analysis, and contained the coralline algal 
species P. tenue. The spectral data in both transects were in the form of 
𝐿u(𝜆). Although it is possible converting transects from 𝐿u(𝜆) to 𝑅(𝜆) 
in ENVI through radiative transfer modelling, the classifications were 
based on 𝐿u(𝜆). The reason for this was that previous 𝑅(𝜆) conversions 
had been performed external to ENVI (i.e. through Excel) and that an 
ENVI-based conversion could have produced species-specific 𝑅(𝜆) 
spectra dissimilar from earlier estimates. By keeping the transects in 
𝐿u(λ) form, classification could be carried out using the same coralline 
algal data that previously estimated 𝑅(𝜆) spectra had been based on.   

1. In vivo supervised classification 

Supervised classification of a 2.00 x 0.60 m, in vivo UHI-1 transect 
containing C. officinalis, L. glaciale and P. lenormandii (n = 6 specimens 
per species) was carried out to assess UHI’s ability to spectrally identify 
and distinguish between coralline algal species. A 32-pixel ROI had 
previously been extracted from each algal specimen in the transect to 
provide 𝐿u(𝜆) data for 𝑅(𝜆) estimation. The same ROIs were chosen to 
serve as species-specific training sites for the classification. For each 
species, the mean optical signature of 192 ROI pixels (32 pixels per 
specimen, times n = 6 specimens) thus provided a class to be highlighted 
in the rest of transect. In addition to the species-specific classification, a 



classification of coralline algae as a group was carried out for the same 
transect. For this classification, the mean optical signature of all 576 ROI 
pixels (192 pixels per species, times n = 3 species) served as the class to 
be highlighted. The statistical method chosen for the classifications was 
the spectral angle mapper (SAM), which is known to be suitable for 
classification of data of high spectral dimensionality [49]. In SAM, pixel 
spectra are treated as vectors in n-dimensional space, where n 
represents the number of wavelengths available. If the angle (radians) 
between a pixel spectrum and a training site spectrum falls within a 
user-defined maximum angle threshold, the pixel is classified as the 
corresponding OOI [61]. Thresholds were determined by visual 
photointerpretation, and following the algal classification procedure, 
both classifications were sieved to eliminate isolated pixels. Sieving in 
ENVI utilizes “blob grouping”, which looks at the neighboring 4 or 8 
pixels (pixel connectivity) to investigate whether a pixel is grouped with 
pixels belonging to the same class [62]. Pixel connectivity was in this 
case set to 8 pixels, whereas the minimum size of groups to keep was set 
to 16 pixels. Sieved classifications were exported from ENVI, and saved 
as TIFF files. 

2. In situ supervised classification 

To evaluate the ability of UHI to quantitatively assess coralline algal 
coverage in situ, supervised classification of P. tenue in a hyperspectral 
field transect was carried out in ENVI. The transect chosen was the 3.75 
x 1.40 m, 𝐿u(𝜆)-converted transect previously used in the in situ UHI-2 
analysis of P. tenue. By using this transect, classification could be carried 
out using the same data that had been used to estimate P. tenue’s in situ 
𝑅(𝜆) spectrum. The six 32-pixel, P. tenue ROIs previously extracted thus 
served as a 192-pixel training site, providing an optical class/fingerprint 
to be identified in the remainder of the transect. A variety of statistical 
classification methods exist for hyperspectral imagery, and in this case, 
five different algorithms were chosen: SAM [61], minimum distance 
[49], binary encoding [63], spectral information divergence (SID) [64] 
and parallelepiped [49]. Classification thresholds were determined by 
visual photo-interpretation, and post-classification, all five 
classifications were sieved to eliminate isolated pixels. The sieving was 
carried out with the same settings as for the in vivo supervised 
classification. Percentage coralline algal coverage was extracted from 
each sieved classification, and the results were saved as TIFF files. 

3. RESULTS 

A. Laboratory-based spectral analyses 

1. In vivo spectrophotometric pigment analysis 

All in vivo spectrophotometric data revealed considerable P. tenue 
absorbance within the interval of ~450-580 nm. The normalized 
absorbance spectrum is shown in Fig. 3. Peaks in absorbance at 497 and 
566 nm matched the in vivo absorbance maxima of the water-soluble 
phycobiliprotein R-PE [15-17]. 

2. In vitro HPLC pigment analysis 

The in vitro HPLC analysis identified the presence of chl a, lutein, 
zeaxanthin, β-carotene, fucoxanthin, chlorophyll c and chlorophyll b-
like pigments within the P. tenue extracts. Of these, chl a was by far the 
most abundant. Lutein was also present in considerable amounts, but 
the remaining pigments were only present in trace amounts. 
Normalized in vitro absorbance spectra of chl a and lutein are shown in 
Fig. 4. Chl a displayed strong absorbance peaks at 430 and 663 nm, and 
a shoulder at 413 nm. In addition, a notable satellite band absorbance 
peak was observed at 616 nm. For lutein, absorbance peaked at 448 and 
476 nm, and a discernible shoulder was present at 426 nm. 

 

Fig. 3. Mean in vivo normalized absorbance spectrum (n = 6) of the 
coralline algal species Phymatolithon tenue. The gray shaded area 
represents the associated 95% confidence interval. Vertical lines 
represent in vivo absorbance maxima of the pigment R-phycoerythrin 
(R-PE) [15-17]. 

 

Fig. 4. Mean in situ normalized absorbance spectra (n = 6) of the 
Phymatolithon tenue pigments chlorophyll a (Chl a) and lutein. Gray 
shaded areas represent associated 95% confidence intervals. 

3. In vivo spectrometer analysis 

The in vivo spectrometer analysis produced coralline algal 𝑅(𝜆) 
spectra with distinguished peaks and dips [Fig. 5(a)]. Except for slight 
amounts of noise present between ~400-440 nm, all calculated spectra 
appeared clean (high signal-to-noise ratio), with 𝑅(𝜆) intensities 
ranging from 0.025-0.25. The main difference between species 
appeared to be 𝑅(𝜆) intensity, as the spectral shapes of all algal spectra 
were highly similar. Phymatolithon lenormandii displayed the greatest 
overall 𝑅(𝜆), followed by P. tenue, L. glaciale and C. officinalis, 
respectively. Corallina officinalis reflected considerably less light than 
the other three species within the interval of ~580-680 nm, and was 
thus the species standing out to the greatest extent. Regarding coralline 
algal light-harvesting capabilities, the four most pronounced 𝑅(𝜆) dips 
were situated at approximately 438, 497, 566 and 679 nm. These dips 



corresponded to the in vivo absorbance maxima of R-PE (497 and 566 
nm) [15-17] and chl a (438 and 679 nm) [9, 10], and were prominent in 
the 𝑅(𝜆) spectra of all four species. The weaker 𝑅(𝜆) dip at ~629 nm 
corresponded to the in vivo satellite band absorbance peak of chl a [9]. 

4. In vivo UHI analysis 

Between 500-700 nm, in vivo 𝑅(𝜆) spectra from UHI-1 were 
comparable to those from the spectrometer analysis [Fig. 5(b)]. 
Coralline algal 𝑅(𝜆) in the blue-wavelength region (<500 nm) did 
however differ considerably between the two instruments. For these 
wavelengths, UHI-1 𝑅(𝜆) values appeared greatly overestimated, 
peaking at ~0.58 between 415-420 nm. Disregarding the results from 
the blue-wavelength region, all 𝑅(𝜆) intensities fell within the range of 
0.1-0.25. As could be expected based on the results of the spectrometer 
analysis, all algal species produced spectra with highly similar shapes. 
Consequently, 𝑅(𝜆) intensity once again appeared to be the main factor 
distinguishing the species. The greatest overall 𝑅(𝜆) was displayed by 
the Phymatolithon spp., of which P. tenue was marginally more 
reflective. Lithothamnion glaciale and C. officinalis were the least 
reflective species, with C. officinalis displaying the lowest overall 𝑅(𝜆). 
Relative to the other species, C. officinalis yielded particularly low 𝑅(𝜆) 
between ~590-680 nm. In agreement with the in vivo spectrometer 
analysis results, this made C. officinalis the most spectrally conspicuous 
species. Marked 𝑅(𝜆) dips situated at approximately 507, 575, 635 and 
685 nm were observed in the spectra of all species. The observed dips 
corresponded to the absorbance of R-PE (507 and 575 nm) [15-17] and 
chl a (635 and 685 nm) [9, 10], but were red-shifted 5-10 nm compared 
to the pigments’ expected in vivo absorbance peaks. As the obtained 
UHI-1 𝑅(𝜆) spectra invariably appeared red-shifted, the spectral shift 
was attributed to erroneous calibration of the instrument. 

B. Field-based spectral analysis 

1. In situ UHI analysis 

Across all wavelengths, the UHI-2 in situ 𝑅(𝜆) spectrum of P. tenue 
[Fig. 5(c)] was highly comparable to its equivalent spectrum from the in 
vivo spectrometer analysis. Besides from minor irregularities within the 
intervals of ~400-450 nm and ~540-550 nm, the spectrum appeared 
clean (high signal-to-noise ratio), with expected levels of 𝑅(𝜆) intensity 
(0.1-0.3). The greatest dips in 𝑅(𝜆) were observed at 437, 497, 566 and 
678 nm, once again corresponding to the in vivo absorbance maxima of 
R-PE (497 and 566 nm) [15-17] and chl a (437 and 678 nm) [9, 10]. At 
~629 nm, a weaker 𝑅(𝜆) dip corresponding to chl a’s in vivo satellite 
band absorbance peak [9] was also present. 

C. Statistical comparison of reflectance spectra 

The PCAs highlighted spectral differences between coralline algal 
species, and the results of the interspecific JAZ spectrometer PCA are 
shown in Fig. 6. In the corresponding biplot [Fig. 6(a)], all wavelength 
variables appeared to be strongly correlated, and PCs 1 and 2 
respectively explained 95.9 and 2.9% of the variance. The groups of L. 
glaciale, P. lenormandii and P. tenue were clustered closely together, 
with significantly overlapping 95% confidence intervals. Corallina 
officinalis was the only group with an isolated 95% confidence interval, 
and accordingly, the only species with a potentially distinct optical 
signature. Figure 6(b) shows that variance explained by PC1 was close 
to equally distributed between wavelengths. Analysis of PC2 did 
however reveal that certain wavelengths had greater impacts than 
others [Fig. 6(c)], and especially the intervals of ~520-580 nm and 
~600-660 nm had marked contributions to interspecific 𝑅(𝜆) variance. 

 

 

Fig. 5. Mean JAZ spectrometer (a), UHI-1 (b) and UHI-2 (c) reflectance 
[𝑅(𝜆)] spectra (n = 6) of four coralline algal species: Corallina officinalis, 
Lithothamnion glaciale, Phymatolithon lenormandii and Phymatolithon 
tenue. JAZ spectrometer and UHI-1 𝑅(𝜆) spectra were obtained in vivo, 
and included all four species. UHI-2 𝑅(𝜆) spectra were obtained in situ, 
and only included P. tenue. Gray shaded areas represent the 𝑅(𝜆) 
spectra’s associated 95% confidence intervals. Vertical lines represent 
in vivo absorbance maxima of the pigments chlorophyll a (Chl a) [9, 10] 
and R-phycoerythrin (R-PE) [15-17]. The blue shaded area in panel (b) 
represents wavelengths where 𝑅(𝜆) estimates from UHI-1 are 
considered to be overestimated (i.e. erroneous). 

The PCAs also highlighted spectral differences between instruments, 
and results of the inter-instrumental Phymatolithon tenue PCA are 
shown in Fig. 7. In the associated biplot [Fig. 7(a)], it could be observed 
that blue-green wavelengths appeared correlated with PC1, and that 
far-red wavelengths appeared correlated with PC2. Regarding PC 
significance, PCs 1 and 2 explained 76.6 and 22.3% of the total 𝑅(𝜆) 
variance, respectively. Of the three instrument groups, the groups of the 
JAZ spectrometer and UHI-2 were clustered most closely together. The 
UHI-1 group was completely isolated from the others, and differed 
mainly in the blue wavelengths. Figure 7(b) shows that wavelengths 
within the interval of ~460-580 nm were the main contributors to the 
variance explained by PC1. This corresponds to colors in the blue-green 
region of the spectrum. In addition, peaks in PC1 variance contribution 
were observed at approximately 620 and 670 nm. For PC2, wavelength 
contribution was greatest between ~590-700 nm, with peaks at ~595 



nm, ~645 nm and in the far-red region of the spectrum [Fig. 7(c)]. 
Taking into consideration the distinct wavelength contributions to both 
PCs, the inter-instrumental 𝑅(𝜆) variance appeared to be less uniformly 
distributed than the variance in the interspecific PCA (Fig. 6). 

 

Fig. 6. Results of the principal component analysis (PCA) of interspecific 
JAZ spectrometer in vivo reflectance [𝑅(𝜆)]. The analysis included 𝑅(𝜆) 
data from four coralline algal species: Corallina officinalis, Lithothamnion 
glaciale, Phymatolithon lenormandii and Phymatolithon tenue (n = 6 
specimens per species). Panel (a) shows a biplot of the PCA results. 
Points represent principal component (PC) scores [individual 𝑅(𝜆) 
measurements], ellipses represent group-specific 95% confidence 
intervals, and colored arrows represent the different wavelength 
variables (n = 155). Arrows point in the direction of increasing 𝑅(𝜆) 
intensity, and are colored according to their corresponding 
wavelengths. Panels (b) and (c) show relative contributions (%) of the 
wavelength variables to PCs 1 and 2. Red dashed lines represent 
expected wavelength contributions if contributions were uniform. 

 

Fig. 7. Results of the principal component analysis (PCA) of inter-
instrumental Phymatolithon tenue reflectance [𝑅(𝜆)]. The analysis 
included 𝑅(𝜆) data from three different instruments: the JAZ 
spectrometer in vivo, UHI-1 in vivo and UHI-2 in situ (n = 6 specimens 
per instrument). Panel (a) shows a biplot of the PCA results. Panels (b) 
and (c) show relative contributions (%) of the wavelength variables (n 
= 155) to PCs 1 and 2. A comprehensive description of the figure 
elements is presented in the Fig. 6 caption. 

The final PCA encompassed 𝑅(𝜆) data from all species and 
instruments combined, and the results are shown in Fig. 8. Overall, the 
results were highly comparable to those of the inter-instrumental 
Phymatolithon tenue PCA (Fig. 7). Based on the biplot [Fig. 8(a)], PCs 1 
and 2 appeared correlated with blue-green and red wavelengths, 
respectively. PC1 explained 81.4% of the total variance, whereas PC2 
explained 16.4%. Spectral measurements from the JAZ spectrometer 
and UHI-1 were assembled in separate clusters, and blue wavelengths 
appeared to be the main variables separating the two instruments. The 



P. tenue group of UHI-2 had a slight overlap with the JAZ spectrometer 
cluster, but was separated from the measurements of UHI-1. Within the 
clusters of the JAZ spectrometer and UHI-1, the groups of L. glaciale, P. 
lenormandii and P. tenue were closely linked, with overlapping 95% 
confidence intervals. In accordance with the results of the interspecific 
JAZ spectrometer PCA [Fig. 6(a)], the only species with isolated or near-
isolated groups was C. officinalis. As shown in Fig. 8(b), blue-green 
wavelengths within the interval of ~450-580 nm were the main 
contributors to the variance explained by PC1. Furthermore, peaks in 
variance contribution to PC1 were also observed at ~620 and ~670 nm. 
Figure 8(c) shows the different wavelengths’ contribution to the 
variance explained by PC2. Here, contribution once again peaked at 
~595 nm, ~645 nm and in the far-red region of the spectrum. The 
similarity between the results of the inter-instrumental Phymatolithon 
tenue PCA (Fig. 7) and the combined reflectance PCA suggests that the 
use of different instruments was a greater source of 𝑅(𝜆) variance than 
coralline algal species. 

 

Fig. 8. Results of the principal component analysis (PCA) of all 
reflectance [𝑅(𝜆)] data combined. The analysis included 𝑅(𝜆) data 
from four coralline algal species: Corallina officinalis, Lithothamnion 
glaciale, Phymatolithon lenormandii and Phymatolithon tenue. The 𝑅(𝜆) 
data was acquired using three different instruments: the JAZ 
spectrometer in vivo, UHI-1 in vivo and UHI-2 in situ (n = 6 specimens 
per species, per instrument). Panel (a) shows a biplot of the PCA results. 
Panels (b) and (c) show relative contributions (%) of the wavelength 
variables (n = 155) to PCs 1 and 2. A comprehensive description of the 
figure elements is presented in the Fig. 6 caption. 

An overview of percentage variance explained by PCs 1-3 in all PCAs 
is shown in Table 1. In all analyses, the first three PCs explained >99% 
of the total 𝑅(𝜆) variance. Wavelength variables were most correlated 
in the interspecific JAZ spectrometer PCA, where PC1 explained close to 
96% of the total variance. In contrast, the smallest degree of correlation 
was found in the inter-instrumental Phymatolithon tenue PCA, where 
<77% of the total variance was explained by PC1. Despite the high 
degree of correlation between variables in all PCAs, wavelength 
contribution to variance was, as shown in Figs. 6-8, not uniform. A 
noticeable trend [Figs. 6(c), 7(b-c) and 8(b-c)] was that the contribution 
appeared to coincide with the spectral properties of R-PE (Fig. 3) and chl 
a (Fig. 4). The impacts of specific pigments to 𝑅(𝜆) variance are 
reviewed in discussion section 4.A. and C. 

Table 1.  Percentage coralline algal reflectance [𝑹(𝝀)] variance 
explained by principal components (PCs) 1-3 in three PCAs.  

PC# 

Percentage 𝑅(𝜆) variance explained by PCs 1-3 

Interspecific 
JAZ spectrometer 

PCA 

Inter-
instrumental 

Phymatolithon 
tenue PCA 

Combined 
reflectance data 

PCA 

1 95.9 76.6 81.4 
2 2.9 22.3 16.4 
3 0.8 0.8 1.5 

Sum 99.6 99.7 99.3 

D. Supervised classification of coralline algae 

1. In vivo supervised classification 

Results of the in vivo supervised classification of coralline algae are 
displayed in Fig. 9. Figure 9(a) shows the training sites chosen to 
represent the spectral characteristics of C. officinalis, L. glaciale, P. 
lenormandii and coralline algae as a group. The results of the species-
specific classification are shown in Fig. 9(b). Corallina officinalis, L. 
glaciale, and P. lenormandii were estimated to cover 0.41, 1.07 and 
0.78% of the total transect area (2.26% combined), respectively. 
Although a trend in correct classification appeared to be present, the 
species-specific classification was unable to accurately distinguish 
between species. Corallina officinalis was partially misclassified as L. 
glaciale and P. lenormandii on two separate occasions. Furthermore, L. 
glaciale was frequently misclassified as P. lenormandii, and vice versa. 
Lithothamnion glaciale and P. lenormandii appeared to resemble each 
other more than C. officinalis, in that neither of the former two were 
misclassified as the latter to a considerable extent (four L. glaciale 
specimens were partially misclassified as C. officinalis, whereas P. 
lenormandii never was misclassified as C. officinalis). The degree to 
which classification suggested false negatives for regions corresponding 
to coralline algae, and false positives for regions not corresponding to 
coralline algae was minor, but present for all three species classes. 
Regarding the classification of coralline algae as a group [Fig. 9(c)], the 
overall pattern of classification was similar to that of Fig. 9(b). Compared 



to the species-specific classification, group classification did however 
appear to produce a smaller number of false negatives, and a larger 
number of false positives. As a group, coralline algae were estimated to 
cover 3.95% of the total transect area, which was 1.69 percentage points 
higher than the combined estimate of the species-specific classifications. 

 

Fig. 9. Supervised classification of coralline algae in vivo, based on 
upwelling radiance [𝐿u(𝜆)] from UHI-1. The 2.00 x 0.60 m 
hyperspectral image transect was recorded in a scanning tank. Species 
classifications were based on the mean 𝐿u(𝜆) signatures (n = 192 pixels 
per species) of Corallina officinalis (red), Lithothamnion glaciale (green) 
and Phymatolithon lenormandii (blue). The group classification was 
based on the mean 𝐿u(𝜆) signature (n = 576 pixels) of all three species 
combined (pink). Panel (a) shows the unclassified transect with training 
sites indicated by small dots (16 pixels per dot) highlighted according to 
species. Panel (b) shows the results of spectral angle mapper 
classification of different coralline algal species. Classified pixels are 
colored according to species. Panel (c) shows the results of spectral 
angle mapper classification of coralline algae as a group. Pixels classified 
as coralline algae are highlighted in pink. Estimated transect coverage 
(%) is shown for each class. 

2. In situ supervised classification 

Results of the in situ supervised classification displayed the potential 
of UHI as a coralline algal identification and mapping tool (Fig. 10). 
Estimates of coralline algal coverage in the 𝐿u(𝜆)-converted UHI-2 
transect [Fig. 10(a)] varied between classification algorithms, but 
always fell within the range of 5-10% of the total transect area. With an 
estimate of 10%, the binary encoding algorithm predicted the greatest 
coralline algal coverage [Fig. 10(d)]. SAM closely followed, with a 
coverage estimate of 8.79% [Fig. 10(b)]. The minimum distance [Fig. 
10(c)], SID [Fig. 10(e)] and parallelepiped [Fig. 10(f)] algorithms 
predicted coralline algae to be less abundant, with coverage estimates 
of 6.50, 5.98 and 5.69% of the total transect area, respectively. Based on 
visual interpretation, the SAM and minimum distance algorithms 
appeared to provide the most accurate areal coverage estimates (i.e. the 
most favorable tradeoffs between coverage and misclassified pixels). 
However, none of the statistical classification methods were perfect. As 
can be observed in Fig. 10, the spectral characteristics of the transect 

light field appeared to shift from blue to green, from left to right. This 
was caused by Minerva’s HID lamps running simultaneously with the 
UHI halogen lamps. Illumination unevenness likely influenced 
classification at the outer margins of the transect, and thus, ultimately, 
the estimates of coralline algal areal coverage. 

 

Fig. 10. Supervised classification of coralline algae in situ, based on 
upwelling radiance [𝐿u(𝜆)] from UHI-2. Classification was based on the 
mean 𝐿u(𝜆) signature (n = 192 pixels) of Phymatolithon tenue. Panel (a) 
shows the unclassified transect with training sites (32 pixels within each 
circle) highlighted in red. Panels (b-f) show the classification results of 
four different algorithms: spectral angle mapper [SAM; (b)], minimum 
distance (c), binary encoding (d), spectral information divergence [SID; 
(e)] and parallelepiped (f). Pixels classified as P. tenue are highlighted in 
red, and the estimated coralline algal coverage (%) from each algorithm 
is shown below its respective panel. 

4. DISCUSSION 

A. Coralline algal pigments 

Of the eight pigments discovered within the P. tenue extracts, two 
pigments appeared to be dominating coralline algal light absorbance: R-
PE and chl a. Phycoerythrins are known to be the most abundant 
phycobiliproteins in many red algal species [12], and for macrophytic 
red algae, R-PE is thought to predominate [14]. For this reason, it came 
as no surprise that marked dips in 𝑅(𝜆) (at approximately 497 and 566 
nm) corresponding to the red algal in vivo absorbance maxima of R-PE 
[9, 10] could be observed in the spectra of all species (Fig. 5). The 
prevalence of R-PE was further verified by the in vivo absorbance 
spectrum of isolated, water-soluble P. tenue phycobiliproteins (Fig. 3), 
which closely resembled the absorbance spectrum of pure R-PE [15-
17]. The lipophilic pigment fraction (fat soluble fraction, using organic 
solvents) of red algae is typically dominated by chl a and β-carotene [9]. 
Both pigments were detected in the P. tenue HPLC extracts, but chl a was 
considerably more abundant. Based on this information, dips 



corresponding to the in vivo absorbance maxima of chl a were expected 
to be present in the coralline algal 𝑅(𝜆) spectra. The in vitro absorbance 
spectrum of chl a (Fig. 4) displayed absorbance maxima at 430 and 663 
nm, and a notable satellite band absorbance peak at 616 nm. Accounting 
for in vitro wavelength shifts [65], this amounts to in vivo absorbance 
maxima at approximately 438 and 677 nm, and an in vivo satellite band 
absorbance peak at approximately 630 nm. These wavelengths closely 
match the typical in vivo absorbance maxima of chl a in red algae [9, 10], 
and as expected, corresponding 𝑅(𝜆) dips were prominent across all 
coralline algal species (Fig. 5). In addition to R-PE and chl a, lipophilic 
lutein was found to be present in P. tenue in considerable amounts. As 
the main dips in 𝑅(𝜆) could be attributed to R-PE and chl a, the 
absorptive effects of lutein were less conspicuous. The HPLC revealed 
considerable in vitro lutein absorbance in the blue part of the spectrum, 
with peaks at 448 and 476 nm (Fig. 4). Considering that overall 𝑅(𝜆) 
was low in this part of the spectrum [Fig. 5(a)], a reasonable hypothesis 
is thus that chl a and lutein harvested blue wavelengths in concert, but 
that the former was more abundant and overshadowed the specific dips 
attributed to lutein absorbance. 

B. Overestimated in vivo UHI reflectance 

Findings by Hochberg et al. (2003) [50] suggest that coralline algal 
𝑅(𝜆) of visible wavelengths typically ranges from 0-0.3. This range is 
exactly what was found for most wavelengths in the spectrometer and 
UHI spectra (Fig. 5), suggesting that the method used for 𝑅(𝜆) 
conversion (Eq. 4) was adequate. There was however one notable 
exception: the blue-wavelength region of the UHI-1 𝑅(𝜆) spectra [Fig. 
5(b)]. Blue-wavelength peak values were nearly twice as great as what 
could be expected based on the Hochberg et al. study [50], which 
indicates an error in measurement or the experimental setup. 
Overestimated 𝑅(𝜆) of blue wavelengths had not been a problem in 
previous laboratory-based UHI surveys by Ecotone AS [66]. The light 
source used by Ecotone AS for similar rig and tank setups had however 
differed considerably from the one used in this study: whereas two 250 
W halogen lamps provided illumination during the current in vivo UHI 
analysis, two 50 W halogen lamps had been used in equivalent surveys 
by Ecotone AS. It is thus possible that 500 W was an excessive amount 
of light in the confined space of the UHI tank. At a scanning distance of 
40 cm, a significant proportion of this light was likely scattered 
randomly within the tank, and provided entry through the UHI slit, 
scattered light could have caused biased and overestimated UHI 
measurements by adding to the values of light reflected from the object 
directly beneath the imager. This claim is substantiated by 𝑅(𝜆) 
intensity being greater for UHI-1 estimates than for JAZ spectrometer 
estimates (Fig. 5). Further indications supporting the hypothesis can be 
found in the fact that shorter wavelengths of light are scattered to a 
larger degree than longer wavelengths [67]. In addition, shorter 
wavelengths of visible light are typically absorbed by water to a far 
lesser extent than longer wavelengths [67]. This would imply that the 
proportion of blue-wavelength light scattered was larger than the 
proportion of green-to-red-wavelength light scattered. Following this 
reasoning, shorter-wavelength stray light entering the UHI slit would 
have the greatest impact on measurements, which is exactly what was 
observed. Excessive lighting may thus have been the reason for the 
overestimated UHI-1 𝑅(𝜆), and for future studies, light source intensity 
should be downscaled during laboratory-based UHI surveys. 

C. Interspecific spectral differences 

𝑅(𝜆) intensity appeared to be the main spectral characteristic 
separating coralline algal species. This could be observed within both 
the JAZ spectrometer [Fig. 5(a)] and the UHI-1 [Fig. 5(b)] 𝑅(𝜆) spectra, 
where spectra of different species simply appeared to be intensity-
shifted versions of the same spectrum. The interspecific JAZ 

spectrometer PCA showed that wavelength variables were greatly 
correlated, and that different wavelengths were contributing 
approximately equally to the variance explained by PC1 [Fig. 6(b)]. In 
previous biological studies where spectral data have been analyzed 
using PCA, PC1 has traditionally been interpreted as brightness, i.e. 
differences in 𝑅(𝜆) intensity between measurements [68-70]. Based on 
this interpretation, the interspecific PCA results thus showed that 
species differences in brightness were uniformly distributed between 
wavelengths, implying that spectral brightness differences between 
species were highly correlated. This corresponds well with the shape-
wise, near-identical appearance of the spectra displayed in Fig. 5(a). 
Moreover, the fact that PC1 explained ~96% of the total variance in the 
interspecific PCA (Table 1) confirmed that 𝑅(𝜆) intensity was the 
primary spectral characteristic distinguishing coralline algal species.  

In terms of the reflective order of coralline algal species, similar 
patterns were observed within the JAZ spectrometer and the UHI-1 
data. For both instruments, the two Phymatolithon spp. displayed the 
greatest overall 𝑅(𝜆), followed by L. glaciale and C. officinalis, 
respectively. The only ambiguity was the reflective order of the former 
two. Whereas P. lenormandii was marginally more reflective when 
measured with the JAZ spectrometer [Fig. 5(a)], the opposite was true 
for UHI-1 [Fig. 5(b)]. Considering the highly controlled conditions under 
which the JAZ spectrometer measurements were made, it is likely the 
order displayed in Fig. 5(a) that is correct. The reason why UHI-1 
produced a different order could have been that the assumed scanning 
distance was slightly off, which may have led to over- or underestimated 
measurements for one of the species. Nonetheless, differences in 
intensity order were marginal, and the overall relationship between 
species 𝑅(𝜆) was very much consistent. 

Looking past correlated differences in 𝑅(𝜆) intensity between 
coralline algal species, the interspecific JAZ spectrometer PCA 
additionally revealed that certain wavelengths appeared to distinguish 
species to a greater extent than others. This was evident in the 
wavelength contribution plot for PC2, where especially wavelengths 
between ~520-580 nm (green-yellow) and, to some degree, 
wavelengths between ~600-660 nm (orange-red) dominated [Fig. 
6(c)]. An interesting aspect of these findings is that the most dominant 
region of variance contribution was the green part of the spectrum. This 
region coincided well with the absorbance spectrum of R-PE both in 
terms of position and spectral shape (Fig. 3), which suggests that 
coralline algal R-PE content could serve as a means of separating species 
spectrally. Regarding the orange-red region of the spectrum, 
wavelength contribution to variance appeared to be inversely related to 
the in vivo red algal absorbance of chl a [9]. The position and shape of the 
spectral wavelength contribution in this region also corresponded well 
with the region C. officinalis 𝑅(𝜆) appeared to differ the most from the 
equivalent 𝑅(𝜆) of other species [Figs. 5(a-b)]. 

Upon establishing that some spectral differences appeared to exist 
between coralline algal species, an intriguing question became whether 
species could be spectrally distinguished with a sufficient degree of 
statistical certainty. Based on the biplot displayed in Fig. 6(a), the 
answer to this question is most likely no; at least with the available 𝑅(𝜆) 
data. In the interspecific JAZ spectrometer PCA, the groups of L. glaciale, 
P. lenormandii and P. tenue were clustered closely together, and had 
largely overlapping 95% confidence intervals [Fig. 6(a)]. This suggests 
that the three species were closely related spectrally, which agrees well 
with the appearance of their associated 𝑅(𝜆) spectra in Figs. 5(a-b). The 
only species that arguably could be spectrally distinguished from the 
rest, was C. officinalis. The C. officinalis group displayed a discrete optical 
signature in the Fig. 6(a) biplot, but was nonetheless positioned in the 
immediate vicinity of the L. glaciale group. Based on the current data set, 
none of the coralline algal species could thus be regarded as completely 
distinct spectrally. This does however not mean that statistically 



significant differences do not exist. It is for instance important to 
acknowledge that n = 6 is a small sample size, and that photo 
acclimatization of the investigated specimens should have been 
elucidated with respect to pigment composition and bio-optical 
characteristics [71]. A considerable shortcoming of the current study 
regarding photo-acclimatizational effects, was that the coralline algae 
had been sampled from different depths and light regimes: C. officinalis, 
L. glaciale and P. lenormandii had been sampled from shallow waters (1-
5 m) at temperate latitudes (63°N) during spring, whereas P. tenue had 
been sampled from deeper waters (~25 m) at Arctic latitudes (78°N) 
during the period of midnight sun. Ideally, all collected algae should have 
been acclimatized to the same light regime, so that intrinsic spectral 
properties truly would have been displayed. This, in combination with a 
larger sample size, could have produced different results. In the future, 
studies fulfilling these requirements should be carried out to further 
investigate if specific spectral characteristics, such as overall 𝑅(𝜆) 
intensity or coralline algal content of R-PE, could serve as means of 
differentiating species statistically significantly.  

D. Inter-instrumental spectral differences 

Much like interspecific spectral variance, inter-instrumental spectral 
variance appeared to be dominated by differences in 𝑅(𝜆) intensity. 
Even when disregarding the blue-wavelength region (400-500 nm) 
where UHI-1 𝑅(𝜆) was significantly overestimated, the spectra 
displayed in Fig. 5 show that estimated 𝑅(𝜆) intensity close to 
invariably was greater for UHI measurements than for spectrometer 
measurements. Using the same PC interpretation [68-70] as for the 
interspecific PCAs, the inter-instrumental Phymatolithon tenue PCA (Fig. 
7) confirmed that 𝑅(𝜆) intensity truly was the main characteristic 
distinguishing measurements from different instruments, in that PC1 
explained ~77% of the inter-instrumental 𝑅(𝜆) variance (Table 1).  

Although overall 𝑅(𝜆) intensity could be considered the main 
spectral characteristic explaining inter-instrumental variance, 
wavelengths did not contribute equally to the differences between 
instruments. Results of the inter-instrumental Phymatolithon tenue PCA 
(Fig. 7) showed that wavelength contribution to the variance explained 
by PC1 [Fig. 7(b)] was not uniform like that of the interspecific PCA, but 
resembled an inverted depiction of the coralline algal 𝑅(𝜆) spectra 
displayed in Fig. 5 (“pseudo-absorbance” of pigments). Blue-green 
(~460-580 nm) and, to some degree, bright-deep red (peaks at ~620 
and ~670 nm) wavelengths contributed the most to variance explained 
by PC1. These wavelengths respectively correspond to regions of 
significant absorbance by R-PE and chl a (Figs. 3-4), which suggests a 
link between inter-instrumental variance and spectral regions of 
considerable light absorption [i.e. low 𝑅(𝜆)]. 

Based on the 𝑅(𝜆) spectra displayed in Fig. 5, a marked difference 
between spectrometer and UHI results appeared to be the estimated 
lower values of coralline algal 𝑅(𝜆). Whereas JAZ spectrometer data 
estimated coralline algal 𝑅(𝜆) of certain wavelengths to be as low as 
~0.025, equivalent UHI data never estimated 𝑅(𝜆) to be lower than 
~0.1. The reason for this could have been backscattered light adding to 
the true values of reflected light during UHI measurements. As the 
distance between sensor and OOI typically is greater for UHI 
measurements than for spectrometer measurements, there 
consequently is a greater water volume available for light to be 
backscattered during UHI surveys. Increased backscatter will in 
combination with the strong attenuation of light in water [31] result in 
a reduced signal-to-noise ratio, which potentially could affect 
measurements. Assuming that light backscatter by water and its 
constituents is constant regardless of the brightness of the object 
beneath the imager, the relative effects of backscatter will be greater 
when measuring darker objects. This is simply because backscattered 
light will make up a larger fraction of the total light entering the sensor 

when the object beneath the imager absorbs light strongly. Although 
this example describes the phenomenon in relation to overall 
brightness, the same principle can be applied to hyperspectral 
measurements: assuming that wavelength-specific backscatter is 
constant regardless of the spectral properties of the OOI, the relative 
effects of backscatter on measured spectra will typically be greater for 
wavelengths strongly absorbed by the OOI. By the reasoning of this 
hypothesis, UHI measurements should produce 𝑅(𝜆) spectra where 
𝑅(𝜆) is overestimated for all wavelengths due to the elevated 
backscatter associated with greater scanning distance. The degree of 
overestimation should however be greater for wavelengths strongly 
absorbed by the OOI, as backscatter will make up a larger fraction of the 
light measured at these wavelengths. Compared to an equivalent 𝑅(𝜆) 
spectrum obtained using a spectrometer, a UHI 𝑅(𝜆) spectrum can thus 
be expected to be upward-shifted, with a reduced lower-intensity range 
[especially in spectral regions where the given OOI displays its 
minimum 𝑅(𝜆)]. If the biased blue-wavelength region of UHI-1’s 𝑅(𝜆) 
spectra is disregarded, the postulated hypothesis fits exceptionally well 
with the results displayed in Fig. 5, and accounts for inter-instrumental 
𝑅(𝜆) differences in both overall intensity and lower intensity range. The 
hypothesis is further substantiated by the results of the inter-
instrumental Phymatolithon tenue PCA, in which inter-instrumental 
variance was shown to be greatest for wavelengths where coralline 
algal pigments are known to absorb light strongly [Fig. 7(b)]. What can 
be concluded from these findings, is that a given OOI’s apparent optical 
signature may be influenced by the distance between the object and the 
sensor. This does not necessarily mean that UHI-obtained spectra are 
inferior to spectrometer spectra obtained at short distances, but rather 
that spectra obtained from the two different techniques might not be 
directly comparable. For future, multi-instrumental studies of spectral 
characteristics in the marine environment, differences between 
instruments should be accounted for. Algorithms for backscatter 
compensation as a function of distance (e.g. the formulae presented by 
Maritorena et al. [47]) should be applied and further developed. For 
UHI, an accurate radiative transfer model synchronized with the 
position and altitude of the instrument platform may serve as a better 
means of obtaining true 𝑅(𝜆) than reference disk-based conversion. 

The fact that wavelength contribution to variance was less uniformly 
distributed in the inter-instrumental PCA [Fig. 7(b)] than in the 
interspecific PCA [Fig. 6(b)] suggests that instrument used was a greater 
source of variance than coralline algal species investigated. This claim is 
further supported by the biplots, where species-specific measurement 
clusters were shown to overlap to a large degree [Fig. 6(a)], whereas 
instrument-specific clusters hardly overlapped at all [Fig. 7(a)]. Results 
of the combined reflectance data PCA (Fig. 8) provided conclusive 
evidence that overall variance in the current data set was indeed 
dominated by the effects of instrument used. The wavelength 
contribution patterns of the combined reflectance PCA [Figs. 8(b-c)] 
were nearly identical to the wavelength contribution patterns of the 
inter-instrumental Phymatolithon tenue PCA [Figs. 7(b-c)], which 
implies a variance pattern dominated by inter-instrumental differences. 
This could also be observed in the biplot of the combined reflectance 
PCA, where interspecific measurements from the same instrument 
were clustered more closely together than inter-instrumental 
measurements of the same species [Fig. 8(a)]. Although overestimated 
𝑅(𝜆) of blue wavelengths and red-shifted 𝑅(𝜆) spectra associated with 
the laboratory-based UHI-1 measurements undoubtedly reduced the 
accuracy of data obtained from UHI-1 and possibly led to overestimated 
inter-instrumental differences, the findings presented in this paragraph 
suggest that interspecific spectral differences may be interpreted in a 
biased manner if species are spectrally analyzed using different 
instruments and setups. If the focus is documenting the spectral 
relationship between species, measurements should therefore ideally 



be recorded using the same instrument, under the same set of 
conditions. 

E. Supervised classification and the potential of UHI-based 
mapping of coralline algae 

Not surprisingly, the results of the in vivo supervised classification of 
different species fit well with the results of the interspecific PCA. In the 
biplot displayed in Fig. 6(a), all coralline algal species analyzed were 
shown to have closely related optical signatures (especially L. glaciale 
and P. lenormandii). Based on these findings, one could expect 
classification to have difficulty in distinguishing between coralline algal 
species. As shown in Fig. 9(b), this was exactly the case. Despite an 
evident pattern in correct classification, species were frequently 
misclassified. Corallina officinalis was misclassified to the smallest 
extent, but was nonetheless mistaken for both L. glaciale and P. 
lenormandii. Lithothamnion glaciale was regularly misclassified as P. 
lenormandii, and on four occasions as C. officinalis. Phymatolithon 
lenormandii was never misclassified as C. officinalis, but frequently as L. 
glaciale. Considering all this, and particularly that the largest degree of 
misclassification did in fact occur between L. glaciale and P. lenormandii, 
the biplot in Fig. 6(a) served as an excellent predictor for classification 
accuracy. It is possible that increasing the classification threshold for 
pixels to keep could have reduced the degree of misclassification, but 
doing so would also have resulted in an increased number of 
unclassified coralline algal pixels (i.e. false negatives). As false negatives 
were already present in the current species classification [Fig. 9(b)], the 
chosen threshold could therefore be considered a reasonable tradeoff 
between coverage and misclassification. In accordance with the results 
of the interspecific PCA, this study’s supervised UHI classification thus 
suggests that coralline algal species cannot be spectrally distinguished 
with great accuracy.  

Although the in vivo supervised UHI classification had difficulty in 
distinguishing between coralline algal species, it appeared capable of 
classifying coralline algae as a group. In the in vivo group classification 
[Fig. 9(c)], nearly all pixels corresponding to coralline algae were 
classified. By searching for one mean signature [Fig. 9(c)] instead of 
three species-specific signatures simultaneously [Fig. 9(b)], the estimate 
of total coralline algal coverage was increased from 2.26 to 3.95% of the 
total transect area. As the latter estimate contained fewer false 
negatives, group classification thus appeared superior to species 
classification in terms of coralline algal identification potential. The 
reduced number of false negatives did however appear to come at the 
price of an increased number of false positives. The number of falsely 
classified pixels in the group classification [Fig. 9(c)] was not 
overwhelming, but still appeared larger than the equivalent number 
from the species classification [Fig. 9(b)]. The reason for this was likely 
that averaging the optical signatures of multiple species yielded a more 
generic target for classification to identify. During group classification, a 
generic training site likely worked as a coarser sieve, including more 
coralline algal, as well as more non-coralline algal pixels. Once again, 
adjusting the classification threshold could have reduced the number of 
false positives, but as false negatives also were present in the results [Fig. 
9(c)], the chosen threshold could be justified. Overall, the results of the 
in vivo supervised classification suggest that UHI has great potential as a 
coralline algal identification and mapping tool, which was further 
validated by the in situ supervised classification. 

The in situ supervised UHI classification attempted to map P. tenue 
distribution in a 3.75 x 1.40 m transect. However, as P. tenue likely was 
the only coralline algal species present in the transect, the classification 
could also be considered as applying to coralline algae as a group 
(coralline algal pixels vs. non-coralline algal pixels). Based on visual 
interpretation of the results displayed in Fig. 10, supervised 
classification to a large degree appeared to be able to identify pixels 

corresponding to coralline algae. The five different classification 
algorithms produced similar coverage and distribution estimates, 
which suggests that coralline algae could be identified and mapped also 
in their natural habitat. As the results of this study’s UHI-based mapping 
of coralline algae can be considered promising, an interesting next step 
would be to carry out similar studies on larger scales and to monitor 
coralline algal habitats over time. Large-scale UHI surveys should also 
be conducted at sites dominated by corals, seagrass, macroalgae and 
stromatolites to further explore the utility of UHI as an environmental 
mapping tool. 

Although the overall results of the in situ classification were favorable, 
certain issues were still present. As can be observed in Fig. 10, most of 
the classified pixels appeared to be concentrated in the transect interior. 
This could have been because coralline algae were only present in the 
interior of the transect, but as pixels containing coralline algae also 
appeared to be present along the margins of the transect, this was 
unlikely the case. A more feasible explanation was illumination 
unevenness, partially generated by the HID lamps of the ROV running 
simultaneously with the UHI halogen lamps. Towards the margins of the 
transect, light field conditions may have been biased to such an extent 
that pixels on the edges were not directly comparable to pixels in the 
interior. Assuming this, and considering that classification was based on 
P. tenue training sites situated far from the margins [Fig. 10(a)], it 
appears reasonable that coralline algal coverage was underestimated in 
marginal regions with low and biased illumination. Classification results 
were likely also influenced by minor differences in imaging altitude. As 
shown in Fig. 10, the area surveyed was not perfectly leveled. 
Unclassified pixels corresponding to coralline algae (i.e. false negatives) 
appeared to be especially abundant on objects protruding from the 
seafloor, which emphasizes the importance of maintaining a close to 
fixed distance between the sensor and the area of interest when 
hyperspectral imaging surveys are carried out in media where light is 
strongly attenuated, such as water [31]. A radiative transfer model 
capable of converting 𝐿u(𝜆) into 𝑅(𝜆) based on real-time altitude data 
could possibly have accounted for this to some degree, but in highly 
heterogeneous seafloor habitats, classification accuracy will always be 
influenced by small-scale differences in altitude. The degree to which 
UHI classification is influenced by minor altitude differences resulting 
from seafloor heterogeneity should be investigated in the future. In the 
current study, choice of classification algorithm should be considered a 
final element of uncertainty. Although the four different classification 
algorithms yielded similar results, there were still differences between 
them. The SAM [Fig. 10(b)] and minimum distance [Fig. 10(c)] 
algorithms for instance appeared most efficient at accounting for light 
field differences (illumination unevenness), in that these algorithms 
were capable of classifying marginal pixels to a considerable extent 
without including an excessive number of false positives. For this 
reason, the coralline algal coverage estimates from the SAM and 
minimum distance algorithms were likely the most representative; a 
claim that agreed well with visual interpretation. As the purpose of the 
in situ supervised classification was to demonstrate the use of different 
algorithms rather than to quantify inter-algorithmic differences, the 
effects of algorithm choice will not be further discussed. It should 
however be noted that choice of algorithm has the potential to affect 
classification outcomes, and that this together with the effects of light 
field and altitude differences should be thoroughly considered for future 
UHI surveys.  

As shown in this study, supervised classification represents a useful 
method for identifying and mapping OOIs with distinct optical 
signatures. A disadvantageous aspect of the method can however be the 
subjectivity associated with it. The accuracy of digital classifications has 
traditionally been determined by visual photointerpretation [72, 73], 
which was also the case in the current study. A considerable downside 



to this approach is that the visual interpretation is assumed to be 
correct. Realistically, this may be far from the truth. In addition, an 
interpretation will depend on the human operator, which introduces a 
potential bias. During this study’s supervised classifications, algorithm-
specific threshold values were chosen solely based on subjective 
photointerpretation. The performance of the different classification 
algorithms was also assessed based on assumptions from visual 
interpretation. In more recent years, a variety of machine learning 
methods have been applied to improve the analysis of remote sensing 
imagery [73-75]. Machine learning methods have the potential to 
reduce the impact of selection biases and increase classification 
accuracy [75], and should therefore be considered for future 
classifications of underwater hyperspectral imagery. 

Based on the results of the current study, there is little doubt that UHI 
may serve as a powerful tool for assessing coralline algal distribution. 
The spectral characteristics of coralline algae as a group appear 
conspicuous enough for them to be spectrally distinguished in their 
natural habitat, which permits mapping through optical fingerprinting 
and supervised classification. Although the current study suggests that 
high-accuracy, species-level mapping may not be achievable, 
information from group-level mapping may still be valuable. As an 
example, the distribution of coralline algae in the Arctic is poorly known, 
despite that coralline algae are believed to be the most dominant 
benthic calcifiers in high-latitude, euphotic waters [6]. Lacking 
knowledge of abundant species groups emphasizes the need for 
comprehensive mapping surveys, and provides an incentive for 
exploring the utility of state-of-the-art technologies such as UHI. In 
further support of future UHI-based mapping of coralline algae, there is 
currently a considerable effort aimed at increasing the autonomy and 
technological capabilities of underwater operations [76]. By deploying 
underwater hyperspectral imagers on AUVs, the survey range and data 
acquisition efficiency of UHI may for instance be significantly enhanced 
[33]. Moreover, the issues associated with this study’s in situ 
classification can likely be avoided to a large degree by applying 
instrument platforms equipped with dynamic positioning systems and 
improved lighting, and refining the procedure for processing of 
underwater hyperspectral imagery. Taking all of this into account, the 
potential of UHI is evident, and coralline algae can be considered a 
suitable target for future underwater hyperspectral mapping surveys. 

5. CONCLUSION 
The four species of coralline algae investigated in the current study 

displayed highly similar spectral characteristics (optical fingerprints). 
Results of the study suggest that R-PE and chl a are the primary 
contributors to coralline algal light absorption. Both pigments were 
shown to be abundant in P. tenue, and dips corresponding to their 
expected absorbance maxima were prominent in the 𝑅(𝜆) spectra of all 
species. The latter finding suggests that coralline algal 𝑅(𝜆) is strongly 
linked to pigment composition. 

Results of the multivariate statistical analyses suggest that different 
species of coralline algae are difficult to distinguish spectrally. It is 
however important to acknowledge that the current findings do not 
necessarily apply to all coralline algal species. The 𝑅(𝜆) spectra of the 
investigated species were highly correlated, and mainly differed in 
overall brightness. Wavelengths corresponding to the region of R-PE 
light absorption were shown to contribute the most to interspecific 
spectral variance, but more comprehensive studies are needed to assess 
whether R-PE content can serve as a means of significantly 
differentiating coralline algal species. 

Spectral data from UHI can be considered comparable to spectral 
data obtained using spectrometers under highly controlled laboratory 
conditions. Inter-instrumental spectral differences were however 
greater than spectral differences between coralline algal species. 

Compared to a 𝑅(𝜆) spectrum acquired up-close using a spectrometer, 
a 𝑅(𝜆) spectrum acquired at greater distance using UHI can be expected 
to be overestimated in terms of intensity, with a reduced lower-
intensity range. This is likely a consequence of backscattered light 
adding to the values of light reflected from the OOI; an effect that will 
have the greatest impact on 𝑅(𝜆) estimates of wavelengths strongly 
absorbed by the OOI. For UHI spectral data to become more comparable 
to spectral data from spectrometers, software algorithms for 
backscatter compensation as a function of distance should be applied 
and further developed. An accurate radiative transfer model capable of 
converting 𝐿u(𝜆) into 𝑅(𝜆) based on real-time position and altitude 
data from the instrument platform could possibly serve as a solution. 

In vivo supervised classification was unable to accurately distinguish 
between coralline algal species in underwater hyperspectral imagery. 
Supervised classification of coralline algae as a group did however yield 
promising results both in vivo and in situ. This suggests that although 
coralline algal species may be spectrally difficult to differentiate, 
coralline algae as a group have a conspicuous optical signature that can 
be identified in UHI transects. Based on the surveys carried out in the 
current study, UHI can thus be considered a promising new technology, 
with great potential for mapping the distribution and abundance of 
coralline algae in their natural habitat. 

In the future, research efforts aimed at improving our knowledge of 
coralline algae and the habitats they form should be increased. Coralline 
algae represent an ecologically important organism group [2, 4-6], that 
may be vulnerable to environmental change [7, 18, 19]. Currently, 
knowledge of coralline algal distribution and abundance is lacking [6, 
23], and there is a need for more long-term studies [2, 20, 21]. The 
conspicuous spectral characteristics of coralline algae make them prime 
targets for optical remote sensing technologies such as UHI. In the 
future, UHI surveys aimed at mapping and monitoring coralline algal 
habitats should be carried out. Such surveys will not only enhance our 
understanding of ecosystems dominated by coralline algae, but also 
help establish UHI as a valuable tool for marine research. Although 
different species of coralline algae, and red algae in general [9], appear 
to display similar spectral characteristics, interspecific spectral 
differences should be further investigated. More comprehensive studies 
with higher species numbers, larger sample sizes and greater emphasis 
on coralline algal photo acclimatization could potentially reveal species-
specific optical properties that passed by undetected in the current 
study. Such properties could permit optical mapping of coralline algae 
on a species level, which would be favorable for biodiversity studies. The 
current focus on increasing the autonomy and data acquisition 
efficiency of underwater operations [76] holds promise for future 
marine research, and suggests that large-scale coralline algal surveys 
could be conceivable in the near future. 
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