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ABSTRACT

This thesis is about using exact optimization algorithms to solve the routing
problem known as the Mixed Capacitated General Routing Problem (MCGRP)
that is a generalization of many other well known routing problems. The goal
is to find an optimal set of routes servicing a set of required entities on a mixed
network. The entities being vertices, directed arcs and undirected edges.

The mathematical programming model formulation developed in this thesis
is a novel path flow formulation inspired by a formulation for another well known
routing problem by Letchford and Oukil (2009). The solution method is based
on the exact optimization techniques Column Generation (CG) and Branch &
Price (B&P).

The algorithm is implemented in the programming language C# with the
help of the BCL XPRESS libraries. A comparison has been given to the results
by an exact algorithm by Bosco et al. (2012) as well as the currently best results
known in the literature.

The algorithm is tested on 158 benchmark instances, were 83 of them where
solved to optimum and 16 for the very first time. The algorithm is in addition
an excellent lower bounding algorithm giving 58 improved lower bounds for pre-
viously unsolved instances. There is still a lot of research that can be done on
the MCGRP and the hope is that this thesis will motivate to further research.
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SAMMENDRAG

Denne masteroppgaven handler om å bruke eksakte optimaliserings-algoritmer
til å løse rute-optimaliserings-problemet kjent som ”Mixed Capacitated General
Routing Problem”. Dette problemet er en generalisering av mange andre kjente
rute-optimaliserings-problemer.

Målet er å finne et optimalt set av ruter som kan betjene en mengde p̊alagte
enheter i et blandet nettverk. Enhetene er punkter, rettede buer og urettede
kanter.

Den matematiske formuleringen som blir utviklet i denne masteroppgaven
er en ny flytformulering inspirert av en formulering til et annet velkjent rute-
optimaliserings-problem av Letchford og Oukil (2009). Løsningsmetoden er basert
p̊a de eksakte optimaliserings-teknikkene, kolonnegenerering og ”Branch & Price”.

Algoritmen er implementert i programmeringsspr̊aket C# ved hjelp av BCL-
XPRESS-bibliotekene. Resultatene sammenlignes med den nøyaktige algoritmen
til Bosco et al. (2012) og de, for tiden, beste resultatene kjent fra litteraturen.

Algoritmen blir testet p̊a 158 benchmark-tilfeller, hvorav 83 av dem ga optimal
løsning. 16 av dem ga optimal løsning for aller første gang. Algoritmen er i
tillegg en utmerket nedre-grense-algoritme som gir forbedrede nedre grenser for
58 tilfeller som tidligere har vært uløst. Det er fortsatt mye forskning som kan
gjøres p̊a dette problem og h̊apet er at denne masteroppgaven vil motivere til
videre forskning.
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CHAPTER 1

INTRODUCTION

Traditionally, the routing literature has been devoted to studying the two families
of problems: node routing problems and arc routing problems depending on the
entities that need to be serviced in the problem. The Capacitated Vehicle Rout-
ing Problem or CVRP is the most common representation of the node routing
problems. The CVRP is usually defined on an undirected network where some of
the nodes correspond to customers. Each customer has a demand or weight for
commodity. The edges in the network have travel costs. A fleet of homogeneous
vehicles, located at a depot are used to service the nodes. Each vehicle has a
maximum capacity that limits the amount of total demand or commodity it can
service. A trip for a vehicle starts at the depot, visits a set of customers and
returns to the depot. The cost of this trip is the total edge distance travelled
by the tour. The CVRP consists of designing a set of tours of least cost, while
all the customers are serviced. The CVRP has many important applications, for
instance logistics, and has a long research history behind it.

Arc Routing has been much less investigated in the literature, but there has
been growing interest the last two decades. This is mainly because of their appli-
cations such as snow ploughing and salt spreading in winter. The corresponding
arc routing variation of the CVRP is the CARP or Capacitated Arc Routing
Problem defined by Golden and Wong (1980). The definition of the CARP is
very similar to the CVRP, but for the CARP a set of edges needs to be serviced
by the vehicles, rather than nodes.

The focus of this thesis is on the MCGRP or the Mixed Capacitated General
Routing Problem that is a combination of the VRP and the CARP. The MC-
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GRP is a problem with required entities that include nodes, directed arcs and
undirected edges.

1.1 Motivation

The MCGRP was defined by Pandit and Muralidharan (1995) and the problem
has only been investigated a handful of times since then. Despite the great success
of many algorithms for solving the CVRP and the CARP the two problems cannot
formulate the requirements of many real world scenarios. Consider for instance
urban waste collection. Most of the tasks can be considered as servicing streets,
but there are some punctual accumulations of waste that cannot be considered
as anything else than nodes, for instance at schools and hospitals.

The CVRP, CARP and the MCGRP are all NP-hard problems, which intro-
ductory means that big instances are very hard to solve exactly. The biggest
problem instances we can solve to optimality today are in the region of a few
hundred customers. For this reason heuristic algorithms have become very pop-
ular. These are methods that can quickly get satisfactory solutions, even for
big problem instances, but cannot guarantee optimal solutions. Until Bosco et
al. (2012) there had not been defined a mathematical model formulation for the
MCGRP and no exact methods had been implemented. The motivation for this
thesis is to develop a new and hopefully better mathematical model formulation.
We will be investigating a solution method based on the Branch & Price (B&P)
algorithm for the MCGRP and compare it to the previous exact method, based
on a Branch & Cut (B&C) algorithm, by Bosco et al. (2012).

1.2 The Contribution of this thesis

In this thesis a new Mathematical Programming model formulation for the MC-
GRP is created. The model is solved by an exact optimization algorithm, the
B&P algorithm. To the best of our knowledge, this thesis is the second time the
MCGRP has been solved by exact optimization techniques and the first time it
has been tackled by a B&P algorithm. The algorithm has been used to solve
several benchmark instances of the MCGRP. A total of 158 instances has been
solved. The results will be compared to results given by Bosco et al. (2012) as
well as the currently best results from the literature.

1.3 The Structure of this thesis

Chapter 2 introduces the field of optimization and necessary background material
on Mathematical Programming is gained. In Chapter 3 we go deeper into the



The Structure of this thesis 3

theory and explain the methods of Branch & Bound (B&B), B&C and B&P as
well as a short description of heuristics.

In Chapter 4 the three types of routing problems are described: CVRP, CARP
and MCGRP. Previous work in the literature on the MCGRP is presented.

Two mathematical programming model formulations for the MCGRP are
presented in Chapter 5: The arc flow formulation created by Bosco et al. (2012)
is presented and a new path flow formulation. Chapter 6 is the main contribution
of this thesis and explains how to solve the path flow formulation by a B&P
algorithm.

The computational experiments are described and a discussion of the results
are presented in Chapter 7. Finally a conclusion and some ideas for further work
is given in Chapter 8.

The appendix includes the abstract from WARP1 (1st Workshop on Arc Rout-
ing Problems) in Copenhagen 22-24 May 2013 where the author of this thesis was
invited to present the new algorithm (WARP1,2013).
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CHAPTER 2

OPTIMIZATION AND
MATHEMATICAL
PROGRAMMING

The optimization field belongs to the field of applied mathematics where mathe-
matical models are used in decision making situations to find the best alternative.
Optimization models are often used in economic systems where the goal is either
to minimize costs or maximize profits. The word optimum comes from the Latin
word ”optimus” which means ”best, very good”. We will mostly limit the scope
of this thesis to discrete optimization. Discrete optimization is the science of
making the best decision or making the best possible decision when working with
discrete decision variables, see e.g. Lundgren et al. (2010).

When using an optimization model we have a set of decision variables that
are controlled by the decision maker. The decision maker is given an objective
function that depends on these decision variables. The problem also includes
a set a constraints that restrict the variables in one way or another. A simple
example of this could be a factory producing toys. Each toy will have a decision
variable that decides how many toys of its kind to produce. The objective function
includes the income that can be gained from selling the toys, while the constraints
are the restrictions set on producing the toys that could be production costs, time
limitations etc. Problems as these are often modelled as Mathematical Programs.

The rest of this chapter will be organized as follows. We start by introduc-
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ing the mathematical program in chapter 2.1. Computational complexity and a
discussion about NP-hard problems will be given in chapters 2.2 and 2.3 respec-
tively. In chapter 2.4 an introduction to solving Mathematical Programs will be
given.

2.1 What is a Mathematical Program?

A general mathematical program (P) can be represented by the equations (2.1)-
(2.2).

(P ) max f(x) (2.1)

s.t. x ∈ X. (2.2)

Were f(x) is the objective function that depends on the decision variables x =
(x1...xn)T . The set X defines the feasible solutions to the problems. The goal
when solving a mathematical program is to either maximize or minimize f(x)
given x ∈ X. This problem could for instance represent the famous knapsack
problem. The goal in the knapsack problem is to fill your knapsack with valuable
items such that the total value of the knapsack is maximized. Each valuable has
a specific weight or size and value associated with it . The objective function will
contain information about the respective values and X would represent informa-
tion about weights of the items and restrictions for the knapsack. Usually X is
expressed by a set of functional constraints so an alternative formulation to (P)
could be described by equation (2.3)-(2.4).

max f(x) (2.3)

s.t. gi(x) ≤ bi, i = 1, ...,m, x ∈ Rn (2.4)

Here m would represent the number of constraints. Another specification that
will be used in this paper is that the problem is linear. This is called a Linear
Program (LP). This means that both functions f and g must be linear. An LP
can be formulated as Equation (2.5)-(2.7)

max z =

n∑
j=1

cj xj (2.5)

s.t.

n∑
j=1

ajxj ≤ b (2.6)

xj ≥ 0 j = 1, ..., n (2.7)

In this formulation the c′js, aj ’s and b are all known constants. They are in-
put constants for a given problem, say our knapsack problem. This would mean
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that cj represents the profit per unit amount xj of an item j. aj can represent
the weight of each element and b can represent the total capacity of the knap-
sack. When the variables are continuous the problem is trivial. Say the variables
are gold, silver and bronze dust. A simple greedy algorithm chooses the most
profitable available dust and fills up the knapsack to the rim. Most problems
have decision variables that represent real assets and since you cannot have neg-
ative amounts of assets in your knapsack it is common to include non negativity
constraints, as equation (2.7).

The problems we will focus on in this thesis are of this linear form and knowing
this we can use algorithms specifically designed for solving LPs. There are many
cases were reality will fit better to a quadratic, or even higher ordered program,
but most commercial optimization software requires that the problem is an LP.
Therefore when using higher ordered programs we need to linearise, for example
by interpolating, see Nocedal et al. (2009). This will not be described further
because it is not used in this thesis.

We will also define our variables as integer variables. In most problems we
work with discrete decisions. We can not do half a job, visit a customer 1.5
times or put a fraction of an item in the knapsack. Therefore we impose that
our decision variables be integer xj ∈ {0, 1, 2...} or binary xj ∈ {0, 1}. The LP
is now called an Integer LP or a Binary Integer LP (IP or BIP). If, on the other
hand, we include both integer variables and continuous variables we get a Mixed
Integer LP (MILP). As stated earlier these problems can either be minimization
or maximization problems. The constraints can either be less than (≤), more
than (≥) or equality (=) constraints. The binary knapsack problem will now
take the form:

max z =

n∑
j=1

cj xj (2.8)

s.t.

n∑
j=1

aijxj ≤ bi, i = 1, ...,m (2.9)

xj ∈ {0, 1} j = 1, ..., n (2.10)

The problem is then to find the best combination of xj ’s to include. Constraint
(2.10) is called a binary constraint that means the variable can only take the
values 1 or 0. By using a greedy method here we might not find the optimal
solution because a combination of less valuable items might be more profitable
than always picking the most valuable item available. We will see how to solve
these problems in chapters 2.4 and 3.
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2.2 Computational Complexity

Let us now have a look at the computational complexity of the types of problems
we will solve in this thesis. A famous routing problem is known as the travelling
salesman problem (TSP). In the TSP we have n customers that we need to visit.
We start at an initial depot, visit all the customers, and we return to the same
place.

It is easy to demonstrate just how difficult the TSP can be. Imagine a vehicle
that has to deliver to 3 different locations A, B and C. The goal is to decide
which order the vehicle should visit each location to minimise the overall travel
distance.

There are 6 possibilities:

A-B-C

A-C-B

B-A-C

B-C-A

C-A-B

C-B-A

So, the simplistic approach is to consider all 6 cases, work out the distance
travelled for each one and choose the shortest. Actually often only 3 of the
cases need to be considered because the distance A-B-C is likely to be the same
as the distance C-B-A, unless one-way streets are involved. This simple problem
would take a modern computer almost no time to solve. However the difficulty
increases surprisingly quickly as the number of deliveries increases:

4 locations have 24 possible solutions

5 locations have 120 possible solutions

6 locations have 720 possible solutions

...

n locations have n x (n-1) x (n-2) x .... 3 x 2 x 1 = n! solutions.

This is known as a factorial dependence. For a parcel delivery van which might
make 80-100 deliveries in a day the number of possible routes/sequences is ex-
tremely large as can be seen by the Table 2.1. Taking into account that there are
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approximately ”only” 1080 atoms in the observable universe, the simplistic ap-
proach of trying all possible combinations would therefore take ”longer than the
lifetime of the universe” to come up with an answer. There are however methods
to solve this quicker by only checking a few of the feasible tours, but as will be
discussed in the next section, there is still no guaranteed algorithm that can find
optimal solutions for all problem instances of this form in polynomial time. This
is where the discussion of problem sets comes into play. Most routing problems
have factorial dependence and are known as NP-hard problems.

Table 2.1: This table shows how polynomial dependencies compare to expo-
nential and factorial dependencies. As one can see, polynomial dependencies are
much more preferable.

n n2 n10 2n n!
10 102 1010 1.02× 103 3.6× 106

100 104 1020 1.27× 1030 9.33× 10157

1000 106 1030 1.07× 10301 4.02× 102567

To describe what is meant by NP-hard some information about the more
basic problem sets P and NP need to be explained.

2.3 P vs NP

The problem set P includes all decision problems that can be solved in polynomial
time. Decision problems are problems that can be answered with either ”yes” or
”no”. This means that for a given input size n and for some constant p there is at
most np deterministic operations to solve the problem, see Table 2.1. Lundgren
et al. (2010) describe these as ”easy” problems.

The problem set NP (non deterministic polynomial) is the set of all problems
where a solution can be checked in polynomial time. A NP problem does not
require a solution to be found in polynomial time so it can be exponential or even
factorial, but the solution must be checkable in polynomial time. All problems
in NP are decision problems.

The P vs NP is one of the famous Millennium Prize Problems in mathematics.
The problem is to show that either P = NP or P 6= NP . We know that P ⊆ NP,
but can not say more than this, see Figure 2.1, Cormen et al. (2009)

The next set of problems to be explained are the NPC (NP-complete)
problems. These problems are defined to include all the problems that are at
least as difficult to solve as all the other NP problems.
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Figure 2.1: P vs NP. The left image represents the fact that there exists
problems that can be checked in polynomial time, but cannot be optimally solved
in polynomial time. The image to the right represents that all problems that can
be checked in polynomial time can also be solved in polynomial time. It is still
not known which image is correct.

Finally we have the NP-hard problems. These problems include the NPC,
but do not require the problem to be a decision problem. Hence the solution does
not need to be checked in polynomial time see Figure 2.1. It is in the NP-hard
problems we find the TSP, CVRP, CARP and the MCGRP. This is the first step
to understanding how complex these problems are.

2.4 How to solve a Mathematical Program

When solving a Mathematical Program, an LP in our case, we find the best
feasible solution for our problem. The feasible region is the area of all possible
solutions given the set of restrictions. If one restriction is violated, we get an
infeasible solution. We may have one, none or infinitely many solutions. An LP
can easily be visualized when we have 2 decision variables. Figure 2.2 shows this
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for the LP from Equation (2.11)-(2.14).

max z =x1 + x2 (2.11)

x1 − x2 ≤ 3 (2.12)

x1 + 2x2 ≤ 6 (2.13)

x1, x2 ≥ 0 (2.14)

Figure 2.2: A visualization of the LP from equation (2.11)-(2.14). The green
area indicates all the feasible solutions. Black lines indicate the constraints for
the given problem. The red line represents a line were the objective value is
constant. The value of the objective function is increased by moving the line to
the right. The optimal value is reached at the position shown.

The feasible region in an LP is always a convex region. In Euclidean space,
an object is convex if for every pair of points within the region, every point on
the straight line segment that joins them is also within the region, see Figure
2.3. A unique optimal point is always on an extreme point. An extreme point is
a point in a set that cannot be represented as a strict combination of two other
points in the set. They are known as vertices of the set. If the optimal point is
on an edge we get infinitely many optimal points, hence it is not unique.

The first property is obvious because of the linearity of the constraints. The
second property can be seen to at least work from Figure 2.2, but we will prove
this.

Proof. We assume a unique optimal solution and that this solution is not an
extreme point. This implies that there must be two other feasible solutions such
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Figure 2.3: Convex Set to the left. Non-Convex Set to the right.

that the line segment connecting them contains the optimal solution. We call
these two solutions x1 and x2 with objective value z1 and z2 respectively. For all
these points on the line segment between x1 and x2 we must have that

x∗ = αx1 + (1− α)x2, (2.15)

where α is a proportion constant, 0 ≤ α ≤ 1. Because we are looking at a linear
function, we know that the objective function for x′ also has the form.

z∗ = αz1 + (1− α)z2. (2.16)

because α and 1− α adds to 1, it means that the relationship between the three
objective function values has to be one of the three,

z∗ = z1 = z2 (2.17)

z1 ≤ z∗ ≤ z2 (2.18)

z2 ≤ z∗ ≤ z1. (2.19)

If 2.17 is true, we have more than one optimal solution which is a contradiction
to the initial statement that we have a unique optimal solution. If either 2.18 or
2.19 is true, z∗ is not optimal, which is also a contradiction. This results in that
the optimal solution must be an extreme point.

For an LP with n decision variables, each of the extreme points lie in the
intersection of n constrained boundaries. This is easy to visualize for two and
even three dimensions. The two dimension case shown in Figure 2.2 would have
the following extreme points:(0,0), (0,3), (4,1) and (3,0).

The most famous solution method for solving LPs is the Simplex Method.
Almost all optimization software packages for solving LPs use this method, see
Lundgren et al. (2010). The method was developed by Dantzig (1947) and is
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an extremely efficient algorithm that is used routinely to solve huge problems.
There are many exact optimization methods that are used as will be discussed
in Chapter 3.
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CHAPTER 3

OPTIMIZATION METHODS
FOR INTEGER
PROGRAMMING

In this Chapter we will go through the theory most commonly used to solve
IPs. The Simplex method is used for most LP optimization problems and the
B&B algorithm is most commonly used when the problem is integer. For bigger
problems more complex methods are common. B&C is described in chapter 3.3
while Column Generation (CG) and B&P will be explained in chapters 3.4 and
3.5 respectively. Chapter 3.6 is a short description of heuristics referred to in this
thesis.

3.1 The Simplex Method

In this section we will describe mathematically how the Simplex method solves
an LP. The LP from (2.5)-(2.7) can be written on the matrix form:

max z = cTx (3.1)

s.t. Ax≤ b (3.2)

x≥ 0 (3.3)
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First we convert the LP to standard form by adding new non zero variables
to each row in the A matrix from Equation (3.2) which becomes,

Ax = b. (3.4)

The newly added variables are called slack variables and measure the variation
between the right and left side in each constraint.

For the standard form,

n is called the dimension,

m is called the order,

variables x satisfying equation (3.4) are called feasible solutions.

Suppose rank(A) = m, and the first m columns of A, Ai = (A1,i....Ami), are
linearly independent then B = (A1, ..,Am) is non-singular. Call B a basis matrix.
The linear system Bxb = b has a unique solution xB = B−1b. Define x =
(xB , 0), then x satisfies equation (3.4). x is called a basic solution and basic
feasible solution if it is feasible. The total number of basic feasible solutions is
given by the combinatorial formula:

Cmn =
n!

m!(n−m)!

I.e. the number of possible ways m variables can be chosen from n variables.
For an LP with n = 150 and m = 50 ( in practice a rather small problem) the
theoretical number of basic solutions exceeds 2× 1040.

The Simplex method systematically searches through the basic solutions by
using the fact that the optimal solution will be on an extreme point. Lundgren
et al. (2010) describe a 5 stage general algorithm for the Simplex:

� Step 0 Start from a basic solution x(0). Let k = 0

� Step 1 Determine the search direction and determine the reduced costs of
adding the variable needed. The reduced cost πj is the cost of including
the variable as basic.

� Step 2 Check convergence criterion: The point x(k) is an optimal solution
if

πj ≥ 0,∀j (minimization problem)

πj ≤ 0,∀j (maximization problem)

i.e. for a minimization problem if we include any variable the objective will
increase, hence we have optimum.
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� Step 3 Determine entering variable according to these criteria

πp = min
j
{πj |πj} ≤ 0 (minimization problem)

πp = max
j
{πj |πj} ≥ 0 (maximization problem)

which gives the entering basic variable xp and a search direction d(k).

� Step 4 Determine step length

t(k) =
x

(k)
r

−d(k)
r

= min
j
{
x

(k)
j

−d(k)
j

|d(k)
j ≤ 0}

which means xr becomes the leaving basic variable. The step length will
be the length to the adjacent extreme point.

� Step 5 The new point is x(k+1) +x(k) + t(k)d(k) and the new basic solution
xr is replaced with xp. Update k := k + 1 and go to Step 1.

Example 4.1

The Simplex method will be explained by solving the LP from (2.11)-(2.14), see
Table 3.1. The standard form is given by equations (3.5) -(3.8).

max z = x1 + x2 (3.5)

x1 − x2 + x3 = 3 (3.6)

x1 + 2x2 + x4 = 6 (3.7)

xi ≥ 0, i = 1, 2, 3, 4 (3.8)

As described before, an optimal solution can always be found on a vertex. The
Simplex method uses this fact and it searches for a solution by going from one
vertex to the next in the feasible region. Even if the solution is not unique,
and the optimal solutions lie on an edge, we can still do the same because it is
sufficient to find one of the vertices that lie on the edge. When tackling an IP with
Simplex, the solution will often be fractional which is obviously not feasible. We
cannot simply round off to closest natural number even though this is tempting.
This might not give the correct answer. To solve IP the B&B algorithm is most
commonly used.
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Table 3.1: Solution to an LP using the Simplex method.

Iteration 0 Step 0: Start by choosing (0,0) as initial solution. x(0) =
(0, 0, 3, 6)T , B = (A3,A4) z = 0.

Iteration 0 Step 1: From Figure 2.2 we know that the search directions
are (1, 0)T and (0, 1)T . π1 = π2 = 1

Step 2: π1, π1 ≥ 0
Step 3: The search directions give equal increase in objective

value so we choose π1 arbitrarily. Entering variable
x1

Step 4: d
(0)
2 = 0, d

(0)
3 = −1, d

(0)
4 = −1 which means that

by increasing x1 by 1 we decrease x3 and x4 by 1.

t(0) =
x(0)
r

−d(0)r

= min{ x
(0)
3

−d(0)3

,
x
(0)
4

−d(0)4

} = { 3
1 ,

6
1} =

x
(0)
3

−d(0)3

=

3 . Leaving variable is x3.
Step 5: x(1) = (0, 0, 3, 6)T + 3 ∗ (1, 0,−1,−1)T = (3, 0, 0, 3),

B = (A1,A4) z = 3.
Iteration 1 Step 1: From Figure 2.2 we know that the search directions

are (−1, 0)T and (1, 1)T . π3 = −1 π2 =
√

2
Step 2: π2 ≥ 0

Step 3: Only search direction (
√

2,
√

2, 0,−
√

5)T gives in-
crease in objective value. Entering variable x2

Step 4: t(1) =
x(1)
r

−d(1)r

= { 3√
2
} =

x
(1)
4

−d(1)4

= 3
√

2
2 . Leaving vari-

able is x4.

Step 5: x(2) = (3, 0, 0, 3)T + 3
√

2
2 ∗ (

√
2,
√

2, 0,−
√

2)T =
(4, 1, 0, 0), B = (a1, a2) z = 5.

Iteration 2 Step 1: The search directions are, (−1,−1)T and (−1,−2)T .
Step 2: No better solution can be found. We have optimum.

3.2 Branch & Bound

Solving an IP can be a lot more complicated than one might think. The B&B
algorithm is most commonly used to tackle IPs. The idea is to split the feasible
region into smaller regions and optimize these sub regions. In each area we
solve the LP relaxed problem to optimality generating new optimistic bounds,
i.e. lower bounds for minimization problems. Whenever an integer solution is
found we get a candidate for the pessimistic bounds, i.e. upper bounds for a
minimization problem. We continue until the gap between the bounds shrink to
zero. Lundgren et al. (2010), page 393) states:
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The term Branch and Bound comes from the fact that the feasible region is
divided into several smaller areas (branching) and the fact that we use optimal

solution for each area for bounding the optimal objective function value.

We will explain this with an example (IP).

(IP ) max z = 4x1 + 5x2

x1 + 3x2 ≤ 12

4x1 + 3x2 ≤ 24

xi ∈ N, i = 1, 2

We continue using two dimensional problems because it is easy to visualize,
see Figure 3.1. Extending this problem to more dimensions is trivial, but harder
to visualize.

Figure 3.1: Graphical solution to (IP) using Simplex method. This results in
non integer optimal solution. B& B must be used to solve. The objective value
is constant along each of the diagonal lines.

The optimal solution to (IP), as can be seen graphically in Figure 3.1, is not
integer. We need a way to ” Cut ” this solution away so Simplex can find the
correct solution. The initial solution here is x = 4, y = 2.67. Now divide the area
into two new areas were we for instance say y ≤ 2 and y ≥ 3 for the two areas
respectively, and re-optimize both areas with Simplex. We can continue like this
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until we find the best integer solution. By dividing the feasible area into regions
we will get integer solutions on some of the vertices and the Simplex method will
find them.

To manage all the new solutions we create a search tree, called a B&B tree.
These trees consist of sub problems denoted as nodes and new constraints added
defined as edges. We start at the root node by simply solving the LP with no
extra constraints. When nodes are found that have a worse solution than the
pessimistic bound we can cut them away because these sub problems cannot
provide better solutions. Also if we find an integer solution in one region which
is better than a fractional solution in another region, there is no reason to search
the region with the fractional solution. The B&B tree is shown in Figure 3.2 and
the optimal integer solution can be seen from Figure 3.3. This is an example
where rounding to the nearest solution would not work. This would give the
solution from node 3 in Figure 3.2 which is clearly not as good as node 7 in the
B&B tree.

Figure 3.2: The B&B tree for (IP). Start by optimal solution from Figure 3.1.
Branch on y and search in the region with the best objective value (Best region
first strategy). Stop search when no better solutions can be found. The new
optimal solution is visualized in Figure 3.3

The number of nodes in the search tree grows exponentially with the number
of decision variables, which means it is still a hard problem to solve and solv-
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Figure 3.3: The optimal integer solution to (IP) found using Simplex and B&B.

ing large problems with this method may be very time consuming. A popular
improvement to the B&B is to add extra binding constraints before branching.
This often dramatically decreases the size of the B&B tree. This procedure is
known as B&C.

3.3 Branch & Cut

The B&C algorithm is designed to create a ”short-cut” in the branching tree.
There may be a lot of unnecessary searching in the B&B tree so by restricting
the areas with some good cuts, the searching might go faster since less branching
is needed. The algorithm of adding new constraints or cuts is called a Cutting-
Plane algorithm. The challenge is to find constraints that cut away as much of
the non-integer solutions without taking away any of the integer solutions. Take
the example used in section 3.2. It can easily be seen from Figure 3.3 that the
constraint: x + y ≤ 6 is a legal and good cut. This takes away the optimal LP
solution. The new LP solution will find the optimal IP solution without needing
to branch at all, see Figure 3.4.

The method of adding cutting planes is equivalent to adding new constraints
or new rows to the IP. Good applications for this method are when using problems
that have many constraints relative to the number of variables. We can then
initially relax some of the constraints, since they are not all needed, and solve the
LP. By adding the required rows before we branch we can find optimal solutions
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Figure 3.4: The optimal integer solution to (IP) found using Simplex and B&C.
No branching is needed.

without using unnecessary constraints. We can also call this procedure Row
Generation, since we add rows. Row Generation is used when a problem has
relatively many constraints compared to variables. When it is the other way
around, we use CG.

3.4 Column Generation

To describe how CG is used we first need to describe more thoroughly how we
can represent a problem. There are two ways of describing the set of feasible
solutions to an optimization problem, outer- and interior representation. Outer
representation represents the region as an intersection of half spaces. This is for
instance represented by constraints in an LP. Interior representation describes
the feasible region as convex combinations of all the extreme points. An outer
representation of the LP described in (3.1)-(3.3) would be:

X = {x : Ax ≤ b,x ∈ Nn} (3.9)

The extreme points of conv(X) can be used for the interior representation, were
conv(X) is the smallest convex set that includes X. Let x(k), k ∈ 1, ...,K be
the extreme points of conv(X), K being the number of extreme points. Define a
weighted variable λk for each extreme point k. We thus get.

X = {x : x =

K∑
k=1

x(k)λk,

K∑
k=1

λk = 1, λk ≥ 0; k = 1, ...,K,x ∈ Nn} (3.10)

K is often very large, but only a few of the extreme points are normally needed
to describe a specific point xk. The Dantzig-Wolfe (D-W) reformulation is one
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of the most used tools to attack large and complex optimization problems and it
uses a correspondence between outer and interior representations to reformulate
a problem. A D-W decomposition is a D-W reformulation combined with a
method for solving the reformulated problem. The idea with D-W reformulation
is to express parts of the problem by an interior representation and then use this
to substitute variables in the rest of the problem. Start with an LP:

max z = cTx (3.11)

Ax ≤ b (3.12)

Dx ≤ e (3.13)

x ∈ Nn (3.14)

were XA = {x : Ax ≤ b,x ∈ Nn} has a simple structure, but Dx ≤ e destroys
this structure. We describe XA via an interior representation. and get:

max z = cT (

K∑
k=1

x(k)λk) (3.15)

D(

K∑
k=1

x(k)λk) ≤ e (3.16)

K∑
k=1

λk = 1 (3.17)

λk ≥ 0, k = 1, ...,K (3.18)

This reformulation has fewer constraints but a lot more variables and we call
this problem the Master Problem (MP) in the D-W decomposition. The Simplex
method introduced concepts of basis and calculating reduced costs for non basic
variables. The main idea behind CG is to use a D-W reformulation and start with
a small number of variable or columns and generate new ones only when needed.
Instead of having K variables, we start with K ′ << K, giving us a restricted MP
(RMP). Every feasible solution to RMP is feasible in MP. Associate the reduced
costs v with constraints (3.16) and u with constraint (2.17). We use a so called
Pricing Problem to add new columns by using these reduced costs and find the
best column the same way as in the Simplex method. The brilliance behind this
method is that we can find the best columns without actually needing to generate
them. The pricing problem becomes the following:

max c = (cT − vTD)x− u (3.19)

Ax ≤ b (3.20)

x ≥ 0 (3.21)
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The result of the pricing problem is the highest reduced cost (maximization prob-
lem) and the corresponding x solution. If there are no positive reduced costs, we
have an optimal solution. If we find a solution, this extreme point is added to
the RMP.

A CG algorithm iterates between solving the RMP and the pricing problem
resulting in the same optimal solution as the Simplex method, namely the optimal
LP solution. For solving IPs we need the B&P method.

3.5 Branch & Price

The idea when using B&P is similar to that of B&C except that the procedure
focuses on generating columns rather than rows. Both pricing and cutting are
complimentary procedures for tightening an LP. The B&P procedure allows CG
to be applied throughout a branch and bound tree. There are several reasons for
considering models with huge number of variables.

� A compact MILP may have weak LP relaxations and these can be tightened
by a reformulation with more variables.

� A compact MILP may have symmetry issues that make the B&B algorithm
perform badly. A reformulation can eliminate this symmetry.

� A formulation with a huge number of constraints may be our only choice.

It may appear at first glance that the B&P algorithm simply involves combin-
ing CG and B&B, however it is not straightforward. There are fundamental
difficulties when using B&P, these include:

� Conventional IP branching on variables may not be effective because it
destroys the structure of the pricing problem.

� Solving the LP relaxed MP and the pricing problem to optimality may not
be effective, in which different rules apply for handling the B&P tree

There are many different ways to branch in a B&P environment and it differs
from model to model. Therefore further discussion of branching will be discussed
for the MCGRP in Chapter 6. However a quick overview of the procedure will be
given here, see Figure 3.5. We start by using the CG procedure as explained in
Chapter 3.4. If the solution is integer we have an optimal solution, else we create a
branching tree similar to the one described in Chapter 3.2. Whenever an integer
solution is found it becomes a candidate for upper bound for a minimization
problem. We terminate the algorithm when no better solution can be found,
similarly described for the B&B algorithm. For the interested reader we refer to
Barnhart et al. (1998).
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Figure 3.5: The B&P procedure for finding integer solutions. We first restrict
the MP to RMP by starting with a few variables. Add new columns until we
need to branch. The optimal solution is found when the there are no fractional
solutions that are better than the best integer one.

3.6 Heuristics

All methods discussed so far in this chapter have been exact algorithms. However,
if an optimal solution is not necessary, but rather a good solution found quickly is
sought for, we can use heuristics. Heuristic is a Greek word and means ”find” or
”discover”. Heuristics use experience based methods to find solutions and are not
exact procedures. When exact methods are impractical, heuristic methods are
often implemented to give good and satisfactory solutions via various short cuts to
ease the load of making a decision. Heuristics often work in the way humans think,
for instance by using a ”rule of thumb”, taking an ”educated guess” or simply
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using common sense. Heuristics cannot guarantee optimality, but will often give
good solutions. In this thesis only exact methods are investigated therefore only
a brief introduction to heuristics will be given and only the heuristics discussed
in this thesis will be presented here.

The Greedy heuristics are very simple and can easily be described from the
knapsack problem from Section 2.1. The idea is to make local decisions that seem
best at that specific point. Say for instance you want to fill your knapsack with
gold, silver and bronze figurines. Since we know that gold has the highest worth
we start filling our sack with these and continue with silver and then the bronze
until our sack is full. This will give a feasible solution that is probably very good.
If we combine this with the use of common sense, say ”do not pick a figurine that
has a low weight:size ratio we end up with the simple algorithm used by most
burglars when robbing a jewellery shop.

Metaheuristics is a class of heuristics that uses additional heuristics and over-
lying strategies to find solutions. The goal is to efficiently explore the search space
in order to find near optimal solutions and not terminate at bad local optimal
solutions. The techniques used can range from simple search procedures to com-
plex learning strategies. For more information about Heuristics the interested
reader is referred to Kochenberger (2003).



CHAPTER 4

ROUTING PROBLEMS

In this chapter we will describe three groups of routing problems more thoroughly.
The first two sections are about the well known node- and arc routing problems
and the final part is about the combination of the two, and the focus of this
thesis, the MCGRP.

4.1 Node Routing Problems

The node routing problems are the problems where nodes, also known as vertices,
within a defined area are to be visited by a vehicle. The most basic node routing
problem is the TSP. The problem is as follows: Given a list of nodes and the
distances between each pair of nodes, find the shortest possible route that visits
each node exactly once and returns to the origin node. It is one of the most
studied problems in optimization and even Google maps has a TSP algorithm
implemented to calculate the routes between destinations, an example TSP route
from Trondheim is shown in Figure 4.1.

Another well known node routing problem is the CVRP, presented by Dantzig
and Ramser (1959). The CVRP is an extension of the TSP seeking to service a
number of customers with a fleet of identical vehicles. Based at a central depot,
the vehicles are to be optimally routed to supply customers with known demands
subject to vehicle capacity constraints.

The CVRP itself is in the VRP family and there are many variations of the
CVRP in the literature, the most famous being VRP with time windows, VRP
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Figure 4.1: A possible solution to a small TSP solved by google maps with 10
destinations in Trondheim, Oslo.

with pick-up and delivery and the CVRP. CVRP is an important problem in the
fields of transportation, distribution and logistics. Often the context is that of
delivering goods located at a central depot to customers who have placed orders
for such goods. An example of a possible CVRP can be seen from Figure 4.2,
e.g. the vehicle can only visit 5 vertices in each tour.

Figure 4.2: A possible solution to a small VRP problem solved using 3 vehicles.
All the vertices are required to be visited exactly once by exactly one vehicle.

Typically exact and heuristic solutions have been proposed for each new VRP
variant and there has been tremendous increase in the ability to solve these
problems over the past 50 years. Today, a Google Scholar search of the words
”vehicle routing problem” yields about 159,000 entries, the same search in google
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yields almost a million. In practise the CVRP is one of the absolute biggest
success stories in optimizing history. For instance, each day over 100,000 drivers
from the United Parcel Service in USA follow computer generated routes Golden
et al. (2008). A few years back the best exact methods could solve CVRP
problems up to 70 customers to optimality in reasonable time. Today, this number
is well over 100!

4.2 Arc Routing Problems

The next family of routing problems to discuss are the arc routing problems. Arc
routing problems regard the edges or arcs as required entities, not the vertices.
It all started almost three centuries ago with the bridges of Königsberg. The city
of Königsberg in Preussia had two big islands in the river that divided the city.
There where a total of seven bridges connecting the two islands with the main
land on each side, as can be seen from Figure 4.3. The problem was to cross all
the bridges exactly one time each and return on the same side as started. By
proving that this was impossible, Euler is considered to have created the first
theorem of graph theory which also led to the problems known as arc routing.

Figure 4.3: The seven bridges on Königsberg, Dror (2000)

Arc routing problems consist of determining the lowest costing traversed route of
some edges or arcs, subject to side constraints. Much like node routing problems
and the TSP, we have the Chinese Postman Problem (CPP) for arc routing. The
CPP is defined as follows. Let G = (V,E

⋃
A) be a graph where V is the set of

vertices, E is a set of undirected edges and A is the set of directed arcs. With
each edge or arc it is defined a cost for traversing cij . There are several cases
of this problem. For instance: The undirected CPP, where A = ∅, the directed
CPP, where E = ∅, and the mixed CPP, where A 6= ∅, E 6= ∅. CPP is the arc
routing equivalent of the TSP. The bridges of Königsberg can be solved by using
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the undirected CPP, a variation at least. Find the shortest route that covers all
the bridges.

CVRPs aim to optimize the routes with a set of vertices that need to be vis-
ited, arc routing problems involve covering parts of network in the most effective
manner, e.g. for a snowplough. A snowplough needs to clean a set of streets that
can easily be modelled via arc routing. An extended variant of the CPP where
we only need to visit a sub set of the edges or arcs and may traverse the rest
is called the Rural Postman Problem (RPP). A natural further extension of the
RPP is the CARP. The CARP is defined on a similar graph G where each arc
or edge has a quantity qij associated with it. A fleet of m vehicles, each with
a capacity Q, must traverse all edges or arcs and must deliver the associated
quantities without exceeding Q. Not all links must have a non-negative quantity
and need therefore not be visited. The CARP is the arc routing equivalent of
the CVRP and was defined by Golden and Wong (1981). Some variants of the
problem can include:

� Those in which not all links need to be traversed,

� Cases where some or all links are directed,

� Cases in which links have variable traversal costs depending on direction,

� Hierarchical problems, in which one set of edges must be served before
another.

Arc routing has a long history, but it is only in the recent decades that there
has been a widespread use of software in the area of arc routing. More and more
post offices, school bus operators electricity and gas companies etc. are adopting
such systems. In recent years column generation has been given some attention
with good results, Letchford and Oukil (2009) and a branch and price method has
been introduced by Bode and Irnich (2012). Numerous researchers have investi-
gated the conversion of arc-routing problems to node routing problems (Longo et
al. (2006), Baldacci and Maniezzo, (2006)). These approaches transform each of
the edges or arcs in the CARP to 2 or 3 nodes in the CVRP. This transformation
shows that the CARP can be just as hard or even harder to solve as the CVRP.

4.3 The Mixed Capacitated General Routing Prob-
lem

The last routing problem that will be explained is a mix between arc and node
routing problems. If routing is to be done on a specific subset of edges and arcs
and a specific subset of vertices then the problem will be a mix between RPP and
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a TSP. This problem class has been named the General Gouting Problem (GRP).
The extension to multiple vehicles with a capacity was named the Capacitated
GRP (CGRP) and was first investigated by Jansen, K. (1993). Two years later
Pandit and Muralharan (1995) investigated the CGRP on a mixed graph with
both edges and arcs, they called this problem the Mixed Capacitated General
Routing Problem. The MCGRP is a generalization of CARP and the CVRP.

There are some problems where neither the CVRP nor CARP seem to be
good formulations to use. Prins & Bouchenoua (2005) state:

Despite the success of heuristics for the VRP and the CARP, it is clear that
these two problems cannot formalize the requirements of many real world

scenarios.

The example used by them is urban waste collection, where most demand may
easily be modelled on street segments, but it may also be demand located at
points, for instance at hospitals or shopping centres. An example of a MCGRP
instance can be seen from 4.4.

Figure 4.4: Circles: Vertices, Double arrow heads: Edges, Single arrow heads :
Arcs. Blue colour for required entities. Red is the depot vertex. The goal is to
minimize the distance travelled when servicing all the required entities.

There has been little research on the MCGRP, but a short summary of the
previous work will be given. Pandit and Muralidharan (1995) and Gutiérrez et
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al. (2002) propose heuristics for variants of the MCGRP. Prins and Bouchenoua
(2005) studied the MCGRP under the alias The Node, Edge, and Arc Routing
Problem (NEARP). They define a benchmark (CBMix), and propose a memetic
algorithm that provided the first upper bounds for the CBMix and also good
results for well-known CVRP and CARP instances. Kokubugata et al. (2007)
develop a metaheuristic with several new best CBMix upper bounds. The MC-
GRP with turning penalties was investigated by Bräysy et al. (2011). This
problem is created motivated by the fact that vehicle turns are troublesome and
avoiding them is desirable. Their solution is to transform the MCGRP into a
CVRP and solve it with well known heuristics. The first lower bounding proce-
dure for the MCGRP was proposed by Bach et al. (2012). They also define two
new MCGRP benchmarks: the BHW and the DI-NEARP. Bosco et al. (2012)
propose the first integer programming formulation for the MCGRP and develop
a B&C algorithm that was tested on 12 new sets of instances derived from CARP
benchmarks, as well as small CBMix instances, providing two optimal solutions.



CHAPTER 5

MODELLING THE MCGRP AS
INTEGER PROGRAMS

In this section we will describe two mathematical model formulations for the
MCGRP. The first model is an Arc Flow model formulation created by Bosco
et al. (2012). The term arc flow is used when the decision variables are defined
on arcs in the network. This is a model that is suited for B&B- or B&C based
solution methods. The second model is a novel Path Flow model formulation in
the set partitioning form. The term path flow refers to models were the decision
variables refer to paths in the network. B&P can be well suited to solve this
formulation.

5.1 Arc Flow Model Formulation

Formulating a mathematical problem can be complex and there can be numer-
ous formulations for the same problem. Prior to this thesis there was only one
formulation, that the writer knows about, of the MCGRP in the literature. This
formulation is an arc flow formulation created by Bosco et al. (2012). The name
arc flow comes from the fact that the decision variables are the flow on each arc
or edge.

We start by defining a mixed graph, see Definition 5.1.1 and Figure 5.1.
Definition 5.1.1: Mixed Graph. G = (V,A,E) defined by a set of vertices or
nodes V = {1, ..., n}, a set of arcs (directed) A = {(i, j) ⊆ V × V } and a set of
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edges (undirected) E = {(i, j) ⊆ V × V : i < j}.

Figure 5.1: An example of a mixed graph. Black balls are the vertices and red
ball is the depot. Blue links are arcs and green links are the edges.

Further, a subset of the edges and arcs, are denoted ER ⊆ E and AR ⊆ A
respectively and are required links. This means they must be serviced by one of
the tours, but any link in A∪E may be traversed any number of times. Similarly,
we have a subset of required vertices, VR ⊆ V . The required entities cannot be
split, which means that you have to complete an entity that has been initialized.
Each link has a non-negative traversal cost cij , each required link has in addition
a non-negative demand dij and finally the required vertices have a demand qi.

In order to ensure feasibility it is assumed that the demand of a single required
entity does not exceed the capacity Q of a vehicle. Now for the more complicated
notation. We will be needing all possible subsets

S ⊆ V

and their complementary subsets of vertices when modelling our problem,

S = V \ S.

A few more sets are needed:

δ+(S) = {(i, j) ∈ A : i ∈ S ∧ j ∈ S} (5.1)

δ−(S) = {(i, j) ∈ A : i ∈ S ∧ j ∈ S} (5.2)

δ+
R(S) = {(i, j) ∈ AR : i ∈ S ∧ j ∈ S} (5.3)

δ−R(S) = {(i, j) ∈ AR : i ∈ S ∧ j ∈ S} (5.4)

δ(S) = {(i, j) ∈ E : i ∈ S ∧ j ∈ S} (5.5)

δR(S) = {(i, j) ∈ E : i ∈ S ∧ j ∈ S} (5.6)



Arc Flow Model Formulation 35

These new sets can be described as follows: Equation (5.1) and (5.2) represent
the sets of all arcs leaving and entering the subset S, respectively. Equation (5.3)
and Equation (5.4) represent the sets of all required arcs leaving and entering the
subset S respectively. And finally Equation (5.5) and Equation (5.6) are the sets
of all edges and all required edges incident to subset S, respectively.

Moreover, let SR = S ∩ VR be the set of required vertices belonging to S,
AR(S) = {(i, j) ∈ AR : i ∈ S ∧ j ∈ S} the set of required arcs with both
endpoints in S, and ER(S) = {(i, j) ∈ ER : i ∈ S ∧ j ∈ S} the set of required
edges with both endpoints in S. The variables

xkij , y
k
ij , z

k
i ,

where xkij is a binary variable equal to 1 if and only if the link (i, j) is serviced

by vehicle k, ykij is a integer variable equal to the number of times a link (i, j) is

dead-headed by vehicle k. For a required vertex i and vehicle k, we have zki is a
binary variable equal to 1 if and only if i is serviced by k. We now have enough
information to formulate the MCGRP. The mathematical program is defined by
the equations (5.7) - (5.16).

Min λ =
∑
k∈K

∑
(i,j)∈ER

cij(x
k
ij + xkji) +

∑
k∈K

∑
(i,j)∈AR

cijx
k
ij

+
∑
k∈K

∑
(i,j)∈E

cij(y
k
ij + ykji) +

∑
k∈K

∑
(i,j)∈A

cijy
k
ij (5.7)

∑
k∈K

(xkij + xkji) = 1 ∀ (i, j) ∈ ER (5.8)∑
k∈K

ykij = 1 ∀ (i, j) ∈ AR (5.9)∑
k∈K

zki = 1 ∀ i ∈ VR (5.10)∑
i∈VR

qiz
k
i +

∑
(i,j)∈ER

dij(x
k
ij + xkji) +

∑
(i,j)∈AR

dijx
k
ij ≤ Q ∀ k ∈ K (5.11)



36 Modelling the MCGRP as Integer Programs

∑
j:(i,j)∈δ+R(i)

xkij +
∑

j:(i,j)∈δ+(i)

ykij −
∑

j:(i,j)∈δ−R (i)

xkji −
∑

j:(i,j)∈δ−(i)

ykji =

∑
j:(i,j)∈δR(i)

xkji +
∑

j:(i,j)∈δ(i)

ykji −
∑

j:(i,j)∈δR(i)

xkij −
∑

j:(i,j)∈δ(i)

ykij , ∀ k ∈ K, ∀ i ∈ V

(5.12)∑
(i,j)∈δ+R(S)

xkij +
∑

(j,i)∈δ−R (S)

xkji +
∑

(i,j)∈δR(S)

(xkij + xkij) +
∑

(i,j)∈δ+(S)

ykij

+
∑

(j,i)∈δ−(S)

ykji +
∑

(i,j)∈δ(S)

(ykij + ykji) ≥

 2 (xkuv + xkvu), ∀ (u, v) ∈ ER(S),
2 xkuv, ∀ (u, v) ∈ AR(S),
2 zkh, ∀ h ∈ SR,

∀ k ∈ K,S ⊆ C
(5.13)

xkij ∈ {0, 1} ∀i, j, k (5.14)

zki ∈ {0, 1} ∀i, k (5.15)

ykij ∈ N ∀i, j, k (5.16)

� The objective function from Equation (5.7) minimizes the total routing cost
of the tours.

� Constraints (5.8) - (5.10) are known as the assignment constraints and
ensure that the required nodes and links are visited by exactly one vehicle.

� The constraints in (5.11) are the so called knapsack constraints which model
the demand limitations of each vehicle. Each vehicle can maximum satisfy
a demand Q.

� Equation (5.12) represents the flow constraints. These model the symme-
try condition at each vertex, the flow conservation. Much like Kirchhoff’s
junction rule that we know from electro physics (Young and Freedman,
2013) namely the sum of all vehicles going into a vertex must also leave
this vertex.

� Finally we have the connectivity constraints from Equation (5.13). These
constraints make sure that we reach all the required jobs. They also make
sure that no subtours are created.

� The variables are given in (5.14)-(5.16)



Arc Flow Model Formulation 37

The model (5.7) - (5.16) is an arc flow model for the MCGRP. It is a highly
complex model and can only be solved to optimality with a small number of
vertices and vehicles. One of the reasons that the formulation is so complex is
because there are an exponential amount of constraints used to remove all possible
subtours, formulated by (5.13). By solving this model by itself only B&B is
needed because all possible constraints have already been created. Without these
constraints a solution to the problem would most probably result in subtours.
The number of subsets that can be created from a set of vertices is exponential
proportional to the number of vertices in the set, see Table 2.1. Many of these
eliminations might be unnecessary and we can save a lot of work by not creating
them all. We propose an algorithm to take care of these constraints..

We will now explain a simple subtour elimination algorithm that can be imple-
mented together with the Mathematical Program (5.7)-(5.12) and (5.14)-(5.16).
The idea is to relax constraint (5.13) and iteratively only add the sub-tour elimi-
nations that are binding. Relaxing a constraint basically means to ignore it. We
find sub tours by looking for connected components in the graph.

Definition 5.2.1 Connected components. A graph is connected if every vertex
is reachable from from all other vertices. A connected component is a subset of
vertices with this property.

Figure 5.2 shows a graph with 2 connected components, 1-3 and 4-5.

Figure 5.2: An example a graph with 2 connected components.

A three-stage algorithm is proposed to eliminate sub tours.

� Step 1 Solve the LP relaxation of the mathematical problem from (5.7)
subject to the constraints from equation (5.8) - (5.12).

� Step 2 For all m. Find the connected components by using depth first
search. If no components are found, go to step 4, else go to step 3.
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� Step 3 Create new constraints by using the subsets from the connected
components and Equation (5.13). Resolve the LP and go back to step 2.

� Step 4 If integer, Exit, else branch and resolve the LP and go back to step
2.

The goal of this simple subtour elimination algorithm is to avoid adding un-
necessary constraints. Say we want to make a single TSP tour from Figure 5.2.
Here we have 2 connected components. By using the subtour elimination algo-
rithm we would force links between the two sets, defined by new constraints. This
might make new subtours and we could have to impose further constraints.

The procedure explained here is a possible way of solving the the arc formu-
lation of the MCGRP. A similar algorithm was developed by Bosco et al. (2012)
and their results will be discussed in Chapter 7.

5.2 Path Flow Model Formulation

The following model is a novel path flow model for the MCGRP, defined by this
thesis. In this case the paths are route variables. Each variable refers to a specific
route. It is a relatively straight forward formulation of the known Set Partition-
ing form.

Let Ω denote the set of all possible feasible routes for a given vehicle with capac-
ity Q. Define a binary variable λr for each r ∈ Ω taking the value 1 if the route
is used or 0 if it is not used. are = 1 if edge e is included in route r and are = 0
if it is not included. This is similar for the required arcs and vertices, ara and
arv respectively. cr is the cost for each route. m is the number of vehicles. The
formulation can be seen from (5.17)-(5.22).

min
∑
r∈Ω

crλr (5.17)

s.t.
∑
r∈Ω

areλr = 1 ∀e ∈ ER (π(E)e) (5.18)∑
r∈Ω

araλr = 1 ∀a ∈ AR (π(A)a) (5.19)∑
r∈Ω

arvλr = 1 ∀v ∈ VR (π(V )v) (5.20)∑
r∈Ω

λr ≤ m (5.21)

λr ∈ {0, 1} ∀r ∈ Ω (5.22)
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� The objective function from Equation (5.17) minimizes the total routing
cost of the tours.

� Constraints (5.18) - (5.20) are the covering constraints which forces all
entities to be satisfied. (π(E)ij) are the dual variables associated with each
edge covering constraint. This is similar for (π(A)ij) and (π(V )i)

� Constraint (5.21) makes sure only the prescribed number of vehicles are
used.

The path flow formulation is a D-W reformulation of the arc flow formulation
from Chapter 5.1. By defining constraints (5.8)-(5.10) as the constraints from
Dx ≤ e and constraints (5.11)-(5.13) as the constraints in Ax ≤ b from Chapter
3.4 and using D-W reformulation we get the path flow formulation. The new
formulation has a lot fewer constraints, but a lot more variables. As will be
discussed in Chapter 7, this formulation will, by itself, be weak. The number of
routes is of factorial dependence of the number of entities to service. The path
flow model is a relatively straight forward model to explain, however as we will
see in the next chapter, the solution strategy can be rather complex.
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CHAPTER 6

THE BRANCH & PRICE
PROCEDURE

In this chapter we will go through the solution method for the path flow formu-
lation model based on a B&P procedure. The CG algorithm used in this thesis is
inspired by an algorithm created for the CARP by Letchford and Oukil (2009).
CG solves an LP relaxation of the RMP and to ensure integer solutions we need to
branch. Letchford and Oukil (2009) do not propose a branching scheme in their
paper since their focus is solely on comparing various pricing schemes. However
Bode and Irnich et al. (2011) expand the research and define the first B&P algo-
rithm for the CARP. In their paper they focus on a pricing problem based on the
so called non-elementary routes which means they need to use a relatively com-
plicated branching scheme. In this thesis a new branching scheme is proposed.
The B&P algorithm is the first of its kind for the MCGRP. In Chapter 6.1 the
CG formulation will be presented and the full B&P algorithm will be described
in Chapter 6.2.

6.1 Column Generation

The reason we use CG is because it is too costly to generate all the possible
routes. We only want to create the necessary routes and ignore the others. This
idea fits perfectly to a column generation environment with our MP becoming
the path flow problem described in Chapter 5.2. We will restrict the MP by
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only starting with a few routes, giving us the the RMP. The RMP uses Ωs ⊂ Ω
where Ωs includes a subset of the routes. We start with a sufficiently large pool
of a priori generated routes. Enough routes for a feasible solution to the RMP.
We solve an LP relaxation of the RMP and use a pricing problem to add new
variables by creating new feasible routes.

The pricing problem used in this thesis is inspired on a mathematical program
created for the CARP by Letchford and Oukil (2009). The formulation includes a
RMP in the form known as set partitioning and a pricing problem based on solv-
ing the Shortest Path Problem with Resource Constraints (SPPRC), explained
by Feillet et al. (2004). The different pricing methods used by Letchford and
Oukil (2009) range from being fast with weaker bounds to slower with stronger
bounds, see Table 6.1. The pricing problem model used in this thesis is the one
with strongest bounds, the model that uses the elementary routes. Elementary
routes are basically legal routes in the way that they have no cycles and that
they fulfil the capacity and entity covering requirements of the MCGRP. This is
compared to a non-Elementary route that can service the same entity multiple
times and have cycles. The reason to choose the Elementary SPPRC (ESPPRC)
is because we get the best lower bounds and since we also generate legal routes,
feasible upper bounds will also be generated at each iteration.

Table 6.1: Sub problem results for the CARP. The first four rows are all non-
elementary routes with various eliminations or relaxations.

Method Speed Bound Strength

Without cycles elimination
(SPPRC)

very fast weak bounds

With 2-cycles elimination (2-
cyc-SPPRC)

slower stronger bounds

With k-cycles elimination (k-
cyc-SPPRC)

slower stronger bounds

ng-routes relaxation (ng-
SPPRC)

slower stronger bounds

Elementary routes (ESP-
PRC)

slowest strongest bounds
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The pricing problem is the following: For each {i, j} ∈ ER define two binary
variables xij and xji, such that xij + xji = 1 if this edge is serviced. Then for
each {i, j} ∈ E define two binary variables yij and yji such that yij + yji = 1 if
this edge is traversed. For each {i, j} ∈ AR define one binary variable xij = 1 if
this arc is serviced. Then for each {i, j} ∈ A define one binary variable yij = 1 if
this arc is traversed. For each i ∈ VR define the variables zi = 1 if this vertex is
serviced. Finally define for each {i, j} ∈ {E ∪A} the variables fij (as well as fji
for the Es). fij = 0 if yij = 0, but if yij = 1, fij represents the remaining load
on the vehicle when the vehicle arrives at j from i. We will also use the notation
y(δ+(i)) and y(δ−(i)) which represent the sum of the traversal variables leaving
and entering i respectively. Similar notation for f will be used.

min
∑
{i,j}∈E

cij(yij + yji) +
∑
{i,j}∈A

cijyij

−
∑
{i}∈VR

π(V )izi −
∑

{i,j}∈ER

π(E)ij(xij + xji)−
∑

{i,j}∈ARij

π(A)ijxij (6.1)

subject to the following constraints:

xij + xji ≤ 1 ∀{i, j} ∈ ER (6.2)

yij ≥ xij , yji ≥ xji ∀{i, j} ∈ ER (6.3)

yij ≥ xij ∀{i, j} ∈ AR (6.4)

y(δ+(i)) = y(δ−(i)) ∀i ∈ V ’ (6.5)

f(δ+(i)) = f(δ−(i))−
∑

{i,j}∈δ+R(i)

qijxij − qVizi ∀i ∈ V ’ (6.6)

f(δ+(0))− f(δ−(0)) +
∑

{0,j}∈δ+R(0)

q0jx0j ≤ Q (6.7)

fij ≤ Qyij − qijxij − ziqVi, fji ≤ Qyji − qjixji − zjqVi ∀{i, j} ∈ ER (6.8)

fij ≤ Qyij − qijxij − ziqVi ∀{i, j} ∈ AR (6.9)

fij , fji ≥ 0 ∀{i, j} ∈ E (6.10)

fij ≥ 0 ∀{i, j} ∈ A (6.11)

yij , yji ∈ N ∀{i, j} ∈ E (6.12)

yij ∈ N ∀{i, j} ∈ A (6.13)

xij , xji ∈ {0, 1} ∀{i, j} ∈ ER (6.14)

xij ∈ {0, 1} ∀{i, j} ∈ AR (6.15)

zi ∈ {0, 1} ∀{i} ∈ VR (6.16)
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� The Pricing objective function in equation (6.1). This is very similar to
each step in the Simplex method. By using the dual variables we can find
the best new column for the RMP.

� Constraint (6.2) ensures that each edge is serviced at most once.

� Constraints (6.3) and (6.4) ensure that an edge that is serviced will also be
traversed.

� Constraint (6.5) ensures that each vehicle leaves each vertex that it enters.

� Constraint (6.6) ensures that a service reduces the load on the vehicle and
(6.7) ensures that the total demand is less than the vehicle capacity Q.

� Constraints (6.8) and (6.9) restrict the vehicle load en route.

� The rest of the constraints are trivial non-negativity, integer and binary
constraints.

6.2 The Branching

A difficult part about using CG for integer programs is the development of branch-
ing rules to ensure integrality. Rules that are appropriate for IPs, where the entire
set of columns is explicitly available, do not work well with restricted IPs, where
the columns are generated by implicit techniques, as discussed in Chapter 3.5.

When using the B&B algorithm for the arc flow model from Chapter 5.1 it is
very easy to branch. There are relatively few variables in this formulation. One
possible strategy is the following:

1. Solve the LP relaxation

2. Find a decision variable xkij that is non-integer and non zero

3. Create the two branches xkij = 0 and xkij = 1 and resolve the LP relaxations
with these two extra constraints.

When no fractional variables are found we have an integer solution. The best
integer solution becomes an Upper bound (UB). The best unexplored fractional
solution becomes the Lower Bound (LB). All costs and demands in our problem
are integer, therefore when

UB − LB < 1
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we have an optimal solution. This procedure for B&B is relatively easy and most
linear programming software can handle this search tree by itself. However this
strategy is poor in a B&P environment, see Chapter 3.5.

In the B&P environment we can have multiple strategies that might work.
The goal is to find a strategy that guarantees convergence. When branching
is done we in general divide the solution space into smaller parts. If we for
some reason miss to search some parts of the solution space, we might not find
an optimal solution. We call it a complete branching scheme if we can find all
possible integer solutions.

The most common approach is to branch on the MP so as to keep the pricing
problem unchanged or branch on the pricing problem and keep the MP un-
changed. Bode and Irnich (2011) use a rather complicated follower, non-follower
branch methodology in their branching for the CARP. With this approach they
change the underlying graph structure by deleting some edges and adding others.
They explain that this is the only way to ensure an integer solution for the CARP
when using non elementary paths as their pricing problem. However, they have
used a different pricing method to the one presented here. When pricing with
elementary routes we will show that it is sufficient with pairing- and non pairing
constraints to ensure the integer solutions.

A pairing constraint means that two required entities must be in the same
route. Non-pairing is simply that they cannot be in the same route. The idea
is to add new constraints to the pricing problem from Chapter 6.1 that enforces
new routes with these properties. A way to do this is simply to add suitable
constraints to the pricing problem . An important aspect is that we do not need
to do anything with the MP with this branching strategy, however we need to
delete some of the previously generated variables where the associated routes do
not satisfy the new constraints. Now we need to ensure that this is a complete
branching scheme.

Let WR = {ER∪AR∪VR} be the set of all required entities and let the binary
variables wr,i = 1 if route r services entity i. Let each route have a corresponding
binary variable λr = 1 if it is used in the optimal solution. A pairing relationship
between entity i and j is when the two respective entities are serviced by the
same route. This can be represented by the constraint:

wri = wrj ∀r, i 6= j

A non- pairing relationship is when maximum one of the entities is serviced by
any route. This can be represented by the constraint:

wri + wrj ≤ 1 ∀r, i 6= j.

The route columns wr are what the pricing problem generates for the RMP
at every iteration. When no more routes are found with negative reduced cost,
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we have the optimal solution to the LP relaxed RMP. We will then have a set
of route variables with values 0 ≤ λ∗r ≤ 1, ∀r. A route variable with a positive
λr-value we call an active route.

Branching Theorem :
For every pair of entities there can only be active routes that include either a
non-pairing relationship or a pairing relationship for the solution to be integer.
Further, if there only exists active routes that fulfil this requirement we have a
guaranteed integer solution.

Proof. Let b be the current branching node and Ωb be the set of associated
routes. Assume that for some pair of entities (i, j), we have an active route r
with a pairing relationship between i and j and an active route q with a non-
pairing relationship between i and j. The corresponding routing variables are
λr > 0, λq > 0. From the covering constraints (5.18)-(5.20) we know that:

λrwri + λqwqi = 1 or
λrwrj + λqwqj = 1

Since the w’s are binary the λ’s must be fractional.
For the next part, say for all entity pairs and all active routing variables there

will only be one active route with either a pairing- or a non-paring relationship.
Say entity j is serviced by the active route r. To have a fractional solution j
will also be serviced by another route, say q. For the two routes r and q not to
be identical we say route r also services entity i and route q does not. However
this means that there exists both a non-pairing and pairing relationship of the
entity pair (i, j) after all. This is a contradiction and the routes r and q must
be identical. Further the CG procedure would not generate the same route twice
because the reduced cost of variables in the basis is 0. We can therefore conclude
that each entity will only be serviced by exactly one route and we have an integer
solution

To select the entity pair to branch on we need to check if there exists active
routes that include both pairing and non-pairing relationships. This is done by
adding up all the pairings and all the non-pairings. R is the total number of
routes in the current branching node b.
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Matrix N includes all the non-pairing relationships. N :=

x1 x2 x3 · · · xn

x1 0
∑R

i=1 λi | xi1 − xi2 |
∑R

i=1 λi | xi1 − xi3 | · · ·
∑R

i=1 λi | xi1 − xin |

x2 - 0
∑R

i=1 λi | xi2 − xi3 | · · ·
...

x3 - - 0
. . .

...
... - - - 0

∑R
i=1 λi | xi(n−1) − xin |

xn - - - - 0

Matrix P includes all the pairing relationships. P :=

x1 x2 x3 · · · xn

x1 1
∑R
i=1 λi(xi1 · xi2)

∑R
i=1 λi(xi1 · xi3) · · ·

∑R
i=1 λi(xi1 · xin)

x2 - 1
∑R
i=1 λi(xi2 · xi3) · · ·

...

x3 - - 1
. . .

...
... - - - 1

∑R
i=1 λi(xi(n−1) · xin)

xn - - - - 1

The lower left corners of the matrix are ignored because of symmetry. We
want to choose a pair of entities that have non-zero entries in both matrices.
In normal variable branching it is most common to branch on either the most
fractional variable or the fractional variable closest to 1. The general idea is
then that more fractional solutions are ”cut” away. However the research from
Achterberg et al. (2004) says otherwise. Their research show that there is no
significant increase in performance for choosing any particular variable to branch
on. Therefore it is just as efficient to choose a random pair of variables that
fulfil the given requirements. Our algorithm terminates when no better integer
solutions can be found.
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CHAPTER 7

COMPUTATIONAL
EXPERIMENTS AND RESULTS

This chapter is about the computational experiments performed in this thesis
and the results produced by them. The purpose of this thesis was to investigate
a new and hopefully better algorithm to solve the MCGRP and the results will be
produced here. In Chapter 7.1 we start by describing and visualizing an MCGRP
instance. In Chapter 7.2 the benchmark instances created for the MCGRP will
be introduced. Chapter 7.3 will describe the experimental set-up used for the
experiments.

In Chapter 7.4 we present the final results produced by the B&P algorithm as
well as the earlier results produced in this thesis. A total of 158 instances were
solved by the algorithm. All the results will be presented and discussed.

7.1 Visualized example

Let us have a closer look at one of the instances. The instance described here is
one of the smaller instances investigated in this thesis with a total of 8 vertices,
18 arcs, 2 edges where 3, 6 and 1 of them are required respectively.

� Required Vertices: 2, 5 and 6

� Required Edges: 1↔2

� Required Arcs: 1→4, 2→3, 2→7, 5→7, 6→8 and 7→3
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� Non-Required Edges: 2↔4

� Non-Required Arcs: 1→5, 1→6, 2→4, 3→2, 3→7, 4→1, 5→1, 5→2, 6→1,
7→2, 7→5 and 8→6

To better understand what we are dealing with, a Matlab plot of the instance
is visualized in Figure 7.1.

Figure 7.1: A graphical representation of the instance by using the biograph
function in MATLAB. Blue vertices, green arcs and blue edges are all required
entities. Note that the entities are placed to give a best possible visualization of
the data and not correct with respect to actual position of vertices or lengths of
the links.

The instance has access to three vehicles. A possible optimal solution can be
seen from Figure 7.2.
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(a) Route 1 (b) Route 2

(c) Route 3

Figure 7.2: Optimal solution to the instance. Blue colour means that the
link/vertex is serviced. Black links represent the traversed links.

7.2 The Instances

In this section we will discuss the instances that exist as well as the ones used in
this thesis. For the MCGRP there are currently 5 Benchmark instance sets that
are used. Prins and Bouchenoua (2005) created the CBMix sets which include 23
instances. Bach et al (2012) developed 2 new benchmarks. The 20 BHW instances
based on well known instances from the CARP literature and the 24 DI-NEARP
instances taken from real-world newspaper distribution cases in Norway. Bosco
et al. (2012) created the two last classes of sets, the MGGDB and the MGVAL.
The first class is derived from previous undirected CARP instances by Golden
et al. (1983). The sets are modified in the following way. Firstly, d0.75|E|e of
the edges are replaced by pairs of opposite arcs and the demand is moved to a
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randomly chosen arc. Were d0.75|E|e means 75% of all edges rounded up to the
closest integer. Then, 6 different datasets were created by shifting the demands
of dβπe randomly selected required links to dβπe randomly selected adjacent
vertices, where π is the number of required links in the respective mixed graphs.
The 6 sets get the assigned β = {0.25, 0.30, 0.35, 0.40, 0.45, 0.50}. This results in
144 new instances. The second class of datasets is derived from datasets designed
for the mixed CARP by Belenguer et al. (2006). These sets are transformed in
the similar way as the MGGDB and we get a total of 204 new datasets from this
class. The instances, as well as the currently bestbest solutions known from the
literature can be found at SINTEF’s TOP website (TOP, 2013).

In this thesis the main focus has been on solving the instances from the six
MGGDB datasets. These sets will propose a good comparison between the B&C
and the B&P based models. Additionally two instances have been chosen from
each of the six MGVAL datasets, an instance that was easy and one that was
hard to solve for Bosco et al. (2012). To inspire further research also one instance
from each of the datasets BHW and CBMix were chosen. None of the DI-NEARP
instances were chosen because they are very large.

7.3 The Computational set up

Computational experiments were carried out on a PC equipped with an Intel(R)
Core(TM) i7 CPU @2.93GHz, with 8 GB RAM. The full B&P algorithm, includ-
ing handling the branching and search tree was coded in the C# using Visual
studios 2010. All the LP and MILP calculations were solved by using the BCL
XPRESS library, release September 13 2012.

Xpress Optimization Suite is a development environment for mathematical mod-
elling and optimization which consists of these three parts:

� IVE, Interactive Visual Environment

� Mosel language, libraries and modules

� Xpress Optimizer

Only the XPRESS Optimizer was used by the algorithm presented in this thesis.
Xpress is a high level programming language for optimization which mainly uses
Simplex and B&C, to solve linear programming problems.

The MGGDB instances were given a time cap of 60 minutes. Further the MG-
VAL, BHW and CBMix instances were given 2 hours because the instances were
larger. Comparatively Bosco et al. (2012) had a time cap of 6 hours with ap-
proximately identical computer specifications.



Numerical Results 53

7.4 Numerical Results

This section bears the fruits from the research performed by this thesis, the re-
sults. We start this section with some early results in Chapter 7.4.1. The results
by creating all routes and by the CG method will be presented here. In Chapter
7.4.1 the final results from the B&P algorithm will be presented and discussed.

7.4.1 Early Results

The first step in this research was to investigate the path formulation by creating
all possible routes. Only 6 of the 144 MGGDB-, and none of the other benchmark
instances were solved. For all other instances out computer ran out of memory
before all the routes were generated. The 6 instances solved are marked by a (∗)
in Table 7.1-7.6. The biggest instance that was solved was the one described in
detail in Chapter 7.1. Even this small example has almost half a million different
routes. It was clear that we could not create all routes so the CG procedure
inspired by Letchford and Oukil (2009) was created.

The next results that were produced by this thesis were by using CG. An initial
pool of tours were created for a feasible starting point. In routing problems with-
out constraints on the number of vehicles it is common to create as many routes
as there are required entities. With each route only servicing one required entity
each. This could not be done here because of the vehicle constraints from (5.21).
This was solved by a random generator that created new routes until all required
entities were covered, meaning that the constraints (5.18)-(5.20) are fulfilled as
well as (5.21).

First we present the results in Table 7.1-7.8. Tables 7.1-7.6 present the six
sets from the MGGDB instances and Table 7.7 present 12 MGVAL instances.
These results are compared to the B&C results from Bosco et al. (2012). Table
7.8 presents 1 BHW- and 1 CBMix instance comparing them to the best known
solutions from the literature. None of the MGGDB instances took more than
3 minutes to solve and they had an average solution time of approximately 1
minute in total for the 144 instances. For the bigger instances from Table 7.7
and 7.8 the average solution time was about 10 minutes. With respect to the
MGGDB instances, the number of optimally solved instances is equal to 2 for
β = {0.25, 0.30, 0.45}, 3 for β = {0.35, 0.40} and 4 for β = 0.50; the average
percentage gaps are equal to 7.25 for β = 0.25, 7.20 for β = 0.30, 5.61 for
β = 0.35, 4.26 for β = 0.40, 3.73 for β = 0.45 and 4.58 for β = 0.50. A total
of 19 MGGDB instances gave optimal solutions. For the bigger instances from
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Table 7.7 and 7.8 the average GAP was 11.17% and no new optimal solutions
were found. The column headings are defined as follows:

� Ins. denotes the instance number in the respective set of instances.

� m denotes the maximum number of vehicles available for each instance

� LBCG and UBCG denote the lower- and upper bounds respectively found
by the CG method.

� UBBC denotes the upper bounds found by the B&C method by Bosco et
al. (2012), they have not presented lower bounds in their paper.

� GAPCG and GAPBC denotes the percentage gap provided by the respective
methods.

� In Table 7.8 the under-case BC is changed to best meaning the best known
results from the literature.

Table 7.1: CG results from the MGGDB-benchmark set with β = 0.25

Ins. m LBCG UBCG UBBC GapCG GapBC Ins. m LBCG UBCG UBBC GapCG GapBC

1 5 274 285 280 3.86 0 13 6 388 392 388 1.02 3.38
2 6 339 359 349 5.57 5.58 14 5 107 107 107 0 0
3 5 270 282 278 4.26 0 15 4 54 56 55 3.57 0
4 4 273 292 289 6.51 0 16 5 97 169 98 42.6 0
5 6 384 404 394 4.95 6.41 17 5 70 78 71 10.26 0
6 5 291 295 292 1.36 0 18 5 139 157 144 11.46 3.47
7 5 288 290 290 0.69 0 19* 3 53 53 53 0 0
8 10 328 356 - 7.87 - 20 4 116 122 116 4.92 0
9 10 305 331 - 7.85 - 21 6 144 161 146 10.56 0.68
10 4 265 276 265 3.99 0 22 8 160 172 - 6.98 -
11 5 347 366 356 5.19 3.09 23 10 181 234 - 22.65 -
12 7 456 459 459 0.65 3.74

Table 7.2: CG results from the MGGDB-benchmark set with β = 0.30

Ins. m LBCG UBCG UBBC GapCG GapBC Ins. m LBCG UBCG UBBC GapCG GapBC

1 5 262 276 273 5.07 0 13 6 479 529 486 9.45 8.02
2 6 294 307 301 4.23 5.74 14 5 100 104 101 3.85 0
3 5 269 287 270 6.27 0 15 4 43 44 44 2.27 0
4 4 253 271 260 6.64 0 16 5 105 169 105 37.87 0
5 6 384 416 388 7.69 2.82 17 5 65 75 65 13.33 0
6 5 265 283 276 6.36 0 18 5 142 153 144 7.19 0
7 5 258 281 273 8.19 0 19* 3 51 51 51 0 0
8 10 329 352 - 6.53 - 20 4 94 100 94 6 0
9 10 278 290 - 4.14 - 21 6 121 121 121 0 0.83
10 4 241 248 242 2.82 0 22 8 151 156 - 3.21 -
11 5 382 430 387 11.16 1.55 23 10 167 188 - 11.17 -
12 7 462 472 467 2.12 6.36
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Table 7.3: CG results from the MGGDB-benchmark set with β = 0.35

Ins. m LBCG UBCG UBBC GapCG GapBC Ins. m LBCG UBCG UBBC GapCG GapBC

1 5 236 252 252 6.35 0 13 6 417 417 417 0 2.98
2 6 280 284 284 1.41 0 14 5 83 84 84 1.19 0
3 5 236 243 243 2.88 0 15 4 44 44 44 0 0
4 4 240 256 242 6.25 0 16 5 73 75 75 2.67 0
5 6 299 323 309 7.43 6.11 17 5 61 63 62 3.17 0
6 5 249 262 262 4.96 0 18 5 132 157 135 15.92 0
7 5 263 282 272 6.74 0 19* 3 51 51 51 0 0
8 10 311 338 - 7.99 - 20 4 93 96 96 3.13 0
9 10 260 275 - 5.45 - 21 6 116 125 120 7.2 2.07
10 4 267 306 268 12.75 0 22 8 138 146 - 5.48 -
11 5 301 315 303 4.44 0 23 10 178 233 - 23.61 -
12 7 461 461 461 0 0

Table 7.4: CG results from the MGGDB-benchmark set with β = 0.40

Ins. m LBCG UBCG UBBC GapCG GapBC Ins. m LBCG UBCG UBBC GapCG GapBC

1 5 273 286 279 4.55 0 13 6 394 407 405 3.19 7.25
2 6 297 309 308 3.88 1.86 14 5 61 66 62 7.58 0
3 5 222 225 225 1.33 0 15 4 37 37 37 0 0
4 4 238 238 238 0 0 16 5 84 90 84 6.67 0
5 6 334 354 344 5.65 6.97 17 5 64 66 65 3.03 0
6 5 263 275 270 4.36 0 18 5 113 125 119 9.6 0
7 5 269 299 282 10.03 0 19* 3 38 38 38 0 0
8 10 322 349 - 7.74 - 20 4 93 94 94 1.06 0
9 10 269 280 - 3.93 - 21 6 104 104 104 0 0
10 4 189 194 191 2.58 0 22 8 129 129 - 0 -
11 5 277 287 283 3.48 2.6 23 10 160 193 - 17.1 -
12 7 403 412 412 2.18 0

Table 7.5: CG results from the MGGDB-benchmark set with β = 0.45

Ins. m LBCG UBCG UBBC GapCG GapBC Ins. m LBCG UBCG UBBC GapCG GapBC

1 5 257 262 259 1.91 0 13 6 403 407 423 0.98 10.19
2 6 292 298 298 2.01 3.78 14 5 64 67 66 4.48 0
3 5 234 237 237 1.27 0 15 4 34 34 34 0 0
4 4 222 228 228 2.63 0 16 5 70 73 70 4.11 0
5 6 347 370 350 6.22 4.43 17 5 52 53 53 1.89 0
6 5 215 218 218 1.38 0 18 5 115 124 123 7.26 7.19
7 5 225 249 243 9.64 0 19* 3 48 48 48 0 0
8 10 296 316 - 6.33 - 20 4 76 77 78 1.3 0
9 10 274 284 - 3.52 - 21 6 121 128 122 5.47 0
10 4 212 231 214 8.23 0 22 8 135 137 - 1.46 -
11 5 285 306 297 6.86 4.41 23 10 142 146 - 2.74 -
12 7 386 411 393 6.08 5.48
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Table 7.6: CG results from the MGGDB-benchmark set with β = 0.50

Ins. m LBCG UBCG UBBC GapCG GapBC Ins. m LBCG UBCG UBBC GapCG GapBC

1 5 209 223 214 6.28 0 13 6 259 259 259 0 8.52
2 6 259 269 269 3.72 6.81 14 5 74 75 75 1.33 0
3 5 208 221 218 5.88 0 15 4 37 39 37 5.13 0
4 4 216 223 219 3.14 0 16 5 65 67 66 2.99 0
5 6 285 292 292 2.4 0 17 5 53 60 53 11.67 0
6 5 269 279 276 3.58 0 18 5 117 127 121 7.87 6.63
7 5 260 275 265 5.45 0 19* 3 44 44 44 0 0
8 10 305 336 - 9.23 - 20 4 81 81 81 0 0
9 10 260 275 - 5.45 - 21 6 83 98 86 15.31 0
10 4 194 194 194 0 0 22 8 123 124 - 0.81 -
11 5 267 292 275 8.56 4.16 23 10 125 132 - 5.3 -
12 7 440 446 445 1.35 0

Table 7.7: CG results from the MGVAL-benchmark instances. The instances
1A and 3C from each set.

Ins. m LBCG UBCG UBBC GapCG GapBC

β = 0.25: 1A 2 157 210 177 25.24 0
β = 0.25: 3C 7 146 154 153 5.19 11.01
β = 0.30: 1A 2 159 196 170 18.88 0
β = 0.30: 3C 7 146 165 153 11.52 12.08
β = 0.35: 1A 2 152 185 158 17.84 0
β = 0.35: 3C 7 143 149 150 4.03 6.84
β = 0.40: 1A 2 154 191 165 19.37 0
β = 0.40: 3C 7 142 152 148 6.58 12.82
β = 0.45: 1A 2 158 189 168 16.40 0
β = 0.45: 3C 7 142 146 143 2.74 8.7
β = 0.50: 1A 2 138 155 145 10.97 0
β = 0.50: 3C 7 135 145 137 6.90 7.94

Table 7.8: Computational results BHW3 and CBMix1. Comparing to the best
known results from the literature

Ins. m LBCG UBCG UBbest GapCG Gapbest
BHW 3 - 405 418 415 3.11 24
CBMix 1 - 2513 2718 2589 7.54 7.2
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The tables show that we get a clear decrease in percentage gaps when we
increase the β. This is likely because we shift more of the required links to
vertices. The number of route variables in the path formulation depend on the
number of entities, but since edges can be serviced both ways a lot more routes can
be created by having more required edges compared to arcs or vertices. This can
be seen from the tables, for instance 4 of the instances with β = 0.5 give optimal
solutions compared to only 2 for β = 0.25. This differs from the results found by
Bosco et al. (2012). They conclude that changing β does not affect the solvability
of the algorithm and explain this by their B&C algorithm. However they see a
clear trend that by increasing the number of vehicles the instances become much
harder to solve. They consider instances with m > 7 as hard and do not solve
these instances in their paper. The reason for this is that the variables in the arc
formulation are proportional to the number of vehicles, making it much harder
when there are many vehicles. As discussed earlier this is not a problem with our
formulation, i.e. instance 22 with β = 0.40 and m = 8 was solved to optimality
by the CG algorithm, see Table 7.4.

As one can see from the tables, many of the problems with many vehicles have
high percentage gaps, but we believe this is because the instances themselves are
much larger and not because of the number of vehicles available. This fact can
further be confirmed by Table 7.7. Bosco et al. (2012) has no problems solving
the 6 instances with 2 available vehicles, however the gaps on the instances with
7 available vehicles are rather large. The opposite is true for our model. The
average gap for the instances with more vehicles is lower than for the instances
with fewer vehicles. The number of total- and required entities are higher in the
instances with few vehicles, making them easier for our model.

In Table 7.8 we have included the instances from BHW3 and CBMix1. The
CG algorithm dramatically improves the percentage gap of the best known solu-
tions to the BHW3 instance ass well as the lower bound for the CBMix instance.

To give an overview that can further compare the CG results to Bosco et al.
(2012) we have created Table 7.9. The table gives us information of the total
optimal solutions found for the CG- and B&C algorithms respectively. The third
column shows the improved lower bounds found by the CG. None of the Upper
Bounds were improved, thus this is not in the table. Finally the average GAPs
are given for the two methods. Note that some of the 24 extra MGGDB instances
solved in this thesis (not included in Bosco et al. (2012)) increase the average
GAP significantly.

It is clear from Table 7.9 that the B&C algorithm gives better results than the
LP relaxed CG method. More than four times as many solutions were solved to
optimum and the average GAP is much better for the B&C algorithm. However
a very interesting part of the table are the improved lower bounds. The 48
improved lower bounds correspond to almost all the unsolved instances from the
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Table 7.9: Computational results comparing CG with B&C for the MGGDB
instances

SET # Optimal # Optimal # Improved LB Average GAP Average GAP
Solutions Solutions BC CG (%) BC (%)

MGGDB 19 86 48 5.44 1.11

B&C algorithm. The fact that so many lower bounds are improved within 3
minutes compared to the 6 hour cap by Bosco et al. (2012) shows that this is
a very good Lower bound procedure. These were the results presented at the
WARP1 conference in Copenhagen 22-24 May 2013 (WARP1, 2013).

These results fit well to the prediction by Letchford and Oukil (2009) that
a CG method based on elementary routes gives good lower bounds, however
they also state that this is a relatively slow procedure. This is not noticable for
the MGGDB instances, but start noticing this for the MGVAL instances. The
average solution time increases from 1 minute to 10 minutes for the MGGDB-
and MGVAL instances respectively.

7.4.2 Branch & Price Results

The final results produced by this thesis are the B&P results. Even though the
Lower bounds from the CG method were good, the upper bounds are not good
and so the average gap is rather large. By the proof shown in in Chapter 6.2
we know that the branching scheme will provide optimal solutions as the B&C
algorithm from Bosco et al. (2012) also does. The interesting part is how many
solutions can be found within the time cap of 1 hour.

First we present the results in Table 7.10-7.17. Tables 7.10-7.15 presenting the
six sets from the MGGDB instances and Table 7.16 presenting the 12 MGVAL
instances. Table 7.17 presents 1 BHW instance and 1 CBMix instance. With
respect to the MGGDB instances, the number of optimally solved instances is
equal to 12 for β = 0.35, 13 for β = {0.30, 0.45}, 14 for β = {0.25, 0.40} and 15
for β = 0.50; the average percentage gaps are equal to 0.69 for β = 0.25, 0.89
for β = 0.30, 1.06 for β = 0.35, 1.19 for β = 0.40, 1.15 for β = 0.45 and 1.32
for β = 0.50. A total of 81 MGGDB instances gave optimal solutions. Note that
Bosco et al (2012) has an error in their table marked with a (∗∗), see Table 7.12.
This has been confirmed by implementing their model.

The bigger instances have an average GAP = 5.59% and two new optimal
solutions were found.

The tables show that we do not get the same decrease in percentage gaps when
we increase the β as we saw in the early results. In fact it can seem that it is
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Table 7.10: B&P results from the MGGDB-benchmark set with β = 0.25

Ins. m LBBP UBBP UBBC GapBP GapBC Ins. m LBBP UBBP UBBC GapBP GapBC

1 5 280 280 280 0 0 13 6 378 384 388 1.56 3.38
2 6 339 339 349 0 5.58 14 5 107 107 107 0 0
3 5 271 278 278 2.52 0 15 4 55 55 55 0 0
4 4 249 249 249 0 0 16 5 98 98 98 0 0
5 6 386 397 394 2.77 6.41 17 5 71 71 71 0 0
6 5 292 292 292 0 0 18 5 139 140 144 0.71 3.47
7 5 290 290 290 0 0 19 3 53 53 53 0 0
8 10 328 336 - 2.38 - 20 4 116 116 116 0 0
9 10 305 309 - 1.29 - 21 6 144 146 146 1.37 0.68
10 4 265 265 265 0 0 22 8 160 160 - 0 -
11 5 347 356 356 2.53 3.09 23 10 181 181 - 0 -
12 7 456 459 459 0.65 3.74

Table 7.11: B&P results from the MGGDB-benchmark set with β = 0.30

Ins. m LBBP UBBP UBBC GapBP GapBC Ins. m LBBP UBBP UBBC GapBP GapBC

1 5 263 273 273 3.66 0 13 6 473 474 486 0.21 8.02
2 6 295 301 301 1.99 5.74 14 5 101 101 101 0 0
3 5 270 270 270 0 0 15 4 44 44 44 0 0
4 4 259 260 260 0.38 0 16 5 105 105 105 0 0
5 6 384 388 388 1.03 2.82 17 5 65 65 65 0 0
6 5 270 278 276 2.88 0 18 5 144 144 144 0 0
7 5 260 273 273 4.76 0 19 3 51 51 51 0 0
8 10 328 339 - 3.24 - 20 4 94 94 94 0 0
9 10 279 282 - 1.06 - 21 6 121 121 121 0 0.83
10 4 242 242 242 0 0 22 8 152 152 - 0 -
11 5 382 387 387 1.29 1.55 23 10 167 167 - 0 -
12 7 467 467 467 0 6.36

Table 7.12: B&P results from the MGGDB-benchmark set with β = 0.35.

Ins. m LBBP UBBP UBBC GapBP GapBC Ins. m LBBP UBBP UBBC GapBP GapBC

1 5 240 252 252 4.76 0 13 6 417 417 417 0 2.98
2 6 280 284 284 1.41 0 14 5 84 84 84 0 0
3 5 237 243 243 2.47 0 15 4 44 44 44 0 0
4 4 242 242 242 0 0 16 5 75 75 75 0 0
5 6 301 309 309 2.59 6.11 17 5 62 62 62 0 0
6 5 262 262 262 0 0 18 5 135 135 135 0 0
7 5 266 272 272 2.21 0 19 3 51 51 47** 0 0
8 10 311 322 - 3.42 - 20 4 96 96 96 0 0
9 10 261 267 - 2.25 - 21 6 118 120 120 1.67 2.07
10 4 268 268 268 0 0 22 8 138 139 - 0.72 -
11 5 301 303 303 0.66 0 23 10 178 182 - 2.2 -
12 7 461 461 461 0 0
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Table 7.13: B&P results from the MGGDB-benchmark set with β = 0.40

Ins. m LBBP UBBP UBBC GapBP GapBC Ins. m LBBP UBBP UBBC GapBP GapBC

1 5 274 279 279 1.79 0 13 6 396 405 405 2.22 7.25
2 6 300 309 308 2.91 1.86 14 5 62 62 62 0 0
3 5 225 225 225 0 0 15 4 37 37 37 0 0
4 4 238 238 238 0 0 16 5 84 84 84 0 0
5 6 334 346 344 3.47 6.97 17 5 65 65 65 0 0
6 5 264 270 270 2.22 0 18 5 113 119 119 5.04 0
7 5 282 282 282 0 0 19 3 38 38 38 0 0
8 10 321 338 - 5.03 - 20 4 94 94 94 0 0
9 10 269 275 - 2.18 - 21 6 104 104 104 0 0
10 4 191 191 191 0 0 22 8 129 129 - 0 -
11 5 276 283 283 2.47 2.6 23 10 160 160 - 0 -
12 7 412 412 412 0 0

Table 7.14: B&P results from the MGGDB-benchmark set with β = 0.45

Ins. m LBBP UBBP UBBC GapBP GapBC Ins. m LBBP UBBP UBBC GapBP GapBC

1 5 259 259 259 0 0 13 6 423 423 423 0 10.19
2 6 294 298 298 1.34 3.78 14 5 66 66 66 0 0
3 5 237 237 237 0 0 15 4 34 34 34 0 0
4 4 224 228 228 1.75 0 16 5 70 70 70 0 0
5 6 347 350 350 0.86 4.43 17 5 53 53 53 0 0
6 5 218 218 218 0 0 18 5 116 123 123 5.69 7.19
7 5 232 243 243 4.53 0 19 3 48 48 48 0 0
8 10 296 296 - 0 - 20 4 78 78 78 0 0
9 10 273 278 - 1.8 - 21 6 122 122 122 0 0
10 4 214 214 214 0 0 22 8 135 136 - 0.74 -
11 5 286 303 297 5.61 4.41 23 10 143 146 - 2.05 -
12 7 385 393 393 2.04 5.48

Table 7.15: B&P results from the MGGDB-benchmark set with β = 0.50

Ins. m LBBP UBBP UBBC GapBP GapBC Ins. m LBBP UBBP UBBC GapBP GapBC

1 5 214 214 214 0 0 13 6 259 259 259 0 8.52
2 6 262 269 269 2.6 6.81 14 5 75 75 75 0 0
3 5 218 218 218 0 0 15 4 37 37 37 0 0
4 4 219 219 219 0 0 16 5 66 66 66 0 0
5 6 292 292 292 0 0 17 5 53 53 53 0 0
6 5 271 276 276 1.81 0 18 5 117 121 121 3.31 6.63
7 5 261 268 265 2.61 0 19 3 44 44 44 0 0
8 10 305 328 - 7.01 - 20 4 81 81 81 0 0
9 10 260 267 - 2.62 - 21 6 83 89 86 6.74 0
10 4 194 194 194 0 0 22 8 123 123 - 0 -
11 5 268 278 275 3.6 4.16 23 10 125 125 - 0 -
12 7 445 445 445 0 0
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Table 7.16: B&P results from the MGVAL-benchmark instances. The instances
1A and 3C from each set.

Ins. m LBBP UBBP UBBC GapBP GapBC

β = 0.25: 1A 2 157 188 177 16.49 0
β = 0.25: 3C 7 146 151 153 3.31 11.01
β = 0.30: 1A 2 160 186 170 13.98 0
β = 0.30: 3C 7 146 147 153 0.68 12.08
β = 0.35: 1A 2 155 173 158 10.40 0
β = 0.35: 3C 7 144 147 150 2.04 6.84
β = 0.40: 1A 2 155 174 165 10.92 0
β = 0.40: 3C 7 142 148 148 4.02 12.82
β = 0.45: 1A 2 159 170 168 6.47 0
β = 0.45: 3C 7 142 142 143 0 8.7
β = 0.50: 1A 2 138 147 145 6.12 0
β = 0.50: 3C 7 136 136 137 0 7.94

Table 7.17: Computational results for 12 MVAL-, 1 BHW- and 1 CBMix in-
stances. Comparing the Branch & Price results to the Branch & Cut results.

Ins. m LBBP UBBP UBbest GapBP Gapbest
BHW 3 - 410 418 415 1.91 24
CBMix 1 - 2529 2575 2589 1.79 7.2

the opposite that happens here, the percentage gaps actually increase from from
0.69-1.32 from β = 0.25-β = 0.50. However we find most optimal solutions when
β = 0.50 and by closer inspection we see that two instances have much higher gaps
than the rest in this set, 7.01 and 6.74 for instances 8 and 21 respectively. There
can be many reasons for particular instances being hard to solve. A random shift
of required entities can change an instance for the easier and harder. We come
to the conclusion that by using B&P we tend to the conclusion found by Bosco
et al. (2012), that changing β does not affect the solvability of the algorithm.
More tests should be made on this matter.

It is even more clear here than in Chapter 7.1 that the number of vehicles
does not affect the solvability of the B&P. A total of 9 of the instances Bosco
et al. (2012) did not give results for were solved to optimality here. Again we
also look at the results from the MGVAL instances. The instances with m = 2
are hard for the B&P algorithm to solve. It is from Table 7.16 we notice a big
difference between the B&P compared to the B&C algorithms. Instance 1A with
β = 0.25 is solved to optimality by the B&C algorithm but as a percentage gap
of 16.49 for our algorithm while instance 3C with β = 0.45 has a percentage gap
of 8.7 by the B&C algorithm, but an optimal solution was found by using B&P.

In Table 7.8 we have included the instances from BHW3 and CBMix1. The
B&P algorithm further improves the percentage gaps of the best known solutions
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for BHW3 and CBMix1. Further research on these instances are advices.
Finally to give an overview that can compare our results to Bosco et al. (2012)

we have created Table 7.17. The table gives us information of the total optimal
solutions found for the B&P- and B&C algorithms respectively. The third column
shows the new optimal solutions found by this thesis. It can be mentioned that
additionally 2 more lower bounds were improved, 50 in total. Finally the average
GAPs are given for the two methods.

Table 7.18: Computational results BHW3 and CBMix1. Comparing to the best
known results from the literature

Set # Optimal # Optimal # New Optimal Average GAP Average GAP
Solutions Solutions BC Solutions CG (%) BC (%)

MGGDB 81 83 14 1.02 1.11

The results from Table 7.17 show a very significant improvement for the MG-
GDB instances when using B&P. A total of 81 instances were solved to optimality
and 14 of them solved for the very first time. This is almost as many as the 83
solved by the B&C algorithm that used 6 hours. However this means that there
are 16 cases solved by the Bosco et al. (2012) that were not solved here. This
further shows that different instances might pose difficulties to one of the models
and not to the other and vice-versa as mentioned. Further proof for this comes
from the fact that Bosco et al. (2012) did not solve 24 of the instances, they
were considered to difficult as they had more than seven vehicles. Nine of these
24 instances were solved to optimality by the B&P algorithm. While some in-
stances that where solved to optimum very quickly by Bosco et al. (2012) had
a relatively large Gap in this thesis, see for instance number 7 in Table 7.14. It
can be many reasons for this, but it is relatively clear that the B&P does not
have same problems with the number of vehicles. This can also be seen from
the mathematical programs. In the arc flow model, the number of variables is
proportional to the number of vehicles. In the Path Model the number of vehicles
only acts as a restricting constraint. In fact the more vehicles we have the more
relaxed the problem becomes and easier to solve. From our results we are led to a
conclusion that the new model solved by B&P can solve many problems and the
CG algorithm gives excellent lower bounds. However it is hard to say weather it
is better than the B&C from the research done here. The average GAP for the
MGGDB instances is smaller for our algorithm, but Table 7.16 hints to better
results for B&C when using the MGVAL instances. The two algorithms work
good on different problems.



CHAPTER 8

CONCLUSION AND FURTHER
WORK

In this thesis we have solved 158 benchmark instances of the MCGRP. We for-
mulated the problem as a path flow model formulation and used the ESPPRC
as a pricing problem in the CG method. A novel B&P algorithm was finally
implemented to find optimal solutions. The conclusions that are drawn from this
thesis will be given in Chapter 8.1. Finally suggestions for further work will be
given in Chapter 8.2.

8.1 Conclusion

A novel mathematical model formulation for the MCGRP has been created and
presented. As far as we know it is currently the second model for this problem
and for the first time the MCGRP has been tackled by a B&P algorithm. The
B&P procedure uses ESPPRC as a pricing problem in the CG method and we
have used a branching scheme based on pairing and non-pairing relationships. A
proof has been given to show that the chosen branching scheme is complete.

The main goal of this thesis was to create an exact algorithm that was hope-
fully better than the B&C algorithm by Bosco et al. (2012). The main compar-
isons were made on the 144 benchmark instances called MCGRP, a total of 81
and 83 instances were solved with percentage average gaps of 1.02 and 1.11 for
the B&P- and B&C algorithms respectively. Additionally we found 14 new op-
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timal solutions and improved 50 lower bounds on previously unsolved instances.
12 bigger instances were solved from the MGVAL benchmark instances and 2
new optimal solutions were found. Dramatically improvements were made on the
benchmark instances BHW3 and CBMix1 were the percentage gaps were reduced
from 24 to 1.91 and 7.2 to 1.79 for the BWH3 and CBMix1 instances respectively.

The algorithm created in this thesis has some weaknesses for the bigger in-
stances with few vehicles. Some of the problems that Bosco et al. (2012) could
solve within few seconds we ended up with percentage gaps more than 10 after 2
hours computation time. This fits well with the results found by Letchford and
Oukil (2011) that pricing with elementary paths is slow.

8.2 Further Work

As mentioned earlier it has been written very little about exact methods for the
MCGRP and there is still an unknown limit of extensions that can be made. We
saw in this thesis that pricing with elementary paths gave relatively good lower
bounds, but noticed the limitations when we solved the bigger instances. The
various pricing methods from Table 6.1 should be investigated.

As mentioned in Chapter 3.5, it can be hard to find a complete branching
scheme for the B& P environment. For other pricing problems new schemes need
to be developed. This is absolutely worth investigating as it has been for the
CARP by Bode and Irnich (2011). More inspiration on the matter can be found
in the research done by Bode and Irnich (2013).

Procedures for adding cuts can be implemented. Bode and Irnich (2011) add
initial cuts to their B&P algorithm creating a Cut first, B&P second procedure
which also is possible to implement for the MCGRP. Cuts can also be added at
each branching iteration which would create a Branch, Cut and Price procedure.
This can potentially combine the strengths from both the B&P and the B&C
algorithms discussed in this thesis.

In this thesis a time cap was put on the algorithm. This time cap can be
increased to see if better solutions are obtained, but it is likely that small im-
provements will require high increase in computational time. An improvement
can be to use parallelization for the implementation. The different nodes at the
same level in the B&P search tree are independent and can easily be solved by
different processes.

Summarizing for improvements of the B&P we can,

� investigate alternative pricing problems and alternative branching schemes,

� create cuts and investigate the Branch, Cut and Price method and

� increase time cap and/or parallelize implementation.
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Lastly heuristic solution methods can be noted. This topic has only been
mentioned in this thesis since the focus has been on exact algorithms, however
the population and technology growth is huge and real life problems become
bigger and more complex continuously. As has been seen in this thesis there are
limitations to exact optimization methods so heuristics methods may be necessary
to solve real life real sized problems.
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We study the Mixed Capacitated General Routing Problem (MCGRP) in which a fleet of 
capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph. The 
requests may be located on nodes, edges, and arcs. This problem generalizes the classical 
Capacitated Vehicle Routing Problem (CVRP), the Capacitated Arc Routing Problem 
(CARP), and the General Routing Problem, and captures important aspects of real life 
situations that cannot be properly modeled by VRP or CARP. 

Pandit and Muralidharan [6] and Gutiérrez et al. [3] propose heuristics for variants of 
the MCGRP. Prins and Bouchenoua [7] studied the MCGRP under the alias The Node, Edge, 
and Arc Routing Problem (NEARP). They define a benchmark (CBMix), and propose a 
memetic algorithm that provided the first upper bounds for the CBMix and also good results 
for well-known CVRP and CARP instances. Kokubugata et al. [4] develop a metaheuristic 
with several new best CBMix upper bounds. The first lower bounding procedure for the 
NEARP was proposed by Bach et al. [1]. They also define two new MCGRP benchmarks: the 
BHW based on well known instances from the CARP literature, and the DI-NEARP taken 
from real-world newspaper distribution cases in Norway. Bosco et al. [2] propose the first 
integer programming formulation for the NEARP and develop a branch-and-cut algorithm 
that was tested on 12 new sets of instances derived from CARP benchmarks, as well as small 
CBMix instances, providing two optimal solutions. 

We describe ongoing work towards exact methods for the MCGRP based on column 
generation. Inspired by Letchford and Oukil's work on the CARP [5], we investigate a model 
with an elementary shortest path subproblem. Preliminary results include new and better 
lower bounds for several of the Bosco et al. instances. 
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