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Abstract: This article portrays a hybrid principal component analysis  
(PCA)-based technique to construct production cells in cellular manufacturing 
system (CMS). The key problem in CMS is to recognise the machine cells and 
corresponding part families and subsequently the formation of production cells. 
A novel approach is considered in this study to systematise a hybrid 
multivariate clustering technique based on covariance analysis to form the 
machine cells in CMS. The intended technique is demonstrated in three 
segments. Firstly, a similarity matrix is developed by exploiting the covariance 
analysis procedure. In the second stage, the PCA is utilised to identify the 
potential clusters in CMS with the assistance of eigenvalue and eigenvector 
computation. In the last stage, an adjustment heuristic is adopted to improve the 
solution quality and consequently the clustering efficiency. This article states 
that, the addition of the adjustment heuristic approach into a traditional 
multivariate PCA-based clustering technique not only enhances the solution 
quality significantly, but also downgrades the inconsistency of the solutions 
achieved. The hybrid technique is tested on 24 test datasets available in 
published articles and it is shown to outperform other published methodologies 
by enhancing the solution quality on the test problems. 

Keywords: cell formation; cellular manufacturing; covariance analysis; 
principal component analysis; PCA; adjustment heuristic. 
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1 Introduction 

Conventionally in cellular manufacturing systems (CMS), group technology (GT) could 
be stated as a manufacturing metaphysics which recognises similar parts, therefore 
grouping them into part families depending on its manufacturing designs, features and 
geometric shapes which was first introduced by Burbidge (1963). GT is applied in CMS 
to develop an alternative of traditional manufacturing system. Designing manufacturing 
cell has been named cell formation problem (CF/CFP), consists of the following 
procedures: usually similar parts are grouped into part families following their processing 
requirements, and heterogeneous machines are grouped into manufacturing cells and 
subsequently part families are designated to cells. The problem encountered in CMS is 
construction of such cells irrespective of its type (Selim et al., 1998). Not essentially the 
aforementioned steps are carried out in the above order or even sequentially. Depending 
upon the procedures involved in CFP three methods of achieving solutions are proposed 
(Papaioannou and Wilson, 2010): 

1 recognising part families first and consequently machines are clustered into cells 
depending on the processing requirement of part families 
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2 recognising manufacturing cells by grouping heterogeneous machines and then the 
part families are allocated to cells 

3 part families and machine cells are developed concurrently. 

Due to the NP-complete nature of the problem (Unler and Gungor, 2009), many 
computational techniques are heavily practised for improved solution to the CFP, a 
thorough discussion can be found in literature (Ghosh et al., 2010). 

In present research, a new approach has been developed by exploiting principal 
component analysis (PCA) hybridised with an adjustment heuristic algorithm as 
clustering technique, which is further discussed in Section 3. The grouping efficacy 
measure is utilised as the performance evaluation benchmark which is elaborated in 
Section 4, and finally to verify and establish the effectiveness of the proposed method 
computational results and discussion are presented in Section 5. 

2 Literature survey 

Various techniques are developed to solve manufacturing cell formation problems since 
the last 40 years, these include similarity coefficient methods, clustering analysis,  
array-based techniques, graph partitioning methods, etc. The similarity coefficient 
approach was first suggested by McAuley (1972). The basis of similarity coefficient 
methods is to calculate the similarity between each pair of machines and then to group 
the machines into cells based on their similarity measurements. Few studies have 
proposed to measure dissimilarity coefficients instead of similarity coefficient for 
machine-part grouping problems. Dissimilarity coefficients were used by Prabhakaran  
et al. (2002) for generalised cell formation problems by considering the operation 
sequences and production volumes of parts. Most similarity coefficient methods utilised 
machine-part mapping chart. Few of them are single linkage clustering algorithm 
(McAuley, 1972), average linkage clustering algorithm (Seifoddini and Wolfe, 1986). 

Clustering methods are categorised as hierarchical and non-hierarchical methods. 
Standard or typically designed clustering techniques could be utilised to build clusters of 
either components or machines. Among these, Carrie (1973), Chan and Milner (1982), 
Chandrasekharan and Rajagopalan (1986a, 1986b), Chu and Tsai (1990), King (1980), 
King and Nakornchai (1982), Kusiak (1985, 1987), McAuley (1972), McCornick et al. 
(1972), Mosier and Taube (1985), Seifoddini (1989), Seifoddini and Wolfe (1986), 
Shafer and Rogers (1993), Srinivasan and Narendran (1991), Stanfel (1985), and 
Waghodekar and Sahu (1984) are recognised in the literature as most prevalent 
approaches. Machine-part grouping problem is based on production flow analysis, in 
which the machine-part production cells are formed by permuting rows and columns of 
the machine-part mapping chart in the form of a {0-1} incidence matrix. Some of the 
methods are rank order clustering by King (1980), bond energy algorithm by McCornick 
et al. (1972), etc. Dimopoulos and Mort (2001) have proposed a hierarchical algorithm 
combined with genetic programming for cell formation problem. 

Array-based methods consider the rows and columns of the machine-part incidence 
matrix as binary patterns and reconfigure them to obtain a block diagonal cluster 
formation. The rank order clustering algorithm is the most familiar array-based technique 
for cell formation (King, 1980). Substantial alterations and enhancements over rank order 
clustering algorithm have been described by King and Nakornchai (1982), and 
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Chandrasekharan and Rajagopalan (1986a). The direct clustering analysis (DCA) has 
been stated by Chan and Milner (1982), and bond energy analysis is performed by 
McCornick et al. (1972). 

Graph theoretic approach depicts the machines as vertices and the similarity between 
machines as the weights on the arcs. Rajagopalan and Batra (1975) proposed the use of 
graph theory to form machine cells. Chandrasekharan and Rajagopalan (1986a) proposed 
an ideal seed non-hierarchical clustering algorithm for cellular manufacturing. Srinivasan 
(1994) implemented a method using minimum spanning tree (MST) for the machine-part 
cell formation problem. A polynomial-time algorithm based on a graph theoretic 
approach was developed by Veeramani and Mani (1996), named as vertex-tree graphic 
matrices. 

The PCA is one of the first-born techniques in multivariate statistical analysis 
(Preisendorfer, 1988). Pearson (1901) first familiarised it in the perspective to reorganise 
linear regression analysis into a new dimension. Subsequently, it was developed by 
Hotelling (1933) in the psychometry domain and it was named as ‘Hotelling transform’. 
In the numerous real world problems, the PCA is repeatedly practiced to analyse the data 
with some innate complications (Tuncer et al., 2008; Horenko et al., 2006; Rothenberger 
et al., 2003). Application of PCA has been utilised to signify the data using trivial count 
of variables (Wall et al., 2003). 

PCA has been adopted in cell formation recently (Hachicha et al., 2006; 
Chattopadhyay et al., 2010) and demonstrated its ability to form efficient manufacturing 
cells. Although PCA itself is principally a statistical analysis method which is not 
essentially originated to form machine-part cells. Therefore, the novelty of this research 
lies in inclusion of an adjustment heuristic technique which is primarily inspired from 
Zolfaghari and Liang (2003) and modified considerably. The competence of this hybrid 
method is significant in terms of solution quality and computational complexity when 
exploited as a cell formation technique. 

3 Solution approach 

In this study, covariance analysis have been utilised as a similarity coefficient method to 
analyse the similarity and dissimilarity between parts and machines and deployed to 
generate the similarity matrices. Further, PCA is used as to group the machines into 
machine cells and parts into part families. In the last stage, the adjustment heuristic is 
stated as a method to find the optimal cluster and improved assignment of part families to 
the machine cells in order to improve the grouping efficacy measure. 

3.1 Standardisation of data and generating covariance matrix 

The first step consists of the development of similarity matrix based on covariance 
method. The initial machine-part incidence matrix A = [aij]m×p is shown in Figure 1 which 
is a {0-1} incidence matrix where rows represent machines and columns represent parts. 
In the incidence matrix aij = 1 if machine i processes part j and aij = 0 otherwise. The 
example of Figure 1 is obtained from Waghodekar and Sahu (1984). Cell formation 
problem could be reflected as a dimension reduction problem. A substantial number of 
correlated machines are grouped into subsets of production cells and a substantial number 
of correlated parts are clustered into families. To make the initial matrix (A) adequately 
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expressive and important, its standardisation is needed to minimise the mean square 
errors of approximating the data (Miranda et al., 2008). The rows standardised matrix  
B = [bij]m×p is computed using: 

is
i

i

X XX
σ
−

=  (1) 

where Xi is the original row vector obtained from incidence matrix A = [aij]m×p  
Xi = [a1i, a2i, …, api]. 

X  can be calculated from the mean of Xi: 

1

p
ikk

a
X

p
==

∑  (2) 

σi is the standard deviation: 

( )2

1

1 p
ikk

a X
p =

−∑  (3) 

The covariance matrix C could be obtained using: 

1

1 1.
p

T
ik jk

k

C B B b b
p p =

= =∑ ∑  (4) 

where cii = 1. 

Figure 1 The input matrix of 5 × 7 size 

 p1 p2 p3 p4 p5 p6 p7 

m1 1    1 1 1 
m2  1 1 1 1   
m3   1 1 1 1  
m4 1 1 1 1    
m5  1  1 1 1  

Figure 2 Similarity matrix of parts obtained using covariance analysis 

 p1 p2 p3 p4 p5 p6 p7 
p1 1       
p2 –0.167 1      
p3 –0.167 0.167 1     
p4 –0.612 0.612 0.612 1    
p5 –0.612 –0.408 –0.408 –0.25 1   
p6 –0.167 –0.667 –0.667 –0.408 0.612 1  
p7 –0.612 –0.612 –0.612 –1 0.25 0.408 1 
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Figure 2 and Figure 3 demonstrate the similarity matrices obtained for parts and 
machines using the covariance method stated above. These are the triangular matrices 
and utilised to accomplish the PCA, which is elaborated in next subsection. 

Figure 3 Similarity matrix of parts obtained using covariance analysis 

 m1 m2 m3 m4 m5 

m1 1     
m2 –0.75 1    
m3 –0.167 0.417 1   
m4 –0.75 0.417 –0.167 1  
m5 –0.167 0.417 0.417 –0.167 1 

3.2 Principal component analysis 

Principal component method pursues to maximise the sum of squared loadings of each 
factor obtained. The principal component factor can describe more variance than any 
other loadings obtained from any other techniques of factorising. The obtained PCs 
satisfy two clauses: 

PC1 components are orthogonal 

PC2 the first component has the maximum variance, the second component has the 
second maximum variance and so on. 

The PCA from the standpoint of statistical pattern identification has the rational 
importance as it is a competent method for dimension reduction (Haykin, 2008). The 
other benefit of practicing PCA is that, as soon as these patterns in the data are obtained, 
the data can be compacted by elimination of the number of dimensions without 
significant damage of information. The principal components analysis, first obtains the 
set of orthogonal eigenvectors of the covariance matrix of the variables. The matrix of 
principal components is the product of the eigenvector matrix with the matrix of 
independent variables. The first principal component describes the major fraction of the 
total data variance. The second principal component describes the next major fraction of 
the total data variance, and so on. The aim is to elucidate the largest volume of variance 
with the least number of components. 

In the PCA approach, the very next step computes the eigenvalues from C and 
diagonal matrix D is obtained using: 

1V CV D− =  (5) 

V is a matrix formed of eigenvectors which utilises the diagonal form of the covariance 
matrix C. From the abovementioned rules, the number of principal components can be 
determined. In the eigen analysis of the covariance matrix, the eigenvalues are equal to 
the variances of the principal components. The principal components with higher 
eigenvalues will be traced in the analysis. The principal components are obtained using 
the aforementioned technique. The components grounded on the amount of justified 
variance would be the decisive factor of the number of principal components. 
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Figure 4 Eigen analysis of covariance matrix of parts 

 Component 1 Component 2 Component 3 Component 4 

Eigenvalues 3.686 2.022 0.833 0.458 
Percentage 52.663 28.889 11.905 6.543 
Cum. percentage 52.663 81.552 93.457 100 

 Component 5 Component 6 Component 7 

Eigenvalues 0 0 0 
Percentage 0 0 0 
Cum. percentage 100 100 100 

Figure 5 Eigen analysis of covariance matrix of machines 

 Component 1 Component 2 Component 3 Component 4 Component 5 

Eigenvalues 2.431 1.588 0.583 0.271 0.126 
Percentage 48.618 31.762 11.677 5.428 2.526 
Cumulative 
percentage 

48.618 80.38 92.046 97.474 100 

Figure 6 PCA component loading chart obtained for parts 

 Component 
1 

Component 
2 

Component 
3 

Component 
4 

Component 
5 

Component 
6 

Component 
7 

p1 –0.184 –0.652 0 0.18 0.35 –0.129 0.608 
p2 0.387 –0.085 –0.707 –0.194 0.507 0.122 –0.182 
p3 0.387 –0.085 0.707 –0.196 0.507 0.122 –0.182 
p4 0.478 0.238 0 0.311 –0.155 0.571 0.518 
p5 –0.252 0.561 –0.001 –0.532 0.286 –0.106 0.496 
p6 –0.383 0.364 0.001 0.644 0.507 0.122 –0.182 
p7 –0.478 –0.238 0 –0.311 –0.027 0.776 –0.127 

Figure 7 PCA component loading chart obtained for machines 

 Component 1 Component 2 Component 3 Component 4 Component 5 
m1 –0.586 0.238 0 –0.008 0.775 
m2 0.584 0.109 –0.001 –0.697 0.401 
m3 0.268 0.563 –0.707 0.332 0.033 
m4 0.415 –0.545 0 0.542 0.486 
m5 0.268 0.563 0.707 0.331 0.033 

Once the PCA method is adopted for the machine-part clustering problem, it could be 
explained visually with the help of Figure 4 to Figure 9. The variance in each variable is 
determined in terms of eigenvalue. For the problem matrix under consideration, the 
eigenvalues are presented in Figure 4 and Figure 5 for the parts and machines 
respectively. Two principal components are adequate to analyse correlation between 
machines and parts. There should be high association (positive loading) among 
machines/parts strongly related with the same cell, and low association (negative loading) 
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among machines/parts that are related with different cells. Therefore, to illustrate the 
above issues component 1 and component 2 are opted to analyse the grouping of 
machine-part. The first principal component’s scores are computed from the original data 
using the loading values from Figure 6 and Figure 7. 

Figure 8 Scattered plot obtained for parts (see online version for colours) 
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Figure 9 Scattered plot obtained for machines (see online version for colours) 
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From the parts chart of Figure 6 observation can be made that p1, p5, p6, p7 are having 
large negative loading on component 1 and therefore clustered in one group and p2, p3, 
p4 are having large positive loading on component 1 and therefore those are clustered in 
group 2. In the similar manner from the machines chart of Figure 7, m1 is clustered in 
group 1 and m2, m3, m4 and m5 are clustered in group 2. In Figure 8 and Figure 9, the 
obtained scattered plots clearly show the visible groups/clusters/cells in each occasion. 
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Therefore grouping the rows (machines) and columns (parts) of the original data matrix, 
two visible groups or cells are obtained block diagonally as shown in Figure 10. 

Figure 10 Initial block diagonal cell formation of 5 × 7 matrix 

 p1 p5 p6 p7 p2 p3 p4 

m1 1 1 1 1 0 0 0 
m2 0 1 1 0 0 1 1 
m3 0 1 0 0 1 1 1 
m4 1 0 0 0 1 1 1 
m5 0 1 1 0 1 0 1 

3.3 Adjustment heuristic method 

The PCA technique adopted in this study is principally a statistical analysis method 
which is not fundamentally designed to form machine-part cells. Therefore, this 
technique is unacquainted of the processing requirements of parts through the machines. 
In order to incorporate this phenomena, an adjustment heuristic technique is proposed in 
this study which is primarily inspired from Zolfaghari and Liang (2003) and modified 
substantially. This method is helpful to evaluate the cell formation obtained via PCA. 
This phenomenon is based on identifying a machine cell which processes the part for a 
maximum number of operations than any other machine cell and assigning the 
corresponding part into that cell. Therefore, parts are assigned to the cells which further 
form tangible part families using membership index given as, 

1cj cj
cj

c j

m m
D

k n v
= × ×  (6) 

Dcj membership index of part j to cell c 

mcj number of machines in cell c which process part j 

kc total number of machines in cell c 

nj total number of machines required by part j 

v total number of zeros (voids) in the cells in obtained block diagonal matrix. 
Table 1 Computing the membership index values for parts 

Membership index values 
Parts 

Cell 1 Cell 2 
P1 0.167 0.021 
P2 0.167 0.375 
P3 0 0.375 
P4 0 0.5 
P5 0.125 0.187 
P6 0.11 0.066 
P7 0.5 0 
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Figure 11 Final block diagonal cell formation of 5×7 matrix 

 p1 p6 p7 p2 p3 p4 p5 

m1 1 1 1 0 0 0 1 
m2 0 0 0 1 1 1 1 
m3 0 1 0 0 1 1 1 
m4 0 1 0 1 0 1 1 
m5 1 0 0 1 1 1 0 

Figure 12 Flowchart of the hybrid PCA technique 

 

In the above mathematical formula, the count of voids has been introduced, which 
implies the number of zeros in the cells. Using (6) the membership index value of each 
part can be computed. Larger the membership index value of a part for a particular cell, 
will subsequently assign it to that cell to obtain the final part families. The computed 
membership index values for Figure 10 are depicted in Table 1. 



   

 

   

   
 

   

   

 

   

    Hybrid principal component analysis technique to machine-part grouping 11    
 

    
 
 

   

   
 

   

   

 

   

       
 

The above analysis illustrates the final cell formation, p1, p6, p7 are grouped into part 
family 1 and p2, p3, p4, p5 are grouped into part family 2 and they are assigned to cell 1 
and cell 2, respectively. Therefore, the final block diagonal structure is obtained and 
presented in Figure 11. The flow chart of the proposed technique is presented in  
Figure 12. 

4 Performance measure 

To measure the goodness of solutions, different performance measures have been 
proposed by researchers since past few decades. Various measures can be obtained from 
the critical survey of performance measures (Sarker and Mondal, 1999). In this study, 
grouping efficacy (Kumar and Chandrasekharan, 1990) has been considered which is 
heavily adopted by researchers to measure the efficiency of their solutions and it is 
specified as: 

e

v

E Eτ
E E
−

=
+

 (7) 

where 

E total number of 1s in matrix A 

Ee total number of exceptional elements (EE) (1s outside the cluster block) 

Ev total number of voids (0s inside the cluster block). 

5 Computational results 

The hybrid PCA model is tested with a set of 24 problems that have been published in the 
past literature. All the datasets were transcribed from the original articles to avoid the 
inconsistency in data. Out of 24 test datasets two groups are formed. First, 16 test datasets 
(Table 2), referred as datasets 1–16, are experimented using hybrid PCA method and the 
obtained results are compared with the published results to demonstrate the effectiveness 
of the proposed technique. Published results are obtained from Unler and Gungor (2009), 
and James et al. (2007). The comparison is exhibited in Table 3. The size of first 16 
datasets ranges from 5 × 7 to 30 × 50. For the remaining eight problems (referred as 
datasets 17–24), since there is no comparison exists in literature using grouping efficacy 
measure, these computed results of experiments are presented in Table 4 and Table 5 in 
the Appendix A. Proposed hybrid PCA method is simulated with multivariate statistical 
analysis toolbox and MATLAB 7.0 and tested on a Intel®Core™2Duo 2.1 GHz 
processor and 2 GB of RAM. For the problems solved with hybrid PCA technique to 
obtain optimal solution, the grouping efficacy value is better or equal in all instances. All 
the solutions are obtained with negligible computational time (< 10 sec.). This 
observation designates that this hybrid technique is substantially competent and less 
complex because of its minimalism in simulation. The hybrid PCA method is shown to 
outperform the standard techniques in seven instances, and equal in nine instances, which 
further illustrates 43.75% enhanced result than published result which is noteworthy in 
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terms of solution quality and time and space complexities [all 16 solution matrices are 
presented in Tables 6(a) to 6(d) in Appendix B]. 
Table 2 Experimental datasets for the result comparison 

# Dataset Size 

1 Waghodekar and Sahu (1984) 5 × 7 
2 King and Nakornchai (1982) 5 × 7 
3 Seifoddini (1989) 5 × 18 
4 Kusiak and Cho (1992) 6 × 8 
5 Boctor (1991) 7 × 11 
6 Kusiak and Chow (1987) 7 × 11 
7 Car and Mikac (2006) 8 × 10 
8 Seifoddini and Wolfe (1986) 8 × 12 
9 Chandrasekharan and Rajagopalan (1986a) 8 × 20 
10 Chu and Hayya (1991) 9 × 9 
11 Mosier and Taube (1985) 10 × 10 
12 Chan and Milner (1982) 10 × 15 
13 Goncalves and Resende (2004) 15 × 12 
14 Jayakrishnan and Narendran (1998) 20 × 8 
15 Masnata and Settineri (1997) 25 × 10 
16 Stanfel (1985) 30 × 50 

Table 3 Comparison of the proposed technique with published results 

Grouping efficacy value 
# Best result found 

in literature 
Proposed 

hybrid PCA 
Cell EE Void 

Improvement 
from previous 

result 

1 62.5 69.56 2 6 2 12.10% 
2 73.68 73.68 2 2 3 0.00% 
3 79.59 79.59 2 7 3 0.00% 
4 76.92 76.92 2 2 4 0.00% 
5 70.37 70.37 3 2 6 0.00% 
6 53.13 59.26 4 7 4 11.54% 
7 66.67 68.96 4 7 2 3.43% 
8 68.3 68.3 3 7 6 0.00% 
9 85.24 86.67 3 8 0 1.68% 
10 73.53 74.28 3 6 3 1.02% 
11 76.47 76.47 3 0 8 0.00% 
12 92 92 3 0 3 0.00% 
13 86.67 86.67 4 0 6 0.00% 
14 83.87* 82.25 3 9 1 0.00% 
15 63.93 70.27 4 9 13 9.91% 
16 59.43 60.12 11 25 42 1.16% 

Note: *Inconsistent result shown in Unler and Gungor (2009), the actual computed value 
is 82.25. 
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6 Conclusions 

This empirical article proposes a hybrid PCA-based clustering technique that combines 
an adjustment heuristic approach to cell formation problem in cellular manufacturing. 

Experimental results presented in Section 5 demonstrate that the proposed hybrid 
technique outperforms the other techniques, and delivers improved results in comparison 
with the published results. This article states that, the inclusion of the adjustment 
heuristic approach into a traditional multivariate PCA-based clustering technique can 
improve the solution quality substantially, but it also reduces the variability of the 
solutions obtained. The proposed method obtains better quality solutions by consuming 
lesser computational time and resources than that of the traditional complex 
methodologies. It is also shown that the proposed technique performs at least as well as, 
and often better than the available algorithms for the cell formation on all problems 
tested. Therefore, it is verified as a promising method in aforestated area. Further work 
can be done by utilising this technique in more large-scale and realistic and complex cell 
formation problem which deals with ratio data of production volume, operational time, 
worker assignment by considering multi-objective factors. Future work can also be done 
by combining soft computing techniques in the proposed model, such as fuzzy 
mathematics, particle swarm optimisation or artificial bees colony techniques, which 
would be the extension of the present research. 
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Appendix A 

Test result of the additional eight problem datasets, ranges from 4 × 5 to 9 × 9 are 
presented in Table 4. Solution matrices are provided in Table 5. Some of the matrices are 
presented in transposed form due to space constraints. 
Table 4 Test result of additional 8 problems from literature 

Proposed hybrid PCA 
# Dataset Size 

Grouping efficacy value 
Cell EE Void 

17 Sofianopoulou (1999) 4 × 5 80 2 0 2 
18 Won and Lee (2001) 5 × 5 78.57 2 1 2 
19 Sudhakarapandian 

(2007)-1 
5 × 7 69.56 2 5 2 

20 Venugopal and 
Narendran (1992)-1 

5 × 8 100 2 0 0 

21 Sudhakarapandian 
(2007)-2 

6 × 8 69.56 3 5 2 

22 Nair and Narendran 
(1998) 

7 × 7 85 3 3 0 

23 Venugopal and 
Narendran (1992)-2 

7 × 11 59.26 4 7 4 

24 Venugopal and 
Narendran (1992)-3 

9 × 9 70.59 3 7 3 
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Table 5 Solution matrices of 8 additional test datasets 

 m1 m3 m2 m4  m1 m3 m5 m2 m4 

p2 1 1   p2 1 1    
p4 1 1   p3 1 1 1   
p5 1    p5 1  1 1  
p1   1  p1    1 1 
p3   1 1 p4    1 1 

Sofianopoulou (1999) (4 × 5) Won and Lee (2001) (5 × 5) 
 m1 m2 m4 m3 m5  m1 m2 m4 m3 m5 m6 

p1 1 1 1   p4 1  1    
p5 1 1 1   p6 1 1  1   
p3 1  1  1 p7  1    1 
p7  1 1  1 p8  1 1    
p2  1  1 1 p1  1  1 1 1 
P4  1  1 1 p2    1 1 1 
p6 1   1 1 p3    1 1 1 
      p5    1  1 

Sudhakarapandian (2007)-1 (5×7) Sudhakarapandian (2007)-2 (6×8) 
 m1 m2 m3 m4 m5 m6 m7  m1 m4 m5 m2 m3 

p1 1 1 1     p1 1 1 1   
p2 1 1      p4 1 1 1   
p3   1 1    p7 1 1 1   
p4   1 1    p2    1 1 
p5     1 1 1 p3    1 1 
p6   1  1 1 1 p5    1 1 
p7    1 1 1 1 p6    1 1 
        p8    1 1 

Nair and Narendran (1998) (7×7) Venugopal and Narendran (1992)-1 
(5×8) 

 m2 m5 m3 m6 m1 m4 m7  m1 m5 m2 m6 m9 m3 m4 m7 m8 

p5 1 1      p1 1 1 1       
p11 1  1     p4  1     1  1 
p10   1 1    p5 1 1       1 
p1 1   1  1  p2 1  1 1   1   
p4    1   1 p6   1 1 1     
p8  1  1    p9   1 1 1     
p9    1   1 p3      1 1 1 1 
p2     1   p7      1  1 1 
p3     1 1 1 p8  1    1 1 1 1 
p6      1 1           
p7     1  1           

Venugopal and Narendran (1992)-2 
(7×11) 

Venugopal and Narendran (1992)-3 (9×9) 
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Appendix B 

Table 6(a) 16 solution matrices 

 m1 m2 m3 m5 m4  m1 m4 m2 m3 m5 
p1 1    1 p2 1 1    
p7 1     p4 1 1    
p6 1  1 1  p5 1    1 
p4  1 1 1 1 p6 1 1  1  
p3  1 1  1 p1   1 1 1 
p5 1 1 1 1  p3   1 1  
p2  1  1 1 p7    1 1 

Waghodekar and Sahu (1984) (5 × 7) King and Nakornchai (1982) (5 × 7) 
 m1 m4 m2 m3 m5  m1 m4 m6 m2 m3 m5 

p1 1 1 1   p4 1 1 1    
p3 1 1 1   p7 1 1 1 1   
p6 1 1 1   p1    1  1 
p8 1 1 1   p2 1   1   
p11 1 1 1   p3    1 1 1 
p12 1 1 1   p5    1  1 
p13 1 1 1   p6    1 1 1 
p2 1 1    p8    1 1 1 
p5 1 1    Kusiak and Cho (1992) (6 × 8) 

p14 1 1     m3 m4 m5 m6 m7 m1 m2 
p16 1 1    p11 1  1     
p17 1 1    p3 1 1 1     
p4   1 1 1 p7 1 1      
p7   1 1  p4   1 1    
p10   1 1 1 p5    1 1   
p15   1 1 1 p8     1   
p18   1 1 1 p10    1 1   
p9     1 p1 1     1  
      P2      1 1 
      p6      1 1 
      p9       1 

Seifoddini (1989) (5 × 18) Boctor (1991) (7 × 11) 
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Table 6(b) 16 solution matrices 

 m4 m5 m6 m3 m7 m8 m1 m2  m1 m6 m7 m8 m5 m2 m3 m4 

p7 1 1 1 1    1 p6 1 1 1 1     
p8 1 1 1 1     p7 1 1       
p9 1 1 1 1     p5  1 1 1 1    
p10 1 1      1 p2   1 1     
p6 1   1    1 p8   1 1 1    
p11   1  1 1   p10  1  1 1    
p12     1 1   p4        1 
p1       1 1 p3       1 1 
p2       1  p1     1 1 1 1 
p3    1   1 1 p9       1 1 
p4    1   1 1          
p5    1    1          

Seifoddini and Wolfe (1986) (8 × 12) Car and Mikac (2006) (8 × 10) 
 m6 m5 m2 m3 m1 m4 m7   m1 m3 m7 m8 m2 m4 m5 m6 

p8 1 1       p2 1 1       
p9 1      1  p8 1 1       
p4 1      1  p9 1 1      1 
p1 1  1   1   p11 1 1 1      
p5  1 1      p13 1 1       
p10 1   1     p14 1 1   1    
p11   1 1     p16 1 1       
p6      1 1  p17 1 1     1  
p7     1  1  p19 1 1       
p2     1    p20   1 1 1 1  1 
p3     1 1 1  p18   1 1 1 1   

Kusiak and Chow (1987) (7×11)  p6   1 1 1 1 1  

 m1 m5 m3 m7 m8 m4 m2 m6 m9 p7   1 1 1 1   
p1 1 1     1   p3 1  1 1 1 1   
p5 1 1   1     p4   1 1 1 1   
p4  1   1 1    p1       1 1 
p3   1 1 1 1    p5       1 1 
p8  1 1 1 1 1    p10      1 1 1 
p7   1 1 1     p12   1    1 1 
p6       1 1 1 p15       1 1 
p2 1     1 1 1 1  
p9       1 1 1  

Chu and Hayya (1991) (9 × 9) Chandrasekharan and Rajagopalan (1986a) 
(8 × 20) 
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Table 6(c) 16 solution matrices 

 m2 m7 m9 m10 m1 m4 m5 m6 m3 m8 

p2   1 1       
p3 1 1 1 1       
p4 1  1 1       
p8 1 1  1       
p1     1 1  1   
p10     1 1 1 1   
p7      1 1 1   
p5         1  
p6         1 1 
p9          1 

Mosier and Taube (1985) (10 × 10) 

 m2 m5 m8 m1 m7 m10 m3 m4 m6 m9 
p3 1 1 1        
p5 1 1 1        
p8 1 1 1        
p13 1 1 1        
p15 1 1 1        
p10    1 1 1     
p11    1 1 1     
p12    1 1 1     
p7    1 1 1     
p2    1 1 1     
p14       1 1 1 1 
p9       1 1 1 1 
p1       1 1 1  
p4        1 1 1 
p6       1  1 1 

Chan and Milner (1982) (10 × 15) 

 p1 p4 p11 p2 p9 p3 p6 p8 p10 p5 p7 p12 
m1 1 1           
m4 1 1 1          
m6 1 1 1          
m12  1 1          
m13 1  1          
m2    1 1        
m8    1 1        
m11    1 1        
m3      1 1 1     
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Table 6(c) 16 solution matrices (continued) 

 p1 p4 p11 p2 p9 p3 p6 p8 p10 p5 p7 p12 

m5      1 1 1     
m9      1 1 1     
m7      1  1     
m10         1 1  1 
m14          1 1 1 
m15         1 1 1 1 

Goncalves and Resende (2004) (15 × 12) 

 p5 p6 p2 p4 p7 p8 p1 p3 

m1 1 1       
m5 1 1       
m10 1 1  1     
m12 1 1   1    
m15 1   1     
m3   1 1 1 1 1  
m4   1 1 1 1   
m6 1  1 1 1 1   
m7   1 1 1 1   
m18  1 1 1 1 1   
m20       1 1 
m2       1 1 
m8       1 1 
m13       1 1 
m16       1 1 
m17 1      1 1 
m19       1 1 
m9  1     1 1 
m11     1  1 1 
m14   1    1 , 

Jayakrishnan and Narendran (1998) (20 × 8) 
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Table 6(d) 16 solution matrices (see online version for colours) 

 

 
m

1 
m

2 
m

8 
m

13
 

m
16

 
m

22
 

m
24

m
21

m
4 

m
6

m
11

m
25

m
3

m
14

m
23

m
9

m
10

m
12

m
7 

m
5 

m
15

 
m

17
 

m
19

 
m

20
 

m
18

p1
 

1 
1 

1 
1 

1 
1 

 
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
p7

 
1 

1 
1 

1 
1 

1 
1 

 
 

 
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

p9
 

1 
 

1 
 

 
1 

1 
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 
p3

 
 

 
 

 
 

 
1 

 
1 

1 
1 

1 
 

 
 

 
 

 
 

 
 

 
 

 
 

p5
 

 
1 

 
 

 
 

 
1 

1 
1 

 
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
p4

 
 

 
 

 
 

 
 

 
 

 
 

 
1 

1 
1 

1 
1 

 
1 

 
 

 
 

 
 

p1
0 

 
 

 
 

 
 

 
 

 
 

 
 

1 
1 

1 
 

 
1 

 
 

 
 

 
 

 
p8

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 
1 

 
1 

1 
1 

1 
 

1 
 

p6
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 
1 

1 
1 

1 
 

 
p2

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 
 

1 
1 

1 
1 

1 
1 

M
as

na
ta

 a
nd

 S
et

tin
er

i (
19

97
) (

25
 ×

 1
0)

 



   

 

   

   
 

   

   

 

   

    Hybrid principal component analysis technique to machine-part grouping 23    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6(d) 16 solution matrices (continued) (see online version for colours) 

 
Stanfel (1985) (30 × 50) 
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