
Statistical methods for detecting 
genotype-phenotype association in the 
presence of environmental covariates

Marit Runde

Master of Science in Physics and Mathematics

Supervisor: Mette Langaas, MATH

Department of Mathematical Sciences

Submission date: June 2013

Norwegian University of Science and Technology



 



Preface

This thesis completes my master’s degree in Industrial Mathematics at the Nor-
wegian University of Science and Technology (NTNU). The work has been carried
out at the Department of Mathematical Sciences during the spring of 2013.

I would like to give special thanks to my supervisor, Associate Professor Mette
Langaas, for great guidance and feedback during the work of this thesis. I have
appreciated our weekly meetings and your helpful inputs and advices. I would also
like to thank Associate Professor Øyvind Bakke for valuable comments and help
when needed.

Trondheim, June 2013

I



II



Abstract

This thesis shows how statistical methods based on logistic regression models can
be used to analyze and interpret biological data. In genome-wide association stud-
ies, the aim is to detect association between genetic markers and a given phenotype.
This thesis considers a situation where the phenotype is the absence or presence of
a common disease, the genetic marker is a biallelic single nucleotide polymorphism
(SNP), and environmental covariates are available. The main goal is to study and
compare four statistical methods (Score test, Likelihood ratio test, Wald test and
Cochran-Armitage test for trend) which, by using different approaches, test the
hypothesis about whether there is an association or not between the disease and
the genetic marker. The methods are applied to simulated datasets in order to
measure their test size and statistical power, and to compare them. Interaction
between the genetic marker and the environmental effect is also considered, and
strategies for simulating cohort and case-control data with genotype and environ-
mental covariates are studied.

The power simulations show that methods based on logistic regression models are
appropriate for detecting genotype-phenotype association, but when the environ-
mental effect is moderate, a simpler method (Cochran-Armitage test for trend)
which does not require model fitting at all, is adequate. When an interaction effect
is included in the model, the hypothesis testing becomes more complex. Several
possible approaches to this problem are discussed.
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Sammendrag

Denne masteroppgaven viser hvordan statistiske metoder basert p̊a logistiske re-
gresjonsmodeller kan brukes til å analysere og tolke biologiske data. I genetiske
assosiasjonsstudier er hensikten å finne assosiasjon mellom genetiske markører og
en gitt fenotype. Denne oppgaven ser p̊a en situasjon hvor fenotypen er hvorvidt
en vanlig sykdom er tilstede eller ikke, den genetiske markøren er en biallelisk enkel
nukleotide polymorfisme, og miljøkovariater er tilgjengelig. Hovedm̊alet er å stud-
ere og sammenligne fire statistiske metoder (Score test, Likelihood ratio test, Wald
test og Cochran-Armitage test for trend) som, ved å bruke ulike tilnærminger,
tester hypotesen om hvorvidt det finnes en assosiasjon eller ikke mellom sykdom-
men og den genetiske markøren. Metodene er brukt p̊a simulerte datasett for å
beregne deres teststørrelse og -styrke, og for å kunne sammenligne dem. Interak-
sjon mellom den genetiske markøren og miljøeffekten er ogs̊a studert, samt stategier
for simulering av kohort og case-control data med genotype- og miljøkovariater.

Styrkesimuleringene viser at metoder basert p̊a logistiske regresjonsmodeller er hen-
siktsmessige for å oppdage genotype-fenotype-assosiasjon, men n̊ar miljøeffekten er
moderat, vil en enklere metode (Cochran-Armitage test for trend), som ikke kr-
ever modelltilpassning i det hele tatt, være tilstrekkelig. N̊ar en interasjonseffekt
er inkludert i modellen, s̊a vil hypotesetesingen bli mer sammensatt. Flere mulige
tilnærminger til dette problemet er diskutert.
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Chapter 1

Introduction

1.1 Objective

In traditional medicine, patients have been treated based on how the majority of
previous patients with similar symptoms and diagnosis have responded to various
treatment or treating methods. This works for those who respond well to the
treatment the majority of the population need to recover, but for those who rather
need the treatment that only works for a minority, the majority treatment might
give adverse consequences. Medical scientists are constantly in search for new and
better methods, procedures and treatments which can improve the way diseases
and conditions are treated. As they have been able to identify and map the human
genome and how genomic variation is linked to pharmacological properties, a new
branch within the field of medical research has been developed. This branch is
called personalized medicine.

Personalized medicine is about being able to predict susceptibility to disease, im-
prove detection of disease, give more effective and customized medical treatment,
and predict and prevent side effects of drugs based on each individual unique ge-
netic makeup. To be able to do this, we need techniques to detect which elements
that have impact on the risk of developing different diseases. Such elements may
be environmental factors like smoking and obesity, or it may be clinical factors like
variations in the DNA, or what is most likely, a combination.

We are in this thesis going to consider some statistical methods for this purpose,
and the majority of these are constructed around the logistic regression model.
By using simulated datasets for a given genetic marker, we will test how well
these methods detect association between a disease and the genotype when we also
have data for the environmental influence available. Some may find it appropriate
to adjust for the environmental factors, but we choose to merge them into one
variable and include this in the model. The environmental factors may of course
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differ depending on the disease we are considering. If we can find reliable statistical
methods that detect the association between genotype and disease, this will lead to
a better understanding of different diseases. It will also be possible to give future
patients better customized medical treatment.

We start out by defining and explaining some main concepts within the fields of
biology and epidemiology that will be useful for this study.

1.2 Genotype and phenotype

The genome is the heredity information of an individual. It includes both coding
and non-coding sequences of DNA. Each individual inherits two copies of each DNA
sequence, one from its mother and one from its father. The DNA sequences are
organized in what is called chromosomes. Each individual inherits 23 chromosomes
from each parent, giving 23 pairs of chromosomes. The chromosomes in a pair are
homogeneous, which means they carry genes for the same characteristics and have
identical structure, thus genes that belong together is placed in the same position
(locus) in the pair of chromosomes. In each position on the chromosome we find
what is called alleles. The combination of alleles at the corresponding locus in a
pair of chromosomes is together referred to as the genotype.

If we consider a situation where there are two possible alleles at a given position in
a population under study, ’a’ and ’A’, we have three possible genotypes; ’aa’, ’aA’
and ’AA’. We will in this thesis denote ’aa’ as genotype 0, ’aA’ as genotype 1 and
’AA’ as genotype 2. Here, ’A’ is assumed to be the allele with the lowest frequency
in the population we are considering. In our study we are looking at statistical
methods to test if the genotype has any influence on the probability of developing
a given disease.

In addition to the genotype influence, we are also interested in whether environmen-
tal factors, like smoking habits, diet and age, have an impact on this probability
or not. The disease under study is in a more general context called a phenotype.
A phenotype is an observed characteristic of an individual. This characteristic is a
result of the genetic makeup and influence from the environment.

1.3 Single nucleotide polymorphisms

Genetic variations may occur within our DNA. Such variants may affect which
diseases we develop, how well we respond to medical treatment, which side effects
we experience and so on (Human Genome Project Information, 2013). The DNA
sequence is made up of the four bases guanine, cytosine, adenine and thymine. A
possible situation may be that one base in the sequence is alternated with another.
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As an example, we can imagine that a guanine base is replaced by an adenine base
in a particular position in the DNA sequence, and thus this sequence is slightly
changed. If we consider the population under study, we can calculate the ratio
of chromosomes carrying the less common variant to chromosomes with the more
common variant. This ratio is called the frequency of the minor allele, and if the
frequency is greater than 0.01 in the population under study, the variation is called
a single nucleotide polymorphism (SNP) (Human Genome Project Information,
2013). We will throughout this thesis refer to the minor allele frequency as MAF.

1.4 Hardy-Weinberg equlibrium

When assuming that the genotype and the allele frequencies in a large, randomly
mating population will remain stable over generations, and that the relationship
between genotype and allele frequencies is fixed, we assume what is called the
Hardy-Weinberg equilibrium (HWE) (Ziegler & König, 2010, p. 38).

If we define the genotype frequencies in a population as P(genotype 0) = g0,
P(genotype 1) = g1 and P(genotype 2) = g2, with g0 + g1 + g2 = 1, then the allele
frequencies P(a) = g0 + 1

2g1 = p and P(A) = g2 + 1
2g1 = q, with p + q = 1. Next,

we consider matings within this population. When assuming that the parental
genotypes are independent, we obtain the following frequencies for the different
genotypes occurring in the offspring; P(aa) = p2, P(aA) = 2pq and P(AA) = q2.
Hence, the genotype frequencies for the offspring can be calculated directly from
the allele frequencies in the original population the parents were a part of.

1.5 Genome-wide association studies

The aim of a genome-wide association (GWA) study is to detect common genetic
variants that might affect the probability of developing certain diseases or disorders
(National Human Genome Research Institute, 2013). GWA studies are usually
performed by studying the DNA of individuals with a disease of interest, and then
compare to the DNA of individuals not suffering from the disease. By doing this,
it is possible to detect if there are any variants associated with the certain disease
(Zheng et al., 2012, Chapter 12). The individuals that do have the disease of
interest, are called the cases, and those who are not affected by it, are called the
controls. The advantage of GWA studies is that the entire genome is studied, not
just a few genetic regions.

We will in this thesis consider some statistical methods that are efficient for de-
tecting how a genetic marker and how environmental factors affect the risk of
developing a certain disease in GWA studies. The methods we discuss may also be
used for each SNP in a GWA study.
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1.6 Candidate gene study

In GWA studies, the entire genome is scanned for common genetic variations. In
some settings we do have some prior knowledge and an idea of which genes that
may play a role in the development of the disease of interest. In such situations,
a candidate gene study is a more appropriate approach to test for disease asso-
ciation (Daly & Day, 2001). Here, only the predetermined genes of interest are
screened in order to detect association to disease. Typically, the selected genes are
analyzed among a group of individuals carrying a certain disease and a group of
individuals not carrying this disease. If genetic variations do appear significantly
more frequently among the diseased individuals than in the rest of the population,
a genetic marker is identified. An important precondition of the candidate gene
study is the presence of information from previous studies about where to look
for genetic variation. If such information is not available, a GWA study is more
appropriate.

1.7 The common disease common variant hypoth-
esis

GWA studies are said to be powerful approaches to identify variants associated
with phenotypes under the hypothesis called the common disease common variant
(CDCV) hypothesis. CDCV assumes that the genetic risk of a common complex
disease (or phenotype) is mainly attributed to a small number of high-frequency ge-
netic variants with moderately small effects. A competing hypothesis, the common
disease rare variant (CDRV) hypothesis, suggests that multiple rare variants are
the major contributors to genetic susceptibility to such common complex diseases.
A brief history of the debate centered around these two hypotheses are given in
Schork et al. (2009).

In our work, we are going to fit a model based on logistic regression to each SNP.
Hence, we will assume the CDCV hypothesis. If each model was fitted to several
SNPs together, the CDRV hypothesis would have been appropriate.

1.8 Epidemiology and study design

Epidemiology is a wide field of research, and it seems to be more definitions of
epidemiology than there are epidemiologists. Rothman et al. (2008) (p. 32) use the
following definition; ’Epidemiology is the study of the distribution of health-related
states and events in populations.’ Thus, epidemiology is all about systematically
looking for patterns, frequencies, causes and effects of health-related conditions in
a population. Rothman et al. (2008) (p. 88) divide the possible study designs for
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observational studies into four main groups. These are; ’cohort study − in which all
subjects in a source population are classified according to their exposure status and
are followed over time to ascertain disease incidence; case-control studies − in which
cases arising from a source population and a sample of the source population are
classified according to their exposure history; cross-sectional studies − in which one
ascertains exposure and disease status as of a particular time; and at last, ecologic
studies − in which the units of observations are groups of people.’

Since most GWA studies are based on case-control designs, we will in our work use
simulated data in a case-control setting.

1.9 Interaction

The term interaction has in the present context a number of different interpreta-
tions. According to Wang et al. (2010), there are no universally accepted definition
in neither biology nor statistics. Generally, one can say that the term implies that
objects or factors in a study do not act independently. It is common to distinguish
between statistical interaction and biological interaction. Statistical interaction is
used by statisticians to describe departure from additivity in statistical models.
Wang et al. (2010) define biological interaction as the joint action of two or more
factors, thinking of the physical interaction between molecules.

We will in this thesis use the term interaction in a statistical setting to describe
departure from additivity. That is, if an explanatory variable in a model will influ-
ence the response variable differently depending on the value of another explanatory
variable, then we state that an interaction effect is present.

1.10 Statistical software

All statistical analyses in this thesis were performed using the statistical software
R, R Development Core Team (2013). The packages statmod by Gordon Smyth
(2013), and Rassoc by Yong Zang, Wingkam Fung and Gang Zheng (2009) were
used.

1.11 Structure of the report

We have now given a brief introduction to some basic terms and concepts in the
fields of biology and epidemiology. We will continue in Chapter 2 with reviewing
some statistical methods we later will use to detect association between genotype
and disease. Among these methods, there are three which are based on likelihood
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estimation, and one which does not require any kind of model estimation. In Chap-
ter 3 we present some possible statistical models and corresponding hypotheses and
test statistics. Further, in Chapter 4 we will address hypothesis testing, and how
to estimate statistical power by simulation. Chapter 5 starts with a power study
where we evaluate and compare the performance of the four methods introduced in
Chapter 2. We will also perform a case study inspired by a research project called
the Thematically Organized Psychosis (TOP) study. At the end of Chapter 5 we
include an interaction effect in the simulated datasets, and look at the performance
of the methods in this setting. In Chapter 6 we outline a method to simulate case-
control data, and finally, in Chapter 7, we sum up and discuss our findings before
drawing conclusions.
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Chapter 2

Statistical methods

The content of this chapter is mainly based on Chapter 2 in McCullagh & Nelder
(1989), Chapter 4, 5 and 7 in Dobson & Barnett (2008), Chapter 1 and 5 in Agresti
(1996), Smyth (2003) and Langaas & Bakke (2013).

2.1 The exponential family of distributions

Probability distributions that can be written on the form

f(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

− c(y, φ)

)
, (2.1)

where a(φ), b(θ) and c(y, φ) are known functions, are said to belong to the exponen-
tial family of distributions (McCullagh & Nelder, 1989, Chapter 2). The parameter
of interest, θ, is called the canonical parameter, while φ is regarded as a nuisance
parameter. The distributions belonging to this family, share some properties that
make them very useful for statistical analysis.

It can be shown that the expected value and the variance of a random variable Y ,
which belongs to an exponential family, are given by

E(Y ) = b′(θ) and Var(Y ) = a(φ)b′′(θ),

respectively. Here, b′ denotes the first derivative of b with respect to θ, and b′′

denotes the second derivative of b with respect to θ. The log-likelihood function is
given by

l(θ, φ; y) = ln(f(y; θ, φ)) =
yθ − b′(θ)
a(φ)

+ c(y, φ).
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To find an expression for what is called the score vector, denoted U , we differentiate
the log-likelihood function with respect to θ. This gives

U =
∂l(θ, φ;Y )

∂θ
=
Y − b′(θ)
a(φ)

⇒ U =
Y − E(Y )

a(φ)
.

Hence, the expected value of the score vector U is given by

E(U) = E

(
Y − E(Y )

a(φ)

)
=

E(Y )

a(φ)
− E(Y )

a(φ)
= 0, (2.2)

and the variance of the score vector U can be written as

Var(U) = −E

(
∂U

∂θ

)
=
b′′(θ)

a(φ)
.

Several of the most common probability distributions are members of the expo-
nential family of distributions. This includes the normal, exponential, binomial,
gamma, chi-squared and Poisson distribution. Our focus will be on the binomial
distribution, which has the probability mass function given by

f(y;n, p) =

(
n

y

)
py(1− p)n−y, (2.3)

where y = 0, 1, 2, . . . , n is the number of successes in n independent trials, and p
is the probability of success in each trial. If we rewrite (2.3) to the form given in
(2.1), we get a(φ) = 1, b(θ) = n ln(exp(θ) + 1) and c(y, φ) = − ln

(
n
y

)
. Hence, we

obtain

U = Y − np,

and

Var(U) = np(1− p)

for the binomial distribution.
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2.2 The logistic regression model

We define a random variable

Z =

{
1 if the outcome is a success

0 if the outcome is a failure
,

with P(Z = 1) = π and P(Z = 0) = 1 − π. Hence, Z ∼ bin(1, π). The logistic
regression model is by Dobson & Barnett (2008) (p. 126) defined as

logit(π) = log

(
π

1− π

)
= xTβ, (2.4)

and is used when the outcome Z is a binary variable. In the model, β is a vector
of parameters, and x is a vector of explanatory variables. These explanatory vari-
ables can be either categorical or continuous. We can find the expression for the
probability of success by rewriting (2.4) to

π =
exp(xTβ)

1 + exp(xTβ)
. (2.5)

We now define Y to be the number of successes in n independent trials, each with
equal probability of success, π. This random variable is given by

Y =

n∑
i=1

Zi,

and follows the binomial distribution with the probability mass function given by

f(y;n, π) =

(
n

y

)
πy(1− π)n−y,

where y = 0, 1, 2, . . . , n.

Next, we consider N independent random variables, Y1, Y2, ..., YN , corresponding
to the number of successes in N different subgroups. A subgroup is here defined as
a group of observations with identical levels or values of the explanatory variables.
The combination of the values of the explanatory variables is called the covariate
pattern. If one or more of the explanatory variables are continuous, then there
are often few observations for each covariate pattern, and the number of patterns
may be equal to the number of observations. If all variables are categorical, there
is a clearly limited number of possible combinations. This usually gives several
observations for each covariate pattern if the total number of observations are
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relatively large. Each subgroup j has its own probability of success, πj . Due to
the fact that the observations Z1, Z2, ..., ZN are independent, Y1, Y2, ..., YN are also
independent, and we obtain the joint probability density function

f(y1, ..., yN ;n1, ..., nN , π1, ..., πN ) =

N∏
j=1

(
nj
yj

)
π
yj
j (1− πj)nj−yj .

The likelihood function L(θ;y) is algebraically the same as the joint probability
density function f(y;θ), but there is a change in the notation. In the probability
density function, we have a set of observations, y, given the fixed values of the
parameters θ, while in the likelihood function we have a set of parameter values,
θ, given some observations y. By taking the logarithm of the likelihood function
for Y1, Y2, . . . , YN , we obtain the log-likelihood function

l(π1, ..., πN ; y1, ..., yN ) =

N∑
j=1

[
yj ln

( πj
1− πj

)
+ nj ln(1− πj) + ln

(
nj
yj

)]
. (2.6)

By inserting the logit function, (2.4), and the probability of success, (2.5), into this
log-likelihood function, we get

l(π1, ..., πN ; y1, ..., yN ) =

N∑
j=1

[
yjx

T
j β − nj ln(1 + exp(xTj β)) + ln

(
nj
yj

)]
. (2.7)

2.3 Maximum likelihood estimation in logistic re-
gression

To estimate the parameters in β, we use the method of maximum likelihood. To
maximize the likelihood, we need to obtain the derivative of the log-likelihood
function (2.7) with respect to β0, β1, . . . , βp−1 and βp. This vector, the score
vector U , is given by

U =


U0

U1

...
Up

 =


∂l
∂β0
∂l
∂β1

...
∂l
∂βp

 =



N∑
j=1

(
yj − nj

exp(xT
j β)

1+exp(xT
j β)

)
N∑
j=1

(
xj,1

(
yj − nj

exp(xT
j β)

1+exp(xT
j β)

))
...

N∑
j=1

(
xj,p

(
yj − nj

exp(xT
j β)

1+exp(xT
j β)

))


, (2.8)
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where xj,k is the kth element in xj . The maximum likelihood estimator β̂ is the
solution of U(β) = 0. This solution can not in general be given in a closed form, so
we will use the Fisher scoring algorithm, which is a form of the Newton-Raphson
method, to find a numerical solution. In order to use this method, we need to
calculate the variance-covariance matrix of the score vector (2.8). By using (2.5),
we can rewrite (2.8) to

U =



N∑
j=1

(yj − njπj)
N∑
j=1

xj,1(yj − njπj)

...
N∑
j=1

xj,p(yj − njπj)


. (2.9)

The variance-covariance matrix of U is called the information matrix, denoted J,
and its elements are given by Jjk = E(UjUk), where j, k = 0, 1, . . ., p. This is
derived by using

Var(Ui) = E(U2
i )− E(Ui)

2,

Cov(Ui, Uj) = E(UiUj)− E(Ui)E(Uj)

and the fact that E(Ui) = 0 for all i, as shown in (2.2). Inserting the score vector
U from (2.9) into the expression for Jjk, we get

Jjk = E(UjUk) = E

(
N∑
i=1

xi,j(yi − niπi)
N∑
l=1

xl,k(yl − nlπl)

)
,

where xi,0 = xl,0 = 1. We know that Yi ∼ bin(ni, πi) and that Y1, Y2, . . . , YN are
independent. Hence,

E(Yi) = niπi and

Var(Yi) = niπi(1− πi). (2.10)

Due to

E((yi − niπi)(yl − nlπl)) = E((yi − E(Yi))(yl − E(Yl))) =

{
Var(Yi) when i = l

0 when i 6= l
,

11



the information matrix can be written as

J =



N∑
i=1

Var(Yi)
N∑
i=1

xi,1Var(Yi) . . .
N∑
i=1

xi,pVar(Yi)

N∑
i=1

xi,1Var(Yi)
N∑
i=1

x2
i,1Var(Yi) . . .

N∑
i=1

xi,1xi,pVar(Yi)

...
...

. . .
...

N∑
i=1

xi,pVar(Yi)
N∑
i=1

xi,pxi,1Var(Yi) . . .
N∑
i=1

x2
i,pVar(Yi)


, (2.11)

where

Var(Yi) = ni
exp(xTβ)

1 + exp(xTβ)

from (2.5) and (2.10).

As mentioned earlier in this chapter, we will use the Fisher scoring algorithm to
find the values of β, β̂, that solves U(β) = 0. This algorithm is presented in
Dobson & Barnett (2008) (p. 65). By slightly rewriting this, we get

b(m+1) = b(m) + [J(m)]−1U (m),

where b(m+1) is the vector of the maximum likelihood estimates of the parameters
in β at the (m+ 1)th iteration, J is the information matrix given in (2.11) and U
is the score vector from (2.9). Both the information matrix and the score vector

are evaluated at b(m). Given an initial guess, b(0), of the values, the Fisher scoring
algorithm obtains an improved estimate, b(1). The algorithm uses this new estimate
to find an even better estimate, b(2). This procedure is repeated several times until
the difference between b(m) and b(m+1) is sufficiently small. Then, b(m+1) is used
as the maximum likelihood estimate β̂.

We have now given an introduction to the logistic regression model and how to
estimate the parameters in this model using maximum likelihood estimation. In
the next section, we will introduce the concept of odds ratio, and show how this
is related to the logistic regression model. Then, in Section 2.5, we will see how
different mean values for a normal distributed explanatory variable will lead to a
logistic regression model. In the Sections 2.6-2.10, four statistical methods used to
detect genotype-phenotype association are presented. These methods will later be
evaluated and compared by using simulated datasets.
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2.4 Odds ratio

Odds ratio (OR) is a measure of effect size which is widely utilized in the field of
epidemiology. If we divide a population into subgroups based on some criterion
of interest, then Agresti (1996) (p. 22) defines the odds of success within each
subgroup i to be

oddsi =
πi

1− πi
. (2.12)

The odds ratio is known as the ratio of odds from two subgroups. That is,

OR =
odds1

odds2
=
π1(1− π2)

π2(1− π1)
,

where i = 1 corresponds to subgroup 1, and i = 2 corresponds to subgroup 2.

In a logistic regression setting, odds ratio may be used to interpret the estimated
coefficients in the model. From (2.4) we can write the logistic regression model to
the form

π

1− π
= exp(xTβ), (2.13)

by using the exponential function on both sides. If π is the probability of success,
then the left side of (2.13) is in (2.12) defined as the odds of success. We can
now calculate the increase or decrease in the response when the level of one of the
explanatory variables is increased or decreased by one unit. The model will have
the form

πi
1− πi

= exp(β0 + β1x1i + β2x2i + . . .+ βpxpi)

= exp(β0) exp(β1x1i) exp(β2x2i) . . . exp(βpxpi).

A change in xji from xji to xji + 1, gives the odds ratio

OR =
exp(β0) exp(β1x1i) exp(β2x2i) . . . exp(βj(xji + 1)) . . . exp(βpxpi)

exp(β0) exp(β1x1i) exp(β2x2i) . . . exp(βjxji) . . . exp(βpxpi)
= exp(βj).

All the terms where the explanatory variable stays unchanged will vanish, and the
only term left is the coefficient belonging to the variable that changes. Hence, the
estimated coefficients returned from logistic regression are log-odds ratios. They
can be interpreted as how the log-odds of success will change when the value of an
explanatory variable changes with one unit. The sign of the log-odds ratio indicates
whether the change is positive or negative.
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2.5 Normal data and logistic regression

We may experience a situation where the distribution of the explanatory variables
differ depending on the value of the response variable. We will here show how using
logistic regression is a natural choice for such situations. First, consider the logistic
regression model given by

logit(π(x)) = β0 + β1x, (2.14)

where x is the observation of the explanatory variable X. Suppose that the dis-
tribution of X is normal with mean µ0 and variance σ2 for all subjects where the
response variable, Y , is equal to 0. For subjects where Y is equal to 1, the variance
is the same, σ2, but the mean is µ1. That is, X ∼ N(µ0, σ

2) when Y = 0 and
X ∼ N(µ1, σ

2) when Y = 1. If we define P(Y = 1) = λ and P(Y = 0) = 1 − λ,
then the probability distribution of X, fX , is given by

fX(x) = fX(x | y = 0)(1− λ) + fX(x | y = 1)λ.

Further, by using Bayes’ theorem, we can express the probability of the response
variable to be equal to 1, given the value of the explanatory variable, as

π(x) = P(Y = 1 | X = x) =
fX(x;µ1, σ

2)λ

fX(x;µ0, σ2)(1− λ) + fX(x;µ1, σ2)λ
, (2.15)

where fX(x;µ, σ2) = (2πσ2)−
1
2 exp(− 1

2σ2 (x − µ)2). By inserting (2.15) into the
logistic regression model given in (2.14), we get

logit(π(x)) = log

(
λ

1− λ

)
+

1

2σ2
(µ2

0 − µ2
1) +

µ1 − µ0

σ2
x,

which gives

β0 = log

(
λ

1− λ

)
+

1

2σ2
(µ2

0 − µ2
1)

and

β1 =
µ1 − µ0

σ2
.

Hence, the sign of β1 is given by the sign of µ1 − µ0. This shows that when the
population under study consists of one group of subjects where Y = 0, with a corre-
sponding bell-shaped distribution of X, and one group where Y = 1, where X has
a shifted bell-shaped distribution with similar variance, then the logistic regression
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function is a good approximation for π(x). If the distributions of the explanatory
variable have highly different variance, Agresti (1996) (p. 108) suggests that the
model should also include a quadratic term in order to be a good approximation
for π(x).

2.6 The Score test

We want to test whether a selection of the estimated parameters in the fitted model
has a significant effect on the response variable or not. One of the methods which
is frequently used for this purpose, is named the Score test.

To perform the Score test, we consider l(θ1,θ2;y) which is a log-likelihood function
like the one given in (2.7), but here the parameters are divided into two groups,
such that θ = [θ1,θ2]T . We want to test the hypothesis

H0 : θ2 = 0 vs. H1 : θ2 6= 0.

In other words, we want to test if the parameters in θ2 have a significant effect on
the response. The parameters in θ1 are not of interest in this test, but we need
to find estimates for them as well in order to be able to compute a test statistic.
These parameters which are not of interest, are called nuisance parameters. The
information matrix, J, is according to Smyth (2003) given by the covariance matrix
of the score vector. This can be partitioned as

J =

[
J11 J12

J21 J22

]
(2.16)

when the parameters are divided into the vectors θ1 and θ2. Here, J11 = Var
(
∂l
∂θ1

)
,

J12 = J21 = Cov
(
∂l
∂θ1

, ∂l
∂θ2

)
and J2 = Var

(
∂l
∂θ2

)
. We denote ∂l

∂θ1
= U1 and ∂l

∂θ2
=

U2.

There are now two possible situations. The parameters in θ1 may be known or
unknown. If they are known, we follow Smyth (2003) and use the score test statistic
given by

S = UT
2 (J22)−1U2,

where both U2 and J22 are evaluated at θ2 = 0.

If the parameters in θ1 are unknown, we use the maximum likelikelihood estimate
θ̂1, which is equivalent to solve U1 = ∂l

∂θ1
= 0. The next step is to find the

conditional distribution of U2 | (U1 = 0). We know that
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U =

[
U1

U2

]
∼ N(0, I),

where the zero mean follows from (2.2), and I is given in (2.16). Johnson &
Wichern (2007) show that the conditional distribution of (U2 | (U1 = u1) then
is multivariate normal with mean equal to E(U2) + I21I

−1
11 (u1 − E(U1)), and

covariance given by I22 − I21I
−1
11 I12.

Since u1 = 0 and, as we know from (2.2), both E(U1) and E(U2) are equal to
zero, the mean for the conditional distribution is also equal to zero. The covariance
matrix for the conditional distribution is given by

J∗ = Cov(U2 | U1 = 0) = J22 − J21J
−1
11 J12. (2.17)

The score test statistic is by Smyth (2003) defined as

S = UT
2 (J∗)−1U2,

where both U2 and J∗ are evaluated at θ1 = θ̂1 and θ2 = 0.

Both when the nuisance parameters are known and when they are unknown, the test
statistic is χ2-distributed with number of degrees of freedom equal to the dimension
of the θ2 vector. Hence, the null hypothesis will be rejected if S > χ2

α,dim(θ2) at a
α-level of significance.

An advantage of the Score test is that the parameters in the model only have to
be estimated once. If we do have many datasets, this will save computation time.

2.7 The Likelihood ratio test

The Likelihood ratio test (LRT) is a test based on comparing the values of the
likelihood functions corresponding to two nested models. We call these models ’the
model of interest’ and ’the reference model’. By nested we mean that one of the
models (the model of interest) contains a selection of the parameters from the other
model (the reference model). If L(b;y) is the maximum likelihood function of the
model of interest, and L(breference;y) is the maximum likelihood function of the
reference model, then

L(breference;y)

L(b;y)
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is the ratio of the likelihoods. How well the model of interest fits the data compared
to the reference model is assessed by using the logarithm of this likelihood ratio,
which gives

l(breference;y)− l(b;y).

Large values of this difference indicate that the model of interest has a poor fit
compared to the reference model. The likelihood ratio test statistic, also known as
the deviance statistic, is according to Dobson & Barnett (2008) (p. 80), defined as

D = 2[l(breference;y)− l(b;y)]. (2.18)

This statistic is used to test the hypothesis that all the parameters which are
included in the reference model, but not in the model of interest, are equal to zero.
The maximum likelihood estimates for the reference model are π̂j =

yj
nj

, and by

inserting this into (2.6), we get the log-likelihood of the reference model,

l(breference;y) =

N∑
j=1

[
yj ln

( yj
nj

1− yj
nj

)
+ nj ln

(
1− yj

nj

)
+ ln

(
nj
yj

)]
. (2.19)

To obtain the log-likelihood of any model nested to the reference model, we need the
estimated fitted values from this model. These estimates can be denoted ŷi = niπ̂i,
where the π̂is are the estimates for the probabilities. The log-likelihood is then
given by

l(b;y) =
N∑
j=1

[
yj ln

( ŷj
nj

1− ŷj
nj

)
+ nj ln

(
1− ŷj

nj

)
+ ln

(
nj
yj

)]
. (2.20)

Hence, by inserting (2.19) and (2.20) into (2.18), we get

D = 2

N∑
j=1

[
yj ln

(
yj
ŷj

)
+ (nj − yj) ln

(
nj − yj
nj − ŷj

)]
.

Dobson & Barnett (2008) state that if the hypothesis is true, then two times the
difference between the log-likelihood for the reference model and for the model of
interest is χ2-distributed with N − p degrees of freedom. Here, N is the number of
parameters in the reference model, and p is the number of parameters in the model
of interest. If we only have a few observations per covariate pattern, D ∼ χ2

α,N−p
is a poor approximation.
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2.8 The Wald test

The Wald test is used to draw conclusions about the true value, β, of a parameter
based on its estimated value from the sample. Let b, with p elements, be an
maximum likelihood estimator of β. The Wald test statistic is then in Dobson &
Barnett (2008) (p. 77) defined as

W = (b− β)TJ(b)(b− β),

where J is the variance-covariance matrix from (2.11). Under the null hypothesis,
the Wald statistic is χ2-distributed with p degrees of freedom and significance level
α, W ∼ χ2

α,p.

2.9 Graphically representation of the Score test,
the Likelihood ratio test and the Wald test

We have now considered three likelihood based methods. These methods can all be
used to test if leaving out one or several covariates will reduce how well the model
fits the data, but they use different approaches. The null hypothesis for the three
tests is that the smaller model is the true model. We will here let the coefficient
of interest from the model be denoted θ. The score test statistic is calculated
based on the slope of the log-likelihood function at the value of θ given in the
null hypothesis, θ0. This slope is used to estimate the change in the model fit if
additional variables were included or removed from the model. The Likelihood ratio
test compares the log-likelihood of a model where the value of θ is given in the null
hypothesis with the log-likelihood of a model where θ is estimated. The estimated
value of θ is denoted θ̂. The comparison is done by checking if the difference in
the values of these two log-likelihood functions is statistical significant. The Wald
test does not compare the difference between the log-likelihood functions of two
models, but rather the difference between the estimated parameter corresponding
to the fitted model and the parameter under the null hypothesis. If the estimated
value is significant different from the value given in the null hypothesis, then the
null hypothesis will be rejected.

Figure 2.1 shows graphically what the Score test, the Likelihood ratio test and
the Wald test examine in order to draw conclusions about the null hypothesis H0:
θ = θ0 when there are no nuisance parameters included. The Score test evaluates
how quickly the log-likelihood is changing at θ = θ0, the Likelihood ratio test
compares ln(L(θ̂)) with ln(L(θ0)), and the Wald test compares θ̂ with θ0.
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Figure 2.1: Relationship among the Score test statistic, the Likelihood ratio test
statistic and the Wald test statistic. The figure is inspired by Figure D.16 in Fox
(1997) (p. 570).

2.10 The Cochran-Armitage test for trend

The methods we have looked at so far have all been based on likelihood estimation.
There are also other tests that may be used for the same purpose. We will here
consider a non-model based method named the Cochran-Armitage test for trend
(CATT). CATT is widely used in the statistical analysis in studies when the aim is
to check if there is an association between a response variable with two levels, and
an explanatory variable with k ordinal levels. The null hypothesis says that there
is no trend. First we have to introduce what is called a contingency table, which
is a table displaying the counts distribution of the variables we consider. Such a
table, and its notation, is shown in Table 2.1.

Genotype
aa aA AA Sum

Case x0 x1 x2 n1

Control y0 y1 y2 n2

Sum m0 m1 m2 n

Table 2.1: Notation for the 2×3 contingency table.

Using the notation in Table 2.1, Langaas & Bakke (2013) obtain the CATT test
statistic,
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CATT =

2∑
i=0

si (n2xi − n1yi)√√√√n1n2

(
2∑
i=0

s2
imi − 1

N

(
2∑
i=0

simi

)2
) ,

where s0, s1 and s2 are weights taking values depending on the choice of genetic
model. By genetic model we mean the relationship between how the disease proba-
bilities are modeled for the three genotypes. The most common genetic models are
the three models called recessive, dominant and additive. In the recessive model,
we assume that two copies of the high risk allele is necessary for developing the
disease, while in the dominant model, only one copy of the high risk allele is nec-
essary. For the additive genetic model, we assume that the allele combination ’aA’
gives an increased risk of developing the disease compared to carrying the combi-
nation ’aa’, but an decreased risk of developing the disease compared to carrying
the combination ’AA’. According to Zheng et al. (2006), the trend test is optimal
when s0 = 0, s2 = 2, and s1 is equal to 0, 1 or 2 for the recessive, additive and
dominant genetic model, respectively.

The CATT test statistic is asymptotically standard normal distributed under the
null hypothesis, and the absolute value of it is invariant to linear transformations
of the weights.

Zheng et al. (2012) (pp. 67-68) show that the squared CATT statistic is equal to the
score test statistic for logistic regression when the genotype is the only covariate,
and it is coded similarly as in CATT.
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Chapter 3

Statistical models including
genotype and environmental
covariates

We will in this chapter consider several possible models constructed around the
logistic regression model. The aim is to see what the score test statistic presented
in Chapter 2 looks like for these models when considering appropriate statistical
hypotheses. We will also derive expressions for parameter estimates for some mod-
els.

3.1 The simplest model

First, we look at the model where the intercept term is the only term. This model is
not of interest by itself, but it provides a good structure for the upcoming models.
We write this model as

logit(πi) = β0, (3.1)

and the hypothesis we want to test is

H0 : β0 = 0 vs. H1 : β0 6= 0.

The log-likelihood function for observation i is given by
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li(πi; yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(
ni
yi

)
,

and the score function then takes the form

Ui =
∂li
∂πi

=
Yi
πi

+
ni − Yi
1− πi

=
Yi − niπi
πi(1− πi)

.

By setting the score function equal to zero, we get β̂0 = ln
(

Ȳ
1−Ȳ

)
, where Ȳ = Y

n
and n is the number of observations. Further, the information matrix is given by

J = Var(U) =
Var(Y )

π2(1− π)2
=

n

π(1− π)
.

Under H0, π = 1
2 . This can be shown by rewriting (3.1), using the link function

logit(πi) = log
(

πi

1−πi

)
, to πi = exp(β0)

1+exp(β0) and insert β0 = 0.

The score test statistic for the model in (3.1) will then be

S = UTJ−1U |H0
= 4n

(
Ȳ − 1

2

)2

,

and the null hypothesis, H0, is rejected if S > χ2
α,1.

We now let Y be a random variable that follows the binomial distribution such
that Y ∼ bin(n, p), where n is the number of trials and p is the probability of
success in each trial. Moreover, we let Ȳ = Y

n which approximately follows the

normal distribution, Ȳ ∼ N
(
p, p(1−p)n

)
. Hence, Ȳ−p√

p(1−p)
n

∼ N(0,1). It is known

that the sum of k squared normal distributed random variables follows the chi-

squared distribution with k degrees of freedom. Thus, (Ȳ−p)2
p(1−p)

n

∼ χ2
α,1. If we let

p = 1
2 , we get 4n

(
Ȳ − 1

2

)2

, which is identical to the score vector.

3.2 Model including a linear genotype covariate

The model we are going to consider in this section can be written as

logit(πi) = β0 + βGxGi, (3.2)

where xGi can take the values 0, 1 and 2. The hypothesis of interest is now
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H0 : βG = 0 vs. H1 : βG 6= 0,

and the log-likelihood function is given by

li(πi; yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(
ni
yi

)
,

where

πi =
exp(β0 + βGxGi)

1 + exp(β0 + βGxGi)
.

By using the log-likelihood function, we get the score vector U = [Uβ0
, UβG

]T ,
where

Uβ0
=

n∑
i=1

∂li
∂β0

=

n∑
i=1

∂li
∂πi

∂πi
∂β0

=

n∑
i=1

(Yi − niπi)

and

UβG
=

n∑
i=1

∂li
∂βG

=

n∑
i=1

∂li
∂πi

∂πi
∂βG

=

n∑
i=1

xi(Yi − niπi).

From setting Uβ0
= 0, we get π̂ = Ȳ , which gives β̂0 = ln

(
Ȳ

1−Ȳ

)
. The estimate β̂G

can not be expressed in a closed form.

The information matrix for the model in (3.2) is given by

J =


n∑
i=1

niπi(1− πi)
n∑
i=1

xiniπi(1− πi)
n∑
i=1

xiniπi(1− πi)
n∑
i=1

x2
iniπi(1− πi)

 .
By using (2.17), we get

J∗ =

n∑
i=1

x2
iniπi(1− πi)−

[
n∑
i=1

xiniπi(1− πi)
]2

n∑
i=1

niπi(1− πi)
.

Inserting β̂0 and βG = 0 gives
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J∗ |β̂0,βG=0= Ȳ (1− Ȳ )

[
n∑
i=1

nix
2
i −

( n∑
i=1

xini

)2

n∑
i=1

ni

]
,

and the score test statistic is then expressed as

S = UT (J∗)−1U =

[
n∑
i=1

(
Yi − niȲ

)
xi

]2

Ȳ (1− Ȳ )

[
n∑
i=1

nix2
i −

( n∑
i=1

xini

)2( n∑
i=1

ni

)−1
] .

The null hypothesis, H0, is rejected if S > χ2
α,1.

3.3 Model including a linear genotype covariate
and a linear environmental covariate

In the previous section we considered a model with the genotype term as the only
term in addition to the intercept term. In this section we will add an environmental
covariate as well. We write the model as

logit(πi) = β0 + βExEi + βGxGi,

where xEi is the value of the environmental covariate for observation i, and xGi
is equal to 0, 1 or 2 for the genotype 0, 1 and 2, respectively. The hypothesis we
want to test is

H0 : βG = 0 vs. H1 : βG 6= 0.

The log-likelihood function for observation i takes the form

li(πi; yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(
ni
yi

)
,

where

πi =
exp(β0 + βExEi + βGxGi)

1 + exp(β0 + βExEi + βGxGi)
.

The elements in the score vector are given by
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U =

Uβ0

UβE

UβG

 =


n∑
i=1

(Yi − niπi)
n∑
i=1

xEi(Yi − niπi)
n∑
i=1

xGi(Yi − niπi)

 , (3.3)

and the information matrix becomes

J =


n∑
i=1

niπi(1− πi)
n∑
i=1

xEiniπi(1− πi)
n∑
i=1

xGiniπi(1− πi)
n∑
i=1

xEiniπi(1− πi)
n∑
i=1

x2
Einiπi(1− πi)

n∑
i=1

xEixGiniπi(1− πi)
n∑
i=1

xGiniπi(1− πi)
n∑
i=1

xEixGiniπi(1− πi)
n∑
i=1

x2
Giniπi(1− πi)

 .

Again, we use (2.17) and get

J∗ = J22 − J21J
−1
11 J12, (3.4)

where

J22 =

n∑
i=1

x2
Giniπi(1− πi),

J21 =

[
n∑
i=1

xGiniπi(1− πi)
n∑
i=1

xEixGiniπi(1− πi)
]
,

J11 =


n∑
i=1

niπi(1− πi)
n∑
i=1

xEiniπi(1− πi)
n∑
i=1

xEiniπi(1− πi)
n∑
i=1

x2
Einiπi(1− πi)


and

J12 =


n∑
i=1

xGiniπi(1− πi)
n∑
i=1

xEixGiniπi(1− πi)

 .
The score test statistic is then
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S = UTβG
(I∗)−1UβG

,

where UβG
is given in (3.3), and I∗ is given in (3.4). The null hypothesis, H0, is

rejected if S > χ2
α,1.

3.4 Model including an interaction term

In the present section we are going to consider a model similar to the one in the
previous section, but we will also add an interaction term. We write the model as

logit(πi) = β0 + βExEi + βGxGi + βEGxEixGi,

where xEi is the value of the environmental covariate for observation i, and xGi is
equal to 0, 1 or 2 for the genotype 0, 1 and 2, respectively. One possible hypothesis
we want to test is

H0 : βEG = 0 vs. H1 : βEG 6= 0. (3.5)

The log-likelihood function for observation i takes the form

li(πi; yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(
ni
yi

)
,

where

πi =
exp(β0 + βExEi + βGxGi + βEGxEixGi)

1 + exp(β0 + βExEi + βGxGi + βEGxEixGi)
.

The elements in the score vector are given by

U =


Uβ0

UβE

UβG

UβEG

 =



∑
i

(Yi − niπi)∑
i

xEi(Yi − niπi)∑
i

xGi(Yi − niπi)∑
i

xEixGi(Yi − niπi)

 , (3.6)

and the information matrix becomes
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J =



∑
i

Var(Yi)
∑
i

xEiVar(Yi)
∑
i

xGiVar(Yi)
∑
i

xEixGiVar(Yi)∑
i

xEiVar(Yi)
∑
i

x2
EiVar(Yi)

∑
i

xEixGiVar(Yi)
∑
i

x2
EixGiVar(Yi)∑

i

xGiVar(Yi)
∑
i

xEixGiVar(Yi)
∑
i

x2
GiVar(Yi)

∑
i

xEix
2
GiVar(Yi)∑

i

xEixGiVar(Yi)
∑
i

x2
EixGiVar(Yi)

∑
i

xEix
2
GiVar(Yi)

∑
i

x2
Eix

2
GiVar(Yi)

 ,
(3.7)

where Var(Yi) = niπi(1− πi).

Again, we use (2.17) and get

J∗ = J22 − J21J
−1
11 J12, (3.8)

where

J22 =
∑
i

x2
Eix

2
Giniπi(1− πi),

J21 =
[∑
i

xEixGiniπi(1− πi)
∑
i

x2
EixGiniπi(1− πi)

∑
i

xEix
2
Giniπi(1− πi)

]
,

J11 =


∑
i

niπi(1− πi)
∑
i

xEiniπi(1− πi)
∑
i

xGiniπi(1− πi)∑
i

xEiniπi(1− πi)
∑
i

x2
Einiπi(1− πi)

∑
i

xEixGiniπi(1− πi)∑
i

xGiniπi(1− πi)
∑
i

xEixGiniπi(1− πi)
∑
i

x2
Giniπi(1− πi)


and

J12 =


∑
i

xEixGiniπi(1− πi)∑
i

x2
EixGiniπi(1− πi)∑

i

xEix
2
Giniπi(1− πi)

 .
The score test statistic is then

S = UTβEG
(I∗)−1UβEG

,

where UβEG
is given in (3.6), and I∗ is given in (3.8). The null hypothesis from

(3.5) is rejected if S > χ2
α,1.
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Another hypothesis that may be of interest to test is

H0 : βG = βEG = 0 vs. H1 : at least one of βG or βEG is not equal to zero.
(3.9)

In this situation, the θ2 vector from Section 2.6 will be

θ2 =

[
βG
βEG

]
.

The information matrix is as given in (3.7), but now

J22 =

∑i x2
Giniπi(1− πi)

∑
i

xEix
2
Giniπi(1− πi)∑

i

xEix
2
Giniπi(1− πi)

∑
i

x2
Eix

2
Giniπi(1− πi)

 ,

J21 =

∑i xGiniπi(1− πi) ∑
i

xEixGiniπi(1− πi)∑
i

xEixGiniπi(1− πi)
∑
i

x2
EixGiniπi(1− πi)

 ,

J11 =

∑i niπi(1− πi) ∑
i

xEiniπi(1− πi)∑
i

xEiniπi(1− πi)
∑
i

x2
Einiπi(1− πi)

 ,
and

J12 =

∑i xGiniπi(1− πi) ∑
i

xEixGiniπi(1− πi)∑
i

xEixGiniπi(1− πi)
∑
i

x2
EixGiniπi(1− πi)

 .
Hence, the score test statistic becomes

S = UT
θ2

(I∗)−1Uθ2 ,

where Uθ2 is given by

Uθ2 =

[
UβG

UβEG

]
,

and both I∗ and Uθ2
are evaluated at θ1 = θ̂1 and θ2 = 0. The null hypothesis

in (3.9) is rejected if S > χ2
α,2. Note that θ2 here has two elements. This causes

the score test statistic to be χ2-distributed with two degrees of freedom, not one
as for the previous situations.
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3.5 The genotype variable and the environmental
variable as factors

In this section, both the genotype variable and the environmental variable are
considered as factors. We will not follow the structure from the previous sections,
and the focus will no longer be on hypothesis testing, but rather on estimating the
parameters in the model. The estimates will be given in a closed form when this
is possible.

We assume that the genotype variable has three levels, and that the environmental
variable has k levels, and consider a 2×3×k table like the one shown in Table 3.1.

Genotype
0 1 2 Sum

Case x0j x1j x2j n1j

Control y0j y1j y2j n2j

Sum m0j m1j m2j Nj

Table 3.1: Notation for the 2× 3× k contingency table.

Here, j is the level of the environmental variable, and can take values in the interval
0 ≤ j ≤ k − 1. The genotype is either 0, 1 or 2, and the response variable has two
levels; case (diseased) and control (non-diseased).

First, we take a look at the saturated model. A saturated model is a model where
the number of parameters is equal to the number of covariate patterns. For logistic
regression, the saturated model may be written as

ln

(
fij

1− fij

)
= ψij , (3.10)

where fij is the probability of developing the disease given the levels of i and j.
The index i refers to the genotype, while the index j refers to the level of the
environmental variable.

By rewriting (3.10), we get

fij =
exp(ψij)

1 + exp(ψij)

and

1− fij =
1

1 + exp(ψij)
.
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The likelihood function is then given by

L =

k−1∏
j=0

[(
exp(ψ0j)

1 + exp(ψ0j)

)x0j
(

exp(ψ1j)

1 + exp(ψ1j)

)x1j
(

exp(ψ2j)

1 + exp(ψ2j)

)x2j

(
1

1 + exp(ψ0j)

)y0j ( 1

1 + exp(ψ1j)

)y1j ( 1

1 + exp(ψ2j)

)y2j ]
.

We get the maximum likelihood estimates for the parameters included by first
taking the logarithm of the likelihood function, and then differentiate with respect
to each of the parameters. Next, we set each expression equal to zero and solve for
the parameter of interest. Using the random variables corresponding to the cells
in Table 3.1, the estimates are given by

exp(ψ̂0j) =
X0j

Y0j
,

exp(ψ̂1j) =
X1j

Y1j
and

exp(ψ̂2j) =
X2j

Y2j
.

We now consider both the genotype variable and the environmental variable as
factors, and rewrite the model from (3.10) to

ln

(
fij

1− fij

)
= α+ βi + γj + δij , (3.11)

where α is the intercept, βi is the main effect of the genotype, γj is the main
effect of the environment variable, and the term δij is the interaction between
genotype and environment. We use β0, γ0 and δ00 as reference categories. Hence,
β0 = γ0 = δ00 = δ0j = δi0 = 0. From (3.11) we get

fij =
exp(α+ βi + γj + δij)

1 + exp(α+ βi + γj + δij)

and

1− fij =
1

1 + exp(α+ βi + γj + δij)
.
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The likelihood function can be expressed as

L =

k−1∏
j=0

[(
exp(α+ γj)

1 + exp(α+ γj)

)x0j
(

exp(α+ β1 + γj + δ1j)

1 + exp(α+ β1 + γj + δ1j)

)x1j

(
exp(α+ β2 + γj)

1 + exp(α+ β2 + γj + δ2j)

)x2j
(

1

1 + exp(α+ γj)

)y0j
(

1

1 + exp(α+ β1 + γj + δ1j)

)y1j ( 1

1 + exp(α+ β2 + γj + δ2j)

)y2j ]
.

By taking the logarithm of the likelihood function, differentiate for each parameter,
and then set each expression equal to zero, we get the maximum likelihood estimates
in a closed form. Using the random variables corresponding to the cells in Table
3.1, the estimates are given by

exp(α̂) =
X00

Y00
, (3.12)

exp(β̂1) =
X10

Y10

Y00

X00
, (3.13)

exp(β̂2) =
X20

Y20

Y00

X00
, (3.14)

exp(γ̂j) =
X0j

Y0j

Y00

X00
, (3.15)

exp(δ̂1j) =
X1j

Y1j

Y0j

X0j

Y10

X10

X00

Y00
and (3.16)

exp(δ̂2j) =
X2j

Y2j

Y0j

X0j

Y20

X20

X00

Y00
. (3.17)

Here, X00

Y00
is the relationship between the cases and the controls for the individuals

carrying genotype 0 and an environmental variable at level 0. This fraction is used
as a reference level for the other estimates.

The estimates given in (3.12)-(3.17) apply for the recessive and the dominant ge-
netic models only. For the additive genetic model, the expressions can not be
written in a closed form, so we need to use numerical methods. Also, if the geno-
type and the environmental variables are not factors, but continuous variables, we
need to solve for the estimates numerically.

The model in (3.11) has, in addition to an intercept and a genotype term, both an
environmental term and an interaction term. We can also find estimates for the
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parameters in the models where the interaction term, or both the environmental
and the interaction term, is omitted. These two possible models can be written as

logit(πi) = α+ βi

and

logit(πi) = α+ βi + γj .

The procedure for calculating the estimates for these models is similar to the one
outlined for the model in (3.11).
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Chapter 4

Statistical test theory

Before we continue with a power study in Chapter 5, we need to introduce some
basic statistical test theory. In this chapter we will give a brief introduction to
hypothesis testing, p-values, significance level and error in hypothesis testing. We
will also present some helpful tools and techniques we can use to evaluate and
compare several statistical methods. The content in Sections 4.1 and 4.2 is based
on Chapter 8 in Castella & Berger (2002).

4.1 Hypothesis testing

A statistical hypothesis can be seen as an assumption about one or several popula-
tion parameters. In order to determine whether the hypothesis is true or false, we
perform what is called an hypothesis test. First we need to define the hypothesis.
The null hypothesis, denoted by H0, is usually the assumption that the observa-
tions are a result of pure chance. The alternative hypothesis, here denoted by H1,
usually says that the observations are influenced by some non-random cause.

The best way to test such an hypothesis is to examine the entire population. Since
that is normally impossible, or at least impractical, we rather examine a random
sample from the population. If the data from this sample is not consistent with
the null hypothesis, the null hypothesis is rejected. To determine whether we do
have consistency between the random sample and the null hypothesis, we calculate
a test statistic, S(X), and a corresponding p-value, p(x). Assume that large values
of S(X) give evidence of H1. The p-value is then defined as

p(x) = P(S(X) ≥ s(x)).

Given that the null hypothesis is true, the p-value gives information about the
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probability of observing something at least as extreme as our observation. Small
p-values lead to rejection of the null hypothesis. The chosen level of significance,
α, determines whether the null hypothesis should be rejected or not. A p-value less
than the significance level leads to rejection of the null hypothesis. In other words,
the probability of rejecting the null hypothesis is less than or equal to the chosen
level of significance.

When we test a statistical hypothesis, there are two types of possible errors that
may occur. By errors we here mean drawing incorrect conclusions. First, we have
what is called Type I error, which is defined as rejecting a true null hypothesis.
Second, we have what is called Type II error, which is defined as not rejecting a
false null hypothesis. A Type I error is also called a false positive error, while a
Type II error sometimes is called a false negative error. Type I and Type II errors
are related to each other. If the probability of a Type I error decreases, then the
probability of a Type II error increases, and vice versa.

4.2 Statistical power and test size

The power of a statistical test, which we denote γ, is defined as the probability
that the test rejects the null hypothesis when the null hypothesis is false. Hence,
the statistical power can be expressed as 1-P(Type II error). When the probability
that a Type II error occurs decreases, the power increases.

The power of a statistical method depends on several factors. One of these is
the criterion level of statistical significance used in the test. An increasing of this
criterion level increases the power of the method, because by doing this, the risk
of a Type II error is reduced. In other words, the chance of rejecting the null
hypothesis when the null hypothesis is false increases when the criterion level of
statistical significance increases.

Another factor that affects the power of a method, is the sample size. It is more
difficult to detect effects in smaller samples. Hence, increasing the sample size will
probably increase the statistical power of a method. The magnitude of the effect
or association of interest in the population under study does also have an impact
on the statistical power. Larger effects are easier to detect. Hence, the statistical
power increases when the size of the effect increases.

The probability of Type I error is called the statistical size of a test, or sometimes
the significance level of a test.

4.3 Estimating power by simulation

The power of a test, γ, can be calculated at a parameter vector θ. In our setting,
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θ = (β0, βE , βG,MAF, µE , σE).

Here, β0, βE and βG are used in the calculation of the probability of disease, while
MAF, µE and σE are used in the distribution calculations for the genotype and
the environmental factor. The power when using significance level α is given by

γ(θ) = P(p(X) ≤ α), (4.1)

where p(X) is the p-value at θ for an observation X. However, the distribution
of the p-value for a parameter vector θ is in many cases unknown. We may thus
instead estimate the power by simulation. We generate a dataset x at a parameter
vector θ. For this dataset we calculate a p-value associated with the test we want
to perform. This p-value may be greater or smaller than a chosen significance level
α. We repeat this procedure m times, and a statistical test is said to be exact if
γ(θ) = α for all α, while it is called valid if γ(θ) ≤ α.

Let W be the number of p-values less than or equal to α, then γ̂ = W
m . Since

W ∼ bin(m, γ), the expected value of γ̂ is given by

E(γ̂) = γ,

and the variance of γ̂ is given by

Var(γ̂) =
γ(1− γ)

m
.

Furthermore, γ follows approximately the normal distribution. The limits of a
confidence interval for γ is thus given by

γ ± zαSE(γ),

where α is the significance level, and zα is the α percentile of the normal distribu-
tion. The standard error (SE) is the square root of the variance of γ.

35



36



Chapter 5

Power study

In Chapter 2, we introduced statistical methods that can be used to detect as-
sociation between genotype, environmental factors and disease. These methods
have different approaches to determine whether the overall hypothesis of interest
should be rejected or not. The majority of the methods presented and outlined
in this thesis require fitting one or several models using logistic regression, but we
have also included a method which is independent of any model fitting. In the
present chapter, we will look at the performance of all these methods when testing
for association between genotype and disease. It will here be useful to know the
true underlying model when drawing conclusions, so for this purpose we simulate
datasets for a given genetic marker.

5.1 Procedure for data simulation

We start by outlining a method to simulate data in a cohort study design. This
method is inspired by the procedure given in Zheng et al. (2012) (pp. 85-86).

Let XG denote the genotype variable, XE denote the environmental variable, and
the random variable Y be defined as

Y =

{
0 if non-diseased

1 if diseased
.

Then, by using the logistic regression model, the probability of developing the
disease, given the genotype and the value of the environmental variable, is given
by
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f = P(Y = 1 | XE = xE , XG = xG) =
exp(β0 + βExE + βGxG)

1 + exp(β0 + βExE + βGxG)
. (5.1)

Here, we assume XE to be normally distributed with mean µ and variance σ2. The
covariate xG is coded 0, 1

2 and 1 for genotype 0, 1 and 2, respectively, and the
environmental effect and the genotype effect are assumed to be independent. The
intercept parameter, β0, is a predetermined effect, and the parameters βE and βG
are determined by the odds ratio for the environmental and the genotype effect,
respectively. From Section 2.4, we know that βj = ln(ORj). Hence, βE = ln(ORE)
and βG = ln(ORG), where ORE is the odds ratio for the environmental factor, and
ORG is the odds ratio for the genotype.

Next, we define the probability of carrying genotype i as gi, where i = 0, 1, 2. For
a given MAF, these probabilities are given by

g0 = (1−MAF)2,

g1 = 2MAF(1−MAF) and

g2 = MAF2,

when assuming the Hardy-Weinberg equilibrium described in Section 1.4.

For each individual, we simulate a genotype, xG, and an environmental covariate,
xE . The genotype is simulated by drawing from P(XG = xG) = gi, i = 0, 1, 2, while
the environmental covariate is simulated by drawing from the normal distribution
with mean µ and variance σ2. Now, when the genotype and the environmental
covariate are known, we draw the disease status from a binomial distribution where
the probability of disease is given by the expression in (5.1).

By following the procedure outlined above, we obtain data generated in a cohort
setting. That is, the disease status is determined when the values of the exposure
variables are known. For our testing and comparing of the methods from Chapter 2,
we would like to use data from a case-control setting. That is, we would like to pick
a number of diseased individuals, and a number of non-diseased individuals, and
then check what the values of the explanatory variables are. To make a case-control
dataset by using the cohort procedure, we follow the given steps, and continue to
simulate until we have a predetermined number, n0, non-diseased individuals, and
another predetermined number, n1, diseased individuals.

For each combination of the odds ratio values for the environmental factor and the
odds ratio values for the genotype, we make m datasets, and for each dataset we
perform the CATT, the Score test, the LRT and the Wald test. Next, for each test
we count the total number of p-values less than or equal to a chosen value of α,
and add up the total for all the m datasets. This gives us one total value for each
test. Then, these values are divided by the total number of datasets, m, to obtain
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the simulated power, as defined in (4.1), of each of the tests. The results are put
into a table where we easily can see how the power changes when the odds ratio
for the environmental factor and the genotype change.

5.2 Data simulation and hypothesis testing

In this section we consider the model given by

logit(π) = β0 + βExE + βGxG,

and test the null hypothesis that says βG = 0. This model, and the corresponding
hypothesis, is the same as the one considered in Section 3.3. Before we follow the
procedure outlined above and simulate datasets for our study, we need to set the
values for the input parameters. We let the environmental random variable, XE ,
follow a standardized normal distribution. Hence, for each individual we draw the
value of xE from N(0, 1). The intercept parameter, β0, is set to -3.5, and the MAF
value is set to 0.3. The choice of these values are to be discussed later. To determine
the values of the parameters βE and βG, we use odds ratio values in the range from
1 to 20 for the environmental factor, and from 1.0 to 1.8 for the genotype.

Furthermore, we use m = 10 000, n0 = n1 = 1 000 and α = 0.05. The statistical
power obtained from the simulated datasets for each of the four methods are shown
in Tables 5.1 (CATT), 5.2 (Score test), 5.3 (LRT) and 5.4 (Wald test).

When using m = 10 000, obtaining a test size of 0.05 gives a standard error of
2.18e-3. This is calculated using the expression obtained in Section 4.3. Similarly,
a power of 80% will have a standard error of 4.0e-3.

ORE

ORG 1.0 1.5 2.0 5.0 10 20
1.0 0.0497 0.0496 0.0553 0.0479 0.0491 0.0494
1.2 0.2616 0.2605 0.2633 0.1874 0.1355 0.1055
1.4 0.6939 0.6937 0.6780 0.5164 0.3530 0.2367
1.6 0.9356 0.9319 0.9209 0.7959 0.5932 0.4165
1.8 0.9910 0.9899 0.9886 0.9322 0.7887 0.5963

Table 5.1: Statistical power for the CATT when m = 10 000, n0 = n1 = 1 000,
MAF = 0.3 and α = 0.05.
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ORE

ORG 1.0 1.5 2.0 5.0 10 20
1.0 0.0496 0.0499 0.0536 0.0479 0.0505 0.0502
1.2 0.2628 0.2547 0.2482 0.1787 0.1599 0.1331
1.4 0.6938 0.6758 0.6463 0.5095 0.4191 0.3477
1.6 0.9361 0.9249 0.9048 0.7876 0.6860 0.6015
1.8 0.9912 0.9879 0.9829 0.9325 0.8755 0.7927

Table 5.2: Statistical power for the Score test when m = 10 000, n0 = n1 = 1 000,
MAF = 0.3 and α = 0.05.

ORE

ORG 1.0 1.5 2.0 5.0 10 20
1.0 0.0497 0.0500 0.0539 0.0480 0.0505 0.0503
1.2 0.2630 0.2549 0.2484 0.1789 0.1603 0.1338
1.4 0.6941 0.6766 0.6465 0.5103 0.4199 0.3492
1.6 0.9362 0.9251 0.9048 0.7880 0.6872 0.6025
1.8 0.9912 0.9879 0.9830 0.9325 0.8757 0.7934

Table 5.3: Statistical power for the LRT when m = 10 000, n0 = n1 = 1 000,
MAF = 0.3 and α = 0.05.

ORE

ORG 1.0 1.5 2.0 5.0 10 20
1.0 0.0494 0.0496 0.0534 0.0474 0.0503 0.0498
1.2 0.2625 0.2544 0.2473 0.1784 0.1591 0.1327
1.4 0.6932 0.6753 0.6461 0.5086 0.4176 0.3469
1.6 0.9359 0.9249 0.9046 0.7863 0.6854 0.5999
1.8 0.9912 0.9878 0.9829 0.9320 0.8755 0.7917

Table 5.4: Statistical power for the Wald test when m = 10 000, n0 = n1 = 1 000,
MAF = 0.3 and α = 0.05.

5.3 Comparison of the performance of the Score
test, the LRT and the Wald test

From Tables 5.2-5.4, we observe that the Score test, the LRT and the Wald test
give very similar results. The LRT seems to be the method obtaining the highest
statistical power, but by adding 95% confidence intervals, we observe that the
difference in the performance of these three methods is not statistically significant.
For both the LRT and the Wald test, two models need to be fitted for each dataset,
while the Score test requires only one model fitting. This gives the Score test
reduced computational time compared to the LRT and the Wald test. Based on
the fact that the three methods seem to draw the same conclusion about the null
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hypothesis, and that the Score test has a computational advantage, we consider
the Score test as the preferred one among these three. In the following analysis, we
will therefore neither include the LRT nor the Wald test, but focus on the Score
test in addition to the CATT.

5.4 Performance of the CATT and the Score test

Table 5.1 shows how the power for the CATT varies for several combinations of the
effect size for the environmental factor and for the genotype. The null hypothesis
says that the genotype has no effect on the risk of develop the disease, which is
equivalent to ORG = 1. The level of significance is set to 0.05. Thus, the test is
said to hold its level if the test size is 0.05. As we can see from the first row of
Table 5.1, all values are close to 0.05. In order to determine whether the values
are close enough for the test to be considered as a test which holds its level, we
calculate confidence intervals for each value of the statistical test size. The lower
and upper bounds of these confidence intervals for the CATT are shown in Table
5.5.

ORE

1.0 1.5 2.0 5.0 10 20
Lower bound 0.0454 0.0453 0.0508 0.0437 0.0449 0.0452
Upper bound 0.0540 0.0539 0.0598 0.0521 0.0533 0.0536

Table 5.5: Lower and upper bounds of 95% confidence intervals for the test size of
the CATT for different values of the environmental effect.

As we can see from Table 5.5, 0.05 is included in all the given 95% confidence
intervals, except for the one where the environmental odds ratio is equal to 2.0.
Here, 0.05 is just outside the interval. Despite this, we conclude that the CATT
holds its level for the environmental odds ratio values and the other parameter
values we have used in this simulation.

If we again consider Table 5.1, we observe that as the effect of the environmental
factor increases, the effect of the genotype becomes harder to detect. When the
odds ratio for the environmental factor is 20, which is relatively high in this setting,
the probability that the CATT rejects the null hypothesis when it is false is about
60% when the odds ratio for the genotype is 1.8. For environmental odds ratios less
than or equal to 5, the power of the CATT is greater than 80% when the genotype
odds ratio is at least 1.6.

Similarly as for the CATT, we calculate confidence intervals for the test size of the
Score test. These intervals are given in Table 5.6.

From Table 5.6 we observe that 0.05 is included in all the given 95% confidence
intervals of the test size for the Score test. Hence, the Score test holds its level for
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ORE

1.0 1.5 2.0 5.0 10 20
Lower bound 0.0453 0.0456 0.0492 0.0437 0.0462 0.0459
Upper bound 0.0539 0.0542 0.0580 0.0521 0.0548 0.0545

Table 5.6: Lower and upper bounds of 95% confidence intervals for the test size of
the Score test for different values of the environmental effect.

the environmental odds ratio values and the other parameter values we have used
in this simulation.

As the squared CATT statistic is equal to the Score test statistic for logistic regres-
sion when genotype is the only covariate, the first column in the Score table (Table
5.2), is close to identical to the first column in the CATT table (Table 5.1). The
reason why these two columns are not exactly identical is due to the parameter
βE . For the CATT, this parameter is not included at all, which is equivalent to
set βE = 0, while for the Score test, we have to estimate βE . This estimate, β̂E ,
will be close to zero, but not necessarily equal to zero, which leads to a slightly
different test statistic for the CATT and the Score test.

Similarly as for the CATT, the effect of the genotype is harder to detect for the
Score test when the effect from the environmental factor increases. For the odds
ratio equal to 1.4 for the genotype, the power decreases to the half from about 70%
to about 35% when the odds ratio for the environmental factor increases from 1.0
to 20.

If we consider both the performance of the CATT and of the Score test, we can see
that the power follows the same trend for the two methods. It increases as the effect
of the genotype increases, and decreases as the effect of the environmental effect
increases. This is not a very surprising result, but what is of greater interest is
what we observe when we compare the performance of the two methods. Here, the
CATT has greater statistical power than the Score test when the odds ratio effect
from the environment is ≤ 5. For the rest of the environmental odds ratios included
in this simulation, the Score test rejects the null hypothesis more often than the
CATT does, which means it detects the effect of the genotype more frequently.
We have not been able to find any articles or other available literature where this
finding is presented. To determine whether the results from the two methods are
significantly different or not, a paired hypothesis test strategy is needed. We may
apply a test called McNemar’s test for this purpose, but we have not included any
such tests in our study. This would require counting of the number of discordant
pairs of conclusions for the CATT and the Score test for a given combination of the
genotype and environmental effect sizes. Also, we have not performed any analysis
about whether the estimates β̂G are closer to the true value when using a logistic
regression model without environmental influence.

When calculating the CATT test statistic, the information about the environmen-
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tal influence is ignored. The Score test, on the other hand, takes this additional
information into account when the test statistic is computed. One might expect
that using more of the available information will lead to greater statistical power,
but this seems not to be true for all combinations of the environmental- and geno-
type effects in our analysis. When an additional variable is taken into account,
the uncertainty becomes greater, and an increased uncertainty leads to decreased
statistical power.

A graphical representation of how the statistical power varies for different effects
sizes for the genotype and the environmental factor are shown in Figures 5.1-5.4.

Figure 5.1: Statistical power obtained for CATT for several genotype odds ratio
values. The lines, from top to bottom, represent odds ratio values from 1.0 to 20
for the environmental effect.
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Figure 5.2: Statistical power obtained for Score test for several genotype odds ratio
values. The lines, from top to bottom, represent odds ratio values from 1.0 to 20
for the environmental effect.
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Figure 5.3: Statistical power obtained for CATT for several environmental odds
ratio values. The lines, from top to bottom, represent odds ratio values from 1.8
to 1.0 for the genotype effect.
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Figure 5.4: Statistical power obtained for Score test for several environmental odds
ratio values. The lines, from top to bottom, represent odds ratio values from 1.8
to 1.0 for the genotype effect.
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5.5 Effect of parameter values

There are several parameters that have an impact on the power of a statistical
test. We are here going to discuss these, and observe how the power of the meth-
ods changes when we use different values for some of these parameters in our
simulations.

5.5.1 Intercept parameter

For the simulations in Section 5.2, we used an intercept value equal to -3.5. This
value was set such that the probability of disease is in the interval [0.03, 0.20] for
all combinations of the chosen odds ratio values for both the environmental factor
and the genotype. How to obtain an expression for the probability of disease is
shown in Chapter 6. A change in the MAF will barely influence the probability
of disease, thus -3.5 seems to be an appropriate choice for the intercept parameter
value independent of the MAF.

5.5.2 Minor allele frequency

The MAF in the population under study was in our simulation set to 0.3. This
value was inspired by the MAF value in the data used in Gabrielsen (2013) (paper
III). We assumed the Hardy-Weinberg equilibrium, and used the MAF value to
determine the genotype frequencies. Figure 5.5 shows how the probabilities of
carrying the possible genotypes change when the MAF value changes.

From Figure 5.5, we see that an increased MAF leads to increased probability of
genotype 2. Also, we can observe that a MAF equal to 0.5 gives the most balanced
probabilities for the three genotypes, and we experience a symmetry in the plot
about this value.

In order to see how the statistical power for the CATT and the Score test changes
when the MAF changes, we use fixed values for the effects, and MAF values in the
range from 0.05 to 0.60. The results are shown in Table 5.7. Here the odds ratio
for the environmental factor is set to 2, and the odds ratio for the genotype is set
to 1.5.

MAF 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60
CATT 0.2928 0.4947 0.6364 0.7190 0.8349 0.8741 0.8827 0.8591
Score test 0.2797 0.4678 0.6112 0.6919 0.8115 0.8510 0.8600 0.8364

Table 5.7: Power of the CATT and the Score test for different minor allele frequen-
cies. The odds ratio for the environmental factor is equal to 2, and the odds ratio
for the genotype is equal to 1.5. The level of significance used is 0.05.

47



Figure 5.5: The probability of carrying each of the genotypes 0 (blue line), 1 (purple
line) and 2 (red line) for different values of the minor allele frequency.

As we can see from Table 5.7, the power increases as the MAF increases. The
MAF of 0.3 is the smallest out of the tested values which gives power greater than
80% for both the CATT and the Score test. For other values of the environmental
effect, we may experience slightly different powers, but the trend is the same. Thus,
increased MAF implies increased power.

If we estimate the genotype parameter, β̂G, and its standard error for several
values of MAF, we observe that the standard error decreases as MAF increases.
The greater the standard error is, the harder it is to use the estimate to draw a
conclusion. This explains why the power increases when the MAF increases.

5.5.3 Distribution of the environmental variable

As mentioned in Chapter 1, it can be several environmental factors that influence
the risk of developing a disease. These factors may vary depending on the disease.
Instead of making a model where several such factors are included, we have chosen
to combine them into one common, standard normal distributed variable. Hence,
in the general population, XE is normal distributed with mean 0 and variance equal
to 1. Because the environment has an impact on the risk of developing disease, the
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distribution of XE in each of the case and control group is not identical.

5.5.4 Size of the effects

The effect size of the covariates included in the model has, of course, a great
impact on the statistical power of a method. We have in our study included an
effect from the environment, and an effect from the genotype. Later, we will also
test hypotheses where an interaction between the genotype and the environment
is considered as well. The effect of the environmental factor in the model may
vary depending on the exposures included in the factor and which disease we are
studying. Smoking habits, exposure to air or water pollution, diet, physical activity
and age are all well known examples of environmental factors that might influence
the risk of developing certain diseases. The influence can be in a positive or a
negative direction, and a factor which has a positive impact on the risk of developing
one disease, can for another disease provide a negative impact.

Obviously, when determining the β parameter values in the model, the distribution
of the corresponding variable is of great importance. Remember, if we denote a
covariate xj and its parameter βj , a change from xj to xj + 1, gives an odds ratio
equal to exp(βj). Note that an odds ratio equal to 1.0 indicates that there is no
effect.

In order to choose effect sizes for our simulation which reflects what is observed
in other studies, we have been searching in the available literature for such values.
Guan et al. (2012) include an overview of the genotype odds ratio values obtained
in studies where an association between type 2 diabetes susceptibility and common
variants was detected. Here we find odds ratio values in the range from 1.05 to
1.40. The sample sizes in these studies are in the order of 50 000. Our choice of
effect sizes is motivated from the studies referred to in this article, but there is a
tradeoff because we use a smaller sample size. Thus, we have included genotype
effects given by odds ratio values in the range from 1.0 to 1.8. Since β = ln(OR),
this implies that βG will take values from 0 to about 0.6. The genotype covariate
is coded 0, 1

2 , 1, so carrying genotype 2 compared to genotype 0 implies an increase
given by ln(ORG) for the logit(π(x)), where ORG is the given genotype odds ratio.

When it comes to the effect size for the environmental influence, it turned out
that most articles within this field of study do not specify which effect sizes they
observe. Our general impression is that an environmental odds ratio equal to
5 when considering a standard normal distributed variable, is rather high. For
most common diseases, we would expect a smaller effect, but we can not exclude
the possibility of observing an environmental influence with a corresponding odds
ratio values much greater than 5. We have therefore in our simulation used odds
ratio values in the range from 1.0 to 20, which gives βE values from 0 to 3.0.
This can be interpreted as for an individual with environmental covariate equal
to 1, the logit(π(x)) function will be ln(ORE) greater than for an individual with
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environmental covariate equal to 0, when ORE is the given environmental odds
ratio.

5.5.5 Level of significance

In GWA studies, numerous hypotheses are tested simultaneously. Each null hy-
pothesis which is tested has a corresponding level of significance. This level is
often set to 0.05, which means that the probability of making a Type I error is
less than 5%. It is of interest to not just control the error rate for each test, but
also the overall error rate. A possible way to do this is by using what is called
the familywise error rate (FWER). The FWER is defined as the probability of at
least one Type I error in total (Ge et al., 2003). If we use the significance level of
0.05 for each individual hypothesis test, the FWER will be much greater than 0.05.
Hence, if we want an overall level of significance, α∗, of 0.05, we have to decrease
the significance level for each hypothesis test. A common, but very conservative,
method that may be used to control the FWER, is named the Bonferroni correc-
tion. To perform a such correction, we divide the desired overall significance level,
α∗, by the number of tests, m. Thus, the new p-value is given by α∗

m . Hence, if we
use α∗ = 0.05 and m = 10 000, then we have to use α = 5e-6 as significance level
for each test in order to control the FWER. In GWA studies, the p-values usually
have to be about 1e-7 or 1e-8 to be considered as significant.

In the simulation performed in Section 5.2, we used α = 0.05. We will also use α =
5e-6 in some of the following simulations. In the cases where the significance level
is decreased, the FWER will be controlled in a greater extent.

5.5.6 Sample size

The number of participants in the case group and in the control group is also of
importance for the statistical power of a test. Table 5.8 shows how the power of
the CATT and the Score test changes when the number of individuals in the two
groups changes. Here, the effects of the genotype and the environmental factor are
fixed. In Figure 5.6, the changes are shown graphically.

1 000 2 000 3 000 4 000 5 000 10 000
CATT 0.0499 0.3286 0.6912 0.9020 0.9755 1.0000
Score test 0.0417 0.2788 0.6271 0.8621 0.9601 1.0000

Table 5.8: Statistical power for CATT and Score test for different sample sizes
when the level of significance is set to 5e-6. The odds ratio for the environmental
factor is equal to 2, the odds ratio for the genotype is equal to 1.5, and the MAF
is equal to 0.3.
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Figure 5.6: Statistical power for CATT (blue line) and Score test (red line) for
different sample sizes when the level of significance is set to 5e-6. The odds ratio
for the environmental factor is equal to 2, the odds ratio for the genotype is equal
to 1.5, and the MAF is equal to 0.3.

Figure 5.6 shows that we need about 4 000 individuals in each of the case and control
group to obtain statistical power of at least 80% when the level of significance is
set to 5e-6, and the MAF is equal to 0.3. This yields for both the CATT and the
Score test. For the effect sizes used here, CATT has slightly greater power than
the Score test for any number of participants in the study, but this may change if
using different effect sizes.

5.6 Simulation inspired by the TOP study

The Thematically Organized Psychosis (TOP) study is an ongoing research study
launched in Oslo, Norway, in the year of 2003 (TOP, 2013). It is a joint collabora-
tion between Oslo University Hospital and the University of Oslo. The participants
are mainly individuals living in the Oslo area, but in the later years, also individ-
uals from other parts of the country have been invited to participate. The aim of
the TOP study is to identify the causes for a selection of mental illnesses with main
focus on schizophrenia and bipolar disorder. The database now includes more than
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1 100 diseased individuals which constitute the case group, and about 500 healthy
individuals in a control group. The TOP study is a complex study where the partic-
ipants are taken through clinical examinations, neuropsychological tests, magnetic
resonance imaging (MRI) and genetic analyses to collect the necessary information.

In the simulation we performed in Section 5.2, we used an equal number of cases
and controls. For the TOP study, we have about twice as many cases than controls.
In order to see how this influences the power of the CATT and the Score test, we
will perform another simulation where n0 = 500 and n1 = 1 000.

From Halle (2012) (Figure 5.1, p. 43) we observe that for chromosome 22, the
density of the MAF distribution decreases slightly when the MAF increases, but
it seems like there is no clear choice of which MAF it would be appropriate to
use. We will therefore use a selection of MAF values for our simulation. This
selection contains the MAF values 0.05, 0.1, 0.3 and 0.5. When it comes to the
level of significance, we choose to use α equal to 5e-6. From Tables 5.1 and 5.2
we know that it is hard to detect the genotype effect when it is small, so we
perform this simulation for the odds ratio values 2, 3 and 5 for the genotype. For
the environmental effect, we use odds ratio equal to 2 and 10. The power values
obtained are given in Tables 5.9 (CATT) and 5.10 (Score test).

From Tables 5.9 and 5.10, we observe the same trends as in previous simulations
for both methods; high MAF values, small environmental effects and high genotype
effects give the greatest power values. Also, when the environmental odds ratio is
equal to 2, the CATT performs best, but when it is equal to 10, the Score test gives
the best results.

ORE

MAF ORG 2 10
0.05 2 0.0026 0.0000

3 0.0626 0.0020
5 0.5997 0.0390

0.1 2 0.0229 0.0009
3 0.4102 0.0267
5 0.9829 0.2790

0.3 2 0.2900 0.0219
3 0.9743 0.3118
5 1.0000 0.9187

0.5 2 0.4122 0.0384
3 0.9866 0.4373
5 1.0000 0.9561

Table 5.9: Statistical power for the CATT when n0 = 500, n1 = 1 000 and α = 5e-6.
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ORE

MAF ORG 2 10
0.05 2 0.0022 0.0003

3 0.0559 0.0069
5 0.5699 0.1212

0.1 2 0.0192 0.0028
3 0.3778 0.0672
5 0.9784 0.5791

0.3 2 0.2572 0.0590
3 0.9638 0.5690
5 1.0000 0.9942

0.5 2 0.3751 0.0877
3 0.9817 0.6982
5 1.0000 0.9980

Table 5.10: Statistical power for the Score test when n0 = 500, n1 = 1 000 and
α = 5e-6.

5.7 Data simulation and hypothesis testing when
an interaction effect is present

In Section 5.2 we assumed there were no interaction between the genotype and
the environmental factor. We have to assume the possibility of situations where
some kind of correlation between the effect of the genotype and the effect of the
environmental factor is present. As an example, we may experience that a given
SNP will affect the nicotine addiction for certain individuals (Gabrielsen, 2013,
paper III). Hence, the genotype an individual is carrying will affect the size of the
effect from the environmental variable, provided that this includes nicotine habits.
In such situations, including an interaction effect in the logistic regression model,
may give a more accurate result. We are here going to perform a power study
where an interaction term is included in the model. As mentioned in Section 3.4,
there are two hypotheses that may be of interest to test for this model. These two
hypotheses are given in Table 5.11.

No Hypothesis
1 H0: βEG = 0

H1: βEG 6= 0

2 H0: βG = βEG = 0
H1: at least one of βG or βEG is not equal to zero

Table 5.11: Hypotheses for the model where an interaction term is included.

The Score test and the LRT can be used to test both hypothesis 1 and 2 in Table
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5.11, while the Wald test only can be used when testing hypothesis 1, because it
can only test one parameter at the time.

We follow the procedure outlined in Section 5.1 to simulate data, but now we also
include an interaction term βEGxExG. The intercept parameter, β0, is set to -3.5
as in the previous simulations. This value may not be optimal when the model
we are fitting includes an interaction term, but in order to be able to compare the
results with the previous simulations, we use β0 = −3.5 here as well. Furthermore,
we use odds ratio values equal to 1.4 and 1.8 for the interaction parameter βEG. For
the environmental parameter, βE , we now use odds ratio values in the range from
1 to 15, while for the genotype parameter, βG, we still use odds ratio values in the
range from 1.0 to 1.8. As for the simulation in Section 5.2, we use n0 = n1 = 1 000
and m = 10 000. Also, MAF = 0.3 and α = 0.05. The results from the hypothesis
tests are again displayed in terms of the statistical power obtained for each method.
These results are shown in Tables 5.12 (Score test), 5.14 (LRT) and 5.14 (Wald
test) for hypothesis 1, and in Tables 5.15 (Score test) and 5.16 (LRT) for hypothesis
2.

ORE

OREG ORG 1 2 5 15
1.4 1.0 0.6686 0.5492 0.2806 0.1319

1.2 0.6869 0.5464 0.2792 0.1434
1.5 0.6942 0.5404 0.2805 0.1362
1.8 0.6855 0.5541 0.2863 0.1332

1.8 1.0 0.9882 0.9442 0.6348 0.2970
1.2 0.9882 0.9432 0.6418 0.2971
1.5 0.9891 0.9418 0.6559 0.2985
1.8 0.9897 0.9424 0.6473 0.3115

Table 5.12: Statistical power for the Score test when hypothesis 1 from Table 5.11
is tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 0.05.

ORE

OREG ORG 1 2 5 15
1.4 1.0 0.6713 0.5565 0.2892 0.1411

1.2 0.6885 0.5541 0.2907 0.1512
1.5 0.6956 0.5473 0.2890 0.1448
1.8 0.6877 0.5604 0.2938 0.1402

1.8 1.0 0.9882 0.9466 0.6466 0.3104
1.2 0.9882 0.9447 0.6511 0.3112
1.5 0.9892 0.9438 0.6650 0.3129
1.8 0.9903 0.9444 0.6542 0.3241

Table 5.13: Statistical power for the LRT when hypothesis 1 from Table 5.11 is
tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 0.05.
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ORE

OREG ORG 1 2 5 15
1.4 1.0 0.6668 0.5481 0.2795 0.1315

1.2 0.6861 0.5449 0.2782 0.1424
1.5 0.6924 0.5394 0.2799 0.1347
1.8 0.6843 0.5531 0.2852 0.1321

1.8 1.0 0.9881 0.9440 0.6333 0.2951
1.2 0.9881 0.9430 0.6402 0.2950
1.5 0.9890 0.9416 0.6543 0.2977
1.8 0.9897 0.9420 0.6466 0.3094

Table 5.14: Statistical power for the Wald test when hypothesis 1 from Table 5.11
is tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 0.05.

When hypothesis 1 in Table 5.11 is tested, all the three methods give very similar
results. As mentioned previously, to determine whether the difference is significant
or not, a paired hypothesis strategy is required. When the main environmental
effect and the interaction effect are fixed, we notice that the statistical power only
experiences minor changes when the main genotype effect increases. If the envi-
ronmental effect or the interaction effect increases, the power will undergo greater
changes. Hence, the environmental effect and the interaction effect influence the
performance of the methods in a greater extent. To obtain statistical power greater
than 80%, the environmental impact has to be non-existent or small (odds ratio
≤ 2). When its odds ratio is equal to 15, all the three relevant methods give
poor results, independent of the effect from the genotype and the interaction. By
comparing the three methods, we observe that the LRT is the one that provides
greatest statistical power for all combinations of the effect sizes. The Wald test
turns out to be the method with the overall poorest performance.

As we can see from Table 5.15 and Table 5.16, testing of hypothesis 2 from Table
5.11 gives great statistical power for both the Score test and the LRT. Here we
even obtain power values greater than 80% for some effect combinations where the
environmental odds ratio is equal to 15. The probability of rejecting the false null
hypothesis is overall very high, which indicates that the Score test and the LRT
perform well when testing for main genotype effect and interaction effect at the
same time.
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ORE

OREG ORG 1 2 5 15
1.4 1.0 0.5664 0.5048 0.3443 0.1999

1.2 0.7315 0.7558 0.6325 0.4567
1.5 0.9574 0.9687 0.9305 0.7987
1.8 0.9980 0.9984 0.9940 0.9526

1.8 1.0 0.9749 0.9452 0.8043 0.5319
1.2 0.9919 0.9885 0.9408 0.7779
1.5 0.9996 0.9998 0.9938 0.9529
1.8 1.0000 1.0000 0.9999 0.9918

Table 5.15: Statistical power for the Score test when hypothesis 2 from Table 5.11
is tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 0.05.

ORE

OREG ORG 1 2 5 15
1.4 1.0 0.5693 0.5148 0.3576 0.2114

1.2 0.7336 0.7614 0.6408 0.4690
1.5 0.9580 0.9699 0.9331 0.8038
1.8 0.9980 0.9984 0.9941 0.9551

1.8 1.0 0.9760 0.9484 0.8147 0.5461
1.2 0.9925 0.9890 0.9430 0.7859
1.5 0.9996 0.9998 0.9941 0.9550
1.8 1.0000 1.0000 0.9999 0.9921

Table 5.16: Statistical power for the LRT when hypothesis 2 from Table 5.11 is
tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 0.05.
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Since the results from the test of hypothesis 2 gave power values close, or equal,
to 1 for several combinations of the effect sizes, we would like to perform another
simulation with α equal to 5e-6. By using this significance level, we can control the
FWER as well as the level of each hypothesis test. The statistical power obtained
from this simulation is given in Tables 5.17 (Score test) and 5.18 (LRT). To get
power greater than 80% here, both the odds ratio for the genotype and for the
interaction have to be at least 1.8, and the environmental effect has to be relatively
small (odds ratio ≤ 5).

ORE

OREG ORG 1 2 5 15
1.4 1.0 0.0074 0.0034 0.0008 0.0001

1.2 0.0246 0.0245 0.0100 0.0023
1.5 0.2011 0.2384 0.1275 0.0376
1.8 0.6154 0.6652 0.4414 0.1724

1.8 1.0 0.2634 0.1405 0.0342 0.0026
1.2 0.4081 0.3438 0.1402 0.0262
1.5 0.7402 0.7523 0.4904 0.1625
1.8 0.9453 0.9539 0.8208 0.4329

Table 5.17: Statistical power for the Score test when hypothesis 2 from Table 5.11
is tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 5e-6.

ORE

OREG ORG 1 2 5 15
1.4 1.0 0.0087 0.0045 0.0013 0.0004

1.2 0.0270 0.0304 0.0125 0.0037
1.5 0.2111 0.2581 0.1430 0.0458
1.8 0.6257 0.6820 0.4644 0.1895

1.8 1.0 0.2852 0.1704 0.0468 0.0045
1.2 0.4312 0.3860 0.1679 0.0339
1.5 0.7583 0.7787 0.5284 0.1890
1.8 0.9498 0.9591 0.8426 0.4693

Table 5.18: Statistical power for the LRT when hypothesis 2 from Table 5.11 is
tested. Here, m = 10 000, n0 = n1 = 1 000, MAF = 0.3 and α = 5e-6.

The two plots in Figure 5.7 show the performance of the Score test for different
values of the environmental effect when hypothesis 1 (left plot) and 2 (right plot)
from Table 5.11 are tested. In the left plot, the red and the blue lines are clearly
separated, while in the right plot they are overlapping.

Figure 5.8 includes two plots showing the performance of the Score test for different
values of the genotype effect when hypothesis 1 (left plot) and 2 (right plot) from
Table 5.11 are tested. Here we observe that while the power is about constant in
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the left plot, we experience a major increase for some values of the environmental
effect in the right plot.

Figure 5.7: Statistical power obtained for different values of the environmental
effect for the Score test when testing hypothesis 1 (left plot) and hypothesis 2 (right
plot) from Table 5.11. The lines, from top to bottom within each color, represent
genotype odds ratio values from 1.8 to 1.0. For the blue lines, the interaction odds
ratio is equal to 1.4, while for the red lines, the interaction odds ratio is equal to
1.8.
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Figure 5.8: Statistical power obtained for different values of the genotype effect
for the Score test when testing hypothesis 1 (left plot) and hypothesis 2 (right
plot) from Table 5.11. The lines, from top to bottom within each color, represent
environmental odds ratio values from 1.0 to 15. For the blue lines, the interaction
odds ratio is equal to 1.4, while for the red lines, the interaction odds ratio is equal
to 1.8.
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Chapter 6

Simulation of case-control
data

In Section 5.2 we constructed datasets by first simulating cohort data. From this,
we used n0 of the non-diseased individuals, and n1 of the diseased individuals for
our power study. It is possible to simulate case-control data directly, but when
several covariates are considered, this requires a more complex procedure.

Zheng et al. (2012) (pp. 85-86) present a method to simulate case-control data.
This method may work for some special cases, but it is not a general approach
to obtain case-control data. Using this procedure requires available data with
corresponding parameter values. We wanted to make a general setup, so we had
to find a different way to perform the data simulation. The procedure outlined in
Section 5.1 provides what we want, but we would like to present a more elegant
method where case-control data is simulated directly. First, we consider a situation
where the genotype is the only covariate included. Note that the notation in this
chapter deviates from the notation used in previous chapters.

6.1 Method to simulate case-control data when
the genotype is the only covariate

Let g0, g1 and g2 denote the probability of carrying genotype 0, 1 and 2, respec-
tively. If the MAF is known, and we assume the Hardy-Weinberg equilibrium, these
probabilities can be calculated as shown in Section 5.1. Further, let β0 and βG be
predetermined effect sizes for the intercept parameter and the genotype parameter,
respectively. If XG denotes the genotype variable, and the random variable Y is
defined as
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Y =

{
0 if control

1 if case
,

then the conditional probability of XG given Y = y can be expressed as

P(XG = i | Y = y) =
P(Y = y | XG = i)P(XG = i)∑
i

P(Y = y | XG = i)P(XG = i)
, (6.1)

where i = 0, 1
2 , 1, represents the genotypes 0, 1 and 2, respectively. Next, we denote

the probability of developing the disease, given the genotype, as

fi = P(Y = 1 | XG = i) =
exp(β0 + βGi)

1 + exp(β0 + βGi)
. (6.2)

The overall probability of developing the disease is denoted k, which furthermore
is given by

k = P(Y = 1) = f0g0 + f1g1 + f2g2. (6.3)

By inserting (6.2) and (6.3) into (6.1), we get

P(XG = i | Y = 1) =
figi
k

(6.4)

for the cases, and

P(XG = i | Y = 0) =
(1− fi)gi

1− k
(6.5)

for the controls. To simulate a dataset, draw the genotype for each individual by
using (6.4) for the cases and (6.5) for the controls.

6.2 Method to simulate case-control data includ-
ing a genotype covariate and an environmental
covariate

When a continuous, environmental effect also is included in the model, the simu-
lation procedure becomes slightly more complicated. We will here present an idea
of how it can be performed. We assume the genotype and the environmental effect
to be independent. As input parameters we need to know the genotype frequencies

62



and the distribution of the environmental effect. Also, the effect sizes β0, βE and
βG need to be predetermined.

Let XG denote the genotype variable with P(XG = i) = gi for i = 0, 1 and 2.
Moreover, let XE denote the environmental variable with density function f , and
let the random variable Y be defined such that

Y =

{
0 if control

1 if case
.

Also, we denote

h(x, i) = P(Y = 1 | XG = i,XE = x) =
exp(β0 + βEx+ βGi)

1 + exp(β0 + βEx+ βGi)
.

To be able to simulate a value for the environmental covariate and for the genotype,
we need expressions for the conditional density of XE given Y = y, which we denote
fY , for y = 0, 1, and P(XG = i | Y = y) for i = 0, 1, 2, and y = 0, 1. Since we
have both a discrete random variable and a continuous random variable, we can
obtain the mixed joint densities given by

h(x, i)gif(x)

when y = 1, and

(1− h(x, i))gif(x)

when y = 0. We can now find an expression for

P(XG = i | Y = y) =
P(XG = i, Y = y)

P(Y = y)
(6.6)

by summing over and integrating out the variables we do not want to include. For
the denominator, we get

k = P(Y = 1) =

∫ ∞
−∞

f(x)

(
2∑
i=0

gih(x, i)

)
dx

when y = 1, and

P(Y = 0) = 1− k

63



when y = 0. We can then rewrite (6.6) to

P(XG = i | Y = 1) =
1

k

∫ ∞
−∞

gih(x, i)f(x)dx, i = 0, 1, 2, (6.7)

when y = 1, and

P(XG = i | Y = 0) =
1

1− k

∫ ∞
−∞

gi(1− h(x, i))f(x)dx, i = 0, 1, 2, (6.8)

when y = 0. Now, (6.7) and (6.8) can be used to simulate genotype for the cases
and the controls, respectively. For the environmental covariate, we get

f1(x) =
1

k

2∑
i=0

gih(x, i)f(x) (6.9)

when y = 1, and

f0(x) =
1

1− k

2∑
i=0

gi(1− h(x, i))f(x) (6.10)

when y = 0.

Generally, k can not be given in a closed form, so we need to use numerical inte-
gration. When an expression for k is found, we can obtain the three possible prob-
abilities from (6.7) and the three possible probabilities from (6.8), and furthermore
simulate genotypes by using these. To simulate environmental covariates, we solve
(6.9) and (6.10), and draw values from these probability distributions. Rejection
sampling is one possible technique that may be used for this purpose.

6.3 Comments

The method we used to simulate data for our power study, provides data in a case-
control setting, but is has some drawbacks. For small MAF values, we experience
that a large number of simulations is needed in order to obtain the number of cases
we want. Hence, there is a relationship between the MAF value and the number of
simulations needed, which again may affect the computational time. The advantage
of this method is that the expressions for the covariates included may be given in
a closed form. This makes the simulation procedure less complex.

As mentioned, the simulation method outlined by Zheng et al. (2012) (pp. 85-86)
can not be applied in general. It is only valid for situations where we know the
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relationship between β, µ and σ for the environmental effect, like we do in Section
2.5. If this relationship is not known, the given procedure is not applicable.

The simulation methods presented in Sections 6.1 and 6.2 are more general methods
for case-control data simulation than the one provided by Zheng et al. (2012) (pp.
85-86). Hence, they have a greater area of application, but also some drawbacks.
Since we assume independency between the genotype effect and the environmental
effect, the method in Section 6.2 can not be used if we want to include an interaction
effect between the two variables. For such situations, the cohort procedure has to
be followed. Also, some uncertainty may be expected when performing numerical
integration and rejection sampling.

65



66



Chapter 7

Discussion and conclusion

We have in this thesis presented, tested and compared statistical methods that can
be used to detect association between a genetic marker and a common disease. We
have seen how assuming an environmental effect, and later also an interaction effect,
influence the performance of the methods. The effects of the different parameter
values have already been discussed in Chapter 5. In the present chapter, we will
take a closer look at the hypotheses tested during this thesis, and discuss possible
approaches when the aim is to detect genotype-phenotype association.

7.1 Different approaches

We have during this thesis focused on three different statistical hypotheses. These
hypotheses are summed up and enumerated in Table 7.1.

No Hypothesis
0 H0: βG = 0

H1: βG 6= 0

1 H0: βEG = 0
H1: βEG 6= 0

2 H0: βG = βEG = 0
H1: at least one of βG or βEG is not equal to zero

Table 7.1: List of the statistical hypotheses considered in this thesis.

When analyzing biological datasets, we often do not know whether an interaction
effect is present or not. The question of interest is often as simple as; ”Is there
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any association between the genotype and the disease?”. There are several possible
approaches to find an answer to this question. The classical statistical method is
to first test hypothesis 1 from Table 7.1. If this hypothesis is rejected, the answer
to the question is yes, and no more testing needs to be done. If hypothesis 1 is
not rejected, then we can continue with testing hypothesis 0 from Table 7.1. If the
result of this test leads to rejection of the null hypothesis, then the conclusion is
that the genotype does have an influence on the probability of developing the given
disease. If the null hypothesis is not rejected, then we do not have evidence to say
that there is any association between the genotype and the disease.

A competing approach is to only test the composite hypothesis 2 from Table 7.1.
This will probably require a smaller number of tests to be performed, which is
preferable. When comparing these two approaches, the overall power is what is of
interest. From the results in Chapter 5, we know that testing hypothesis 2 provides
greater power than testing hypothesis 1. For hypothesis 1, we also have to consider
that an additional testing of hypothesis 0 is necessary if the null hypothesis is not
rejected. To be able to compare the two approaches outlined here, it all comes
down to which level of significance do we have to use for hypothesis 1 and 0 to
obtain an overall level of significance equal to the level α chosen for hypothesis
2. When such values are set, we can compare the statistical power for the two
approaches, and based on this conclude which procedure is preferable. A possible
choice of significance level for the first procedure, is to use α

2 for hypothesis 1 and
0, and α for hypothesis 2. This is a rather conservative correction. To obtain less
strict significance levels for the hypotheses 1 and 0, the correlation between the
two tests has to be measured and taken into account.

As in many other contexts, previous knowledge and experience can be useful when
deciding which hypothesis (or hypotheses) one should focus on testing. If we want
to test for an interaction effect which is not present, using the first approach will,
in worst case, lead to twice as many hypothesis tests than the second approach. If
we have some previous knowledge, and do not expect an interaction effect to be
present at all, testing only hypothesis 0 should be considered. Also, if we follow the
classical statistical procedure, and do not reject hypothesis 1, we have two options
when testing hypothesis 0. We can either use the same model, or refit and get a
simpler model. This may also influence which procedure is preferable.

From this we can conclude that it is difficult to give an overall and general recom-
mendation of which hypothesis approach one should use when testing for associa-
tions in biological datasets. More analyses on this topic is an interesting idea for
further work.

7.2 Conclusion

We have in this thesis presented the statistical methods Score test, Likelihood ratio
test, Wald test and Cochran-Armitage test for trend. By using simulated datasets,
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we have compared the performance of these methods when the goal is to detect
association between a genetic marker and a common disease, with environmental
effects present as well. Based on our observations, logistic regression models are
appropriate for detecting genotype-phenotype association. We recommend to use
either Score test, LRT or Wald test when the environmental effect is large (odds
ratio greater than 5 if the variable is standard normal distributed). Among these,
the Score test has a computational advantage which makes it preferable. If the
environmental effect has an odds ratio less than or equal to 5, the CATT provides
greater power values than the other methods. Hence, CATT is recommended for
such situations. This is an interesting finding which is useful for future studies. The
recommendations given here, apply both when the number of cases and controls in
the study is balanced, and when it is unbalanced.

We have also provided insight into the process of generating data for cohort and
case-control studies. The method outlined in Section 6.2 gives case-control data,
but if it is of interest to include an interaction effect, this method needs some
adjustments.

As discussed in the previous section, when an interaction effect between the geno-
type and the environmental influence may be present, we can either use the classical
statistical- or the alternative approach to detect genotype-phenotype association.
More analyses and calculations are needed in order to determine which one is prefer-
able in certain situations. Also, there may be other hypotheses that one should
consider testing under such conditions.
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Appendix A

R code

A.1 Data simulation

R code for simulating datasets consisting of n0 controls and n1 cases. The input
variables are, in addition to n0 and n1, odds ratio value for the environmental
(OR_E) and the genotype (OR_G) effect, minor allele frequency (MAF), and mean (muE)
and standard deviation (sigmaE) for the environmental variable. The function
returns a matrix with the columns y, xE and xG.

simulate <- function(n0,n1,OR_E,OR_G,MAF,muE,sigmaE){

g0<-(1-MAF)^2

g1<-2*MAF*(1-MAF)

g2<-MAF^2

beta0<-(-3.5)

betaE<-log(OR_E)

betaG<-log(OR_G)

i<-1

countContr<-0

countCase<-0

y<-NULL

xE<-NULL

xG<-NULL

while(countContr<n0 || countCase<n1){

xGTemp<-sample(c(0,0.5,1),1,prob=c(g0,g1,g2))

xEtemp<-rnorm(1,muE,sigmaE)

yTemp<-rbinom(1,1,

prob=exp(beta0+betaE*xEtemp+betaG*xGTemp)/
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(1+exp(beta0+betaE*xEtemp+betaG*xGTemp)))

if(yTemp==0 && countContr<n0){

y[i]<-yTemp

xG[i]<-xGTemp

xE[i]<-xEtemp

countContr<-countContr+1

i<-i+1

}

if(yTemp==1 && countCase<n1){

y[i]<-yTemp

xG[i]<-xGTemp

xE[i]<-xEtemp

countCase<-countCase+1

i<-i+1

}

}

return(cbind(y,xE,xG))

}

A.2 Hypothesis testing without assuming an in-
teraction effect

Cochran-Armitage test for trend

Performing the CATT by using the function CATT() from the package Rassoc. The
obtained p-values are stored in the matrix pvaluesCATT.

contmat<-matrix(c(sum(y==0&xG==0),sum(y==0&xG==0.5),sum(y==0&xG==1),

sum(y==1&xG==0),sum(y==1&xG==0.5),sum(y==1&xG==1)),ncol=3,byrow=T)

pvaluesCATT[i]<-pchisq(CATT(contmat)^2,1,lower.tail=F)

Model fitting

Fitting the models needed for the Score test, the LRT and the Wald test.

fit<-glm(y~xE,family=binomial)

fit2<-glm(y~xE+xG,family=binomial)
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Score test

Performing the Score test by using the function glm.scoretest() from the package
statmod. The obtained p-values are stored in the matrix pvaluesScore.

pvaluesScore[i]<-pchisq(glm.scoretest(fit,xG)^2,1,lower.tail=F)

Likelihood ratio test

Performing the LRT. The obtained p-values are stored in the matrix pvaluesLRT.

pvaluesLRT[i]<-pchisq(anova(fit2)$Deviance[3],1,lower.tail=F)

Wald test

Performing the Wald test. The obtained p-values are stored in the matrix pvaluesWald.

pvaluesWald[i]<-summary(fit2)$coef[3,4]

A.3 Hypothesis testing when assuming an inter-
action effect

Model fitting

Fitting the models needed for the Score test, the LRT and the Wald test.

fit<-glm(y~xE,family=binomial)

fit2<-glm(y~xE+xG,family=binomial)

fit3<-glm(y~xE*xG,family=binomial)

Score test

Performing the Score test by using the function glm.scoretest() from the package
statmod for hypothesis 1 in Table 5.11. The obtained p-values are stored in the
matrix pvaluesScore1.

pvaluesScore1[i]<-pchisq(glm.scoretest(fit2,xE*xG)^2,1,lower.tail=F)

Performing the Score test for hypothesis 2 in Table 5.11. The obtained p-values
are stored in the matrix pvaluesScore2. It is possible to implement the Score test
without fitting the model fit3, but for the convenience, the following method is
used.
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pvaluesScore2[i]<-anova(fit,fit3,test="Rao")$"Pr(>Chi)"[2]

Likelihood ratio test

Performing the LRT for hypothesis 1 in Table 5.11. The obtained p-values are
stored in the matrix pvaluesLRT1.

pvaluesLRT1[i]<-pchisq(anova(fit3)$Deviance[4],1,lower.tail=F)

Performing the LRT for hypothesis 2 in Table 5.11. The obtained p-values are
stored in the matrix pvaluesLRT2.

pvaluesLRT2[i]<-pchisq(anova(fit,fit3)$Deviance[2],2,lower.tail=F)

Wald test

Performing the Wald test for hypothesis 1 in Table 5.11. The obtained p-values
are stored in the matrix pvaluesWald1.

pvaluesWald1[i]<-summary(fit3)$coef[4,4]
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