
Number Field Sieve

Ruben Grønning Spaans

Master of Science in Mathematics

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: June 2013

Norwegian University of Science and Technology

Acknowledgements

This master thesis was carried out within the Department of Mathematical Sciences (IME)
at the Norwegian University of Science and Technology (NTNU) between August 2012
and May 2013.

I would like to thank my supervisor Kristian Gjøsteen for his valuable feedback and
suggestions.

Lastly, I want to thank the domain of integer factorization for being a very interesting
challenge to work on. It has stayed a fascinating topic for me since my early teens.

1

2

Abstract
The Number Field Sieve (NFS) is the fastest known general method for factoring integers
having more than 120 digits. In this thesis we will will study the algebraic number theory
that lies behind the algorithm, describe the algorithm in detail, implement it and use our
implementation to perform some experiments.

Sammendrag
Algoritmen “Number Field Sieve” (tallkroppssålden) er den raskeste generelle algoritmen
for faktorisering av heltall med flere enn 120 sifre som vi kjenner i dag. I denne avhandlin-
gen kommer vi til å studere matematikken (algebraisk tallteori) som ligger til grunn for
algoritmen, beskrive algoritmen i detalj, implementere denne samt utføre eksperimenter
med vår implementasjon.

3

4

Contents

1 Introduction 7
1.1 Goal . 7
1.2 Background . 7
1.3 The RSA algorithm and integer factorization 7
1.4 Organization of this thesis . 8
1.5 Some notes on notation . 9

2 Quadratic sieve 11
2.1 Quadratic residues . 11
2.2 The sieve . 11

2.2.1 The sieving process . 12
2.3 The linear algebra . 13
2.4 Square roots and factorization . 14

3 Mathematical preliminaries 15
3.1 Basic abstract algebra . 15

3.1.1 Fields and field extensions . 15
3.1.2 Prime and irreducible elements . 18
3.1.3 Ideals . 19

3.2 Algebraic number theory . 20
3.2.1 Factorization of algebraic integers and ideals 24

4 Number field sieve 27
4.1 Polynomial selection . 28
4.2 The sieve . 29
4.3 The linear algebra . 30
4.4 Some obstructions . 31
4.5 Square roots and factorization . 32

4.5.1 Finding the rational square root . 33
4.5.2 Finding the algebraic square root 33
4.5.3 Getting a non-trivial factor . 34

4.6 Summary . 34

5 Algorithms used in the NFS 37
5.1 Arithmetic in a number field . 37
5.2 Norm of an algebraic number . 38
5.3 Calculate square root modulo a prime p . 38

5

6 CONTENTS

5.3.1 Square root in finite fields Fpn . 40
5.4 Find the factors of a polynomial over Z of degree 3 40
5.5 Find the roots of a polynomial in Zp[x] . 41
5.6 Check if polynomial in Zp[x] is irreducible 42

6 Implementation 45
6.1 Initialization and polynomial selection . 45
6.2 The sieve . 45
6.3 The linear algebra . 46
6.4 Square roots and factorization . 46
6.5 Verifying the implementation . 47
6.6 Example 1: n = 4486873 . 47

6.6.1 Finding the polynomial and checking for irreducibility 47
6.6.2 Determining the factor bases . 47

6.7 Example: n = 1027465709 . 54

7 Experiments 55
7.1 Changing the factor base size . 55
7.2 Changing the width of the line sieve . 56

8 Conclusion and future work 59
8.1 Future work . 59

8.1.1 The theory . 60
8.1.2 The implementation . 60

Appendices 65

A Program listings 67

Chapter 1

Introduction

1.1 Goal
The goal of this thesis is to study the Number Field Sieve (NFS) algorithm, including the
mathematics required in order to understand the algorithm. The mathematics mainly
consists of algebraic number theory.

In addition we will implement the complete algorithm and perform some experiments.

1.2 Background
The Number Field Sieve (NFS) is an algorithm for factoring integers, and it’s currently
the fastest known algorithm for factoring integers of more than 120 digits.

A more specialized version of the algorithm exists, and was actually developed before
the general variant. This variant is usually referred to as the Special Number Field Sieve
(SNFS), and it is capable of factoring numbers of the form re±s, where r and s are small
integers, and e is an integer which is allowed to be large. One of the early factorization
successes of the SNFS was that of the 9th Fermat number, 2512+1 which was fully factored
in 1991 [len91].

The generalised variant is sometimes called “General Number Field Sieve” (GNFS),
but we will refer to the general algorithm as the Number Field Sieve (NFS) throughout
this thesis.

1.3 The RSA algorithm and integer factorization
The RSA algorithm for public-key encryption is based on the fact that it is trivial to
multiply two integers, but significantly more difficult to perform the reverse operation:
given a product, find the factors.

The person (let’s call her Alice) who wants to send, receive and decrypt messages
generates a private and a public key. The public key is distrubuted freely, while Alice
keeps the private key secret. Anyone (Bob, for example) who wishes to send encrypted
messages to Alice can use the public key to encrypt their message. Alice is the only one
who can decrypt and read these messages by using her private key.

The first step in the algorithm is to generate the private and public keys. This is done
by performing the following steps:

7

8 CHAPTER 1. INTRODUCTION

1. Choose two distinct prime numbers p and q, both having roughly the same number of
digits.

2. Compute n = p · q.

3. Compute φ(n) = φ(p)φ(q) = (p− 1)(q − 1) where φ is Euler’s totient function.

4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n))) = 1.

5. Find the unique integer d satisfying 1 < d < φ(n) and d−1 ≡ e (mod φ(n)).

The public key consists of the values n and e, and the private key consists of the values
n and d. Naturally, the factorization of n and the value of φ(n) are also kept secret.

Assume that Bob wants to send a message, and that the message can somehow be
represented as an integer m such that 0 ≤ m < n. The encrypted text (the ciphertext) is
then calculated by

c ≡ me (mod n).

Alice can retrieve the original message by computing

m ≡ cd (mod n).

There are a number of possible attacks against the RSA algorithm, but in particular
the private key can be directly obtained if we can factor n into p and q. When p and
q are known, we can easily calculate φ(n) and calculate d which enables us to decrypt
messages. Therefore it is important to choose n large enough so that it is infeasible to
factor it.

1.4 Organization of this thesis
This chapter contains the introduction.

In Chapter 2 the Quadratic Sieve (QS) algorithm for factoring integers is described.
This chapter can be skipped, but it is recommended if the reader is not familiar with
the algorithm. The exception is Section 2.2 which should be read as it contains some
necessary definitions.

In Chapter 3 the necessary algebra needed to understand the NFS is reviewed. It can
be skipped if the reader is familiar with field theory, number fields and factorization of
ideals in rings of algebraic integers.

Chapter 4 contains a thorough description of the NFS algorithm.
Chapter 5 contains algorithms for subtasks that are performed by the NFS. It’s not

required reading, but is recommended for anyone who wishes to implement the NFS.
Our implementation is described in Chapter 6. It also contains many implementation

tips for those who would like to implement the algorithm.
In Chapter 7 we describe some experiments we conducted with our NFS implementa-

tion.
Finally, Chapter 8 contains the conclusion of the thesis.

1.5. SOME NOTES ON NOTATION 9

1.5 Some notes on notation
In this section we clarify the use of our notation where ambiguity can occur.

The symbol ⊂ can mean either proper subset or any subset, depending on the author.
In this thesis we will use the following symbols with the following meanings:

A ⊂ B A is a proper subset of B
A ⊆ B A is a subset of B
A 6⊂ B A is not a proper subset of B
A 6⊆ B A is not a subset of B

Throughout this thesis we will refer to numbers and their magnitude. The magnitude
of a given integer n is commonly given by the number of bits in its binary expansion, or
the number of digits in its decimal expansion. We will often refer to the number of digits
of an integer n. When we say digits we always refer to the number of digits in the decimal
expansion.

The Quadratic Sieve and Number Field Sieve algorithms will mainly be referred to as
QS and NFS respectively.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Quadratic sieve

Before describing the NFS, we will describe the Quadratic Sieve algorithm which is a
much simpler algorithm that uses many of the same ideas as the NFS.

The QS is currently the second fastest method known for factoring integers, and is the
algorithm of choice for integers between around 50 and 120 digits. For smaller integers
Pollard’s rho method or Lenstra’s elliptic curve factorization method (ECM) are preferred,
while for larger integers the NFS is the best choice.

2.1 Quadratic residues
A significant part of the QS algorithm is to find integers u 6≡ v (mod n) satisfying

u2 ≡ v2 (mod n). (2.1)

This idea is based in the idea that we can write the factors of n as

n = (u− v)(u+ v).

From this we get
u2 − v2 = n

from which we can get the congruence (2.1). Having found such u 6= v that satisfies this
congruence there is a chance that we can find a non-trivial factor gcd(n, u−v). If we wish
to factor n = 1649, u = 114 and v = 80 satisfy (2.1):

1142 ≡ 802 (mod 1649)

and gcd(1649, 114−80) = 17 which is a non-trivial factor of 1649. Indeed, the factorization
of 1649 into primes is 1649 = 17 · 97.

2.2 The sieve
In order to find u, v that satisfies the congruence in (2.1) we use a sieving process to find
smooth integers. We will define smooth integers and a few more terms before describ-
ing the sieve process. The following definitions are common for both the QS and NFS
methods.

11

12 CHAPTER 2. QUADRATIC SIEVE

Definition 2.2.1. A positive integer n is B-smooth if none of the prime factors of n is
larger than B.

Example 2.2.1. 20 = 2 · 2 · 5 · 5 is 5-smooth, while 21 = 3 · 7 isn’t.

Definition 2.2.2. A factor base P is a set of prime numbers less than or equal to B (not
necessarily every eligible prime number).

Definition 2.2.3. An exponent vector is a vector of |P | nonnegative integers ei which
can be used to represent a B-smooth number m = ∏|P |

i=1 p
ei
i .

Example 2.2.2. Let P = {2, 3, 5, 7, 11}. Here are some examples of 11-smooth num-
bers represented by exponent vectors. Assume that each prime p ∈ P is considered in
increasing order.

6 = 2 · 3 = 21 · 31 ⇒ (1, 1, 0, 0, 0)
7 = 7 = 71 ⇒ (0, 0, 0, 1, 0)

10 = 2 · 5 = 21 · 51 ⇒ (1, 0, 1, 0, 0)
64 = 2 · 2 · 2 · 2 · 2 · 2 = 26 ⇒ (6, 0, 0, 0, 0)

32340 = 2 · 2 · 3 · 5 · 7 · 7 · 11 = 22 · 31 · 51 · 72 · 111 ⇒ (2, 1, 1, 2, 1)

In both the QS and NFS algorithms, the exponent vector is usually augmented to also
hold the sign of the smooth number. In this case we add -1 to the factor base.

Example 2.2.3. Let the factor base P contain the elements {−1, 2, 3, 5, 7, 11}. Here are
some additional examples of 11-smooth numbers and their respective exponent vectors.

6 = 2 · 3 = 21 · 31 ⇒ (0, 1, 1, 0, 0, 0)
−7 = (−1) · 7 = (−1)1 · 71 ⇒ (1, 0, 0, 0, 1, 0)

−32340 = (−1) · 2 · 2 · 3 · 5 · 7 · 7 · 11 = (−1)1 · 22 · 31 · 51 · 72 · 111 ⇒ (1, 2, 1, 1, 2, 1)

It should be obvious that all elements ei of an exponent vector are even if and only if
m = ∏|P |

i=1 p
ei
i is a square.

2.2.1 The sieving process
In this section we describe the basic variant of the QS algorithm which uses the polynomial
x2 − n to find solutions to the congruence u2 ≡ v2 (mod n). The goal is to find a set of
integers x1, x2, . . . such that for each i, x2

i − n is B-smooth and the product ∏(x2
i − n) is

a square. Then ∏
x2
i ≡

∏
(x2

i − n) (mod n), (2.2)

and hopefully the same set of numbers satisfy

∏
xi 6≡

√∏
(x2

i − n) (mod n), (2.3)

2.3. THE LINEAR ALGEBRA 13

leading to a non-trivial factor. As we will see soon, the B-smoothness of each x2
i − n

allows us to use linear algebra to find such a subset.
Assume we have a factor base of size K, with K− 1 primes less than B, as well as the

unit -1. The aim of the sieve phase is to find at least K + 1 integers xi, enabling us to
find a subset satisfying (2.2). From each (x2

i − n) we obtain an exponent vector. In order
to find a square we can find a linear combination of the K + 1 exponent vectors that sum
to 0 modulo 2. This resulting exponent vector will have all elements even and hence we
have a square.

The actual sieving can be done as follows. Let N = d
√
n e, this value will be the

“center” of our sieve interval. We initialize an array which has one element for each
integer a in the interval N −M ≤ a ≤ N + M for some bound M > 0. Initialize each
element with the value a2 − n. For each prime p in the factor base and for each a within
our interval, we check if p divides a2 − n. If it does, we divide the array element by pk,
the highest prime power that divides a2 − n.

This procedure is done efficiently by processing each p in turn. First, check if the
array element is negative. If it is, update the exponent vector accordingly and set the
array element to its absolute value. Then, solve the equation a2 − n ≡ 0 (mod p) which
has two solutions for 0 ≤ a < n. Find the two smallest values of a1, a2 ≥ N −M that
satisfy the equation. Then, divide array element (ai + bp)2 − n by pk for i = 1, 2 and for
all b ≥ 0 such that ai + bp ≤ N +M . All elements that are equal to 1 after this procedure
are divisible by primes less than or equal to B, so they are the B-smooth numbers we are
searching for.

If we have less than K + 1 smooth integers after this procedure, we need to increase
the bound M and perform sieving in the new intervals.

We end this section with a non-rigorous discussion about the density of the smooth
numbers. We will assume (without proof) that a small integer is more likely to be smooth
than a large integer. Therefore the sieving interval is chosen so that it contains as small
integers as possible. The center of the sieve interval is N = d

√
n e, which is close to the

value of x that minimizes x2−n. This interval is extended in the positive and the negative
directions by an equal amount (theM bound mentioned above). In this way we maximize
the density of smooth numbers within an interval of size 2M + 1.

If we only considered positive x2−n (x ≥ d
√
n e) we could get rid of -1 from the factor

base, but then we would need to include the interval from N +M + 1 to N + 2M which
has lower density of smooth numbers than N −M to N −M − 1.

2.3 The linear algebra
We form a matrix A where row i consists of an exponent vector

e = (e1, e2, . . . , eK),

where the ei are the prime exponents in the factorization of x2
i − n. That is,

x2
i − n =

K∏
i=1

pei
i

where pi are the elements of the factor base (where one element is the unit -1). We seek
a non-zero vector y satisfying the system of equations

14 CHAPTER 2. QUADRATIC SIEVE

yᵀA ≡ 0 (mod 2). (2.4)

A solution to (2.4) will give us a set of integers x, each having an exponent vector
which describe the factorization of x2 − n into primes in our factor base. Denote this set
S. This set S satisfies ∏

x∈S
x2 ≡

∏
x∈S

(x2 − n) (mod n), (2.5)

and both sides of the congruence are squares.

2.4 Square roots and factorization
When we have a subset S of integers such that each x ∈ S leads to a B-smooth integer
x2 − n, we can calculate √∏

x∈S
(x2

i − n) (mod n) (2.6)

from the known factorization of x2 − n = ∏
pei
i for each x ∈ S by halving the prime

exponents in the final product. If we let

u =
∏
x∈S

x (mod n) and

v =
√∏
x∈S

(x2
i − n) (mod n),

we can calculate g = gcd(n, u− v). If g is a non-trivial factor, then we are done and g
and n/g are two non-trivial factors. If g is 1 or n we need to find another solution to (2.4)
which leads to a different linear combination of exponent vectors leading to a different
square. If we run out linear combinations, more sieving is required.

Chapter 3

Mathematical preliminaries

The purpose of this chapter is to go through the mathematics needed in order to under-
stand the NFS, and list all the needed definitions and results.

In the NFS we will work with numbers of the form a−bα with a, b ∈ Z, where α ∈ C is
a root of an irreducible monic polynomial f(x) ∈ Z[x]. We recall that a monic polynomial
has 1 has its highest degree coefficient. These numbers belong to a larger class of numbers
called a number ring, which contains elements of the form a0 + a1α + a2α

2 + · · · with
ai ∈ Z. Number rings will be defined in section 3.2. The reason for looking at numbers of
the form a− bα rather than a + bα is that the norm calculations that we will encounter
later will be slightly easier.

We will assume that the reader is familiar with basic abstract algebra, including group
theory and knowledge of rings, fields and factor groups, as well as elementary number
theory.

The material in this chapter is mainly based on Bhattacharya, et al [bha94] and
Stewart and Tall [ste02].

3.1 Basic abstract algebra
This section is mainly a refresher of definitions and results in basic algebra, and will
include fields, field extensions, ideals and unique factorization domains.

3.1.1 Fields and field extensions
We recall the definition of subfields and field extensions:

Definition 3.1.1. If F is a subfield of E, then E is called an extension field or an
extension of F .

If E is an extension of F , then E is a vector space over F . The dimension of the vector
space of E over F can be written [E : F]; this dimension can be infinite.

Definition 3.1.2. Let E be an extension of F . The dimension of the vector space of E
over F is called the degree of E over F .

Hence, the degree of E over F is [E : F]. If [E : F] is finite, then E is a finite extension
over F . Otherwise, E is an infinite extension over F . In the following discussion we will
only look at finite extensions.

15

16 CHAPTER 3. MATHEMATICAL PRELIMINARIES

Next, we will define the notion of algebraic elements. In the following definitions, F
is a field and E is a field extension of F .

Definition 3.1.3. Let α ∈ E. If there exists a non-zero polynomial p(x) ∈ F [x] such that
p(α) = 0, then α is said to be algebraic over F . The root α of a polynomial p(x) ∈ F [x]
is also called an algebraic element.

If no polynomial p(x) ∈ F [x] exists such that p(α) = 0, then α is transcendental over
F . We will not consider transcendental numbers in this thesis.

We have the following results for finite extensions:

Theorem 3.1.1. Let E be an extension field over F , and let α ∈ E be algebraic over F .
Let p(x) ∈ F [x] be a polynomial of the least possible degree such that p(α) = 0. Then:

a. p(x) is irreducible over F .

b. If g(x) ∈ F [x] is such that g(α) = 0, then p(x)|g(x).

c. There is exactly one monic polynomial p(x) ∈ F [x] of least possible degree having
p(α) = 0.

The polynomial mentioned in point c in Theorem 3.1.1 is of particular importance.

Definition 3.1.4. Let E be an extension field over F , let p(x) ∈ F [x] be a non-zero,
irreducible polynomial and let α ∈ E be algebraic over F . If p(x) is monic with p(α) = 0
and having the least possible degree, then it is called the minimal polynomial of α over F .

Example 3.1.1. Let F = Q and let E be the smallest extention field of Q containing√
2. Let p(x) = x2 − 2. Then p(α) = 0 and therefore

√
2 is algebraic over Q. Also, p(x)

is the minimal polynomial of
√

2 over Q.

We want a simple notation for extensions of a field, given an algebraic algebraic α.
The following results are helpful:

Definition 3.1.5. An extension field E of F is called algebraic if each element of E is
algebraic over F .

Theorem 3.1.2. If E is a finite extension of F , then E is an algebraic extension of F .

Let F (α) denote the smallest field containing all elements of F and the element α
which is algebraic over F .

Theorem 3.1.3. If E is an extension of F and α ∈ E is algebraic over F , then F (α) is
an algebraic extension of F .

If E = F (α) is a finite extension of F with degree [E : F] = n for some algebraic
element α, then a basis for the vector space of E over F is {1, α, α2, . . . αn−1}. This basis
will come in handy later when we look at ways to calculate the norm of elements in a
number field.

We need some additional definitions that specify which fields we will be working with.

Definition 3.1.6. The characteristic of a field F is the smallest positive integer p ∈ F
such that px = 0 for any x ∈ F . If no such p exists, the characteristic is 0.

3.1. BASIC ABSTRACT ALGEBRA 17

Example 3.1.2. The fields Zp have characteristic p, and Q and finite extension E over
Q have characteristic 0.

In the NFS we will be working with subfields of C which have characteristic 0. The
following theorem is useful in our setting.

Theorem 3.1.4. Let K be a field of characteristic 0. A non-zero polynomial f over K
is divisible by the square of a polynomial of degree ≥ 0 if and only if f and f ′ have a
common factor of degree ≥ 0.

Some more concepts will be needed later, so let us define them as well.

Definition 3.1.7. Let f(x) be a polynomial over some field K of degree ≥ 1. An extension
L of K is called a splitting field if f(x) factors into linear factors in L[x] and L =
K(α1, α2, . . . , αn) where α1, . . . , αn are the roots of f(x) in L.

Definition 3.1.8. An irreducible polynomial f(x) ∈ K[x] is called a separable polynomial
if all its roots have multiplicity 1.

Definition 3.1.9. Let L be an extension of a field K. An algebraic element α ∈ L is
called separable over K if its minimal polynomial over K is separable.

An algebraic field extension L over K is called a separable extension if each element
in L is separable over K.

Definition 3.1.10. A field K is algebraically closed if it has no proper algebraic exten-
sions. That is, every algebraic extension of K coincide with K. If E is a subfield of K,
then K is algebraic of E.

Theorem 3.1.5. Given a field K, the following are equivalent:

i) K is algebraically closed.

ii) Every irreducible polynomial in K[x] has degree 1.

iii) Every polynomial in K[x] of positive degree factors completely into linear factors.

iv) Every polynomial in K[x] of positive degree has at least one root in K.

Example 3.1.3. C is a field which is algebraically closed, so every polynomial in C[x] of
degree ≥ 1 splits into linear factors.

The concept of embeddings is important in order to define the norm of an element
in a number field, which we will get to in Section 3.2. But first we recall the following
definition:

Definition 3.1.11. Let f be a mapping from a ring R to a ring S such that

a. f(a+ b) = f(a) + f(b), a, b ∈ R

b. f(ab) = f(a)f(b), a, b ∈ R.

Then f is called a ring homomorphism of R into S.

18 CHAPTER 3. MATHEMATICAL PRELIMINARIES

Definition 3.1.12. Let F be a field, K be a field extension of F , and let L be a field
extension of K. Then a nonzero homomorphism σ : K 7→ L such that σ(a) = a for all
a ∈ F is called an embedding of K in L over F .

Example 3.1.4. Let F = Q, K = Q(
√

2) (where
√

2 is the root of some polynomial
p(x) ∈ Q[x]) and L = C. These are two embeddings, σ1(a + b

√
2) = a + b

√
2 and

σ2(a+ b
√

2) = a− b
√

2. It is clear that σ1(a) = σ2(a) = a for all a ∈ Q. In other words,
σ preserves all elements in Q, but can send roots of p(x) to different roots.

3.1.2 Prime and irreducible elements

In the NFS we will be working in subrings of fields in which we will perform factorization.
In this section we will review some basic definitions, and our setting is commutative
integral domains with unity. We recall that an integral domain is a commutative ring
which has no zero divisors (that is, if ab = c and c 6= 0, then a 6= 0 and b 6= 0).

Let R be an integral domain, and a, b ∈ R. An element a is a divisor of b if there
exists a c ∈ R such that ac = b. An element u ∈ R is a unit if u is a divisor of 1. Two
elements a, b are associates if there is a unit u ∈ R such that a = ub. An element a is an
improper divisor of b if a is a unit or if a and b are associates.

Definition 3.1.13. A non-zero element a in R is called irreducible if it is not a unit and
every divisor is improper. That is, a = bc implies that either b or c is a unit.

Definition 3.1.14. A non-zero element p in R is called a prime if it is not a unit, and
if p|ab, then p|a or p|b.

Theorem 3.1.6. If a ∈ R is prime, then a is also irreducible.

Example 3.1.5. The converse of Theorem 3.1.6 is not true. The ring Z[
√
−5] is not a

UFD, since for example 2 · 3 and (1 +
√
−5)(1−

√
−5) are two different factorizations of

6 into irreducible factors. It is clear that 2 divides 6, and it is possible to show that 2
does not divide either of (1 +

√
−5) and (1 −

√
−5). Hence, in Z[

√
−5], 2 is irreducible

but not prime.

Definition 3.1.15. An integral domain R is a unique factorization domain (or UFD) if
the following conditions are satisfied:

a. Every nonunit of R is a finite product of irreducible factors.

b. Every irreducible element is prime.

Theorem 3.1.7. If R is a UFD, then the factorization of any element in R is a finite
product of irreducible factors is unique up to order and unit factors.

Example 3.1.6. Z and F [x] over a field F are UFDs.

3.1. BASIC ABSTRACT ALGEBRA 19

3.1.3 Ideals
We recall some basic definitions and results about ideals. For the following definitions
and theorems, assume that R is a commutative ring.

Definition 3.1.16. A subset a of a ring R is called an ideal if a, b ∈ a implies a− b ∈ a,
and a ∈ a, r ∈ R implies ra ∈ a.

We write aR for the ring with elements {ab|b ∈ R}.

Example 3.1.7. Let R = Z. Then nZ = {na|a ∈ Z} is an ideal for every n ∈ Z. In
particular, 2Z is the ideal of even numbers in Z.

Let the smallest ideal a containing the elements a1, a2, . . . , am be denoted a = 〈a1, a2, . . . , am〉.

Definition 3.1.17. An ideal a of a ring R is called finitely generated if a = 〈a1, a2, . . . , am〉
for some ai ∈ R, 1 ≤ i ≤ m.

Definition 3.1.18. An ideal a of a ring R is called principal if a = 〈a〉 for some a ∈ R.

Definition 3.1.19. A commutative integral domain with 1 in which every ideal is principal
is called a principal ideal domain or PID.

Example 3.1.8. 2Z = 〈2〉 is a principal ideal, and Z is a principal ideal domain.

Definition 3.1.20. Let a, b be ideals in R. Then the set

{a+ b|a ∈ a, b ∈ b}

(which is an ideal in R) is called the sum of a and b and is written a + b.

Definition 3.1.21. Let a, b be ideals in R. Then the set

{a1b1 + a2b2 + · · ·+ anbn|ai ∈ a, bi ∈ b, n ≥ 1 ∈ Z}

(which is an ideal in R) is called the product of a and b and is written ab.

Definition 3.1.22. An ideal a in R is called maximal if a 6= R and b ⊃ a for an ideal
b ⊆ R implies b = R.

Definition 3.1.23. An ideal p in a ring R is called a prime ideal if the following holds:
If a and b are ideals in R such that ab ⊆ p, then a ⊆ p or b ⊆ p.

Theorem 3.1.8. If R is a ring with unity, then each maximal ideal is prime.

Theorem 3.1.9. If R is a ring, then an ideal p in R is prime if and only if ab ∈ p, a ∈
R, b ∈ R implies a ∈ p or b ∈ p.

Definition 3.1.24. Let a and b be ideals in R. a|b (a divides b) if and only if a ⊇ b.

20 CHAPTER 3. MATHEMATICAL PRELIMINARIES

3.2 Algebraic number theory
Algebraic number theory is the study of algebraic structures that arise from finite field
extensions of Q. An important structure is the number field:

Definition 3.2.1. Let K = Q(α) be an algebraic extension of Q. Then K is called an
algebraic number field or simply a number field.

An element in a number field is called an algebraic number.

Definition 3.2.2. An algebraic number α is an algebraic integer if there is a monic
polynomial p(x) with integer coefficients such that p(α) = 0.

Example 3.2.1. α =
√

2 is an algebraic integer, since it satisfies α2 − 2 = 0.

Example 3.2.2. α =
√
−2 is an algebraic integer, since it satisfies α2 + 2 = 0.

Example 3.2.3. α = 1+
√

5
2 is an algebraic integer, since it satisfies α2 − α− 1 = 0.

Example 3.2.4. It can be shown that α = 1
2 is not an algebraic integer. Some polynomial

equations having α as a root include α− 1
2 = 0 (coefficients not in Z) and 2α−1 = 0 (not

a monic polynomial).

We now want to define a concept that will be important for the sieve stage of the NFS.
The norm often allows us to transform a problem from the domain of algebraic integers
to rational integers.

We need a result about embeddings in order to define the norm.

Lemma 3.2.1. Let K be a subfield of C and f(x) ∈ K[x] be an irreducible polymomial.
Then f(x) has no roots of multiplicity 2 or higher. That is, f(x) is a separable polynomial.

Proof. Since f(x) is irreducible over K, then f(x) and f ′(x) are relatively prime by
Theorem 3.1.4. Hence, there exist polynomials a, b over K such that af(x) + bf ′(x) = 1
and this equation interpreted over C shows that f(x) and f ′(x) are relatively prime over
C. By applying Theorem 3.1.4 again, f(x) cannot have repeated zeros.

Theorem 3.2.1. Let K = Q(α) be a number field of degree n and a field extension of Q.
Then there are exactly n distinct embeddings σi : K 7→ C. The elements σi(α) = αi are
the distinct roots in C of the minimal polynomial of α over Q.

Proof. This proof follows Stewart and Tall [ste02, page 38-39]. By Lemma 3.2.1, the
minimal polynomial p(x) ofK over Q has no roots of multiplicity ≥ 2, so its n unique roots
are α1, α2, . . . , αn. Each root αi also has a minimal polynomial, and by Theorem 3.1.1,
each of them must divide the irreducible p(x). Hence there is a unique field isomorphism
σi : Q(α) 7→ Q(αi) such that σi(α) = αi.

If β ∈ Q(α), then β = r(α) for a unique r ∈ Q[x] with deg(r) < n and we must have
that σi(β) = r(αi). (For references to the proof of this claim, see Stewart and Tall [ste02]
page 39, proof of Theorem 2.4.)

Conversely, if σ : K 7→ C is a monomorphism (an injective homomorphism) then σ is
the identity on Q. Then,

σ(p(α)) = p(σ(α)) = 0.
Then σ(α) is one of the αi, hence σ is one of the σi.

3.2. ALGEBRAIC NUMBER THEORY 21

Now we are ready to define the norm.

Definition 3.2.3. Let K = Q(α) be a number field of degree n, and let σ1, σ2, · · · , σn be
the n embeddings K 7→ C. We define the norm of an algebraic integer a as

N(a) =
n∏
i=1

σi(a).

Since the σi are ring homomorphisms we have N(ab) = N(a)N(b) and N(a) 6= 0 if
and only if a 6= 0.

The norm is a concept of great importance for the NFS, and it shows up in several of
the stages of the algorithm. Therefore we will include multiple examples.

Example 3.2.5. Let K = Q(
√

2). K is a number field of degree 2, with the following
embeddings of K into C over Q:

σ1(a+ b
√

2) = a+ b
√

2,
σ2(a+ b

√
2) = a− b

√
2.

The norm is N(a+ b
√

2) = (a+ b
√

2)(a− b
√

2) = a2 − 2b2.

Example 3.2.6. Let Q(α) be an extension of Q such that the minimal polynomial over
Q is f(x) = x2 + 2x + 2 having α as a root. We take for granted that the roots of
the quadratic equation x2 + ax + b are given by x = −a

2 ±
√
a2−4b

2 . Then the roots are
α1 = −1 +

√
−1 and α2 = −1−

√
−1. The embeddings are:

σ1(a+ bα1) = a+ b(−1 +
√
−1),

σ2(a+ bα2) = a+ b(−1−
√
−1).

The norm is

N(a+ bα) = (a+ b[−1 +
√
−1])(a+ b[−1−

√
−1])

= a2 + ab(−1 +
√
−1− 1−

√
−1) + b2(−1 +

√
−1)(−1−

√
−1)

= a2 − 2ab+ 2b2.

Example 3.2.7. In this example we will develop a general expression for the norm of an
element where the extension has degree 2. Let Q(α) be an extension of Q such that the
minimal polynomial over Q is f(x) = x2 + cx+d having α as a root. Let c, d be arbitrary
integers in Z such that f(x) is irreducible. The roots are

α1 = − c2 +
√
c2 − 4d

2 ,

α2 = − c2 −
√
c2 − 4d

2 .

The embeddings are:

σ1(a+ bα) = a+ b

(
− c2 +

√
c2 − 4d

2

)
,

σ2(a+ bα) = a+ b

(
− c2 −

√
c2 − 4d

2

)
.

22 CHAPTER 3. MATHEMATICAL PRELIMINARIES

The norm is

N(a+ bα) =
(
a+ b

[
− c2 +

√
c2 − 4d

2

])(
a+ b

[
− c2 −

√
c2 − 4d

2

])

= a2 + ab

(
− c2 +

√
c2 − 4b

2 − c

2 −
√
c2 − 4b

2

)

+ b2
(
− c2 +

√
c2 − 4d

2

)(
− c2 −

√
c2 − 4d

2

)

= a2 + ab
(
− c2 −

c

2

)
+ b2

(
c2

4 −
c2 − 4d

4

)
= a2 − cab+ db2.

Example 3.2.8. Lastly, we include an example where the norm of a degree 3 extension
is determined. Let f(x) = x3 + 2 with root α, and let Q(α) be a finite extension. The
roots of f(x) are:

α1 = 3
√
−2,

α2 = ω 3
√
−2,

α3 = ω2 3
√
−2,

where ω = e2πi/3, the cube root of unity. Let α = 3
√
−2. The embeddings are:

σ1(a+ bα + cα2) = a+ bα + cα2,

σ2(a+ bα + cα2) = a+ bωα + cω2α2,

σ3(a+ bα + cα2) = a+ bω2α + cω(= ω4)α2.

By the definition of the norm:

N(a+ bα + cα2) = σ1(a+ bα + cα2)σ2(a+ bα + cα2)σ3(a+ bα + cα2)
= (a+ bα + cα2)(a+ bωα + cω2α2)(a+ bω2α + cω4α2)

Let’s expand and group by coefficients in a, b, c:

N(a+ bα + cα2) = a3

+ b3ω3α3

+ c3ω3α6

+ a2b(α + ωα+ ω2α)
+ a2c(α2 + ω2α2 + ω4α2)
+ b2a(ωα2 + ω2α2 + ω3α2)
+ b2c(ω2α4 + ω3α4 + ω4α4)
+ c2a(ω2α4 + ω4α4 + ω6α4)
+ c2b(ω3α5 + ω2α5 + ω4α5)
+ abc(ω2α3 + ω4α3 + ωα3 + ω2α3 + ω2α3 + ωα3)

3.2. ALGEBRAIC NUMBER THEORY 23

Use that ω3 = 1, α3 = −2, ω + ω2 = −1, 1 + ω + ω2 = 0 and ωk+3 = ωk. Most of the
terms above vanish because they are multiples of 1 + ω + ω2. The last term is shortened
as follows:

abc(ω2α3 + ω4α3 + ωα3 + ω2α3 + ω2α3 + ωα3) = 3abcα3(ω + ω2)
= 3abc(−2)(−1)
= 6abc

Finally we arrive at the expression

N(a+ bα + cα2) = a3 − 2b3 + 4c3 + 6abc.

We see that even for “innocent-looking” polynomials like x3 + 2 a fair amount of work
is needed in order to determine the norm of the extension. We cannot hope to use this
method for arbitrary extensions, so another method is desired. We will look at another
method, but first we will see how we can calculate the norm if the algebraic numbers are
of a simpler form.

In the NFS we will mainly deal with the norm of elements of the form a− bα that are
members of a number field of degree n. Therefore we seek an expression for this that is
easy to implement. The following theorem is very useful.

Theorem 3.2.2. Let Q(α) be a number field of degree n. The norm of an element
a− bα ∈ Q(α) is

N(a− bα) = bnf(a/b).

Proof. By Theorem 3.2.1, there are n embeddings σi, and the elements σ1(α), σ2(α), . . . , σn(α)
are identical, for some ordering, to the roots α1, α2, . . . , αn of the minimal polynomial of
α over Q. Starting with Definition 3.2.3, we get

N(a− bα) =
n∏
i=1

σi(a− bα)

= (a− bα1)(a− bα2) · · · (a− bαn)
= bn(a/b− α1)(a/b− α2) · · · (a/b− αn)
= bnf(a/b)

The norm of a− bα can also be written as N(a− bα) = F (a, b) where

F (x, y) = xn + ad−1x
d−1y + · · ·+ a0y

n = ydf(x/y).

From this form it is immediately clear that the norm is an integer whenever a, b are
integers.

In Section 5.2 we will give an algorithm for calculating the norm in an arbitrary finite
extension that avoids determining the expression for the norm.

24 CHAPTER 3. MATHEMATICAL PRELIMINARIES

3.2.1 Factorization of algebraic integers and ideals
In the NFS algorithm we need to factorize numbers on the algebraic side into prime factors
so that they can be represented with an exponent vector (the exponent vector was defined
in Section 2.2). If factorization was guaranteed to be unique in Z[α] all would be good.
Unfortunately, this is not generally the case.

While some number rings like Z[i] are unique factorization domains, Z[
√
−5] is a

number ring which is not a UFD. We have that 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5). It can

be shown that all of the factors 2, 3, (1 +
√
−5) and (1 −

√
−5) are irreducible in both

Z[
√
−5] and OQ(

√
−5) (defined below), and none are associates of each other since the only

units in both rings are 1 and -1.
Our quest for the remainder of this section is to find a setting where we have unique

factorization. We will begin by exploring a new kind of ring.

Definition 3.2.4. Let α be the root of an irreducible polynomial f(x) ∈ Z[x]. The ring
Z[α] is called a number ring. Let K = Q(α) be a number field. Let the ring of algebraic
integers in K be denoted as OK (or OQ(α)).

The rings OQ(α) and Z[α] are not necessarily equal. For example, consider the rings
OQ(

√
5) and Z[

√
5]. The element 1+

√
5

2 is a root of the polynomial x2 − x − 1. Since the
polynomial is monic and has integer coefficients, 1+

√
5

2 is an algebraic integer by definition
and a member of OQ(

√
5). However, it is not a member of Z[

√
5], as 1+

√
5

2 = 1
2 + 1

2

√
5 and

1
2 /∈ Z.

Even though none of Z[α] and OQ(α) are not guaranteed to be UFDs, all hope is not
lost. Instead of factoring elements of the form a − bα we could try to factor the ideal
〈a − bα〉 of OQ(α) into prime ideals instead. We want to factor ideals in in OQ(α) rather
than Z[α] because of the following important result:

Theorem 3.2.3. In the ring of integers OQ(α), every proper non-zero ideal can be written
uniquely as the product of prime ideals.

The proof is omitted here, see Stewart and Tall [ste02] pages 107-110 for the full proof.
In addition, factoring ideals instead of elements has another nice property. We don’t

have to care about units. If u is a unit, then 〈a〉 = 〈au〉.
Here follow some examples of factorizations of ideals into prime ideals, presented

without proof.

Example 3.2.9. 〈10〉 = 〈2〉〈5〉 in Z = OZ.

Example 3.2.10. 〈100〉 = 〈2〉〈2〉〈5〉〈5〉 in Z.

Example 3.2.11. 〈16〉 = 〈2〉〈2〉〈2〉〈2〉 in Z.

For the three previous examples, the factorization of elements in Z can be said to be
identical to the factorization of ideals in Z, since the prime ideals and prime numbers
correspond. The next example is more interesting, and shows our problematic factor-
ization mentioned in the beginning of this subsection, and the relation between the two
factorizations:

3.2. ALGEBRAIC NUMBER THEORY 25

Example 3.2.12. 〈6〉 = 〈2, 1 +
√
−5〉〈2, 1 +

√
−5〉〈3, 1 +

√
−5〉〈3, 1−

√
−5〉 in OQ(

√
−5).

The ideals generated by each of the irreducible factors of 6 ∈ OQ(
√

5) are products of
different combinations of the prime ideals that are factors of 〈6〉:

〈2〉 = 〈2, 1 +
√
−5〉2

〈3〉 = 〈3, 1 +
√
−5〉〈3, 1−

√
−5〉

〈1 +
√
−5〉 = 〈2, 1 +

√
−5〉〈3, 1 +

√
−5〉

〈1−
√
−5〉 = 〈2, 1 +

√
−5〉〈3, 1−

√
−5〉

In particular, we notice that none of the prime ideals are principal, and that none of the
ideals generated by the irreducible elements (factors of 6 ∈ OQ(

√
5)) are prime.

As with algebraic integers, we can define the norm of an ideal. The norm will be
essential for helping us find the the prime factorization of an ideal. Before we can define
the norm, we need one more result.

Theorem 3.2.4. If a is a non-zero ideal in OK, then the quotient ring OK/a is finite.

Proof. Let a be a non-zero ideal in OK , and let θ ∈ a be different from zero. Let

N = N(θ) = θ1θ2 · · · θn ∈ a,

where the θi are the conjugates of θ (including θ itself). Then we have 〈N〉 ⊆ a and hence
OK/a is a quotient ring that is a subring of OK/〈N〉. OK/〈N〉 is a finitely generated
abelian group (when viewed as a group) where each element is of finite order, and is
therefore finite. Hence OK/a ⊆ OK/〈N〉 is finite.

Definition 3.2.5. The norm of a non-zero ideal a of OQ(α) is the size of the quotient ring
OQ(α)/a. That is, N(a) = |OQ(α)/a|. In addition, N(〈0〉) = 0.

It follows form the definition that the norm of a non-zero ideal is a positive integer.
To distinguish the norms from each other, we will use N for the norm of ideals and N for
norm of algebraic integers.

Now follow a series of theorems that will help us calculate the norm of a given ideal.
First of all, there is a connection between the norm of an algebraic integer and the norm
of an ideal generated by the same algebraic integer. Some of the proofs are omitted, as
they depend on topics not covered in this thesis, such as discriminants, free abelian groups
and fractional ideals.

Theorem 3.2.5. Let α ∈ OK. Then N(〈α〉) = |N(α)|.

See Stewart and Tall [ste02] page 116 (proof of Corollary 5.10) for the full proof.

Theorem 3.2.6. If a and b are non-zero ideals of OK, then N(ab) = N(a)N(b).

See Stewart and Tall [ste02], pages 116-118 (proof of Theorem 5.12) for the full proof.
We remind ourselves that our goal is to factor the ideal 〈a − bα〉 into prime ideals.

These prime factors have special properties; we will prove later that they are of a certain
degree.

26 CHAPTER 3. MATHEMATICAL PRELIMINARIES

Definition 3.2.6. Let p be a prime ideal in OQ(α). The degree of p is the integer k
such that N(p) = |Z[α]/p|k is satisfied. In particular, p is a first degree prime ideal if
N(p) = |Z[α]/p|.

The following results give us more information about the form of the prime factors of
the ideals 〈a− bα〉 in OQ(α).

Theorem 3.2.7. Every ideal in the ring of integers OQ(α) has at most two generators.
That is, every ideal is of the form 〈β〉 or 〈β, γ〉 for β, γ ∈ OQ(α).

See Stewart and Tall [ste02] page 81 (proof of Theorem 4.7) and page 121 (proof of
Theorem 5.20) for the full proof.

The following four theorems are not proven here, look in Lenstra, et at [len91, pages
58-59] for the proofs.

Theorem 3.2.8. The prime ideals in OQ(α) that divide 〈a−bα〉 are of the form 〈p, α−r〉,
where p is a prime in Z and r is an integer satisfying f(r) ≡ 0 (mod p).

Theorem 3.2.9. Let a− bα ∈ Z[α] be an algebraic integer. Then the prime factorization
of the ideal 〈a− bα〉 in OQ(α) is

〈a− bα〉 =
∏
〈pi, α− ri〉ei .

That is, each prime ideal is a first degree ideal and is generated by two elements.

Theorem 3.2.10. A prime ideal 〈p, α − r〉 divides 〈a − bα〉 if and only if a − br ≡
0 (mod p).

Theorem 3.2.11. Let p = 〈p, α− r〉 be a first degree prime ideal. Then N(p) = p.

We now have what we need in order to factor the ideal 〈a − bα〉 in OQ(α). There are
still some obstructions that need to be overcome when going from prime ideals in OQ(α)
to elements in Z[α]. We will present a solution to this missing step in the chapter about
the NFS.

Chapter 4

Number field sieve

Like most modern factoring methods, the goal of the number field sieve (NFS) is to find
two integers u, v such that u2 ≡ v2 (mod n) and u 6≡ v (mod n). Then there is a chance
that gcd(n, u − v) and gcd(n, u + v) are nontrivial factors of the integer n we wish to
factor. n should be an odd composite number which is not a power (n should not be of
the form ak for integers a and k ≥ 2).

In order to achieve a faster runtime than QS, the NFS uses a number ring instead of
searching for u, v in Zn only. Given an irreducible polynomial f(x) with coefficients in Zn
with a root α ∈ C and an integer m such that f(m) ≡ 0 (mod n), we attempt to find a
square in the number ring Z[α]. In addition, we use a ring homomorphism

σ : Z[α] 7→ Zn (4.1)

induced by σ(α) = m to take us back into Zn again. This is accomplished by finding
many integer pairs (a, b) such that a− bm is smooth with regard to a rational factor base
(that is, prime numbers in Z), and a − bα is smooth with regard to an algebraic factor
base. Then, we try to find a subset S of these pairs so that

u2 =
∏

(a,b)∈S
(a− bm) is a square in Zn

and
γ2 =

∏
(a,b)∈S

(a− bα) is a square in Z[α].

Then, we take the square root on both sides, apply the homomorphism σ(γ) = v and
evaluate gcd(n, u− v), hopefully finding a nontrivial factor of n.

The NFS algorithm consists of the following phases:

• Polynomial selection: Determine the polynomial f(x) and an integerm such that
f(m) ≡ 0 (mod n). Let α ∈ C be a root of f(x). Z[α] is the number ring we are
working in.

• Sieving: Find many pairs (a, b) such that a− bm and a− bα are both smooth with
regard to their respective factor bases.

• Linear algebra: Combine the pairs from the sieving phase, and solve a system of
linear equations in order to find a subset of these pairs such that their products are
rational and algebraic squares.

27

28 CHAPTER 4. NUMBER FIELD SIEVE

• Square root and gcd: Take the square root of the products from the last phase,
and take the gcd of n and the difference of the square roots.

These phases will be described in more detail below. We will focus on the basic variant
of the algorithm here.

4.1 Polynomial selection
The following is a simple way that works well. First, pick the degree d of the polynomial.
Setting d = b(3 lnn/ ln lnn)1/3c is asymptotically optimal [cra05, page 287]. d = 5 or d = 6
works fine for integers with between 100 and 250 digits. However, an odd degree allows an
easier algorithm for the square root phase, which we will describe in Section 4.5.2. Then,
let m = bn1/dc and let the coefficients of f(x) be the base-m expansion of n. That is,

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

such that f(m) = n. Because of the choice of m, we always have ad = 1 and hence f(x)
is monic.

If f(x) is irreducible, we obtain a number ring Z[x]/〈f(x)〉. An element in this ring
can be written

a0 + a1α + a2α
2 + · · · ad−1α

d−1.

An element can be considered a vector with d coordinates ai in a d-dimensional vector
space with basis {1, α, α2, . . . , αd−1}. Addition in this ring is simply vector addition.
Multiplication of two elements can be viewed as multiplication of polynomials in α, which
are then reduced to a new polynomial of degree at most d−1 using the identity f(α) = 0.
See Section 5.1 for a more detailed description.

While the base-m algorithm described above is asymptotically optimal, it is possible
to do better in practice.

The quality of the polynomial is determined by its yield, which is the number of smooth
values it produces for a given smoothness bound and sieving range.

According to Murphy [mur99], there are two main factors that influence the yield, size
and root properties. The size properties has to do with the magnitude of the coefficients
of f , while the root properties has to do with the number of roots of f modulo pk for
small primes p and k ≥ 1.

Small [sma03] lists the following polynomial properties as desirable.

• The polynomial has small coefficients.

• The polynomial has many real roots. A randomly selected polynomial would most
likely have very few real roots.

• The polynomial has many roots modulo lots of small prime numbers.

• The Galois groups of the polynomial is small.

It can be beneficial to spend some computer time trying some polynomials and do
some experimental sieving and pick the one with the highest yield.

The construction of f(x) actually provides an opportunity for an early exit of the
algorithm with a nontrivial factor of n. If we can write f(x) as g(x)h(x) where none

4.2. THE SIEVE 29

of the factors are units, then n = g(m)h(m) is a factorization of n. Another early exit
opportunity which doesn’t require polynomial factorization can be achieved by checking if
gcd(f ′(m), n) is a non-trivial factor. This method only works if f(x) has a square factor.
Factoring f(x) is sufficient and will also cover all cases that will be detected by the gcd
method.

Polynomial factorization is non-trivial to implement, and a deterministic polynomial-
time algorithm (in the degree of the polynomial and the logarithm of its coefficients) is
described in Lenstra, et al [len82]. An algorithm which is faster in practice and easier to
implement, but with no rigorous polynomial-time guarantee is given by Knuth [knu98,
Section 4.6.2]. A simple algorithm which only works for f(x) of degree 3 or lower is given
in Section 5.4. For n up to 60 digits, f(x) of degree 3 is a good choice.

4.2 The sieve
In the sieve phase we are only concerned with rational numbers of the form a − bm and
algebraic numbers of the form a−bα (to be more specific, the ideals generated by a−bα).

We are interested in finding pairs a, b such that a − bm is B1-smooth in Z and the
ideal 〈a− bα〉 is B2-smooth in OQ(α). Here B1 is the upper bound for rational primes (the
rational factor base) and B2 is the upper bound of the norm of prime ideals (the algebraic
factor base). This will be achieved by searching through all |a| ≤M and 0 < b < N with
gcd(a, b) = 1 using a sieving process similar to the one used in the Quadratic Sieve. From
Section 3.2.1 we have that the factorization of 〈a− bα〉 into prime ideals can be deduced
from N(a− bα).

Here we will describe a method known as the line sieve. The following description
is from a more mathematical perspective; a description with implementation details is
described in Chapter 6.

Let b be fixed. Create an array with one entry for each possible value of a such that
|a| ≤ M for some bound M . For each a, initialize the corresponding array element with
(a− bm) ·N(a− bα) (the product of the rational number and the algebraic norm).

First, for each a, check if it is negative. If it is, we note us that a was negative, and
the we set a to −a to make it positive.

For each rational prime p in the factor base and for each a within our interval such
that p divides a − bm, divide the corresponding array element by p (possibly more than
once if a power of p is a divisor).

For each algebraic prime in the factor base represented by the pair p, r and for each a
such that the ideal 〈p−rα〉 divides the ideal 〈a−bα〉 (or equivalently, a−br ≡ 0 (mod p)),
divide the corresponding array element by p (again, powers can occur).

After this procedure, all array elements equal to 1 correspond to pairs a, b such that
both a− bm and 〈a− bα〉 are smooth. We only care about a, b such that gcd(a, b) = 1 to
avoid redundant pairs.

For each smooth pair a, b we associate an exponent vector (see Section 2.2). The
exponent vector has the following elements:

• One entry for the sign of a− bm (0 if positive, 1 if negative).

• One entry for each prime p in the rational factor base.

30 CHAPTER 4. NUMBER FIELD SIEVE

• One entry for each prime in the algebraic factor base, represented by the pair p, r.

For each rational prime p, the corresponding entry in the exponent vector is the highest
power of p that divides a − bm reduced modulo 2. For each algebraic prime represented
by p, r, the corresponding entry in the exponent vector is the highest power of 〈p − rα〉
that divides 〈a − bα〉 reduced modulo 2. It follows that each element in the exponent
vector is either 0 or 1.

The exponent vector for each smooth pair a, b is stored for later use. Each row of the
matrix in the linear algebra step (section 4.3) consists of the exponent vector for one pair
a, b.

The ultimate goal of the sieve phase is to gather enough a, b pairs to be able to find
a subset of them such that the product of each element in the subset is both a rational
square and an algebraic square. Such a subset can be found if we have more a, b pairs
than there are entries in the exponent vector. In this case we are guaranteed to find a
non-zero linear combination of the exponent vectors such that each entry is 0 reduced
modulo 2. Since each entry is 0 (mod 2), we know that each prime occurs as a factor an
even number of times and hence we have rational and algebraic squares.

In addition to the line sieve method we have just described, there is another method
called the lattice sieve, which is described in Lenstra, et al [len93, pages 43-49]. This
method is more complicated and theoretically faster by a factor of log q where q is a
prime number “in the middle” of the factor base. A description of this method is out of
scope for this thesis.

4.3 The linear algebra
From the sieve step we have a matrix A where each row in A is an exponent vector from
a pair a, b. In this step we seek a non-zero vector x satisfying the system of equations

xᵀA ≡ 0 (mod 2).

Let T be the set of all a, b pairs found in the sieve stage. Then, x represents a subset
of pairs in T . In particular, element i specifies whether exponent vector i is part of the
solution. Let us denote the actual subset by S. Then,∏

(a,b)∈S
(a− bm) (4.2)

is a rational square and ∏
(a,b)∈S

(a− bα) (4.3)

is seemingly an algebraic square (see the next section for a more thorough explanation).
The size of the matrix depends on the number of elements in the factor base. For

large integers n (say over 150 digits), the matrix can have millions of rows and columns.
Methods like Gaussian elimination will be too slow for matrices of this size. Efficient
algorithms for this step are outside the scope of this thesis. For the interested reader, we
suggest checking out faster algorithms such as block Wiedemann [wie86] and block Lanczos
[cop93].

4.4. SOME OBSTRUCTIONS 31

4.4 Some obstructions
So far in this chapter we have assumed that (4.3) is an algebraic square. In this section
we will see that this need not be true, and we will come up with way to fix this problem.

Assume that we have performed the matrix step and have a subset of pairs a, b such
that the sum of their exponent vectors are 0 modulo 2. Let S denote this set of a, b pairs
and let

β =
∏

(a,b)∈S
(a− bα). (4.4)

Then 〈β〉 is an ideal in OQ(α).
However, what we really want is an element that is a square in Z[α], not an ideal in

OQ(α). Therefore we need to consider the following obstructions.

(1) The ideal 〈β〉 is not necessarily the square of an ideal a that lies in Z[α].

(2) Even if 〈β〉 = a2 for some ideal a in OQ(α), it may happen that a is not a principal
ideal.

(3) Even if 〈β〉 = 〈γ〉2 for some γ ∈ OQ(α), it may not be that β = γ2.

(4) Even if β = γ2 for some γ ∈ OQ(α), if may not be that γ ∈ Z[α].

These obstructions might look very daunting, but they can actually be overcome with
two simple modifications to the algorithm.

The following result helps us overcome obstruction (4).

Theorem 4.4.1. Let f(x) be a monic irreducible polynomial over Z with a root α ∈ C.
Let OQ(α) be the ring of algebraic integers in Q(α) and let β ∈ OQ(α). Then f ′(α)β ∈ Z[α].

See Crandall, et al [cra05, page 288] for the proof.
We can then use the following as our squares, replacing (4.2) and (4.3):

f ′(m)2 ∏
(a,b)∈S

(a− bm) (4.5)

is the new rational square and

f ′(α)2 ∏
(a,b)∈S

(a− bα) (4.6)

is the new algebraic square. Because of Theorem 4.4.1, (4.6) and its square root are
elements in Z[α] which is what we want.

The remaining obstructions (1), (2) and (3) can be circumvented using a very simple,
but probabilistic idea known as quadratic characters first introduced by Adleman.

We explain the idea first using rational integers. Let’s pretend that we cannot deter-
mine the sign of an integer, but we can determine the prime factorization. Then both
4 = 22 and −4 = −22 would look like squares, although -4 is not a square. However, by
using the Legendre symbol with the correct moduli we can tell that -4 is not a square, as(
−4
7

)
= −1. Given an arbitrary integer x and k different primes p1, p2, . . . , pk, if

(
x
pi

)
= 1

32 CHAPTER 4. NUMBER FIELD SIEVE

for all i then the probability that x is not a square is 2−k (heuristically). For a large
enough set of primes, this is a robust test that x is a square. Naturally, if at least one of
the legendre symbols are -1, then x is not a square.

Consider β from Equation 4.4. We can use a similar test to check if β is a (probable)
square. The following result allows us to use Legendre symbols in the same way as
described above.

Theorem 4.4.2. Let f(x) be a monic, irreducible polynomial over Z and let α ∈ C be
a root. Assume that q is an odd prime number and s is an integer satisfying f(x) ≡
0 (mod q) and f ′(x) 6≡ 0 (mod q). Let S be a set of pairs (a, b) such that gcd(a, b) = 1
and q6 | a− bs, and f ′(α)2∏

(a,b)∈S(a− bα) is a square in Z[α]. Then

∏
(a,b)∈S

(
a− bs
q

)
= 1.

See Crandall, et al [cra05, page 290] for the proof.
With this result, we can use the idea from the example with integers above. Assume

that we have k different pairs (qi, si) for i = 1, 2, . . . , k satisfying the conditions in The-
orem 4.4.2, and an algebraic integer f ′(α)2∏

(a,b)∈S(a − bα) we wish to test where S is a
set of different pairs (a, b) where gcd(a, b) = 1. If ∏(a,b)∈S

(
a−bsi

qi

)
= 1 for each i, then

f ′(α)2∏
(a,b)∈S(a− bα) is a square with probability 1− 2−k.

This information needs to be incorporated in the algorithm. We add a third factor
base which we will call the quadratic character factor base. This factor base contains k
pairs q, s satisfying the conditions in Theorem 4.4.2. In particular, all q are larger than
the primes in the algebraic factor base.

In addition, we add k entries to the exponent vector that is created during the sieve
stage, one entry for each pair qi, si. For a given pair a, b we will set entry i as follows:

• If
(
a−bsi

qi

)
= −1, set the entry to 1.

• If
(
a−bsi

qi

)
= 1, set the entry to 0.

Finding a subset S of pairs a, b such that the sum of the corresponding exponent
vectors is 0 modulo 2 ensures that we will have∏

(a,b)∈S

(
a− bsi
qi

)
= 1 for i = 1, 2, . . . , k,

which implies that ∏
(a,b)∈S

(a− bα) = γ2 for some γ ∈ OQ(α)

with heuristic probability 1− 2k.
Crandall, et al [cra05] suggests using k = b3 lg nc different pairs (q, s) in the factor

base.

4.5 Square roots and factorization
From the last step we have found a rational square f ′(m)2∏

(a,b)∈S(a− bm), and an alge-
braic integer f ′(α)2∏

(a,b)∈S(a− bα) which we now assume is a square.

4.5. SQUARE ROOTS AND FACTORIZATION 33

4.5.1 Finding the rational square root
Taking the rational square root of the rational square is easy, since we can use the known
factorization of each a − bm for each (a, b) ∈ S where S is the set of pairs (a, b) found
in the linear algebra step. This product is of the form ∏

pei
i where i runs over all prime

numbers in the rational factor base, and all ei are even. We are interested in the square
root modulo n, which is

f ′(m)
∏
p
ei/2
i (mod n).

4.5.2 Finding the algebraic square root
Taking the square root of our algebraic square β = f ′(α)2∏

(a,b)∈S(a − bα) is not as
straightforward as in the rational case. We know the factorization of the square into
prime ideals of OQ(α), but since we don’t know the generators of these prime ideals we
need a different approach.

Here we describe an algorithm given by Couveignes [cou93] which only works for f(x)
where the degree d is odd.

Let us express our square as β = ∑d−1
i=0 biα

i. Then we seek γ = ∑d−1
i=0 aiα

i ∈ Z[α] such
that γ2 = β.

The main idea is to consider β as an element in Fpd . Let βq = ∑d−1
i=0 ciα

i where ci ∈ Zp is
bi reduced modulo p. We can then find the square root γp of βp using standard algorithms
for square roots in finite fields (see Section 5.3.1). Let’s assume that we always pick the
correct γ out of the two possible square roots (we will address the problem of picking
the correct square root later). Assume we have several primes pi (such that f remains
irreducible modulo pi, otherwise we are not in a finite field) for which we calculate the
square root γpi

of βqi
. Then we can obtain γ =

√
β by applying the Chinese Remainder

Theorem:

γ ≡ γp1 (mod p1)
γ ≡ γp2 (mod p2)
γ ≡ γp3 (mod p3)
...
γ ≡ γpk

(mod pk).

This assumes that we have been using enough primes. An upper bound for the product
of the primes is given by Couveignes [cou93]:

k∏
i=1

pi ≤ d(d+5)/2 · n ·
(
2u
√
dn1/d

)|S|/2
(4.7)

where
u = max

(a,b)∈S
(max (|a|, |b|)) ,

that is, the maximal value of |a| and |b| among the smooth pairs a, b in S. This bound
also assumes that d is chosen to satisfy d2d2

< n.

34 CHAPTER 4. NUMBER FIELD SIEVE

There exists a tighter upper bound [cou93], but it requires calculating approximations
to alle roots αi of f(x). The bound given in (4.7) will ensure that this algorithms runs
efficiently for n with 50-60 digits.

As mentioned earlier, βp has two different square roots. Since the norm function is
multiplicative (N(ab) = N(a)N(b)) and the degree d of the extension Z[α]/Z is odd, we
have N(−a) = −N(a). Therefore we can use the sign of the norm to determine which
square root to pick. Let γ1 and γ2 be the two roots of βp for a modulus p. The correct
square root is the one that is congruent to the square root of the norm of β modulo
p, which is possible to calculate since we know its factorization into prime ideals whose
norms are known.

The algorithm described here only works for f(x) with odd degree. See Nguyen [ngu98]
for a description of an efficient algorithm that works for any degree.

4.5.3 Getting a non-trivial factor
Now that we have the square roots, we can finally try to obtain a non-trivial factorization
of n by taking gcd(n, u− v).

We have the rational square root

u = f ′(m)
∏
p
ei/2
i (mod n),

and the algebraic square root mapped into Zn by using our homomorphism (4.1)

v = σ(γ).

Then we evaluate g = gcd(n, u − v). If 1 < g < n we have found a non-trivial factor. If
not, we must either find another linear combination such that (4.5) and (4.6) are squares,
or do more sieving to find more smooth pairs a, b.

4.6 Summary
Here we present detailed pseudocode for the entire NFS algorithm.

Input: An integer n.

1. Setup

a. Ensure that n is odd, composite and not a power. If any of these conditions fail,
abort the algorithm and give an appropriate error message.

b. Set a degree d such that d2d2
< n, let m = bn1/dc, then find a degree d polynomial

f(x) using the base-m algorithm.
c. Check if f(x) has non-trivial factors. If yes, then f(x) = g(x)h(x) for some

non-constant polynomials g(x), h(x). Return the non-trivial factorization n =
g(m)h(m). To factor f(x), the algorithm described in Lenstra, et al [len82] can
be used, or if the degree of f(x) is at most 3, use the algorithm described in Sec-
tion 5.4.

d. Determine the upper bounds B1, B2 for the rational and algebraic factor bases,
respectively. To achieve asymptotically optimal run-time, choose B1 = B2 =
e(8/9)1/3(lnn)1/3(ln lnn)2/3 .

4.6. SUMMARY 35

e. Calculate all rational primes up to B1. This can be done using algorithms like the
sieve of Eratosthenes [era13] or the sieve of Atkin [atk13]. The latter is faster, but
more complicated to implement.

f. Calculate all algebraic primes represented by the two integers (p, r) such that p ≤
B2. For each p, find the set R(p) = {r|f(r) ≡ 0 (mod p) and r ∈ {0, 1, . . . , p− 1}}.
Use an efficient algorithm for finding the roots of f(x) modulo p, for instance the
one described in Section 5.5.

g. Let k = b3 lnnc. Find the first k primes q1, . . . , qk > B2 such that there is an sk
satisfying f(sk) ≡ 0 (mod qk) and f ′(sk) 6≡ 0 (mod qk). The pairs (qi, si) comprise
the quadratic character factor base.

h. Let V = 1 + π(B1) + B′ + k be the size of the exponent vector. Here π(B1) is
the number of rational primes ≤ B1 and B′ = ∑

p prime,p≤B2 |R(p)| is the number of
primes in the algebraic factor base.

2. The sieve

a. Pick an integer M , the max line width in the sieve.
b. For each integer b ≥ 1, sieve the interval −M ≤ a ≤ M and find values a, b such

that gcd(a, b) = 1 and (a − bm) · N(a − bα) is smooth with respect to both factor
bases. Proceed until we have at least V smooth pairs.

c. For each smooth element (a, b), create an exponent vector. The first element is the
sign of a− bm, 1 for negative, 0 for positive. For the next π(B1) elements, set the
bit for p to 1 if a − bm is divisible by pei for an odd e. For the next B′ elements,
set the bit for (p, r) to 1 if N(a− bα) is divisible by the prime ideal represented by
(p, r) raised to an odd power. For the last k elements, set the bit for (q, s) to 1 if
the Legendre symbol

(
a−bs
q

)
= −1 and set the bit to 0 otherwise.

3. The linear algebra

a. Create a matrix A where each exponent vector found in the sieve step has its own
row.

b. Solve the system xᵀA ≡ 0 (mod 2) for the unknown vector x using some suitable
algorithm (block Wiedemann or block Lanczos, or even Gaussian elimination if the
matrix is small enough).

c. Let S be the set of a, b pairs found from the vector x

4. Square root

a. Use the known factorization of the square u2 = f ′(m)2∏
(a,b)∈S(a − bm) to find v

modulo n.
b. Use a suitable algorithm, such as the algorithm by Couveignes, to find the square

root γ of f ′(α)2∏
(a,b)∈S(a − bα). Then calculate v = φ(γ) (mod n) using the ring

homomorphism that maps α ∈ Z[α] to m ∈ Zn.

5. Find a factor

36 CHAPTER 4. NUMBER FIELD SIEVE

a. Return gcd(u−v, n). If this is a trivial factor, find another linearly dependent vector
from the matrix step and do the square root step again. If this fails, do more sieving
to find more smooth pairs, raising the factor base bounds B1 and B2 if necessary.

Chapter 5

Algorithms used in the NFS

This chapter contains descriptions of algorithms that are used to solve subtasks in the
number field sieve. These algorithms perform common tasks such as factoring polynomials
and taking square roots, and are not specific to the NFS. In section 4 we will describe the
NFS including the underlying algorithms that are specific to the NFS.

5.1 Arithmetic in a number field
This section describes arithmetic in number fields, but it is also valid for the number ring
Z[α].

Assume that f(x) is a monic irreducible polynomial of degree n and α is a root. Then,
Q(α) is a number field of degree n, and the elements are of the form

a0 + a1α + a2α
2 + · · ·+ an−1α

n−1

where the ai are elements in Q.
The result of the addition of two elements χ, υ ∈ Q(α) given by

χ = a0 + a1α + a2α
2 + · · ·+ an−1α

n−1,

υ = b0 + b1α + b2α
2 + · · ·+ bn−1α

n−1

is simply pointwise addition of the coefficients:

χ+ υ = (a0 + b0) + (a1 + b1)α + · · ·+ (an−1 + bn−1)αn−1.

To multiply two elements χ, υ ∈ Q(α) as above, we first perform regular multiplication
as one would multiply two polynomials, followed by a reduction based on the fact that
f(α) = 0 (since α is a root of f(x)). The multiplication before reduction gives

ψ = χ · υ =
2n−2∑
i=0

 ∏
0≤j,k<n,j+k=i

ajbk

αi.
The result of the multiplication, ψ, can be viewed as a polynomial in α having degree

of up to 2n − 2. By adding or subtracting multiples of f(α) (which is equal to 0), we
can bring the degree down to n − 1. For each i = 2n − 2, 2n − 1, . . . , n + 1, n subtract
−aiαi−nf(α) from ψ. The resulting ψ will have degree of no more than n − 1. This
procedure can also be used to reduce a polynomial f(x) modulo a monic polynomial g(x),
and it works for polynomials over Q, Z and Zp for primes p.

37

38 CHAPTER 5. ALGORITHMS USED IN THE NFS

Example 5.1.1. Let f(x) = x2 + x+ 1 be an irreducible polynomial over Q and let α be
a root. Then Q(α) is a number field having elements of the form a + bα with a, b ∈ Q.
Let χ = 2 + α and υ = 1 + 3α. Then the product is

ψ = χ · υ = 2 + 7α + 3α2,

which has degree 2. We can reduce this product to degree 1 by subtracting 3f(α) =
3α2 + 3α + 3. After doing this we end up with the reduced element

ψ = −1 + 4α.

5.2 Norm of an algebraic number
Throughout this section, let Q(α) be a number field of degree n, and let α be a root of
the minimal polynomial of degree n.

Theorem 3.2.2 gave us a short and implementation-friendly expression for the norm
of an algebraic number of the form a− bα ∈ Q(α). This expression was derived from the
definition (Definition 3.2.3) of the norm in terms of the conjugates of the number field;
the set of embeddings of Q(α) into C over Q.

However, attempting to use the same definition on a general element, an element of
the form

β = a0 + a1α + a2α
2 + · · ·+ an−1α

n−1, (5.1)

gets unwieldy very fast. We already saw in Example 3.2.8 under Definition 3.2.3 that the
expression of the norm in a degree 3 number field with a very simple minimal polynomial
needed a fair amount of work to determine. We would rather not repeat this procedure
for higher degree number fields with more complex minimal polynomials, so we seek an
easier approach.

It turns out that we can use techniques from linear algebra to calculate the norm. Let
B = {b1, b2, . . . , bn} be a linearly independent basis of the vector space Q(α) over Q and
let (5.1) be the element we wish to calculate the norm of. Then, for each element in the
basis, create a column vector ci = (ci,0, ci,1, . . . , ci,n−1)ᵀ where ci,j is the coefficient in front
of the term αj of the product β · bi. Then the norm of β is

N(β) = det
[

c1 c2 · · · cn
]

where the columns of the matrix consists of the ci column vectors.
This method is valid for any choice of linearly independent basis, for instance B =

{1, α, α2 . . . , αn−1}.

5.3 Calculate square root modulo a prime p
In this section we will present an efficient algorithm for finding an integer x such that
x2 ≡ a (mod p) where p is an odd prime. This algorithm is used as part of the algebraic
square root stage.

5.3. CALCULATE SQUARE ROOT MODULO A PRIME P 39

First, we must check that the square root exists. Roughly half the possible values of
a have no square root modulo p. To check whether a square root exists for a given a, we
compute the Legendre symbol

(
a
p

)
, which is defined as follows:(

a

p

)
= 1 if the square root of a modulo p exists.(

a

p

)
= −1 if the square root of a modulo p doesn’t exist.(

a

p

)
= 0 if p divides a.

The following congruence allows us to calculate the Legendre symbol:

a(p−1/)2 ≡
(
a

p

)
(mod p).

By considering Z∗p as a group with multiplication of order p, we easily see that the Legendre
symbol has to be -1, 0 or 1.

This should be implemented using a fast exponentiation algorithm running in time
O(log p), such as Algorithm A described by Knuth [knu98, page 462].

We break down the calculation of the square root into three cases, depending on p:
p ≡ 3 (mod 4),
p ≡ 1 (mod 8) and
p ≡ 5 (mod 8).

The case where p ≡ 3 (mod 4)
This is the easy case, and the solution is given by

x ≡ a(p+1)/4 (mod p).
Since a is a quadratic residue, we have that a(p−1)/2 ≡ 1 (mod p). This gives

x2 ≡ a(p+1)/2 (mod p)
≡ a · a(p−1)/2 (mod p)
≡ a (mod p).

It is tempting to choose p satisfying p ≡ 3 (mod 4) if we have any choice in the matter,
which we actually do when computing the square root of an algebraic number using
Couveignes’ algorithm (see section 4.5.2).

The case where p ≡ 5 (mod 8)
For this case there are two subcases, depending on whether a(p−1)/4 is -1 or 1 modulo
p. If it is 1, the desired answer is x ≡ a(p+3)/8 (mod p). If it is -1, the answer is x ≡
2a · (4a)(p−5)/8 (mod p). Consult Cohen [coh93, page 31] for the proof.

40 CHAPTER 5. ALGORITHMS USED IN THE NFS

The case where p ≡ 1 (mod 8)
This is the most difficult case and here we give an algorithm which is due to Tonelli and
Shanks. The pseudocode is shown in Algorithm 1. See Cohen [coh93, pages 32-33] for
the proof.

Algorithm 1 Tonelli-Shanks’ algorithm for finding the square root of a modulo p
1: function Tonelli-Shanks(a,p)
2: Write p− 1 as 2e · q for odd q
3: Try random integers n, 0 < n < p until we find one that satisfies

(
n
p

)
= 1

4: z ← nq (mod p) . Initialize a few intermediate variables
5: y ← z
6: r ← e
7: x← a(q−1)/2 (mod p)
8: b← ax2 (mod p)
9: x← ax (mod p)

10: loop . Loop until we find (or fail to find) the square root
11: if b ≡ 1 (mod p) then
12: return x . We found the square root
13: end if
14: Find the smallest m ≥ 1 such that b2m ≡ 1 (mod p)
15: if m = r then . Can be skipped if we ensure that

(
a
p

)
= 1 beforehand

16: return “a is not a quadratic residue”
17: end if
18: t← y2r−m−1 (mod p) . Reduce the exponent
19: y ← t2 (mod p)
20: r ← m
21: x← xt (mod p)
22: b← by (mod p)
23: end loop
24: end function

5.3.1 Square root in finite fields Fpn

The procedure is essentially the same as the one desribed in Section 5.3. We use the
Tonelli-Shanks algorithm, as F ∗pn (for odd p) is a cyclic group with even order which is
the same setting as for F ∗p . For more details read Briggs [bri98, pages 45-48].

5.4 Find the factors of a polynomial over Z of degree
3

When the number n we want to factor is “small” (say, 60 digits or less), it is fine to let
the number field be generated by a polynomial of degree 3. For such small degrees we
don’t have to resort to the more complicated algorithms of Lestra, et al [len82]. We will
describe a simple algorithm that works for degrees no larger than 3.

5.5. FIND THE ROOTS OF A POLYNOMIAL IN ZP [X] 41

First, we notice that we only need to check for linear factors. If f(x) is reducible and
of degree 3, there are either 3 linear factors or 2 factors with degrees 1 and 2.

The following theorem is helpful in order to make an algorithm.

Theorem 5.4.1. Let f(x) = a0 +a1x+ · · ·+an−1x
n−1 +xn ∈ Z[x] be a monic polynomial.

If f(x) has a root a ∈ Q, then a ∈ Z and a|a0.

Proof. This proof follows Bhattacharya, et al [bha94]. Let a = α/β where α, β ∈ Z and
gcd(α, β) = 1. Then

a0 + a1

(
α

β

)
+ · · ·+ an−1

(
αn−1

βn−1

)
+ αn

βn
= 0.

Multiply the above equation by βn−1, and move all terms with fractions to the right-hand
side to obtain

a0β
n−1 + a1αβ

n−2 + · · ·+ an−1α
n−1 = −α

n

β
.

Since α, β ∈ Z, the entire left-hand side of the above equation is in Z. Then the right-hand
side, −αn/β, must also be in Z and β must be ±1. The last equation also shows that
α|a0. α divides every term except one, so it must divide the last one. Hence, a = ±α ∈ Z
and a|a0.

Then, we can use the following simple algorithm for checking for a root:

1. Find the prime factorization of a0 = ∏
i p

ri
i where pi are primes and ri are exponents.

a0 < m = bn1/3c is small enough that algorithms like Pollard’s rho algorithm can
find the factors quickly, assuming that n is not larger than 60 digits.

2. Generate all b = ∏
i p

si
i such that 0 ≤ si ≤ ri. b is then a divisor of a0 (easy). For

each such number, check if f(b) = 0 or f(−b) = 0. If that happens, we found a
root.

If we assume that n has at most 60 digits we can actually skip the factorization of a0
and get away with a slower algorithm that is even easier to implement: Try all a such
that 1 < a ≤

√
m. For all a dividing m, check if f(a), f(−a), f(m/a) or f(−m/a) is 0. If

f(b) = 0 where b is the value we tested, then x− b is a linear factor. For n with 60 digits
this is a loop with 1010 iterations, which is still less work than what will be done in the
sieve stage.

When all linear factors are found, what remains of f(x) after dividing out the linear
factors is either 1, a degree 2 polynomial or an irreducible degree 3 polynomial in the case
where no factors were found.

5.5 Find the roots of a polynomial in Zp[x]
Let f(x) be a polynomial of degree n with coefficients in Zp. We seek an efficient algorithm
for finding all the roots modulo p. This algorithm is required in order to find the prime
ideals in the algebraic factor base efficiently.

42 CHAPTER 5. ALGORITHMS USED IN THE NFS

A naïve way is to evaluate f(i) for all i = 0, 1, . . . , p − 1 and check whether f(i) ≡
0 (mod p). However, this method requires p evaluations, and is infeasible if p is large. We
want a method that is sublinear in p.

A better method involves the polynomial g(x) = xp − x, also over Zp[x]. We will
show that this polynomial is identical to f(x) = ∏p−1

i=0 (x − i). f(x) has degree p and by
construction it has the roots 0, 1, . . . , p−1. g(x) has degree p. By Fermat’s little theorem
we have for any prime number p, ap ≡ a (mod p) for every integer a, so therefore xp must
equal x for each x ∈ Zp. Therefore g(x) = 0 for all a = 0, 1, 2, 3, . . . , p − 1. Hence g(x)
has p different roots. Since g(x) has degree p, all the roots have multiplicity 1. g(x) and
f(x) have the same degree and the same roots so they must be equal.

Algorithm 2 uses the above polynomial, and works for primes p larger than 2. Is faster
as it doesn’t scale linearly in p. Let f(x) be the polynomial we want to find the roots
of. First, we divide out square factors of f(x) by dividing out gcd(f(x), f ′(x)). Then,
linear factors are isolated by calculating a(x) = gcd(f(x), xp− x). After that we attempt
to split the remaining polynomial by taking the greatest common divisor of the isolated
factors a(x) and (x − a)(p−1)/2 − 1 for some random integer a, which has a 1 − (1/2)d−1

chance of splitting a(x) (since (x− a)(p−1)/2 − 1 has exactly half the numbers between 1
and p − 1 as roots). Lastly, we perform the split again on each half until we have split
the polynomial into smaller polynomials of degree at most 2, from which we can obtain
the roots easily (for degree 2 polynomials, we use the well-known formula for the roots of
a quadratic equation).

One can omit the handling of a(x) of degree 2 for an even easier (and possibly slightly
slower) implementation, since a degree 2 polynomial will eventually be split into two linear
factors.

This algorithm does not work for p = 2, but in this case we use the naïve algorithm
since there are only two values to test. For small values of p the naïve version is likely to
be faster. It is advisable to use experimentation in order to find the crossover point of p
for when to use which algorithm.

5.6 Check if polynomial in Zp[x] is irreducible
In section 5.5, we saw that we could isolate linear factors by calculating gcd(f(x), xp−x).
In particular, if gcd(f(x), xp − x) = 1, f(x) had no linear factors. This method can be
generalised: xpk−x is the product of all monic, irreducible polynomials of degree dividing
k. To check if an arbitrary polynomial of degree n is irreducible, it suffices to check if
gcd(f(x), xpk − x) = 1 for every 1 ≤ 1 ≤ bn2 c. This algorithm is described by Menezes
[men01, page 155], and the pseudocode is given in algorithm 3. The algorithm requires
that f(x) is monic, but f(x) is easily converted to a monic polynomial by dividing the
polynomial by an−1.

This algorithm is used in Couveignes’ algorithm for taking the square root of an
algebraic integer, see Section 4.5.2.

5.6. CHECK IF POLYNOMIAL IN ZP [X] IS IRREDUCIBLE 43

Algorithm 2 Find roots of a polynomial modulo p. All arithmetic is done in Zp.
1: function Find-Roots(f(x),p)
2: a(x)← gcd(f(x), f ′(x)) . Ensure that no root have multiplicity ≥ 2
3: a(x)← gcd(xp − x, a(x)) . Isolate linear factors
4: if a(x) = 0 then . Check if 0 is a root
5: Output the root 0
6: a(x)← a(x)/x
7: end if
8: if degree(a(x))=0 then . Output root and terminate if a(x) has small degree
9: return

10: else if degree(a(x))=1 then
11: Output the root −a0a

−1
1 . a(x) = a1x+ a0

12: return
13: else if degree(a(x))=2 then
14: d← a2

1 − 4a0a2 . a(x) = a2x
2 + a1x+ a0

15: ε←
√
d . Use the algorithm from section 5.3

16: Output the roots (−a1 + ε)(2a2)−1 and (−a1 − ε)(2a2)−1

17: return
18: end if
19: repeat . Random splitting
20: Choose a random a ∈ Fp
21: b(x)← gcd((x− a)(p−1)/2 − 1, a(x))
22: until degree(b(x)) > 0 and degree(b(x))<degree(a(x))
23: Recursively call the algorithm with b(x) and a(x)/b(x), starting at line 8.
24: end function

Algorithm 3 Checks if the monic polynomial f(x) is irreducible modulo p.
1: function Test-Irreducibility(f(x),p)
2: u(x)← x

3: for i← 1 to bdegree(f(x))
2 c do

4: u(x)← u(x)p mod f(x) . Use fast exponentiation
5: d(x) = gcd(f(x), u(x)− x)
6: if degree(d(x)) > 1 then
7: return “reducible”
8: end if
9: end for

10: return “irreducible”
11: end function

44 CHAPTER 5. ALGORITHMS USED IN THE NFS

Chapter 6

Implementation

In this chapter we will describe our NFS implementation in more depth.
Our NFS program is written in C, with the GNU Multiple Precision Arithmetic Li-

brary1 (GMP) as the only external dependency. The source code is given in Appendix A.
This chapter will be divided into several sections, one for each phase of the algorithm.

6.1 Initialization and polynomial selection
We chose to implement the base-m algorithm for determining the polynomial f(x). The
program accepts any positive integer d, from this m = bn1/dc is calculated and the coef-
ficients of f(x) are derived from the base-m expansion of n.

The rational factor base is determined using a straightforward implementation of the
sieve of Eratosthenes. A description of this algorithm can be found on Wikipedia [era13].

To determine the algebraic factor base, we go through the p values found for the
rational factor base and try to find the r values by finding all roots of f(x) modulo p.
This is presently accomplished by two algorithms: For small p (less than 7) we naïvely
evaluate f(r) for all r = 0, 1, . . . , p − 1. For larger p we use a more efficient algorithm
that finds all roots of f(x) modulo p without evaluating f(r) for every r = 0, 1, . . . , p− 1.
This algorithm is described in Section 5.5.

Since neither C nor GMP have support for polynomials, we implemented basic subrou-
tines for doing arithmetic on polynomials modulo p, including routines for multiplication,
division (including remainder), reduction modulo a polynomial f(x), greatest common
divisor and fast exponentiation.

Our implementation does not attempt to factor f(x) into non-trivial factors if the
degree of f(x) is larger than 3. If the degree is at most 3, the algorithm described in
Section 5.4 is used. If f(x) is reducible of degree at most 3, the program will output two
non-trivial factors and terminate.

6.2 The sieve
We have implemented the line sieve. For each b = 1, 2, 3, . . . in turn, assume that b is
fixed and do the following until we have enough pairs a, b (at least as many as there

1http://gmplib.org/

45

46 CHAPTER 6. IMPLEMENTATION

are elements in the factor bases). Initialize an array with one element for each a such
that −M ≤ a ≤ M for some M . The element corresponding to (a, b) is initialized with
blg(a−bm)c+blgN(a−bα)c. We chose to use logarithms here to avoid an excessive amount
of division operations. The approximation of the base 2 logarithm of a given number x
can be calculated efficiently by counting the number of bits in the binary representation
of x. The GMP library has a built-in function that performs this on large integers.

For each rational prime p, we find the smallest a ≥ −M such that a−bm ≡ 0 (mod p).
Then, for each integer k ≥ 0 such that a + kp ≤ M , we subtract blg pc from the corre-
sponding array element.

For each algebraic prime (p, q), we find the smallest a ≥ −M such that a − br ≡
0 (mod p). Then, we do as above: for each integer k ≥ 0 such that a + kp ≤ M , we
subtract blg pc from the corresponding array element.

Please note that we have used approximations to the logarithms (rounded to an inte-
ger), and we have also ignored powers of primes. In order to detect candidates for smooth
numbers, we will pick the pairs (a, b) where the corresponding array element has a value
below some threshold T .

For each candidate (a, b) below the threshold we perform trial division on a− bm with
primes from the rational factor base, and we also do trial division on N(a − bα) with
primes from the algebraic factor base. This gives us the correct factorization, including
prime powers. Whenever we find pairs that fully divide under these trial divisions, we
have found a pair that is smooth. All the exponents of the primes modulo 2 are stored in
the exponent vector, as well as calculating and storing the Legendre symbols

(
a−bs
q

)
for

each quadratic character (q, s). Then we tuck away the exponent vector in the matrix is
to be used in the linear algebra step. In addition, we store the full factorization of each
smooth pair so that we can reconstruct the rational square and square root in a later step.

The threshold T must be found via experimentation. We don’t want to set it too
low, or we lose smooth numbers divisible by primes with large powers. We don’t want to
set it too high either, or we end up doing expensive trial division on many non-smooth
numbers.

6.3 The linear algebra
The current implementation uses a specialized Gauss-Jordan algorithm tailored forGF (2),
where each bit of an unsigned 32-bit integer holds one cell of the matrix. This reduces
the runtime by a factor of approximately 32 compared to a hypothetical implementation
that doesn’t process multiple bits at once.

The system of linear equations xᵀA ≡ 0 (mod 2) has more unknowns than equations,
so there will be at least one free variable. If we have k free variables we can obtain k
essentially different linear combinations (a subset S of smooth pairs) of exponent vectors
that represent rational and algebraic squares.

6.4 Square roots and factorization
The rational square root is computed directly from the set of smooth pairs S and the
factorization of a− bm for each (a, b) ∈ S.

6.5. VERIFYING THE IMPLEMENTATION 47

The algebraic square root is computed with an implementation of the algorithm by
Couveignes described in Section 4.5.2. This algorithm depends in turn on subroutines
for calculating the norm of a general element a0 + a1α+ · · ·+ ad−1α

d−1 in a number ring
Z[α] (see Section 5.2), calculating square roots modulo p (Tonelli-Shanks algorithm, see
Section 5.3) and in a finite field Fpn (see Section 5.3.1).

6.5 Verifying the implementation
Case [cas03] gives a complete and detailed example of a small factorization with NFS,
with n = 45113,m = 31 and f(x) = x3 +15x2 +29x+8 found using the base-m algorithm.
This example also includes factor bases and quadratic characters. After taking care of
the fact that our implementation uses a− bm and a− bα and that this article uses a+ bm
and a+ bα, our implementation find the same factor bases, quadratic characters, smooth
pairs (a, b) given by Case [cas03] are found by our program, and the example exponent
vector matches the one our program finds.

6.6 Example 1: n = 4486873

6.6.1 Finding the polynomial and checking for irreducibility
We show in detail how the algorithm works for the input n = 4486873 = 1193 · 3761. We
chose to use a polynomial of degree 3. By taking m = bn1/3c, we find m = 164. Using
the base-164 expansion of n we find

f(x) = x3 + 2x2 + 134x+ 161.

We need to check whether f(x) is irreducible over Z[x]. Since f(x) is of degree 3, it
must have a linear factor (or equivalently, a root in Z) if it is reducible. By Theorem 5.4.1
a root, if it exists, must divide 161, which leaves us with the candiates ±1,±7,±23 and
±161. The root cannot be positive (as f(x) > 0 whenever x > 0), and by evaluating
f(x) for the remaining candidates we find that f(−1), f(−7), f(−23) and f(−161) are
all nonzero. Hence, f(x) has no roots in Z, and f(x) is irreducible over Z[x] and we can
carry on with the factorization.

6.6.2 Determining the factor bases
The factor base consists of 3 parts:

• The rational factor base with primes in Z. This also includes the unit -1.

• The algebraic factor base with first degree prime ideals inOQ(α) of the form 〈p, α−r〉.

• The quadratic character factor base.

We set the upper bound for both the rational and algebraic factor bases to B = 140,
and use 6 quadratic characters.

Using the sieve of Eratosthenes, we find the 34 rational primes as shown in Table 6.2.

48 CHAPTER 6. IMPLEMENTATION

(2,1) (5,2) (7,0) (7,6) (11,7)
(13,4) (19,3) (23,0) (31,16) (31,22)
(37,10) (37,29) (37,33) (43,30) (59,30)
(61,4) (61,17) (61,38) (73,10) (73,66)
(73,68) (83,69) (89,2) (89,27) (89,58)
(107,105) (109,52) (113,66) (127,48) (131,54)
(137,48) (137,109) (137,115) (139,93)

Table 6.1: Algebraic factor base for n = 4486873, upper bound B = 140. Each pair (p, r)
corresponds to a prime ideal 〈p, α− r〉.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139

Table 6.2: Rational factor base for n = 4486873, upper bound B = 140.

For the algebraic factor base, we take each rational prime p and attempt to find r such
that f(r) ≡ 0 (mod p). This can be accomplished by the root finding algorithm described
in Section 5.5.

The 34 elements in the algebraic factor base are shown in Table 6.1.
For this n we used 6 quadratic characters. Each of these is a pair (qi, si) such that qi

is a prime larger than the largest prime in the algebraic factor base; that is, qi > 140 and
si satisfies f(si) ≡ 0 (mod qi) and f ′(si) 6≡ 0 (mod qi).

The following pairs (qi, si) were found:

(149, 1) (151, 75) (157, 91) (173, 108) (179, 6) (193, 36).
The sieve phase was run with |a| ≤ 10000, b ≥ 1 and a threshold of T = 20 of accepting

a smooth integer. The pairs (a, b) found such that a− bm and a− bα were smooth over
their respective factor bases are shown in Table 6.3. Having a rational factor base of 34
primes, an algebraic factor base of 34 prime ideals, 6 quadratic characters and sign of
a− bm results in an exponent vector of 75 elements. Hence, we need 76 to be guaranteed
to find a non-zero linearly dependent subset of smooth pairs. For this example we ended
the sieve phase after finding 78 pairs which gives us a few different subsets to try, in case
some of them result in a trivial factorization.

Let us take a closer look at the pair (19, 2) and derive the exponent vector. The pair
(19, 2) results in the rational integer

19− 2 · 164 = −309

and the algebraic integer
19− 2α.

The factorization of the rational integer into units and primes is

−309 = (−1) · 3 · 103,

and the factorization of the ideal 〈19− 2α〉 into prime ideals is

〈19− 2α〉 = 〈5, α− 2〉2〈7, α− 6〉〈113, α− 66〉.

6.6. EXAMPLE 1: N = 4486873 49

(-301, 1) (-263, 1) (-253, 1) (-226, 1) (-206, 1) (-92, 1) (-78, 1)
(-57, 1) (-46, 1) (-28, 1) (-23, 1) (-22, 1) (-14, 1) (-13, 1)
(-8, 1) (-7, 1) (-5, 1) (-4, 1) (-2, 1) (-1, 1) (2, 1)
(3, 1) (4, 1) (10, 1) (17, 1) (22, 1) (27, 1) (29, 1)
(30, 1) (35, 1) (47, 1) (48, 1) (66, 1) (69, 1) (83, 1)
(84, 1) (115, 1) (139, 1) (147, 1) (161, 1) (212, 1) (322, 1)
(325, 1) (383, 1) (650, 1) (810, 1) (-53, 2) (-41, 2) (-35, 2)
(-23, 2) (-5, 2) (1, 2) (19, 2) (63, 2) (69, 2) (93, 2)
(103, 2) (119, 2) (205, 2) (355, 2) (-727, 3) (-542, 3) (-364, 3)
(-28, 3) (-23, 3) (-14, 3) (-8, 3) (-4, 3) (-1, 3) (4, 3)
(7, 3) (17, 3) (41, 3) (47, 3) (85, 3) (208, 3) (541, 3)
(-439,4)

Table 6.3: Smooth pairs a, b found in the sieve phase

We double-check the last factorization by taking the norms of the ideals, using Theo-
rem 3.2.5 to let us take the norm of an ideal with one generator, as well as using Theo-
rem 3.2.11 to deal with the ideals with two generators:

N(〈19− 2α〉) = N(〈5, α− 2〉)2 ·N(〈7, α− 6〉) ·N(〈113, α− 66〉)
19775 = 52 · 7 · 113

Lastly, we calculate the quadratic character
(

19−2s
q

)
for each element (q, s) in the quadratic

character factor base: (19− 2 · 1
149

)
= 1(19− 2 · 75

151

)
= 1(19− 2 · 91

157

)
= −1(19− 2 · 108

173

)
= 1(19− 2 · 6

179

)
= −1(19− 2 · 36

193

)
= −1

An exponent vector has 75 elements in this example. The elements have the following
meanings:

• 1: The sign of a− bm

• 2-35: One element for each prime ideal in the algebraic factor base

• 36-69: One element for each rational prime in the rational factor base

• 70-75: One element for each quadratic character

50 CHAPTER 6. IMPLEMENTATION

(-92, 1) (-57, 1) (-23, 1) (-8, 1) (-7, 1) (2, 1)
(10, 1) (17, 1) (29, 1) (35, 1) (84, 1) (115, 1)
(139, 1) (-5, 2) (19, 2) (69, 2) (93, 2) (119, 2)
(-542, 3) (-28, 3) (-23, 3) (-8, 3)

Table 6.4: Pairs (a, b) derived from the solution of xTA ≡ 0 (mod 2)

Looking at the factorization of -309, we notice that the number is negative and the
prime factors are 3 and 109, the second and 29th primes in the rational factor base,
respectively. Hence, the elements 1 (the sign), 37 and 64 in the element vector will be set
to 1, as all prime powers occur with a power of 1.

From the factorization of 〈19 − 2α〉 we see that the second prime in the factor base,
〈5, α − 2〉 occurs with a power of 2, while the fourth and 28th primes (〈7, α − 6〉 and
〈113, α − 66〉) occur once. Hence, element 3 in the exponent vector is 2 and elements 5
and 29 become 1.

We see from above that the third, fifth and sixth Legendre symbols are all -1, the
elements in the exponent vector corresponding to these should be set to 1. Hence, elements
72, 74 and 75 are set to 1.

All other elements in the exponent vector are set to 0 as they represent prime factors
not occurring in the factorizations, or they represent Legendre symbols equalling 1.

The resulting exponent vector is

sign︷︸︸︷
1

algebraic primes︷ ︸︸ ︷
0201000000000000000000000001000000

rational primes︷ ︸︸ ︷
0100000000000000000000000000100000

quad.char.︷ ︸︸ ︷
001011 .

The matrix consists of all the exponent vectors reduced modulo 2. In our implementa-
tion we store the matrix in transposed form, and Figure 6.1 shows the transposed matrix,
which has size 75 × 78. Column i contains the exponent vector for the i-th smooth pair
a, b. We notice that some of the rows have especially many 1’s: Row 1, which corresponds
to the sign of a− bm, the first few rows of each of the rational and algebraic factor bases
(since small primes occur more often), and the last 6 rows containing quadratic characters
(1 should appear with probability around 0.5).

The linear algebra step will transform the matrix to the reduced row echelon form,
and the reduced matrix is shown in Figure 6.2. The solution vector is x = (x1, x2, . . . , x78)
(one element for each exponent vector), and xi = 1 means that the i-th smooth pair is part
of the product that forms a square. We obtain the solution by setting the free variables
arbitrarily, and then by setting the rest of the variables using back-substitution. Since we
started with a 75 × 78 matrix, we are already guaranteed 3 free variables. In addition,
there are 9 null rows in the reduced matrix, so we have 12 free variables in total. We set
the second free variable (x67) to 1 and the remaining free variables to 0 and determine
the rest of the solution vector using back-substitution. Table 6.4 shows the pairs (a, b)
that ensures that we have rational and algebraic squares. Let S be the set of these (a, b)
pairs.

Now we can take the rational square root. Our rational square is expressed as

u2 = f ′(m)2 ∏
(a,b)∈S

(a− bm).

6.6. EXAMPLE 1: N = 4486873 51

1100000011111111111110111111111111111101
}

Sign of a − bm

011000000010000110000100101100000100010100100000000000000000000010001011010000
011000000010011000001000101000000000000010000001000000000000001001010000000000
100000000100000100000000000000000000001101000000100001000000001101000000000000
001001110001001000010000001000010110010000001000010010001001010000000100000000
100001000000000001000000000100000001010000000100000000100001000010000000000100
000000000001000000000010100010000100001010000000001000000000000001001000000001
010011000000000000000100010000000000000010010000000001000000010000000000011000
001000001010000000000000000000000100100101000000010000100000000010000000000000
010000001000000000000000000000100000000000000000000101000000100001000001000000
000100000000000000000000010000000001100000000000000000000000000000000100000001
00000000000000000000000100000010000100
000000000000001000000000000000001000000000100010000000000000110000000000000001
010100100000000001000000000000000000000000000100000000001000000000000000000000
000000000000010000000000000010000000000000000000000000001000100000000100010001
000010000000000000000000000010000000000000100000000100000101000100000000000100
100000010000000000000010000000000000000000000010000000100000000000000000000000
000000000000000000000000100000000000010001010100000000000000000000000000000000
00001000001000100000000010
000000000000000000000001000000000000000000000010000000010000000000000000000010
000100000000000100000000000000001000010010000000000000000010000000000000000000
000000100000000010000000000000000000000000000000000001000001000000000000000000
010000000000100000000000000000000100000000001000000000000000000000000000100000
000000000000000000001000000000000000000000000000000000010000000000000000000000
000000000000000000000000001000000000000000011000000000000000011000100000000000
000000000000000000000000000000000000001000000000000000000010000000010000001000
000000000000000000100000000000000000000010000000000000001000000000000000000100
000000010000000000000000000000000000000100000000001000000000000000000000010000
000000000000000000000000000000001000000000000000000010000000000100000000001000
000010000000000000000000000000010000000000000100000000000000001000000001000000
00010000000000000000000000000001
000100000000000000000000000000010000000001000001000000000000000000000010000000
000000000100000000000000000000000000000000010000000000000001000000000000000000
000000000001000000000000000000000000100000000000000000010000000000000000000100
000000001000

Algebraic factor base

000110101001100001101011010010001000000001001100000000000000011101000100000000
101100001101010001010000100101000000000110011010110110000011000000000000000001
100110001000000000010010000100000101000000000000000001010000000110100010010001
010000001000000001000101000000000000000000100000000000100000000000000000000000
000000000010000000010001000000000000000000000000000000000100010001000000101000
000100010000000000000000000000100000000000000000010000000000000100000000000000
000000010010000000000000000000000000001000000100000000000000000000001000000000
000000000000000100000000000000000100000000000100000000000100000000000001000000
000000000000000000000100000000000000000000100000000000000000100001000000000000
000000000000000000000000000000010000000000000000000000000000000000001000000000
10000000000100010000000000
000010001000100000000000000000001000
0001000000000010000000000000100000
00000000000000100000000000000100
00010000010000000000000000
0001000000100000000000000000
0000000000000100
01000100000000
00000000000000000000000000001000
00000000000000000000000001000100
00010000000000000000000000000000000001
0001000000000000000000000000000000000000
0000000000000000001000
00000000000010010000
0010000000
00
0010000000000010000000000000
001000000000000000
000100000000000000000000000000
00
0010000000000000000000000000000000
00
000000000000000000000000001000
001000

Rational factor base

011111110001110100110110010001001001011111010011000000011101110000100001110110
110001101111010010010100100011001000000001011101111000101101001011010000000110
100001001110010111010110110110010111100101111111100111001110000010000100010101
100111011010000101100111110100101100101110110000011101110110000001010101111010
001000001010111100001100101110100101110001100010101010001001100100011101100110
010000101001001011111101100000101110111110011011001110000111010101100101010010

Quadratic characters

Figure 6.1: The transposed matrix containing all exponent vectors as columns

52 CHAPTER 6. IMPLEMENTATION

1001000000011100011001
01000100000000
001000
00010001000000001000000100
00001001000000001000111010
00000100100100110101
00000010011100010110
000000010001000000110001101110
000000001000
00000000010001000000000000000001
00000000001001000000101000111000
0000000000010001000000001100011001
00000000000010010000
0000000000000100
000000000000001001000000101001111100
000000000000000100111000111111
00000000000000001001000000011000110000
00000000000000000100010001011111
0000000000000000001000
0000000000000000000100010000100110
000000000000000000001000100001011110
000000000000000000000100000000000000000000000000000000000001000000001101011001
000000000000000000000010011000001100
00000000000000000000000100100001011100
000000000000000000000000100000000000000000000000000000000001000000110001110011
00000000000000000000000001000100
000000000000000000000000001000
000000000000000000000000000100000000000000000000000000000001000000110101100101
00000000000000000000000000001000
000000000000000000000000000001000000000000000000000000000001000000101001111100
00000000000000000000000000000010011110
000000000000000000000000000000010000000000000000000000000000000000001000000000
000000000000000000000000000000001000000000000000000000000000000000000000100100
000000000000000000000000000000000100000000000000000000000000000000000101101111
000000000000000000000000000000000010000000000000000000000000000000011100000111
000000000000000000000000000000000001000000000000000000000000000000100001000010
000000000000000000000000000000000000100000000000000000000001000000101101000011
000000000000000000000000000000000000010000000000000000000000000000110000001000
000000000000000000000000000000000000001000000000000000000001000000010000101100
000000000000000000000000000000000000000100000000000000000000000000001100110111
0010000000000000000000000000000000110011
0001000000000000000000000000000000000000
00100000000000000001000000001100100001
00010000000000000000000000000000000001
001000000000000000000000000001011111
000100000000000001000000000001111010
0010000000000000000000000000000000
0001000000000001000000000000000100
00100000000001000000000000110001
00010000000000000000000000000001
001000000001000000111101001001
000100000000000000000000000000
0010000000000000111001011001
0001000000000000000100100110
00100000000000110101111011
00010000000000100001011110
001000000000000000110111
000101000000111101101010
0011000000000000100100
00100000000100100110
00010000100001011110
001000000000000000
000100111001110101
0010111001011001
0001000101011110
0010000000
00
00
00
00
00
00
00
00
00

Figure 6.2: The matrix in reduced row echelon form

6.6. EXAMPLE 1: N = 4486873 53

p Square root of γ in Zpi/〈f(x)〉
2305843009213693951 1681812579256330563α2 + 481917539782026790α+ 2053587909481111827
2305843009213693967 1681812579256330563α2 + 481917539782027030α+ 2053587909481112131
2305843009213693973 1681812579256330563α2 + 481917539782027120α+ 2053587909481112245
2305843009213694381 1681812579256330563α2 + 481917539782033240α+ 2053587909481119997

Table 6.5: Square roots for each modulo p

From the known factorization of a− bm for each (a, b) ∈ S we get

u2 = 814782 · 222 · 314 · 510 · 76 · 114 · 132 · 172 · 192 · 372 · 432 · 472 · 1032.

Finding u is just a matter of halving each exponent:

u = 81478 · 211 · 37 · 55 · 73 · 112 · 13 · 17 · 19 · 37 · 43 · 47 · 103
u = 1530734055289535882078092800000
u ≡ 3739412 (mod 4486873)

Because of the obstructions mentioned in Section 4.4, we cannot use a method similar
to the above even if we know the factorization of each ideal 〈a − bα〉 into prime ideals.
Instead, we run our implementation of Couveignes’ algorithm which computes the square
root directly.

Our algebraic square is expressed as

γ = f ′(α)2 ∏
(a,b)∈S

(a− bα).

Evaluating this in Z[α] gives

γ = 884477920457388669411401815623954662863α2+
18523314201045731615331644622444823801483α+

21124198049840950371210079793023892077432

We will first calculate the square roots βi of γ (with the coefficients reduced modulo pi)
in the finite field Zpi

/〈f(x)〉 for multiple pi and use the Chinese Remainder Theorem
to obtain β = √γ. First, we need to ensure that ∏p is greater than the bound from
(4.7). We evaluate the base-2 logarithm of the bound, which is 236.27. Hence we require
lg∏p ≥ 236.27. We pick four 61-bit primes whose product is large enough.

q1 = 2305843009213693951
q2 = 2305843009213693967
q3 = 2305843009213693973
q4 = 2305843009213694381

The square roots of γ in each of the four finite fields are shown in Table 6.5
These are the “correct” square roots having N(βi) ≡ N(√γ) (mod pi). N(√γ) is

calculated from the known factorization into ideals of the product of all 〈a− bα〉. We use
the Chinese Remainder Theorem to obtain the square root in Z[α]:

β = 1681812579256330563α2−
34105727598423382475α−

41757429265579073242

54 CHAPTER 6. IMPLEMENTATION

We apply the homomorphism given by (4.1) and get

v = σ(β) = 1681812579256330563 · 1642 − 34105727598423382475 · 164
− 41757429265579073242 (modulo 4486873)

= 1941654

Finally we obtain a non-trivial factor

gcd(n, u− v) = gcd(4486873, 3739412− 1941654) = 3761.

6.7 Example: n = 1027465709
We show in detail how to factor n = 1027465709 = 1009 · 1018301. We choose a degree 3
polynomial using the base-m expansion. By taking m = bn1/3c we get m = 1009. This
results in

f(x) = x3 + 220x.
As f(x) has no constant term, it is divisible by x and has 0 as a root. Hence, f(x) =
x(x2 + 220) is a factorization of f(x). Hence, the algorithm terminates early with the
factorization

f(m) = g(m)h(m)
f(1009) = g(1009)h(1009)

1024765709 = 1009 · (10092 + 220)
= 1009 · 1018301.

Chapter 7

Experiments

In this chapter we use our implementation of the NFS to perform some experiments.
All experiments are performed on a PC with an Intel i7-2600K CPU and 16 GB RAM
running Windows 7 64-bit. The experiments involve changing important parameters in
the algorithm and observing the effect this has on the sieving, as well as the total time the
program needs in order to find a factor. A short discussion concludes each experiment.

Although our program is capable of factoring n with 50-60 digits (where n has two
prime factors of similar sizes) within a few hours, we chose to perform the experiments
with a smaller n to be able to perform many runs within a shorter time frame.

7.1 Changing the factor base size
In this experiment we factor the 35-digit integer n = 78325683705012095897299536068804821
using a degree 3 polynomial, sieve width |a| ≤ 500000 and 15 quadratic characters. We
change the bound B for the factor base and observe the effect this has on the amount of
work done in the sieve phase and the total time needed to get a factor. For each different
B our program was run once, and we recorded the number of smooth pairs |T | we needed
to find, the largest b checked in the sieve (this is slightly higher than the total number
of elements across all factor bases), the total number of sieve operations and the total
time our program needed to find a factor. A sieve operation is defined as processing one
array element in the sieve for one prime p. For a smooth number given by a, b, the array
element for this a need to be processed once for each prime p that divides either a−bm or
the norm of a− bα. Sieve operations for non-smooth numbers are naturally also counted,
and operations on pairs a, b with gcd(a, b) > 1 are also counted here since doing the sieve
operation is cheaper than checking the gcd.

Table 7.1 shows the results from all runs. The table includes B = 67337 which is the
bound recommended by our implementation if we don’t specify a bound.

From the table we learn that the program is not at its fastest if we let the program
choose the asymptotically optimal bound B. The shortest runtime we achieved was
165 seconds, which happened at both B = 100000 and B = 110000, slightly above the
recommended bound B = 67337. We notice that the number of sieve operations decreases
when B increases for the values we tested. However, increasing B also increases the size
of the factor base, which in turn increases the size of the matrix used in the linear algebra
step. Since the linear algebra step is a bottleneck in our implementation, this has a
negative effect on the runtime of our program. This explains the increase in the runtime

55

56 CHAPTER 7. EXPERIMENTS

Bound Number of smooth Largest value Number of sieve Time
B pairs |T | found of b checked operations (106) (s)

30000 6530 1608 6673 1311
40000 8462 613 2579 502
50000 10310 345 1466 331
60000 12141 241 1032 296
67337 13429 196 844 194
70000 13901 182 785 183
80000 15741 147 638 178
90000 17498 127 554 171
100000 19301 112 490 165
110000 21003 102 448 165
120000 22686 94 415 362
130000 24370 88 389 230
140000 26102 83 368 229
150000 27748 79 352 276
175000 31891 72 322 237
200000 36032 67 302 369
225000 40194 63 285 387
250000 44256 61 277 398
300000 52149 58 265 548

Table 7.1: Results from running the NFS with different factor base bounds

when B ≥ 120000 despite less sieve work. With a more efficient implementation of the
linear algebra step and the square root step it is likely that the minimal runtime would
be achieved for a significantly higher B.

We also notice some random-looking spikes in the runtimes, especially for B = 120000.
The reason is that we don’t necessarily find a non-trivial factor on the first linear com-
bination of exponent vectors we try, and the square root procedure needs a couple of
seconds per try. This particular run was unlucky, and many linear combinations had to
be tested before a factor was found.

7.2 Changing the width of the line sieve
In this experiment we investigate the effect of changing the width of the line sieve. We use
the same settings as in the previous experiment: n = 78325683705012095897299536068804821,
a degree 3 polynomial, factor base bound B = 67337 and 15 quadratic characters. We try
different sieve bounds M . For a given M , we sieve all a that satisfy |a| ≤ M . For each
different M we decided to test, we did a full run of our program and recoded the largest
value of b checked in the sieve phase, as well as number of seconds the program needed
in order to find a factor.

The results from our runs are shown in Table 7.2. The total number of sieve operations
is not reported as it is perfectly proportional to the largest value of b checked. We notice
that the maximal value of b (the “height” of our rectangular sieving region) decreases as
we increase the range of allowed a values. An increase ofM leads to faster runtimes up to

7.2. CHANGING THE WIDTH OF THE LINE SIEVE 57

Sieve bound M Largest value Time
(103) of b checked (s)
100 6436 1180
200 1409 494
400 313 256
500 196 194
1000 53 145
2000 18 118
5000 7 112
10000 4 119
20000 3 253

Table 7.2: Results from running the NFS with different sieve widths

a certain point. Increasing the width causes smooth pairs with higher absolute values of a
to be used, which increases the potential size of the products of which we take square roots.
This causes the algebraic square root algorithm to use a higher bound for the product
of the moduli, which requires us to use more prime moduli in the Chinese Remainder
Theorem portion. Hence, for large enough sieve widths, the square root algorithm becomes
a bottleneck.

58 CHAPTER 7. EXPERIMENTS

Chapter 8

Conclusion and future work

In this thesis we have studied the NFS algorithm and the mathemathics which was re-
quired in order to understand the algorithm. We dived deeply into algebraic number
theory. In particular we studied the factorization of an ideal generated by an algebraic
integer into prime ideals, and looked at how to calculate the norm of algebraic integers
and ideals.

Based on these studies we took a thorough look at the NFS algorithm itself. We have
described every aspect of the algorithm, and it should be possible for the readers of this
thesis to implement the algorithm.

We implemented the algorithm and found it to be a rather large and complicated
undertaking. We encountered practical difficulties that weren’t mentioned in existing
literature. These difficulties do not represent mathematical obstacles, but still they can
still represent a challenge during implementation. Some of these problems include an
efficient way of generating the algebraic factor base (which boils down to finding roots
of a polynomial f(x) modulo a prime p) and calculating the norm of a general algebraic
integers a0 + a1α + · · · + ad−1α

d−1 (here, linear algebra came to the rescue). The most
difficult part of the implementation was to take the square root of an algebraic integer
(square). The difficulty of this step was somewhat expected, as this step is traditionally
known to be the most difficult phase of the NFS algorithm.

The sieve phase was quite interesting to implement and tweak. While the theory
[cra05] gives asymptotically optimal values for the bounds of the factor bases and the
sieve widths, in practice many of these values can be tuned for better performance. In
addition, many of the possible implementation tricks have ways to be tweaked (such
as the threshold for regarding a pair (a, b) as smooth, based on approximate logarithm
calculations). We did not exhaust all the tweaking possibilities in our experiments, but a
logical conclusion to the experiments is that we recommend to spend a significant amount
of time to tune the implementation before embarking on a huge factorization task. After
all, the sieve phase is the most time-consuming phase of the NFS under the assumption
that all phases are implemented efficiently.

8.1 Future work
In this section we identify areas of improvement, both in our studies and in our imple-
mentation.

59

60 CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1.1 The theory
There are several ways to improve the NFS algorithm, and before implementing these
the theory needs to be studied. These ways mostly involve doing an entire stage with a
totally different algorithm. Earlier in the thesis we mentioned briefly the existence of a
more efficient sieving algorithm (the lattice sieve), faster ways of doing the linear algebra
step (Block Lanczos and Block Wiedemann) as well as methods for computing algebraic
square roots that are not limited to number rings of odd degrees. See the respective
sections in Chapter 4 for references to these methods.

There are other aspects of the theory we didn’t look into in this thesis, such as the
analysis of the asymptotic number of operations needed in order to factor n as well as
deriving asympotically optimal parameter values.

8.1.2 The implementation
There are multiple ways to improve our implementation which we didn’t explore in this
thesis. In this section we list some suggested improvements.

Algorithmic improvements

We consider both the linear algebra and the algebraic square root phases to be major
bottlenecks in our implementation that keep us from factoring integers much larger than
60 digits. We implemented Gaussian elimination which has a runtime of N3 for a matrix
of size N × N . In addition, our implementation of Couveignes’ algorithm for taking
algebraic square roots is not as fast as it could be. First, we chose to use the easier-
to-implement weak bound for the size of the coefficients of the square root instead of a
better, but harder bound to implement. This requires us to use more moduli in the Chinese
Remainder Theorem processing. In addition, we didn’t utilize a particular implementation
trick mentioned by Couveignes [cou93] that would result in slightly smaller numbers in
intermediate calculations. All the shortcomings mentioned here can be addressed by
changing to the more efficient algorithms mentioned in Section 8.1.1.

Large prime variation

The line sieve can be improved by allowing an additional large prime factor q for each
of a− bm and N(a− bα) where q can be larger than the factor base bound. In order to
use these new pairs a, b we need to find a subset of pairs a, b such that the product of the
rational integers and algebraic integers only have even powers of these large primes.

Parallelism

Several phases of the NFS algorithm can be parallelized. In the line sieve, we fix b and
sieve along a for a given interval. The processing for each b is totally independent, and
is “embarassingly parallel”, which means that we can simply run different threads doing
line sieve for different values of b.

Taking the square root of an algebraic integer is also a computationally intensive
operation. As part of this algorithm we take the square root of an element in a finite field

8.1. FUTURE WORK 61

for each modulo. These intermediate square roots are computed independently, and each
of them can therefore be done in parallel.

62 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

[atk13] Sieve of Atkin - Wikipedia, http://en.wikipedia.org/wiki/Sieve_of_atkin,
retrieved on 2013-02-05.

[bha94] P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. Basic abstract algebra.
Cambridge University Press, 1994.

[bri98] Matthew E. Briggs. An introduction to the general number field sieve. 1998.
[cas03] Michael Case. A beginner’s guide to the general number field sieve, 2003.
[coh93] Henri Cohen. A course in computational algebraic number theory, 1993.
[cop93] Don Coppersmith. Solving linear equations over GF(2): Block Lanczos

algorithm, 1993.
[cou93] Jean-Marc Couveignes. Computing a square root for the number field sieve,

The development of the number field sieve, 1993.
[cra05] Richard Crandall, Carl Pomerance. Prime numbers: a computational

perspective. Springer Verlag, 2005.
[era13] Sieve of Eratosthenes - Wikipedia, http://en.wikipedia.org/wiki/

Sieve_of_eratosthenes, retrieved on 2013-02-05.
[knu98] Donald E. Knuth. The art of computer programming volume 2 - Semi-

numerical algorithms, third edition, 1998.
[len82] A. K. Lenstra, H. W. Lenstra, Jr, L. Lovács. Factoring polynomials with

rational coefficients, 1982.
[len91] A. K. Lenstra, H. W. Lenstra, Jr, M. S. Manasse, J. M. Pollard. The factor-

ization of the ninth Fermat number, 1991.
[len93] A. K. Lenstra, H. W. Lenstra, The development of the number field sieve, 1993.
[mar77] Daniel A. Marcus. Number fields. Springer Verlag, 1977.
[men01] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of

applied cryptography, CRC Press, 2001.
[mur99] Brian Antony Murphy. Polynomial selection for the number field sieve integer

factorisation algorithm, PhD thesis, 1999.
[ngu98] Phong Nguyen. A Montgomery-like square root for the number field sieve,

1998.
[sma03] Nigel Smart. Cryptography: an introduction, third edition, 2003.
[ste02] Ian Stewart, David Tall. Algebraic number theory and Fermat’s last theorem.

2002.
[wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields, IEEE

Transactions on Information Theory, vol IT-32 no 1, pp 54-62, 1986.

63

64 CHAPTER 8. CONCLUSION AND FUTURE WORK

Appendices

65

Appendix A

Program listings

This appendix contains a listing (A.1) of our C code implementing the Number Field
Sieve. There is only one code file, nfs.c which requires one library, GMP. The code
follows the C89 standard with the exception of using the long long data types (which
means that gcc can compile the code in C89 mode). Upon running the program, it will
read multiple input lines from stdin (the number n to factor, factor base bounds, sieve
width and so on). See Listing A.2 for an example input file, which is the one used in
Section 6.6. This input file example is well-documented, and should explain the input
format sufficiently. Blank lines are ignored, and lines beginning with a semicolon are
treated as comments (and are ignored).

Listing A.1: nfs.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #include <math.h>
5 #include <time.h>
6 #include <gmp.h>
7

8 typedef unsigned char uchar;
9 typedef unsigned long long ull;

10 typedef long long ll;
11 typedef unsigned int uint;
12

13 void error(char ∗s) {
14 puts(s);
15 exit(1);
16 }
17

18 /∗ base 2 logarithm ∗/
19 double log2(double a) {
20 const double z=1.44269504088896340736; /∗ 1/log(2) ∗/
21 return log(a)∗z;
22 }
23

24 #define BIGDEG 10
25 #define MAXDEG 10

67

68 APPENDIX A. PROGRAM LISTINGS

26

27 /∗ input parameters ∗/
28

29 mpz_t opt_n; /∗ number to factorize ∗/
30 ull opt_Ba; /∗ bound for algebraic factor base ∗/
31 ull opt_Br; /∗ bound for rational factor base ∗/
32 int opt_Bq; /∗ number of quadratic characters ∗/
33 int opt_deg; /∗ degree of polynomial (must be odd, >=3) ∗/
34 mpz_t opt_m; /∗ m value for base−m algorithm ∗/
35 ull opt_sievew; /∗ width of line sieve ∗/
36 int opt_thr; /∗ threshold for accepting a number in the sieve ∗/
37 int opt_skip; /∗ skip this amount of smallest primes in the sieve ∗/
38 int opt_extra; /∗ number of extra relations wanted for linear algebra ∗/
39 int opt_signb; /∗ −1: a−bm, 1: a+bm ∗/
40

41 void getnextline(char ∗s) {
42 int l;
43 loop:
44 if(!fgets(s,1048570,stdin)) { s[0]=0; return; }
45 if(s[0]==’\n’ || s[0]==’\r’) goto loop;
46 if(s[0]==’;’ || s[0]==’%’ || s[0]==’#’) goto loop;
47 l=strlen(s);
48 while(l && (s[l]==’\n’ || s[l]==’\r’)) s[l−−]=0;
49 }
50

51 gmp_randstate_t gmpseed;
52

53 /∗ get a d−digit random number ∗/
54 void getmpzrandom(mpz_t r,int d) {
55 static char t[1024];
56 mpz_t a,b;
57 int i;
58 if(d>1022) error("too many digits");
59 mpz_init(a); mpz_init(b);
60 t[i]=’1’;
61 for(i=1;i<=d;i++) t[i]=’0’;
62 t[i]=0;
63 mpz_set_str(a,t,10);
64 t[i−1]=0;
65 mpz_set_str(b,t,10);
66 do mpz_urandomm(r,gmpseed,a); while(mpz_cmp(r,b)<0);
67 mpz_clear(b); mpz_clear(a);
68 }
69

70 /∗ return a mod p where a is mpz and p is int ∗/
71 int mpz_mod_int(mpz_t a,int p) {
72 mpz_t b;
73 int r;
74 mpz_init(b);
75 r=mpz_mod_ui(b,a,p);

69

76 mpz_clear(b);
77 return r;
78 }
79

80 void readoptions() {
81 static char s[1048576],t[4096];
82 int z,i;
83 /∗ read n ∗/
84 mpz_init(opt_n);
85 mpz_init(opt_m);
86 getnextline(s);
87 sscanf(s,"%4090s",t);
88 if(t[0]==’c’) {
89 /∗ generate a z−digit composite number without small prime factors ∗/
90 z=strtol(t+1,NULL,10);
91 do {
92 getmpzrandom(opt_n,z);
93 if(!mpz_mod_int(opt_n,2)) continue;
94 if(mpz_probab_prime_p(opt_n,25)) continue;
95 if(z>10) for(i=3;i<20000;i+=2) if(!mpz_mod_int(opt_n,i)) continue;
96 } while(0);
97 } else if(t[0]==’r’) {
98 /∗ generate RSA number: a z−digit number that is the product
99 of two similarly sized primes ∗/

100 z=strtol(t+1,NULL,10);
101 /∗ TODO, pick two primes of z/2 digits and multiply ∗/
102 error("not implemented yet");
103 } else {
104 /∗ take literal number ∗/
105 mpz_set_str(opt_n,t,10);
106 }
107 getnextline(s); sscanf(s,"%I64d",&opt_Ba);
108 getnextline(s); sscanf(s,"%I64d",&opt_Br);
109 getnextline(s); sscanf(s,"%d",&opt_Bq);
110 getnextline(s); sscanf(s,"%d",&opt_deg);
111 getnextline(s); mpz_set_str(opt_m,s,10);
112 getnextline(s); sscanf(s,"%I64d",&opt_sievew);
113 getnextline(s); sscanf(s,"%d",&opt_thr);
114 /∗ TODO support percentage for skip (that is, skip x percent of the
115 primes) ∗/
116 getnextline(s); sscanf(s,"%d",&opt_skip);
117 getnextline(s); sscanf(s,"%d",&opt_extra);
118 if(opt_deg>MAXDEG) error("too high degree");
119 if(!(opt_deg&1)) error("degree must be odd");
120 getnextline(s); sscanf(s,"%d",&opt_signb);
121 if(opt_signb!=1 && opt_signb!=−1) error("wrong sign");
122 }
123

124 /∗ all polynomials have the following format:
125 coefficients in f[i], f[0]=a_0, f[1]=a_1, ..., f[i]=a_i

70 APPENDIX A. PROGRAM LISTINGS

126 size of f[] is MAXDEG+1 ∗/
127

128 /∗ auxilliary routines ∗/
129

130 /∗ need these since gmp doesn’t support long long ∗/
131 ull mpz_get_ull(mpz_t a) {
132 static char s[1048576];
133 ull ret;
134 mpz_get_str(s,10,a);
135 sscanf(s,"%I64d",&ret);
136 return ret;
137 }
138

139 void mpz_set_ull(mpz_t b,ull a) {
140 mpz_import(b, 1, 1, sizeof(a), 0, 0, &a);
141 }
142

143 /∗ return a mod p where a is mpz ∗/
144 ull mpz_mod_ull(mpz_t a,ull p) {
145 ull r;
146 mpz_t b;
147 mpz_init(b);
148 mpz_set_ull(b,p);
149 mpz_mod(b,a,b);
150 r=mpz_get_ull(b);
151 mpz_clear(b);
152 return r;
153 }
154

155 ull gcd(ull a,ull b) {
156 return b?gcd(b,a%b):a;
157 }
158

159 /∗ nfs init stage: create polynomials, determine bounds, create factor base ∗/
160 /∗ includes many subroutines for polynomials ∗/
161

162 /∗ calculate asymptotically optimal d (degree of polynomial)
163 warning, doesn’t work for n with more than 307 digits or so
164 (n must fit in double) ∗/
165 int findhighestdegree(mpz_t n) {
166 double N=mpz_get_d(n);
167 return pow(3∗log(N)/log(log(N)),1./3);
168 }
169

170 /∗ calculate upper bound for factor base
171 warning, doesn’t work for n with more than 307 digits or so
172 (n must fit in double) ∗/
173 ull findB(mpz_t n) {
174 double N=mpz_get_d(n),z=1./3;
175 return exp(pow(8./9,z)∗pow(log(N),z)∗pow(log(log(N)),z+z));

71

176 }
177

178 /∗ calculate number of quadratic characters to obtain
179 warning, doesn’t work for n with more than 307 digits or so
180 (n must fit in double) ∗/
181 ull findK(mpz_t n) {
182 double N=mpz_get_d(n);
183 return 3∗log(N)/log(2.728182818);
184 }
185

186 /∗ given n, m and d, return polynomial of degree d which is the
187 base−m expansion of n. return 0 if something went wrong (degree doesn’t
188 match expansion, polynomial isn’t monic etc) ∗/
189 /∗ assume that ∗f is allocated with (d+1) uninitialized elements.
190 f[0]=a_0, f[1]=a_1, ..., f[d]=1,
191 polynomial is f(x)=a_d x^d + ... + a_1 x + a_0 ∗/
192 int getpolynomial(mpz_t n,mpz_t m,int d,mpz_t ∗f) {
193 mpz_t N;
194 int i,r=1;
195 mpz_init_set(N,n);
196 for(i=0;i<=d;i++) {
197 mpz_init(f[i]);
198 mpz_fdiv_qr(N,f[i],N,m);
199 }
200 /∗ error if base−m expansion of n requires degree!=d or f isn’t monic ∗/
201 if(mpz_cmp_si(N,0) || mpz_cmp_si(f[d],1)) r=0;
202 mpz_clear(N);
203 return r;
204 }
205

206 void printmpzpoly(mpz_t ∗f,int d) {
207 for(;d>1;d−−) gmp_printf("%Zd x^%d + ",f[d],d);
208 gmp_printf("%Zd x + %Zd\n",f[1],f[0]);
209 }
210

211 void printullpoly(ull ∗f,int d) {
212 printf("(%d) ",d);
213 for(;d>−1;d−−) printf("%I64u ",f[d]);
214 }
215

216 /∗ calculate the norm of a−b∗alpha without using division.
217 needs the minimal polynomial f (must be monic!) and its
218 degree d (f[] has d+1 elements, where f[0]=a_0, f[i]=a_i and f[d]=1).
219 put the answer in r ∗/
220 void calcnorm(mpz_t r,mpz_t a,mpz_t b,mpz_t ∗f,int d) {
221 static mpz_t x[MAXDEG+1];
222 mpz_t y,temp;
223 int i;
224 mpz_init(temp);
225 for(i=0;i<=d;i++) mpz_init(x[i]);

72 APPENDIX A. PROGRAM LISTINGS

226 mpz_set_si(x[0],1);
227 mpz_set(x[1],a);
228 mpz_init_set_si(y,1);
229 mpz_set_si(r,0);
230 for(i=2;i<=d;i++) mpz_mul(x[i],x[i−1],a);
231 for(i=d;i>=0;i−−) {
232 mpz_mul(temp,y,x[i]);
233 mpz_addmul(r,temp,f[i]);
234 mpz_mul(y,y,b);
235 }
236 mpz_clear(temp);
237 mpz_clear(y);
238 for(i=0;i<=d;i++) mpz_clear(x[i]);
239 }
240

241 /∗ factor base routines ∗/
242 uchar ∗sieve;
243 #define SETBIT(p) sieve[(p)>>3]|=1<<((p)&7);
244 #define CLEARBIT(p) sieve[(p)>>3]&=~(1<<((p)&7));
245 #define CHECKBIT(p) (sieve[(p)>>3]&(1<<((p)&7)))
246

247 /∗ allocate and generate bit−packed sieve up to (not including) N ∗/
248 void createsieve(ull N) {
249 ull i,j;
250 sieve=malloc((N+7)>>3);
251 memset(sieve,0xaa,(N+7)>>3);
252 sieve[0]=172;
253 for(i=2;i∗i<N;i++) if(CHECKBIT(i)) for(j=i∗i;j<N;j+=i) CLEARBIT(j);
254 }
255

256 /∗ algebraic factor base ∗/
257 ull ∗p1,∗r1;
258 ull bn1;
259 /∗ rational factor base ∗/
260 ull ∗p2;
261 ull bn2;
262 /∗ quadratic characters ∗/
263 ull ∗p3,∗r3;
264 ull bn3;
265

266 /∗ evaluate f(x), assume f monic ∗/
267 void evalpoly(mpz_t ∗f,int deg,mpz_t x,mpz_t ret) {
268 int i;
269 mpz_set(ret,f[deg]);
270 for(i=deg−1;i>=0;i−−) {
271 mpz_mul(ret,ret,x);
272 mpz_add(ret,ret,f[i]);
273 }
274 }
275

73

276 /∗ warning, requires 64−bit compiler, i think ∗/
277 typedef __uint128_t ulll;
278 ull ullmulmod2(ull a,ull b,ull mod) { return (ulll)a∗b%mod; }
279

280 /∗ evaluate f(x)%p, assume f monic. requires p<2^63 ∗/
281 ull evalpolymod(ull ∗f,int df,ull x,ull p) {
282 ull r=f[df];
283 int i;
284 for(i=df−1;i>=0;i−−) r=(ullmulmod2(r,x,p)+f[i])%p;
285 return r;
286 }
287

288 /∗ start of routine that finds all roots (aka linear factors) of a polynomial
289 modulo a prime ∗/
290 /∗ begins with various routines for doing polynomial arithmetic over Z_p ∗/
291 /∗ in general, all routines that do stuff modulo m should be fed numbers in
292 0, 1, ..., m−1 ∗/
293

294 /∗ calculate inverse of a mod m (m can be composite, but 0 will be
295 returned if an inverse doesn’t exist). warning, don’t use if m>=2^63 ∗/
296 ll inverse(ll a,ll m) {
297 ll b=m,x=0,y=1,t,q,lastx=1,lasty=0;
298 while(b) {
299 q=a/b;
300 t=a,a=b,b=t%b;
301 t=x,x=lastx−q∗x,lastx=t;
302 t=y,y=lasty−q∗y,lasty=t;
303 }
304 return a==1?(lastx%m+m)%m:0;
305 }
306

307 /∗ modular square root! ∗/
308

309 /∗ calculate the jacobi symbol, returns 0, 1 or −1 ∗/
310 /∗ 1: a is quadratic residue mod m, −1: a is not, 0: a mod m=0 ∗/
311 /∗ based on algorithm 2.3.5 in "prime numbers" (crandall, pomerance) ∗/
312 /∗ WARNING, m must be an odd positive number ∗/
313 int jacobi(ll a,ll m) {
314 int t=1;
315 ll z;
316 a%=m;
317 while(a) {
318 while(!(a&1)) {
319 a>>=1;
320 if((m&7)==3 || (m&7)==5) t=−t;
321 }
322 z=a,a=m,m=z;
323 if((a&3)==3 && (m&3)==3) t=−t;
324 a%=m;
325 }

74 APPENDIX A. PROGRAM LISTINGS

326 if(m==1) return t;
327 return 0;
328 }
329

330 ull ullpowmod(ull n,ull k,ull mod) {
331 int i,j;
332 ull v=n,ans=1;
333 if(!k) return 1;
334 /∗ find topmost set bit ∗/
335 for(i=63;!(k&(1ULL<<i));i−−);
336 for(j=0;j<=i;j++) {
337 if(k&(1ULL<<j)) ans=ullmulmod2(ans,v,mod);
338 v=ullmulmod2(v,v,mod);
339 }
340 return ans;
341 }
342

343 /∗ calculate legendre symbol, returns 0, 1 or −1 ∗/
344 /∗ 1: a is quadratic residue mod p, −1: a is not, 0: a mod p=0 ∗/
345 /∗ WARNING, p must be an odd prime ∗/
346 int legendre(ll a,ll p) {
347 a%=p;
348 if(a<0) a+=p;
349 int z=ullpowmod(a,(p−1)>>1,p);
350 return z==p−1?−1:z;
351 }
352

353 ull rand64() {
354 return (rand()&32767) +
355 ((rand()&32767)<<15) +
356 ((rand()&32767ULL)<<30) +
357 ((rand()&32767ULL)<<45) +
358 ((rand()&15ULL)<<60);
359 }
360

361 /∗ find square root of a modulo p (p prime) using tonelli−shanks ∗/
362 /∗ runtime O(ln^4 p) ∗/
363 /∗ mod 3,5,7: algorithm 2.3.8 from "prime numbers" (crandall, pomerance) ∗/
364 /∗ mod 1: from http://www.mast.queensu.ca/~math418/m418oh/m418oh11.pdf ∗/
365 ull sqrtmod(ull a,ull p) {
366 int p8,alpha,i;
367 ull x,c,s,n,b,J,r2a,r;
368 if(p==2) return a&1;
369 a%=p;
370 if(legendre(a,p)!=1) return 0; /∗ no square root ∗/
371 p8=p&7;
372 if(p8==3 || p8==5 || p8==7) {
373 if((p8&3)==3) return ullpowmod(a,(p+1)/4,p);
374 x=ullpowmod(a,(p+3)/8,p);
375 c=ullmulmod2(x,x,p);

75

376 return c==a?x:ullmulmod2(x,ullpowmod(2,(p−1)/4,p),p);
377 }
378 alpha=0;
379 s=p−1;
380 while(!(s&1)) s>>=1,alpha++;
381 r=ullpowmod(a,(s+1)/2,p);
382 r2a=ullmulmod2(r,ullpowmod(a,(s+1)/2−1,p),p);
383 do n=rand64()%(p−2)+2; while(legendre(n,p)!=−1);
384 b=ullpowmod(n,s,p);
385 J=0;
386 for(i=0;i<alpha−1;i++) {
387 c=ullpowmod(b,2∗J,p);
388 c=ullmulmod2(r2a,c,p);
389 c=ullpowmod(c,1ULL<<(alpha−i−2),p);
390 if(c==p−1) J+=1ULL<<i;
391 }
392 return ullmulmod2(r,ullpowmod(b,J,p),p);
393 }
394

395 /∗ set b(x)=a(x) ∗/
396 void polyset(ull ∗a,int da,ull ∗b,int ∗db) {
397 int i;
398 for(∗db=da,i=0;i<=∗db;i++) b[i]=a[i];
399 }
400

401 /∗ set c(x)=a(x)+b(x) ∗/
402 void polyaddmod(ull ∗a,int da,ull ∗b,int db,ull ∗c,int ∗dc,ull p) {
403 static ull r[MAXDEG+1];
404 int i,dr;
405 dr=da>db?da:db;
406 for(i=da+1;i<=dr;i++) r[i]=0;
407 for(i=0;i<=da;i++) r[i]=a[i];
408 for(i=0;i<=db;i++) {
409 r[i]+=b[i];
410 if(r[i]>=p) r[i]−=p;
411 }
412 while(dr>−1 && !r[dr]) dr−−;
413 ∗dc=dr;
414 for(i=0;i<=dr;i++) c[i]=r[i];
415 }
416

417 /∗ negates a (modifies a) ∗/
418 void polynegmod(ull ∗a,int da,ull p) {
419 for(;da>−1;da−−) a[da]=((ll)p−(ll)a[da])%p;
420 }
421

422 /∗ given polynomials a(x) and b(x), calculate quotient and
423 remainder of a(x)/b(x) (mod p)
424 dega, degb are the degrees of a and b, respectively. assume that ∗c, ∗d
425 has enough pre−allocated memory to hold the results. don’t assume that

76 APPENDIX A. PROGRAM LISTINGS

426 any of a,b,c,d are non−overlapping memory areas.
427 if c is non−NULL, return quotient.
428 if d is non−NULL, return remainder. remainder==0 has degree −1.
429 ∗/
430 void polydivmod(ull ∗a,int dega,ull ∗b,int degb,ull ∗c,int ∗degc,ull ∗d,int ∗degd,ull p) {
431 static ull u[MAXDEG+1],q[MAXDEG+1];
432 ull inv=inverse(b[degb],p);
433 int k,j;
434 for(k=0;k<=dega;k++) u[k]=a[k];
435 for(k=dega−degb;k>−1;k−−) {
436 q[k]=ullmulmod2(u[degb+k],inv,p);
437 for(j=degb+k−1;j>=k;j−−) {
438 u[j]=u[j]−ullmulmod2(q[k],b[j−k],p);
439 if(u[j]>=p) u[j]+=p;
440 }
441 }
442 if(c) for(∗degc=dega−degb,k=∗degc;k>−1;k−−) c[k]=q[k];
443 if(d) for(∗degd=−1,k=0;k<degb && k<=dega;k++) if((d[k]=u[k])) ∗degd=k;
444 }
445

446 /∗ make polynomial monic, destroy input polynomial ∗/
447 void polymonic(ull ∗a,int da,ull p) {
448 ull z;
449 int i;
450 if(da<0 || a[da]==1) return;
451 z=inverse(a[da],p);
452 for(i=0;i<da;i++) a[i]=ullmulmod2(a[i],z,p);
453 a[da]=1;
454 }
455

456 /∗ return a(x)∗b(x) over Z_p ∗/
457 void polymulmod(ull ∗a,int dega,ull ∗b,int degb,ull ∗c,int ∗degc,ull p) {
458 static ull r[2∗MAXDEG+1];
459 int i,j;
460 ∗degc=dega+degb;
461 for(i=0;i<=∗degc;i++) r[i]=0;
462 for(i=0;i<=dega;i++) {
463 for(j=0;j<=degb;j++) {
464 r[i+j]=r[i+j]+ullmulmod2(a[i],b[j],p);
465 if(r[i+j]>=p) r[i+j]−=p;
466 }
467 }
468 for(i=0;i<=∗degc;i++) c[i]=r[i];
469 while(∗degc>−1 && !c[∗degc]) (∗degc)−−;
470 }
471

472 /∗ reduce a(x) mod v(x) over Z_p ∗/
473 /∗ runtime: O(degree^2) ∗/
474 void polyreduce(ull ∗a,int da,ull ∗v,int dv,ull ∗c,int ∗dc,ull p) {
475 static ull w[2∗MAXDEG+1];

77

476 ull t;
477 int i,j,z;
478 for(i=0;i<=da;i++) w[i]=a[i];
479 for(i=da+1;i<=dv;i++) w[i]=0;
480 /∗ for each i=da, da−1, ..., dv, subtract a(i)∗v(x)∗x^(i−dv) ∗/
481 for(i=da;i>=dv;i−−) for(j=0;j<=dv;j++) {
482 z=i−dv; t=w[i];
483 w[z+j]=(w[z+j]+p−ullmulmod2(t,v[j],p))%p;
484 }
485 /∗ tighten dc ∗/
486 for(∗dc=−1,i=0;i<dv;i++) if((c[i]=w[i])) ∗dc=i;
487 }
488

489 /∗ given f, return g=f’ (mod p) ∗/
490 void polyderivemod(ull ∗f,int df,ull ∗g,int ∗dg,ull p) {
491 int i;
492 ∗dg=df−1;
493 for(i=1;i<=df;i++) g[i−1]=ullmulmod2(f[i],i,p);
494 while(∗dg>−1 && !g[∗dg]) (∗dg)−−;
495 }
496

497 /∗ return a(x)∗b(x) mod v(x) over Z_p ∗/
498 /∗ this can probably also be used to multiply two elements
499 in the quotient ring Z_p/<v(x)> ∗/
500 /∗ WARNING, not efficient. integrate mulmod and reduce more tightly ∗/
501 void polymulmodmod(ull ∗a,int da,ull ∗b,int db,ull ∗v,int dv,ull ∗c,int ∗dc,ull p) {
502 static ull d[2∗MAXDEG+1];
503 int dd;
504 polymulmod(a,da,b,db,d,&dd,p);
505 polyreduce(d,dd,v,dv,c,dc,p);
506 }
507

508 /∗ return a(x)^n mod v(x) over Z_p, put result in c ∗/
509 /∗ warning, not very efficient, really, but care about that later ∗/
510 void polypowmodmod(ull ∗a,int da,ull n,ull ∗v,int dv,ull ∗c,int ∗dc,ull p) {
511 ull z[MAXDEG+1],y[MAXDEG+1]={1};
512 int dz,dy=0,i;
513 polyset(a,da,z,&dz);
514 while(n) {
515 if(n&1) {
516 n>>=1;
517 polymulmodmod(y,dy,z,dz,v,dv,y,&dy,p);
518 if(!n) break;
519 } else n>>=1;
520 polymulmodmod(z,dz,z,dz,v,dv,z,&dz,p);
521 }
522 for(∗dc=dy,i=0;i<=∗dc;i++) c[i]=y[i];
523 }
524

525 /∗ return a(x)^n mod v(x) over Z_p, put result in c, exponent is mpz ∗/

78 APPENDIX A. PROGRAM LISTINGS

526 /∗ warning, not very efficient, really, but care about that later ∗/
527 void polypowmodmodmpz(ull ∗a,int da,mpz_t N,ull ∗v,int dv,ull ∗c,int ∗dc,ull p) {
528 ull z[MAXDEG+1],y[MAXDEG+1]={1};
529 int dz=da,dy=0,i;
530 mpz_t t,n;
531 mpz_init(t);
532 mpz_init_set(n,N);
533 for(i=0;i<=dz;i++) z[i]=a[i];
534 while(mpz_cmp_si(n,0)>0) {
535 if(mpz_mod_ui(t,n,2)) {
536 mpz_fdiv_q_2exp(n,n,1);
537 polymulmodmod(y,dy,z,dz,v,dv,y,&dy,p);
538 if(!mpz_cmp_si(n,0)) break;
539 } else mpz_fdiv_q_2exp(n,n,1);
540 polymulmodmod(z,dz,z,dz,v,dv,z,&dz,p);
541 }
542 for(∗dc=dy,i=0;i<=∗dc;i++) c[i]=y[i];
543 mpz_clear(n);
544 mpz_clear(t);
545 }
546

547 /∗ return a(x)^n over Z_p ∗/
548 void polypowmod(ull ∗a,int da,ull n,ull ∗c,int ∗dc,ull p) {
549 ull z[MAXDEG+1],y[MAXDEG+1]={1};
550 int dz=da,dy=0,i;
551 for(i=0;i<=dz;i++) z[i]=a[i];
552 while(n) {
553 if(n&1) {
554 n>>=1;
555 polymulmod(y,dy,z,dz,y,&dy,p);
556 if(!n) break;
557 } else n>>=1;
558 polymulmod(z,dz,z,dz,z,&dz,p);
559 }
560 for(∗dc=dy,i=0;i<=∗dc;i++) c[i]=y[i];
561 }
562

563 /∗ given polynomials a(x), b(x), calculate g(x)=gcd(a(x),b(x)) mod p. ∗/
564 void polygcdmod(ull ∗a,int da,ull ∗b,int db,ull ∗g,int ∗dg,ull p) {
565 static ull c[MAXDEG+1],d[MAXDEG+1],e[MAXDEG+1];
566 int dc,dd,de,i;
567 polyset(a,da,c,&dc);
568 polyset(b,db,d,&dd);
569 /∗ sanity check: a==0 ∗/
570 if(da<0) {
571 for(∗dg=dd,i=0;i<=∗dg;i++) g[i]=d[i];
572 goto end;
573 }
574 while(dd>−1) {
575 polydivmod(c,dc,d,dd,NULL,NULL,e,&de,p);

79

576 polyset(d,dd,c,&dc);
577 polyset(e,de,d,&dd);
578 }
579 polyset(c,dc,g,dg);
580 end:
581 /∗ make output monic ∗/
582 polymonic(g,∗dg,p);
583 }
584

585 /∗ calculate inverse of a mod m (m can be composite, but 0 will be
586 returned if an inverse doesn’t exist). warning, don’t use if m>=2^63 ∗/
587 ll inversemal(ll a,ll m) {
588 ll b=m,x=0,y=1,t,q,lastx=1,lasty=0;
589 while(b) {
590 q=a/b;
591 t=a,a=b,b=t%b;
592 t=x,x=lastx−q∗x,lastx=t;
593 t=y,y=lasty−q∗y,lasty=t;
594 }
595 return a==1?(lastx%m+m)%m:0;
596 }
597

598 /∗ find the inverse g(x)=a^1(x) of a(x) mod f(x) mod p using
599 the extended euclid algorithm ∗/
600 /∗ f(x) is assumed to be monic. if an inverse doesn’t exist, return g=0 ∗/
601 void polyinversemodmod(ull ∗in,int din,ull ∗f,int df,ull ∗g,int ∗dg,ull p) {
602 ull b[MAXDEG+1],x[MAXDEG+1],y[MAXDEG+1],lastx[MAXDEG+1],lasty[MAXDEG+1];
603 ull t[MAXDEG+1],q[MAXDEG+1],a[MAXDEG+1],z[MAXDEG+1],v;
604 int db,dx,dy,lastdx,lastdy,dt,dq,da,dz,i;
605 if(din<0) { ∗dg=−1; return; }
606 polyset(f,df,b,&db);
607 polyset(in,din,a,&da);
608 dx=−1; y[0]=1; dy=0;
609 lastx[0]=1; lastdx=0; lastdy=−1;
610 while(db>−1) {
611 /∗ set a=b, b=a%b, q=a/b ∗/
612 polyset(a,da,t,&dt);
613 polyset(b,db,a,&da);
614 polydivmod(t,dt,a,da,q,&dq,b,&db,p);
615 /∗ set x=lastx−q∗x, lastx=x ∗/
616 polyset(x,dx,t,&dt);
617 polymulmod(q,dq,x,dx,z,&dz,p);
618 polyset(lastx,lastdx,x,&dx);
619 polynegmod(z,dz,p);
620 polyaddmod(x,dx,z,dz,x,&dx,p);
621 polyset(t,dt,lastx,&lastdx);
622 /∗ set y=lasty−q∗y, lasty=y ∗/
623 polyset(y,dy,t,&dt);
624 polymulmod(q,dq,y,dy,z,&dz,p);
625 polyset(lasty,lastdy,y,&dy);

80 APPENDIX A. PROGRAM LISTINGS

626 polynegmod(z,dz,p);
627 polyaddmod(y,dy,z,dz,y,&dy,p);
628 polyset(t,dt,lasty,&lastdy);
629 }
630 /∗ now a is gcd(a,f). if !=1 return failure ∗/
631 if(da>0) { ∗dg=−1; return; }
632 /∗ lastx is inverse, multiply with inverse of a[0] ∗/
633 if(a[0]!=1) {
634 v=inverse(a[0],p);
635 for(i=0;i<=lastdx;i++) lastx[i]=ullmulmod2(lastx[i],v,p);
636 }
637 for(∗dg=lastdx,i=0;i<=lastdx;i++) g[i]=lastx[i];
638 }
639

640 /∗ return 1 if u(x) is squarefree. u is squarefree iff gcd(u,u’)==1.
641 u(x) must be monic. unpredictable results if deg u <= p ∗/
642 int ispolymodsquarefree(ull ∗u,int du,ull p) {
643 static ull ud[MAXDEG+1],g[MAXDEG+1];
644 int dud,dg,i;
645 for(dud=du−1,i=0;i<du;i++) ud[i]=ullmulmod2(u[i+1],i+1,p);
646 while(dud>−1 && !ud[dud]) dud−−;
647 polygcdmod(u,du,ud,dud,g,&dg,p);
648 return dg==0;
649 }
650

651 /∗ find all roots by naive method (evaluate in(x) for all x), inefficient ∗/
652 void polylinmodnaive(ull ∗in,int dv,ull p,ull ∗f,int ∗fn) {
653 ll x;
654 for(∗fn=x=0;x<p;x++) if(!evalpolymod(in,dv,x,p)) f[(∗fn)++]=x;
655 }
656

657 /∗ find roots of u(x) mod p, p must be an odd prime larger than
658 the degree of u(x) ∗/
659 /∗ based on algorithm 1.6.1 in cohen ∗/
660 void polyfindrootmod(ull ∗z,int dz,ull p,ull ∗f,int ∗fn) {
661 /∗ cast out gcd(f’,f) ∗/
662 static ull g[MAXDEG+1],ud[MAXDEG+1],u[MAXDEG+1],m1[MAXDEG+1];
663 static ull q[MAXDEG+1][MAXDEG+1];
664 ull d,e;
665 int du,dg,dud,qn=1,done,i,dm1;
666 static int dq[MAXDEG+1];
667 ∗fn=0;
668 polyset(z,dz,u,&du);
669 /∗ force u monic ∗/
670 polymonic(u,du,p);
671 polyderivemod(u,du,ud,&dud,p);
672 polygcdmod(u,du,ud,dud,g,&dg,p);
673 /∗ force gcd monic ∗/
674 polymonic(g,dg,p);
675 /∗ divide out squares ∗/

81

676 polydivmod(u,du,g,dg,u,&du,NULL,NULL,p);
677 /∗ cast out 0−factor ∗/
678 if(!u[0]) {
679 g[0]=0; g[1]=1; dg=1;
680 polydivmod(u,du,g,dg,u,&du,NULL,NULL,p);
681 f[(∗fn)++]=0;
682 }
683 /∗ m1(x)=−1 (p−1) ∗/
684 m1[0]=p−1; dm1=0;
685 /∗ take gcd(x^(p−1)−1, u(x)) and isolate roots ∗/
686 /∗ first take d=x^(p−1) mod u, then take gcd(d−1,u) ∗/
687 g[0]=0; g[1]=1; dg=1;
688 polypowmodmod(g,dg,p−1,u,du,g,&dg,p);
689 polyaddmod(g,dg,m1,dm1,g,&dg,p);
690 polygcdmod(g,dg,u,du,q[0],&dq[0],p);
691 do {
692 done=1;
693 /∗ if deg>2, try to split polynomial. benchmarking shows it’s faster
694 to split down to deg 2 rather than deg 1. ∗/
695 for(i=0;i<qn;i++) if(dq[i]>2) {
696 do {
697 g[0]=rand64()%p; g[1]=1; dg=1;
698 polypowmodmod(g,dg,p>>1,q[i],dq[i],g,&dg,p);
699 polyaddmod(g,dg,m1,dm1,g,&dg,p);
700 polygcdmod(g,dg,q[i],dq[i],g,&dg,p);
701 } while(!dg || dg==dq[i]);
702 polydivmod(q[i],dq[i],g,dg,q[i],&dq[i],NULL,NULL,p);
703 polyset(g,dg,q[qn],&dq[qn]);
704 qn++;
705 done=0;
706 }
707 } while(!done);
708 /∗ go through each item in the list, and output roots ∗/
709 for(i=0;i<qn;i++) {
710 if(dq[i]==1) {
711 if(q[i][1]==1) f[(∗fn)++]=(p−q[i][0])%p;
712 else f[(∗fn)++]=ullmulmod2((p−q[i][0])%p,inverse(q[i][1],p),p);
713 } else if(dq[i]==2) {
714 d=ullmulmod2(q[i][1],q[i][1],p);
715 e=ullmulmod2(q[i][0],q[i][2],p);
716 e=sqrtmod((d+p−ullmulmod2(e,4,p))%p,p);
717 d=ullmulmod2(inverse(2,p),q[i][2],p);
718 f[(∗fn)++]=ullmulmod2((p+e−q[i][1])%p,d,p);
719 f[(∗fn)++]=ullmulmod2((p+p−e−q[i][1])%p,d,p);
720 }
721 }
722 }
723

724 /∗ entry point for new routine ∗/
725 void findideals2(ull ∗u,int du,ull p,ull ∗f,int ∗fn) {

82 APPENDIX A. PROGRAM LISTINGS

726 /∗ naive algorithm for small enough p: evaluate f(r) for all 0<=r<p ∗/
727 if(p<200 || p<=du) return polylinmodnaive(u,du,p,f,fn);
728 polyfindrootmod(u,du,p,f,fn);
729 }
730

731 /∗ determinant using stupid and slow O(n!) algorith, but n will never
732 be huge (say, never larger than 6 and in practice it will always be 3).
733 generate permutations using fancy loop−free algorithm by knuth
734 where successively generated permutations have alternating parity
735 [an easy O(n^3) algorithm: gauss−jordan and return product of diagonal
736 times the numbers we divided the rows with] ∗/
737 ull calcdet(ull A[MAXDEG+1][MAXDEG+1],int n,ull p) {
738 ull res=0,r;
739 int o[100],c[100],j,s,q,a[100],sign=1;
740 char t;
741 for(j=0;j<n;j++) c[j]=0,o[j]=1,a[j]=j;
742 p2:
743 /∗ visit permutation ∗/
744 r=sign?1:p−1;
745 for(j=0;j<n;j++) r=ullmulmod2(r,A[j][a[j]],p);
746 res+=r;
747 if(res>=p) res−=p;
748 sign^=1;
749 /∗ end visit ∗/
750 j=n; s=0;
751 p4:
752 q=c[j−1]+o[j−1];
753 if(q<0) goto p7;
754 if(q==j) goto p6;
755 t=a[j−c[j−1]+s−1]; a[j−c[j−1]+s−1]=a[j−q+s−1]; a[j−q+s−1]=t;
756 c[j−1]=q;
757 goto p2;
758 p6:
759 if(j==1) return res;
760 s++;
761 p7:
762 o[j−1]=−o[j−1]; j−−;
763 goto p4;
764 }
765

766 /∗ calculate norm mod p of general element a(x) in field with minimal
767 polynomial f(x). uses determinant method ∗/
768 /∗ tested against calcnorm() with tens of millions of numbers of the form
769 a+b∗alpha with degrees 3−6, with a,b huge modulo a huge prime ∗/
770 ull calcnormmod(ull ∗a,int da,ull ∗f,int df,ull p) {
771 static ull A[MAXDEG+1][MAXDEG+1];
772 ull b[MAXDEG+1]={0,1},c[MAXDEG+1];
773 int i,j,db=1,dc;
774 polyset(a,da,c,&dc);
775 for(i=0;i<=dc;i++) A[i][0]=a[i];

83

776 for(;i<df;i++) A[i][0]=0;
777 for(j=1;j<df;j++) {
778 polymulmodmod(c,dc,b,db,f,df,c,&dc,p);
779 for(i=0;i<=dc;i++) A[i][j]=c[i];
780 for(;i<df;i++) A[i][j]=0;
781 }
782 return calcdet(A,df,p);
783 }
784

785 /∗ B1 and B2 are upper bound for primes (algebraic and rational)
786 f is polynomial, deg is degree
787 p1,r1 is algebraic factor base, bn1 is number of primes
788 p2 is rational factor base, bn2 is number of primes ∗/
789 void createfactorbases(ull B1,ull B2,ull Bk,mpz_t ∗f,int deg,ull ∗∗_p1,ull ∗∗_r1,ull ∗bn1,ull ∗∗_p2,ull ∗bn2,
790 ull ∗∗_p3,ull ∗∗_r3,ull ∗bn3) {
791 static ull b[MAXDEG+1];
792 static ull root[MAXDEG+1];
793 ull B=B1>B2?B1:B2,i,j,q;
794 ull ∗p1,∗r1,∗p2,∗p3,∗r3;
795 int fn;
796 int db,k;
797 char ∗sieve=malloc(B+1);
798 memset(sieve,1,B+1);
799 for(i=2;i∗i<=B;i++) if(sieve[i]) for(j=i∗i;j<=B;j+=i) sieve[j]=0;
800 /∗ generate rational factor base ∗/
801 for(∗bn2=0,i=2;i<=B2;i++) if(sieve[i]) (∗bn2)++;
802 if(!(p2=malloc(∗bn2∗sizeof(ull)))) error("couldn’t allocate rational factor base");
803 for(∗bn2=0,i=2;i<=B2;i++) if(sieve[i]) p2[(∗bn2)++]=i;
804

805 /∗ generate algebraic factor base ∗/
806 for(∗bn1=0,i=2;i<=B1;i++) if(sieve[i]) {
807 /∗ find all eligible r: r such that f(r)=0 (mod p) using factorization ∗/
808 db=deg;
809 for(k=0;k<=db;k++) b[k]=mpz_mod_ull(f[k],i);
810 findideals2(b,db,i,root,&fn);
811 ∗bn1+=fn;
812 }
813 if(!(p1=malloc(∗bn1∗sizeof(ull)))) error("couldn’t allocate algebraic factor base");
814 if(!(r1=malloc(∗bn1∗sizeof(ull)))) error("couldn’t allocate algebraic factor base");
815 for(∗bn1=0,i=2;i<=B1;i++) if(sieve[i]) {
816 /∗ find all roots again. we happily waste some computing resources since
817 the sieve stage will dominate the runtime anyway ∗/
818 /∗ slow method again TODO replace with factorization ∗/
819 db=deg;
820 for(k=0;k<=db;k++) b[k]=mpz_mod_ull(f[k],i);
821 findideals2(b,db,i,root,&fn);
822 for(j=0;j<fn;j++) p1[∗bn1]=i,r1[(∗bn1)++]=root[j];
823 }
824

825 /∗ generate quadratic characters ∗/

84 APPENDIX A. PROGRAM LISTINGS

826 ∗bn3=Bk;
827 if(!(p3=malloc(∗bn3∗sizeof(ull)))) error("couldn’t allocate quadratic characters");
828 if(!(r3=malloc(∗bn3∗sizeof(ull)))) error("couldn’t allocate quadratic characters");
829 for(i=0,q=B1+1;i<∗bn3;q++) {
830 /∗ check if q is prime ∗/
831 for(j=0;j<∗bn2 && p2[j]∗p2[j]<=q;j++) if(q%p2[j]==0) goto noprime;
832 db=deg;
833 for(k=0;k<=db;k++) b[k]=mpz_mod_ull(f[k],q);
834 findideals2(b,db,q,root,&fn);
835 if(!fn) continue;
836 /∗ find value from root such that f’(value)!=0 mod q ∗/
837 polyderivemod(b,db,b,&db,q);
838 for(k=0;k<fn;k++) if(evalpolymod(b,db,root[k],q)) {
839 p3[i]=q;
840 r3[i]=root[k];
841 i++;
842 break;
843 }
844 noprime:;
845 }
846

847 free(sieve);
848 ∗_p1=p1; ∗_r1=r1; ∗_p2=p2; ∗_p3=p3; ∗_r3=r3;
849 }
850

851 /∗ return index of v in p, or −1 if it doesn’t exist ∗/
852 ull bs(ull ∗p,ull bn,ull v) {
853 ull lo=0,hi=bn,mid;
854 while(lo<hi) {
855 mid=(lo+hi)>>1;
856 if(v>p[mid]) lo=mid+1;
857 else hi=mid;
858 }
859 return lo<bn && p[lo]==v?lo:−1;
860 }
861

862 /∗ matrix (global) ∗/
863 uint ∗∗M;
864 int notsmooth,missed,smooth;
865

866 /∗ gaussian elimination mod 2 on bitmasks, A is n∗m, b is n∗o ∗/
867 /∗ a is a malloced array of pointers, each a[i] is of size
868 sizeof(uint)∗(m+o+31)/32 ∗/
869 /∗ return 0: no solutions, 1: one solution, 2: free variables ∗/
870 #define ISSET(a,row,col) (a[(row)][(col)>>5]&(1U<<((col)&31)))
871 #define MSETBIT(a,row,col) a[(row)][(col)>>5]|=(1U<<((col)&31))
872 #define MTOGGLEBIT(a,row,col) a[(row)][(col)>>5]^=(1U<<((col)&31))
873 int bitgauss32(uint ∗∗a,int n,int m,int o) {
874 int i,j,k,z=m+o,c=0,fri=0,bz=(z+31)>>5;
875 uint t;

85

876 /∗ process each column ∗/
877 for(i=0;i<m;i++) {
878 /∗ TODO check words instead of bits ∗/
879 for(j=c;j<n;j++) if(ISSET(a,j,i)) break;
880 if(j==n) { fri=1; continue; }
881 /∗ swap? ∗/
882 if(j>c) for(k=0;k<bz;k++) {
883 t=a[j][k],a[j][k]=a[c][k],a[c][k]=t;
884 }
885 /∗ subtract multiples of this row ∗/
886 for(j=0;j<n;j++) if(j!=c && ISSET(a,j,i)) {
887 for(k=0;k<bz;k++) a[j][k]^=a[c][k];
888 }
889 c++;
890 }
891 /∗ detect no solution: rows with 0=b ∗/
892 for(i=0;i<n;i++) {
893 /∗ TODO make bit−efficient solution later ∗/
894 for(j=0;j<m;j++) if(ISSET(a,i,j)) goto ok;
895 for(;j<z;j++) if(ISSET(a,i,j)) return 0;
896 ok:;
897 }
898 return 1+fri;
899 }
900

901 /∗ find all free variables: variable i is free if there is no row having its first
902 1−element in column i ∗/
903 int findfreevars(uint ∗∗a,int rows,int cols,uchar ∗freevar) {
904 int i,j,r=cols;
905 memset(freevar,1,cols);
906 for(i=0;i<rows;i++) {
907 for(j=0;j<cols;j++) if(ISSET(a,i,j)) {
908 freevar[j]=0;
909 r−−;
910 break;
911 }
912 }
913 return r;
914 }
915

916 /∗ find exponents of square. id is the index of the free variable we want to
917 use
918 rows: factor base
919 cols: relations ∗/
920 void getsquare(uint ∗∗a,int rows,int cols,uchar ∗freevar,int id,uchar ∗v) {
921 int i,j,k;
922 memset(v,0,cols);
923 /∗ set id−th free variable ∗/
924 for(j=i=0;i<cols;i++) if(freevar[i]) {
925 if(id==j) { v[i]=1; break; }

86 APPENDIX A. PROGRAM LISTINGS

926 j++;
927 }
928 /∗ get solution vector by back substitution! set the first 1−element to the
929 xor of the others. ∗/
930 for(i=rows−1;i>=0;i−−) {
931 for(j=0;j<cols;j++) if(ISSET(a,i,j)) goto ok;
932 continue;
933 ok:
934 for(k=j++;j<cols;j++) if(ISSET(a,i,j) && v[j]) v[k]^=1;
935 }
936 }
937

938 /∗ store rational factors for pairs (a,b) ∗/
939 ull ∗∗faclist;
940 int ∗facn;
941 /∗ store algebraic factors for pairs (a,b) ∗/
942 ull ∗∗alglist;
943 int ∗algn;
944

945 /∗ get rational square root! ∗/
946 void getratroot(mpz_t n,uchar ∗v,int cols,mpz_t ∗f,int df,mpz_t m,mpz_t root,int ∗aval,int ∗bval) {
947 mpz_t t;
948 static mpz_t fd[MAXDEG+1];
949 static int ∗ev;
950 int dfd;
951 mpz_init(t);
952 mpz_set_si(root,1);
953 int i,j;
954 ev=calloc(bn2,sizeof(int));
955 if(!ev) error("out of memory");
956 for(i=0;i<cols;i++) if(v[i]) for(j=0;j<facn[i];j++) ev[faclist[i][j]]++;
957 /∗ sanity ∗/
958 for(i=0;i<bn2;i++) if(ev[i]&1) error("odd exponent in rat");
959 for(i=0;i<bn2;i++) if(ev[i]) {
960 mpz_set_ull(t,p2[i]);
961 for(j=0;j+j<ev[i];j++) mpz_mul(root,root,t);
962 mpz_mod(root,root,n);
963 }
964 /∗ multiply value with f’(m)^2 ∗/
965 dfd=df−1;
966 for(i=0;i<=dfd;i++) {
967 mpz_init_set(fd[i],f[i+1]);
968 mpz_mul_ui(fd[i],fd[i],i+1);
969 }
970 evalpoly(fd,dfd,m,t);
971 mpz_mod(t,t,n); /∗ t = f’(m) mod n ∗/
972 mpz_mul(root,root,t); /∗ multiply in f’(m) ∗/
973 mpz_mod(root,root,n); /∗ and reduce mod n ∗/
974 mpz_mul(t,root,root);
975 mpz_mod(t,t,n);

87

976 gmp_printf("rational root: %Zd, square %Zd\n",root,t);
977 for(i=0;i<=dfd;i++) mpz_clear(fd[i]);
978 free(ev);
979 mpz_clear(t);
980 }
981

982 /∗ start of routines for algebraic square root ∗/
983

984 /∗ return 1 if f(x) is irreducible mod p ∗/
985 int polyirredmod(mpz_t ∗in,int df,ull p) {
986 /∗ check if gcd(x^(p^d)−x,f) is a non−constant
987 polynomial for 1<=d<=df/2 ∗/
988 static ull g[MAXDEG+1],h[MAXDEG+1],f[MAXDEG+1];
989 int dg,i,j,dh;
990 for(i=0;i<=df;i++) f[i]=mpz_mod_ull(in[i],p);
991 for(i=1;i+i<=df;i++) {
992 /∗ form x^p^i − x ∗/
993 /∗ use that x^p^i = ((x^p)^p) ... ^p (i times) ∗/
994 g[0]=0; g[1]=1; dg=1;
995 for(j=0;j<i;j++) polypowmodmod(g,dg,p,f,df,g,&dg,p);
996 h[0]=0; h[1]=p−1; dh=1;
997 polyaddmod(g,dg,h,dh,g,&dg,p);
998 polygcdmod(g,dg,f,df,g,&dg,p);
999 if(dg>0) return 0;

1000 }
1001 return 1;
1002 }
1003

1004 /∗ calculate the legendre symbol of the element a (in polynomial format)
1005 in the field F_p^df:
1006 1 if element is a quadratic residue, −1 if not.
1007 p must be an odd prime! ∗/
1008 int polylegendre(ull ∗a,int da,ull ∗f,int df,ull p) {
1009 ull b[MAXDEG+1];
1010 mpz_t n,P;
1011 int db,i;
1012 for(i=0;i<=da;i++) if(a[i]) goto notzero;
1013 return 0;
1014 notzero:
1015 mpz_init(n);
1016 mpz_init(P);
1017 mpz_set_ull(P,p);
1018 mpz_pow_ui(n,P,df);
1019 mpz_sub_ui(n,n,1);
1020 mpz_divexact_ui(n,n,2);
1021 polypowmodmodmpz(a,da,n,f,df,b,&db,p);
1022 mpz_clear(n);
1023 mpz_clear(P);
1024 if(b[0]==p−1) return −1;
1025 if(b[0]==1) return 1;

88 APPENDIX A. PROGRAM LISTINGS

1026 error("error in polylegendre, res not 1 or −1");
1027 return 0;
1028 }
1029

1030 int findexpdiv2(mpz_t P,int df) {
1031 mpz_t s;
1032 int r=0;
1033 mpz_init(s);
1034 mpz_pow_ui(s,P,df);
1035 mpz_sub_ui(s,s,1);
1036 while(!mpz_tstbit(s,0)) {
1037 r++;
1038 mpz_fdiv_q_2exp(s,s,1);
1039 }
1040 mpz_clear(s);
1041 return r;
1042 }
1043

1044 /∗ given a, find b such that b^2=a in the field F_{p^df} given by the
1045 minimal polynomial f with degree df ∗/
1046 /∗ based on description in briggs ∗/
1047 /∗ algorithm is pretty much tonelli−shanks, adapted to F_{p^df} ∗/
1048 /∗ warning, i took a dubious short cut when implementing. p^df−1 should
1049 not have a divisor 2^s for a large s. this was circumvented by avoiding
1050 finite fields with this property ∗/
1051 void polysqrtmod(ull ∗a,int da,ull ∗f,int df,ull ∗b,int ∗db,ull p) {
1052 mpz_t s,z;
1053 ull j,c[MAXDEG+1],d[MAXDEG+1],e[MAXDEG+1];
1054 int r=0,dc,i,dd,t,de;
1055 /∗ does the square root exist? ∗/
1056 if(1!=polylegendre(a,da,f,df,p)) { ∗db=−1; printf("not a square\n"); return; }
1057 mpz_init(s);
1058 mpz_init(z);
1059 /∗ write p^df−1 as 2^r ∗ s for s odd ∗/
1060 mpz_set_ull(s,p);
1061 mpz_pow_ui(s,s,df);
1062 mpz_sub_ui(s,s,1);
1063 while(!mpz_tstbit(s,0)) {
1064 r++;
1065 mpz_fdiv_q_2exp(s,s,1);
1066 }
1067 if(r>10) error("error, unsuitable r");
1068 /∗ find an element in F_{p^df} which is a non−residue ∗/
1069 for(j=1;;j++) {
1070 for(dc=df−1,i=0;i<=dc;i++) c[i]=j;
1071 if(−1==polylegendre(c,dc,f,df,p)) break;
1072 }
1073 /∗ d=a^s ∗/
1074 polypowmodmodmpz(a,da,s,f,df,d,&dd,p);
1075 /∗ find t such that c^2st = d. guaranteed to be <2^r ∗/

89

1076 for(t=0;t<(1<<r);t++) {
1077 mpz_mul_ui(z,s,2∗t);
1078 polypowmodmodmpz(c,dc,z,f,df,e,&de,p);
1079 /∗ c^2st == d? ∗/
1080 if(de==dd) {
1081 for(i=0;i<=de;i++) if(e[i]!=d[i]) goto noteq;
1082 goto eq;
1083 }
1084 noteq:;
1085 }
1086 error("didn’t find t in sqrt");
1087 eq:;
1088 mpz_mul_ui(z,s,t);
1089 polypowmodmodmpz(c,dc,z,f,df,e,&de,p);
1090 /∗ calculate the inverse of e ∗/
1091 polyinversemodmod(e,de,f,df,e,&de,p);
1092 /∗ the root is a^(s+1)/2 ∗ e^−1 ∗/
1093 mpz_add_ui(s,s,1);
1094 mpz_fdiv_q_2exp(s,s,1);
1095 polypowmodmodmpz(a,da,s,f,df,c,&dc,p);
1096 polymulmodmod(c,dc,e,de,f,df,b,db,p);
1097 mpz_clear(z);
1098 mpz_clear(s);
1099 }
1100

1101 /∗ here follows some subroutines for polynomial arithmetic over Z ∗/
1102

1103 /∗ multiply two polynomials, c(x)=a(x)∗b(x) ∗/
1104 void polymulmpz(mpz_t ∗a,int da,mpz_t ∗b,int db,mpz_t ∗c,int ∗dc) {
1105 static mpz_t r[2∗BIGDEG+2];
1106 int i,j;
1107 for(i=0;i<=da+db;i++) mpz_init_set_ui(r[i],0);
1108 for(i=0;i<=da;i++) for(j=0;j<=db;j++) mpz_addmul(r[i+j],a[i],b[j]);
1109 for(∗dc=da+db,i=0;i<=∗dc;i++) mpz_set(c[i],r[i]);
1110 for(i=0;i<=da+db;i++) mpz_clear(r[i]);
1111 }
1112

1113 /∗ reduce a(x) mod f(x), return result in b(x) ∗/
1114 void polyreducempz(mpz_t ∗a,int da,mpz_t ∗f,int df,mpz_t ∗b,int ∗db) {
1115 mpz_t w[2∗BIGDEG+2],t;
1116 int i,j,z;
1117 mpz_init(t);
1118 for(i=0;i<=da;i++) mpz_init_set(w[i],a[i]);
1119 for(;i<=df;i++) mpz_init_set_ui(w[i],0);
1120 /∗ for each i=da, da−1, ..., dv, subtract a(i)∗v(x)∗x^(i−dv) ∗/
1121 for(i=da;i>=df;i−−) for(j=0;j<=df;j++) {
1122 z=i−df;
1123 mpz_set(t,w[i]);
1124 mpz_submul(w[z+j],t,f[j]);
1125 }

90 APPENDIX A. PROGRAM LISTINGS

1126 for(i=0;i<df;i++) mpz_set(b[i],w[i]);
1127 ∗db=df−1;
1128 /∗ tighten db ∗/
1129 while(∗db>−1 && !mpz_cmp_si(b[∗db],0)) (∗db)−−;
1130 for(i=0;i<=da;i++) mpz_clear(w[i]);
1131 for(;i<=df;i++) mpz_clear(w[i]);
1132 mpz_clear(t);
1133 }
1134

1135 /∗ given f, return g=f’ ∗/
1136 void polyderivempz(mpz_t ∗f,int df,mpz_t ∗g,int ∗dg) {
1137 int i;
1138 ∗dg=df−1;
1139 for(i=1;i<=df;i++) mpz_mul_si(g[i−1],f[i],i);
1140 while(∗dg>−1 && !mpz_cmp_si(g[∗dg],0)) (∗dg)−−;
1141 }
1142

1143 /∗ calculate the algebraic number and display it ∗/
1144 void printalgnum(mpz_t n,uchar ∗v,int cols,mpz_t ∗f,int df,mpz_t m,int ∗aval,int ∗bval) {
1145 mpz_t a[2∗BIGDEG+2],b[BIGDEG+1];
1146 int da,db,i;
1147 for(i=0;i<2∗BIGDEG+2;i++) mpz_init_set_ui(a[i],i==0);
1148 for(i=0;i<BIGDEG+1;i++) mpz_init(b[i]);
1149 da=0;
1150 /∗ multiply with f’(alpha)^2 ∗/
1151 polyderivempz(f,df,b,&db);
1152 polymulmpz(a,da,b,db,a,&da);
1153 polyreducempz(a,da,f,df,a,&da);
1154 polymulmpz(a,da,b,db,a,&da);
1155 polyreducempz(a,da,f,df,a,&da);
1156 for(i=0;i<cols;i++) if(v[i]) {
1157 mpz_set_si(b[0],aval[i]);
1158 mpz_set_si(b[1],−bval[i]);
1159 db=1;
1160 polymulmpz(a,da,b,db,a,&da);
1161 polyreducempz(a,da,f,df,a,&da);
1162 }
1163 printf("algebraic square:\n");
1164 printmpzpoly(a,da);
1165 for(i=0;i<BIGDEG+1;i++) mpz_clear(b[i]);
1166 for(i=0;i<2∗BIGDEG+2;i++) mpz_clear(a[i]);
1167 }
1168

1169 /∗ get algebraic square root! v is the subset of (a,b) pairs ∗/
1170 /∗ use couveignes’ algorithm ∗/
1171 int getalgroot(mpz_t n,uchar ∗v,int cols,mpz_t ∗in,int df,mpz_t m,mpz_t root,int ∗aval,int ∗bval) {
1172 double logest=0,b;
1173 mpz_t P,M,temp,ans;
1174 ull ∗q,pp,∗ai,f[MAXDEG+1],fd[MAXDEG+1],g[MAXDEG+1],h[MAXDEG+1];
1175 ull n1,n2,xi;

91

1176 const ull MAX=(1ULL<<61)−1; /∗ start here to check for primes ∗/
1177 int i,s,maxu,qn,dfd,j,dg,dh,k,ret=0;
1178 double zp;
1179 static int ∗ev;
1180 /∗ populate exponent vector ∗/
1181 ev=calloc(bn1,sizeof(int));
1182 if(!ev) error("out of memory");
1183 for(i=0;i<cols;i++) if(v[i]) for(j=0;j<algn[i];j++) {
1184 if(alglist[i][j]<0 || alglist[i][j]>=bn1) error("error");
1185 ev[alglist[i][j]]++;
1186 }
1187 mpz_init(P);
1188 mpz_init_set_si(M,1);
1189 mpz_init(temp);
1190 mpz_init(ans);
1191 mpz_set_ui(ans,0);
1192 /∗ rough estimate:
1193 d^(d+5)/2 ∗ n ∗ (2∗u∗sqrt(d)∗m)^(s/2)
1194 calculate log2 of this since it’s huge ∗/
1195 /∗ if this turns out to be bad, check the paper of couveignes for a
1196 tighter bound using complex roots and direct evaluation of stuff ∗/
1197 logest=log2(df)∗(df+5)∗.5;
1198 logest+=mpz_sizeinbase(n,2);
1199 /∗ get u and s ∗/
1200 maxu=0;
1201 for(i=0;i<cols;i++) {
1202 if(maxu<−aval[i]) maxu=−aval[i];
1203 if(maxu<aval[i]) maxu=aval[i];
1204 if(maxu<−bval[i]) maxu=−bval[i];
1205 if(maxu<bval[i]) maxu=bval[i];
1206 }
1207 for(s=i=0;i<cols;i++) s+=v[i];
1208 b=2∗maxu∗sqrt(df)∗mpz_get_d(m);
1209 logest+=s∗.5∗log2(b);
1210 printf("estimate: %f bits\n",logest);
1211 /∗ find multiple q such that their product has >= logest digits ∗/
1212 qn=(int)(1+logest/log2(MAX));
1213 q=malloc(qn∗sizeof(ull));
1214 if(!q) error("out of memory in algroot");
1215 ai=malloc(qn∗sizeof(ull));
1216 if(!ai) error("out of memory in algroot");
1217 /∗ don’t be super duper tight and take primes just below 2^63.
1218 it seems there are overflow issues in some of the subroutines,
1219 the suspects are polyderivemod and polymulmodmod (and their callees) ∗/
1220 for(pp=MAX,i=0;i<qn;pp+=2) {
1221 mpz_set_ull(P,pp);
1222 /∗ P must be prime and f(x) mod P must be irreducible ∗/
1223 if(!mpz_probab_prime_p(P,30)) continue;
1224 if(!polyirredmod(in,df,pp)) continue;
1225 /∗ we also want to avoid P such that 2^r for large r divides P^df−1 ∗/

92 APPENDIX A. PROGRAM LISTINGS

1226 if(findexpdiv2(P,df)>5) continue;
1227 q[i++]=pp;
1228 mpz_mul(M,M,P);
1229 }
1230 /∗ for each i, compute a_i ∗/
1231 for(zp=i=0;i<qn;i++) {
1232 mpz_set_ull(P,q[i]);
1233 mpz_fdiv_q(temp,M,P);
1234 pp=mpz_mod_ull(temp,q[i]);
1235 ai[i]=inverse(pp,q[i]);
1236 }
1237 /∗ for each q_i, calculate f’^2 ∗ prod(a−bx) mod f, mod q_i
1238 and calculate its square root in Z_p/<f> ∗/
1239 dfd=df−1;
1240 for(i=0;i<qn;i++) {
1241 for(j=0;j<=df;j++) f[j]=mpz_mod_ull(in[j],q[i]);
1242 polyderivemod(f,df,fd,&dfd,q[i]);
1243 /∗ form f’^2 ∗ prod_{(a,b)} (a−b∗alpha) mod q[i] ∗/
1244 polymulmodmod(fd,dfd,fd,dfd,f,df,g,&dg,q[i]);
1245 for(j=0;j<cols;j++) if(v[j]) {
1246 h[0]=(aval[j]%(ll)q[i]+(ll)q[i])%(ll)q[i];
1247 h[1]=((−(ll)bval[j])%(ll)q[i]+(ll)q[i])%(ll)q[i];
1248 dh=1;
1249 polymulmodmod(g,dg,h,dh,f,df,g,&dg,q[i]);
1250 }
1251 /∗ take square root of g ∗/
1252 polysqrtmod(g,dg,f,df,g,&dg,q[i]);
1253 /∗ sanity, not a square ∗/
1254 if(dg<0) {
1255 printf("failed in %d of %d\n",i+1,qn);
1256 puts("error!");
1257 printf("p %I64d, f(x) mod p = ",q[i]);
1258 printullpoly(f,df);printf("\n");
1259 printf("g(x) mod p is not square: ");
1260 printullpoly(g,dg);printf("\n");
1261 goto quit;
1262 }
1263 /∗ norm of root (in g,dg) ∗/
1264 n1=calcnormmod(g,dg,f,df,q[i]);
1265 /∗ norm of f’(alpha) ∗/
1266 n2=calcnormmod(fd,dfd,f,df,q[i]);
1267 /∗ norm of square root of all prime ideals ∗/
1268 for(j=0;j<bn1;j++) if(ev[j]) {
1269 /∗ norm of prime factor represented by the pair (p,r) is p ∗/
1270 for(k=0;k+k<ev[j];k++) n2=ullmulmod2(n2,p1[j],q[i]);
1271 }
1272 /∗ if the norms are different, negate the root ∗/
1273 if(n1!=n2) for(j=0;j<=dg;j++) g[j]=(q[i]−g[j])%q[i];
1274 n1=calcnormmod(g,dg,f,df,q[i]);
1275 if(n1!=n2) { printf("error %d/%d, norms are not equal!\n",i+1,qn); goto quit; }

93

1276 /∗ calculate a_i∗x_i∗P_i mod n and add it to result ∗/
1277 mpz_set_ull(P,q[i]);
1278 mpz_fdiv_q(temp,M,P);
1279 mpz_set_ull(P,ai[i]);
1280 mpz_mul(temp,temp,P);
1281 xi=evalpolymod(g,dg,mpz_mod_ull(m,q[i]),q[i]);
1282 mpz_set_ull(P,xi);
1283 mpz_mul(temp,temp,P);
1284 mpz_add(ans,ans,temp);
1285 mpz_fdiv_r(ans,ans,M);
1286 }
1287 ret=1;
1288 mpz_set(root,ans);
1289 mpz_fdiv_r(root,root,n);
1290 mpz_mul(temp,root,root);
1291 mpz_fdiv_r(temp,temp,n);
1292 gmp_printf("root %Zd root^2 %Zd\n",root,temp);
1293 quit:
1294 free(q);
1295 mpz_clear(ans);
1296 mpz_clear(temp);
1297 mpz_clear(M);
1298 mpz_clear(P);
1299 free(ev);
1300 return ret;
1301 }
1302

1303 /∗ use trial division to check that a−bm (rational) and a−b∗alpha (algebraic)
1304 are smooth with regard to our factor base. return 1 if smooth and also
1305 return the indexes of the factors in ∗f1,∗f2,∗f3. also set f0 to 1 if
1306 a−bm is negative. f3 will contain list of indexes where legendre
1307 symbol=−1. ∗/
1308 int trialsmooth(mpz_t a,mpz_t b,mpz_t ∗f,int deg,mpz_t m,int ∗f0,ull ∗f1,int ∗fn1,
1309 ull ∗f2,int ∗fn2,ull ∗f3,int ∗fn3) {
1310 mpz_t rat,alg,t,u,div;
1311 ull i,j,r,A,B;
1312 int ret=0;
1313 mpz_init(t);
1314 mpz_init(u);
1315 mpz_set(t,a);
1316 mpz_set(u,b);
1317 mpz_abs(t,t);
1318 mpz_abs(u,u);
1319 mpz_gcd(t,t,u);
1320 if(mpz_cmp_si(t,1)) goto cleanupgcd;
1321 mpz_init(div);
1322 /∗ rat = a−bm ∗/
1323 mpz_init(rat);
1324 mpz_mul(rat,b,m);
1325 mpz_sub(rat,a,rat);

94 APPENDIX A. PROGRAM LISTINGS

1326 /∗ check for negative a−bm ∗/
1327 if(mpz_cmp_si(rat,0)<0) ∗f0=1,mpz_abs(rat,rat);
1328 else ∗f0=0;
1329 ∗fn2=0;
1330 /∗ trial division on a−bm ∗/
1331 for(i=0;i<bn2;i++) {
1332 /∗ break if p2[i]^2 > rat ∗/
1333 mpz_set_ull(div,p2[i]);
1334 mpz_mul(t,div,div);
1335 if(mpz_cmp(t,rat)>0) break;
1336 /∗ factor out div from rat and keep count ∗/
1337 mpz_fdiv_qr(t,u,rat,div);
1338 if(mpz_cmp_si(u,0)) continue;
1339 mpz_set(rat,t);
1340 f2[(∗fn2)++]=i;
1341 while(1) {
1342 mpz_fdiv_qr(t,u,rat,div);
1343 if(mpz_cmp_si(u,0)) break;
1344 mpz_set(rat,t);
1345 f2[(∗fn2)++]=i;
1346 }
1347 }
1348 /∗ if remainder of rat > largest prime in factor base, number isn’t smooth ∗/
1349 mpz_set_ull(div,p2[bn2−1]);
1350 if(mpz_cmp(div,rat)<0) goto cleanuprat;
1351 if(mpz_cmp_si(rat,1)>0) {
1352 /∗ add remainder to primes ∗/
1353 f2[(∗fn2)++]=bs(p2,bn2,mpz_get_ull(rat));
1354 if(mpz_get_ull(rat)!=p2[bs(p2,bn2,mpz_get_ull(rat))])
1355 error("sanity test failed, rational remainder is not equal to prime found");
1356 }
1357 /∗ alg = norm(a−b∗alpha) ∗/
1358 mpz_init(alg);
1359 calcnorm(alg,a,b,f,deg);
1360 mpz_abs(alg,alg);
1361 ∗fn1=0;
1362 /∗ trial division on norm(a−b∗alpha) ∗/
1363 for(i=0;i<bn1;i++) {
1364 /∗ break if p1[i]^2 > alg ∗/
1365 mpz_set_ull(div,p1[i]);
1366 mpz_mul(t,div,div);
1367 if(mpz_cmp(t,alg)>0) break;
1368 /∗ check if p1[i] divides alg ∗/
1369 mpz_fdiv_r(t,alg,div);
1370 if(mpz_cmp_si(t,0)) continue;
1371 /∗ if a−br=0 mod p this is the prime we want ∗/
1372 mpz_set_ull(t,r1[i]);
1373 mpz_mul(t,b,t);
1374 mpz_sub(t,a,t);
1375 mpz_fdiv_r(t,t,div);

95

1376 if(mpz_cmp_si(t,0)) continue;
1377 mpz_fdiv_q(alg,alg,div);
1378 /∗ factor out div from alg and keep count ∗/
1379 f1[(∗fn1)++]=i;
1380 while(1) {
1381 mpz_fdiv_qr(t,u,alg,div);
1382 if(mpz_cmp_si(u,0)) break;
1383 mpz_set(alg,t);
1384 f1[(∗fn1)++]=i;
1385 }
1386 }
1387 /∗ check if alg>largest prime in factor base ∗/
1388 mpz_set_ull(div,p1[bn1−1]);
1389 if(mpz_cmp(div,alg)<0) goto cleanupalg;
1390 if(mpz_cmp_si(alg,1)>0) {
1391 /∗ add reminder to primes ∗/
1392 /∗ find index of first eligible pair (p,r) ∗/
1393 i=bs(p1,bn1,mpz_get_ull(alg));
1394 if(i==−1) {
1395 gmp_printf("a = %Zd, b = %Zd\n",a,b);
1396 printf("tried to find %I64d, not in factor base\n",mpz_get_ull(alg));
1397 r=mpz_get_ull(alg);
1398 for(i=0;i<bn1;i++) if(p1[i]>r−1000 && p1[i]<r+1000)
1399 printf("[%I64d %I64d] ",p1[i],r1[i]);
1400 error("\n");
1401 }
1402 /∗ find r such that a−br=0 (mod p) which is a∗inverse(b) mod p ∗/
1403 mpz_fdiv_r(u,a,alg);
1404 A=mpz_get_ull(u);
1405 mpz_fdiv_r(u,b,alg);
1406 B=mpz_get_ull(u);
1407 r=ullmulmod2(inverse(B,p1[i]),A,p1[i]);
1408 for(j=i;j<bn1;j++) {
1409 if(p1[j]!=p1[i]) break;
1410 if(r1[j]==r) goto ok;
1411 }
1412 error("(p,r) not found, shouldn’t happen!");
1413 ok:
1414 f1[(∗fn1)++]=j;
1415 }
1416 /∗ we won, (a,b) is smooth. now get the quadratic characters ∗/
1417 ∗fn3=0;
1418 for(i=0;i<bn3;i++) {
1419 /∗ if legendre(a−br/p)==−1, then add this (p,r) ∗/
1420 mpz_set_ull(t,p3[i]);
1421 mpz_set_ull(u,r3[i]);
1422 mpz_mul(u,b,u);
1423 mpz_sub(u,a,u);
1424 if(mpz_legendre(u,t)<0) f3[(∗fn3)++]=i;
1425 }

96 APPENDIX A. PROGRAM LISTINGS

1426 ret=1;
1427 cleanupalg:
1428 mpz_clear(alg);
1429 cleanuprat:
1430 mpz_clear(rat);
1431 mpz_clear(div);
1432 cleanupgcd:
1433 mpz_clear(u);
1434 mpz_clear(t);
1435 return ret;
1436 }
1437

1438 /∗ sieve from a1,b to a2,b, inclusive. restriction: a1 and a2 are int ∗/
1439 /∗ return 1 whenever enough relations are found ∗/
1440 int linesieve(int a1,int a2,int b,mpz_t n,mpz_t ∗f,int fn,mpz_t m,int extra,int ∗aval,int ∗bval) {
1441 int ∗sieve;
1442 mpz_t rat,norm,A,B,t,u;
1443 double invl2=1./log(2);
1444 ull j,z;
1445 int size=a2−a1+1,i,a,v,lgp,ret=0;
1446 int flog[MAXDEG+1];
1447 int blog[MAXDEG+1];
1448 double temp;
1449 if(!(sieve=malloc(size∗sizeof(int)))) error("out of memory in line sieve");
1450 mpz_init(rat);
1451 mpz_init(norm);
1452 mpz_init(t);
1453 mpz_init(u);
1454 mpz_init(A);
1455 mpz_init(B);
1456 /∗ initialize rat=a−bm ∗/
1457 mpz_set_si(B,b);
1458 mpz_mul(t,B,m);
1459 mpz_set_si(A,a1);
1460 mpz_sub(rat,A,t);
1461 mpz_set(t,rat);
1462 /∗ precalculate values for fast log_2(norm) ∗/
1463 for(i=0;i<=fn;i++) flog[i]=mpz_sizeinbase(f[i],2);
1464 for(temp=0,i=0;i<=fn;i++,temp+=log(temp)∗invl2) blog[i]=(int)(0.5+temp);
1465 for(a=a1,i=0;i<size;i++) {
1466 calcnorm(norm,A,B,f,fn);
1467 /∗ store lg norm + lg rat in sieve ∗/
1468 v=mpz_sizeinbase(t,2)+mpz_sizeinbase(norm,2);
1469 /∗ fast version! approximate log2(norm) faster than calculating
1470 the full norm every time ∗/
1471 /∗ TODO ∗/
1472 /∗ v+=mpz_sizeinbase(t,2); ∗/
1473 sieve[i]=v;
1474 mpz_add_ui(t,t,1);
1475 mpz_add_ui(A,A,1);

97

1476 }
1477 /∗ process each rational prime ∗/
1478 for(j=opt_skip;j<bn2;j++) {
1479 lgp=.5+log(p2[j])∗invl2;
1480 /∗ find starting point: first smallest i>=0 such that a+i−bm=0 mod p ∗/
1481 z=mpz_mod_ull(rat,p2[j]);
1482 /∗ subtract lg(prime) for each eligible element in sieve ∗/
1483 for(i=z?p2[j]−z:0;i<size;i+=p2[j]) sieve[i]−=lgp;
1484 }
1485 /∗ process each algebraic prime ∗/
1486 mpz_set_si(A,a1);
1487 for(j=opt_skip;j<bn1;j++) {
1488 lgp=.5+log(p1[j])∗invl2;
1489 /∗ find starting point: find smallest i>=0 such that a+i−br=0 mod p ∗/
1490 mpz_set_ull(t,r1[j]);
1491 mpz_mul(t,t,B);
1492 mpz_sub(t,A,t);
1493 z=mpz_mod_ull(t,p1[j]);
1494 for(i=z?p1[j]−z:0;i<size;i+=p1[j]) sieve[i]−=lgp;
1495 }
1496 /∗ find candidates for smooth numbers by taking the ones with small
1497 remaining log values. only taking 0−values is too strict, since
1498 sieve doesn’t subtract powers of primes, and all logs are rounded
1499 to int ∗/
1500 for(i=0;i<size;i++) {
1501 /∗ WARNING, magic constants ∗/
1502 static ull f1[100000],f2[100000],f3[100000];
1503 int fn1=0,fn2=0,fn3=0,f0;
1504 a=a1+i;
1505 if(a==0) continue;
1506 if(gcd(a>0?a:−a,b>0?b:−b)>1) continue;
1507 if(sieve[i]<=opt_thr) {
1508 mpz_add_ui(t,A,i);
1509 if(trialsmooth(t,B,f,fn,m,&f0,f1,&fn1,f2,&fn2,f3,&fn3)) {
1510 /∗ insert in transposed matrix:
1511 column i is the ith relation we find
1512 row corresponds to −1, prime or quadratic character ∗/
1513 if(f0) MSETBIT(M,0,smooth);
1514 for(j=0;j<fn1;j++) MTOGGLEBIT(M,1+f1[j],smooth);
1515 for(j=0;j<fn2;j++) MTOGGLEBIT(M,1+bn1+f2[j],smooth);
1516 for(j=0;j<fn3;j++) MSETBIT(M,1+bn1+bn2+f3[j],smooth);
1517 /∗ store the rational divisors ∗/
1518 faclist[smooth]=malloc(fn2∗sizeof(ull));
1519 if(!faclist[smooth]) error("out of memory trialsmooth");
1520 alglist[smooth]=malloc(fn1∗sizeof(ull));
1521 if(!alglist[smooth]) error("out of memory trialsmooth");
1522 memcpy(faclist[smooth],f2,sizeof(ull)∗fn2);
1523 facn[smooth]=fn2;
1524 memcpy(alglist[smooth],f1,sizeof(ull)∗fn1);
1525 algn[smooth]=fn1;

98 APPENDIX A. PROGRAM LISTINGS

1526 /∗ store the actual a,b pair ∗/
1527 aval[smooth]=a1+i;
1528 bval[smooth]=b;
1529 smooth++;
1530 if(smooth%100==0) {
1531 printf("%d/%I64d found: (%d, %d) is smooth, log %d\n",
1532 smooth,extra+1+bn1+bn2+bn3,a1+i,b,sieve[i]);
1533 }
1534 if(smooth==extra+1+bn1+bn2+bn3) {
1535 puts("==> enough relations gathered!");
1536 ret=1;
1537 goto end;
1538 }
1539 } else notsmooth++;
1540 } else {
1541 /∗ remove the continue if you want to benchmark
1542 smooth numbers not found by the sieving ∗/
1543 continue;
1544 mpz_add_ui(t,A,i);
1545 if(trialsmooth(t,B,f,fn,m,&f0,f1,&fn1,f2,&fn2,f3,&fn3)) {
1546 printf("%d − %d∗alpha is smooth, log %d MISSED\n",a1+i,b,sieve[i]);
1547 missed++;
1548 }
1549 }
1550 }
1551 end:
1552 mpz_clear(B);
1553 mpz_clear(A);
1554 mpz_clear(u);
1555 mpz_clear(t);
1556 mpz_clear(norm);
1557 mpz_clear(rat);
1558 free(sieve);
1559 return ret;
1560 }
1561

1562 void testsieve(mpz_t n,mpz_t ∗f,int fn,mpz_t m,int extra,int ∗aval,int ∗bval) {
1563 int B;
1564 /∗ factor lists ∗/
1565 puts("start sieve");
1566 notsmooth=missed=smooth=0;
1567 faclist=malloc((1+bn1+bn2+bn3+extra)∗sizeof(ull∗));
1568 if(!faclist) error("out of memory");
1569 facn=malloc((1+bn1+bn2+bn3+extra)∗sizeof(int));
1570 if(!facn) error("out of memory");
1571 alglist=malloc((1+bn1+bn2+bn3+extra)∗sizeof(ull∗));
1572 if(!alglist) error("out of memory");
1573 algn=malloc((1+bn1+bn2+bn3+extra)∗sizeof(int));
1574 if(!algn) error("out of memory");
1575 for(B=1;;B++) if(linesieve(−opt_sievew,opt_sievew,−1∗opt_signb∗B,n,f,fn,m,extra,aval,bval)) break;

99

1576 printf("smooth numbers found: %d\n",smooth);
1577 printf("nonsmooth numbers trial−divided: %d\n",notsmooth);
1578 printf("smooth numbers missed: %d\n",missed);
1579 puts("end sievetest");
1580 }
1581

1582 void takegcd(mpz_t ans,mpz_t alg,mpz_t rat,mpz_t n) {
1583 mpz_t sub;
1584 mpz_init(sub);
1585 mpz_sub(sub,alg,rat);
1586 mpz_gcd(ans,n,sub);
1587 mpz_clear(sub);
1588 }
1589

1590 /∗ takes a number n and returns a factor p, if found
1591 return values:
1592 1: factor found
1593 0: factor not found
1594 −1: n is even
1595 −2: n is a perfect power
1596 −3: n is probably prime
1597 −4: mysterious error ∗/
1598 int donfs(mpz_t n) {
1599 mpz_t m,f[MAXDEG+1],r,temp;
1600 mpz_t ratrot,algrot;
1601 ull Br=opt_Br,Ba=opt_Ba,rows,k;
1602 int ∗aval,∗bval;
1603 int deg=opt_deg;
1604 int err,retval=0,i,Bk=opt_Bq,j;
1605 int extra=opt_extra,zero;
1606 uchar ∗v;
1607 uchar ∗freevar;
1608 mpz_init(r); mpz_init(m); mpz_init(temp);
1609 mpz_init(ratrot); mpz_init(algrot);
1610 for(i=0;i<=MAXDEG;i++) mpz_init(f[i]);
1611 /∗ check prerequisites: n cannot be even, prime or perfect power ∗/
1612 /∗ (if n is a perfect power, try running nfs again on the root ∗/
1613 mpz_fdiv_r_ui(r,n,2);
1614 if(!mpz_cmp_si(r,0)) { retval=−1; goto end; }
1615 if(mpz_perfect_power_p(n)) { retval=−2; goto end; }
1616 /∗ we want to be really, REALLY sure that n is composite ∗/
1617 if(mpz_probab_prime_p(n,100)) { retval=−3; goto end; }
1618 mpz_set(m,opt_m);
1619 if(!mpz_cmp_si(m,0)) mpz_root(m,n,deg); /∗ deg−th root of n, get our base m ∗/
1620 gmp_printf("m = %Zd\n",m);
1621 err=getpolynomial(n,m,deg,f);
1622 if(!err) error("polynomial isn’t monic or is otherwise wrong");
1623 printmpzpoly(f,deg);
1624 /∗ for now, only try to find linear factors when
1625 the a_0 coefficient is small enough ∗/

100 APPENDIX A. PROGRAM LISTINGS

1626 /∗ TODO replace with better way to find all linear factors.
1627 fully factorize f[0] (possibly by pollard rho or even qs) and
1628 generate all divisors by generating all exponent tuples. in this way,
1629 the program will have full degree 3 support ∗/
1630 /∗ TODO move this to a function ∗/
1631 if(mpz_cmp_si(f[0],2000000000)<0) {
1632 if(!mpz_cmp_si(f[0],0)) {
1633 printmpzpoly(f,deg);
1634 gmp_printf("f(x) factored, found factor %Zd\n",m);
1635 retval=1;
1636 goto end;
1637 }
1638 j=mpz_get_si(f[0]);
1639 for(i=1;i∗i<=j;i++) if(j%i==0) {
1640 if(i>1) {
1641 mpz_set_si(r,−i);
1642 evalpoly(f,deg,r,temp);
1643 if(!mpz_cmp_si(temp,0)) {
1644 printmpzpoly(f,deg);
1645 gmp_printf("f(x) factored, found factor %d\n",i);
1646 retval=1;
1647 goto end;
1648 }
1649 }
1650 mpz_set_si(r,−j/i);
1651 evalpoly(f,deg,r,temp);
1652 if(!mpz_cmp_si(temp,0)) {
1653 printmpzpoly(f,deg);
1654 gmp_printf("f(x) factored, found factor %d\n",i);
1655 retval=1;
1656 goto end;
1657 }
1658 }
1659 }
1660 /∗ TODO try to factorize polynomial properly and terminate early ∗/
1661

1662 /∗ factor base ∗/
1663 if(!Ba) Ba=findB(n)∗1;
1664 if(!Br) Br=findB(n)∗1;
1665 if(!Bk) Bk=findK(n)∗0.25; /∗ number of quadratic characters ∗/
1666 puts("factor base info:");
1667 printf(" bound %I64d\n",Ba);
1668 createfactorbases(Ba,Br,Bk,f,deg,&p1,&r1,&bn1,&p2,&bn2,&p3,&r3,&bn3);
1669 printf(" %I64d rational primes\n",bn2);
1670 printf(" %I64d algebraic primes\n",bn1);
1671 printf(" %d quadratic characters\n",Bk);
1672 printf(" total size %I64d\n",bn1+bn2+Bk);
1673 if(!extra) extra=3+(bn1+bn2+bn3+1)/1000;
1674

1675 puts("continue with factorization!");

101

1676 /∗ allocate memory for matrix, uncompressed ∗/
1677 rows=1+bn1+bn2+bn3;
1678 M=malloc(sizeof(uint ∗)∗rows);
1679 for(i=0;i<rows;i++) {
1680 M[i]=calloc(((rows+31+extra)/32),sizeof(uint));
1681 if(!M[i]) error("out of memory while allocating matrix");
1682 }
1683 aval=malloc(sizeof(int)∗(rows+extra));
1684 if(!aval) error("out of memory");
1685 bval=malloc(sizeof(int)∗(rows+extra));
1686 if(!bval) error("out of memory");
1687 testsieve(n,f,deg,m,extra,aval,bval);
1688 puts("start gauss");
1689 bitgauss32(M,rows,rows+extra,0);
1690 v=malloc(rows+extra);
1691 if(!v) error("out of memory");
1692 freevar=malloc(rows+extra);
1693 if(!freevar) error("out of memory");
1694 zero=findfreevars(M,rows,rows+extra,freevar);
1695 printf("gauss done, %d free variables found\n",zero);
1696 for(k=0;k<zero;k++) {
1697 puts("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
1698 getsquare(M,rows,rows+extra,freevar,k,v);
1699 if(!getalgroot(n,v,rows+extra,f,deg,m,algrot,aval,bval)) continue;
1700 getratroot(n,v,rows+extra,f,deg,m,ratrot,aval,bval);
1701 gmp_printf("algroot %Zd ratroot %Zd\n",algrot,ratrot);
1702 takegcd(temp,algrot,ratrot,n);
1703 /∗ trivial result, try next linear combination ∗/
1704 if(!mpz_cmp_si(temp,1) || !mpz_cmp(temp,n)) continue;
1705 gmp_printf("found factor %Zd after %d tries\n",temp,k+1);
1706 retval=1;
1707 break;
1708 }
1709 if(!retval) puts("no factor found");
1710 free(v);
1711 end:
1712 for(i=0;i<=MAXDEG;i++) mpz_clear(f[i]);
1713 mpz_clear(ratrot); mpz_clear(algrot);
1714 mpz_clear(m); mpz_clear(r); mpz_clear(temp);
1715 return retval;
1716 }
1717

1718 int main() {
1719 gmp_randinit_mt(gmpseed);
1720 gmp_randseed_ui(gmpseed,time(0));
1721 readoptions();
1722 gmp_printf("try to factor %Zd\n",opt_n);
1723 printf("return %d\n",donfs(opt_n));
1724 return 0;
1725 }

102 APPENDIX A. PROGRAM LISTINGS

Listing A.2: Sample input.
1 ; input file for nfs
2 ;
3 ; first line: number to factor.
4 ; - can be a literal number n
5 ; - can be c[m], make a random composite number of m digits
6 ; - can be r[m], make a random composite number of m digits that is the
7 ; product of two similarly sized primes
8 ; example from "cryptography, an introduction": n=45113 m=31 deg=3
9 ;45113

10

11 ; my example 1
12 4486873
13 ; my example 2
14 ;1027465709
15

16 ; r80
17 ;39436474109097683634320295131655814958311666003281971576453608419180282406191557
18 ; r70
19 ;4493658538520740276161242376826080121055754889927558057399451364896803
20 ; r60
21 ;160967735740568108627966290684899321608893044314961348169843
22 ; r50
23 ;32160137412888834732051225949878741400809992284289
24 ; r40
25 ;3565260354721980199129400248402571306803
26 ; r39
27 ;208105107011856763735887399456439331987
28 ; r38
29 ;25348924873403921164412907702279733193
30 ; r37
31 ;7511663247147032357037656316584448877
32 ; r36
33 ;228264844518616987380835399399539853
34 ; r35
35 ;78325683705012095897299536068804821
36 ; r34
37 ;1564875138070655023123959837084599
38 ; r33
39 ;523221436353855391814506581063557
40 ; r32
41 ;74520163184103070906530082210517
42 ; r30
43 ;189029013605764030727921585951
44 ; r19
45 ;7122214749230196817
46

47 ; bounds:
48 ; - algebraic factor base
49 ; - rational factor base

103

50 ; - number of quadratic characters
51 ; enter 0 to let the program determine the values
52 140
53 140
54 6
55

56 ; degree of polynomial
57 3
58 ; m value (set to 0 to let program determine)
59 ; warning, only choose m such that f(x) is monic of specified degree
60 0
61

62 ; sieve width a (-a to a)
63 10000
64

65 ; threshold for accepting numbers in the sieve (log in base 2)
66 20
67

68 ; skip this number of smallest primes on each side
69 0
70

71 ; number of extra relations wanted for linear algebra
72 3
73

74 ; sign of b
75 -1

