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Problem Description
Reservoir simulation is a key technology for increasing hydrocarbon recovery from
offshore oil and gas fields. Current full field simulation models are typically limited
to a grid resolution around hundred meters laterally and five meters vertically. This
implies that important reservoir features will not be resolved in a full field model, and
hence needs to be accounted for in models with finer resolution. The most promising
route to handle this problem is by homogenization. Homogenization is a large field of
applied mathematics in its own right, and presents one of the deepest touching points
between mathematics and petroleum technology.

The elliptic diffusion equation is the most fundamental differential equation for flow in
porous media as it governs single phase flow. Flow based local upscaling techniques1

has been a natural choice for handling fine scale heterogeneities. However, models
representing fine layering of geology has proven to be numerically challenging. Cur-
rently there are three different approaches for handling boundary conditions for local
methods in industry usage, namely fixed, linear and periodic. Their properties with
respect to convergence or correctness is not well understood. The main task here is
to test numerically the three leading choices for boundary conditions, both in terms of
convergence and in terms of correctness.

1Durlofsky, L. J. Upscaling and Gridding of Fine Scale Geological Models for Flow Simulation.
In Proceedings of the 8th International Forum on Reservoir Simulation, Stresa, Italy (June 20–24,
2005), Stanford University.





Abstract

We start this thesis by giving an introduction to reservoir simulation and upscaling
in particular. The most common upscaling techniques, including power averaging
methods and flow based local and global methods [10], are introduced. Hybrid
methods and multiscale methods are also included, and we consider both single-
and two-phase systems. Upscaling is viewed in the context of a representative
elementary volume (REV), and we argue why flow based local methods can be
preferable for this purpose. The elliptic diffusion equation is central in flow based
upscaling methods as it governs single-phase flow. We present numerical methods
to solve it numerically on corner-point grids, which are the industry standard grids.
The newly developed mimetic finite difference method (MFDM) [8] has shown
to work nicely on such grids [3], and the MFDM is explained in some details
in this thesis. For flow based local upscaling methods, three sets of boundary
conditions (BCs) are used by the industry, namely fixed, linear and periodic. We
give a detailed analysis of the numerical implications of the three sets of BCs, and
we discuss correctness and numerical convergence of these. Results from numerical
computations on realistic reservoir models show that linear BCs are considerably
faster to solve for. Based on this and that periodic BCs seems intuitively most
correct, we propose a new representation and implementation of periodic BCs.
This approach is based on mortar methods. Numerical calculations show, however,
that this method fails both in terms of correctness and in terms of numerical
convergence.





Sammendrag

Vi starter denne oppgaven med å gi en introduksjon til reservoarsimularing og
oppskalering spesielt. De mest utbredte oppskaleringsteknikkene, inkludert gjen-
nomsnittsmetoder og flytbaserte lokale og globale metoder [10], blir introdusert.
Hybride metoder og flerskala metoder er også inkludert, og vi studerer både en- og
to-fase systemer. Oppskalering er betraktet i sammenheng med et representativt
elementært volum (REV), og vi argumenterer for at flytbaserte lokale metoder
kan være å foretrekke i denne sammenhengen. Den elliptiske diffusjonsligningen
er sentral i flytbaserte metoder ettersom den beskriver en-fase flyt. Vi presen-
terer numeriske metoder for å løse den numerisk på hjørnepunktsgrid, som er
industriens standard grid. Den nylig utviklede mimetiske endelige differansemeto-
den (MFDM) [8] har vist seg å fungere godt på slike grid [3], og MFDM er grundig
forklart i denne oppgaven. For flytbasert lokal oppskalering er tre sett med randbe-
tingelser brukt av industrien, nemlig faste, lineære og periodiske. Vi gir en detaljert
analyse av de numeriske konsekvensene for de tre settene med randbetingelser, og
vi diskuterer korrekthet og numerisk konvergens for disse. Resultater fra nume-
riske beregninger på realistiske reservoarmodeller viser at lineære randbetingelser
er betydelig raskere å løse for. Basert på dette og at periodiske randbetingelser
intuitivt virker mest korrekt, foreslår vi en ny representasjon og implementasjon
av periodiske randbetingelser. Denne tilnærmingen er basert på mortar metoder.
Numeriske beregninger viser imidlertid at denne metoden feiler både med tanke
på korrekthet og med tanke på numerisk konvergens.
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Chapter 1

Introduction

The aim of reservoir simulation is to use numerical methods to describe the fluid
flow in porous media. Knowledge of the flow pattern is important for optimizing
the oil or gas recovery. Permeability is an important parameter in this context, as
it describes how well the fluids flow through the material. Reservoirs can be very
big, so the discretization cells in a simulation model can be large, typically 100
meters in the horizontal directions and 5 meters in the vertical direction. These
cells are too big to capture small scale heterogeneities, which may be important for
the global flow pattern. Small scale heterogeneities are captured in models with
finer resolution. It is therefore of great value to find the effective permeability in
each simulation cell as if the cells were homogeneous pieces. This issue is referred
to as permeability upscaling and is a large field of study.

Many different upscaling techniques has been derived. Some are based on
different averaging methods, while others are flow based. In this thesis we give an
overview of the most common upscaling methods. The notion of a representative
elementary volume (REV) will be central in our presentation. A REV denotes a
volume of the property field that is large enough to capture a representative amount
of heterogeneity [6]. We will explain the notion of a REV more thoroughly in the
next chapter.

Mathematically, flow based upscaling methods result in solving the elliptic
diffusion equation, which governs single-phase flow. Reservoir properties often vary
on a large scale and the underlying fine grid models may include complex geometry.
Thus, solving the elliptic diffusion equation numerically is non-trivial. The multi-
point flux approximation (MPFA), see for instance [4], is a discretization method
that is commonly used in this context. Another promising numerical method is
the newly developed mimetic finite difference method (MFDM) [8].

There are two main types of flow based methods. Local upscaling methods
solve flow problems over the domain corresponding to the simulation cell that is to
be upscaled for, whereas global upscaling methods try to take into account global
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4 Chapter 1. Introduction

flow effects by solving the flow problem globally [10]. In between these, several
hybrid methods have been developed. In this thesis we argue why local methods
can be preferable in a REV framework, and thereafter we choose to consider local
methods only.

For local upscaling methods, the elliptic diffusion equation must be accom-
panied with some boundary conditions (BCs). Traditionally three different sets
of BCs have been used by the industry, namely fixed, linear and periodic. It is
well known (see for instance [10], [14] and references therein) that these BCs may
produce quite different upscaling results. One aim of this thesis is to compare the
three sets of BCs in terms of correctness, i.e., which BCs that give the most correct
upscaled property. As we will see this depends on the geology of the model.

Another aim of this thesis is to consider numerical implications in terms of
convergence for the three sets of BCs. This is not well understood and this issue
is barely referred to in the literature. It is observed that the problem with linear
BCs are faster to solve [14], but no reasoning is found. In this thesis we give
a comprehensive comparison and report both number of iterations for the linear
iterative solver, computation time, condition numbers and memory usage. We set
these properties in context and discuss and give reasons for the results. Realistic
reservoir models are considered.

We will see that periodic BCs are most correct in many cases, but that the
numerical convergence is slow, at least compared to linear BCs. Thus, the repre-
sentation of periodic BCs has been investigated to better understand this. A new
representation based on mortar methods is derived and tested to see if it can im-
prove the numerical convergence and reduce the memory consumption. A recent
study1 used this approach on a similar problem related to upscaling of elastic pa-
rameters. This was applied to a finite element method. In this thesis we apply the
approach to the elliptic diffusion equation and with the MFDM as the underlying
discretization method.

This thesis is outlined as follows. In Chapter 2 we give a basic introduction to
reservoir simulation. Important reservoir properties will be presented, we introduce
the central notion of a REV and the governing flow equations in a porous media
reservoir are described. Next, corner-point grids, which are the industry standard
grids, and traditional discretization methods will be introduced.

Chapter 3 gives a review of the most common methods for upscaling of per-
meability and relative permeability. Local upscaling methods will be given an
extra attention. The presentation is mostly based on [10]. The chapter ends in a
discussion of the advantages and disadvantages of the different upscaling methods.

In Chapter 4 we explain in some details the MFDM. This method is used

1This study is not yet published. Thanks to Arne Morten Kvarving, Trond Kvamsdal and Runar
Holdahl, SINTEF ICT, for letting their work be at our disposal.
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to solve the elliptic diffusion equation and has shown to work nicely on corner-
point grids [3]. We give no proofs in this thesis, but refer to the literature. The
presentation given is primarily based on [16] and [9].

The problem of representing and implementing periodic BCs is discussed in
Chapter 5. We present three different approaches. The latter is based on the
mortar method, and it is described how it can be implemented and applied to the
MFDM.

In Chapter 6 we present numerical results from applying the local upscaling
methods on both simple synthetic models and realistic reservoir models. Both
single- and two-phase systems are considered. The main goal is to compare the
different BCs with respect to correctness and numerical convergence. Such a de-
tailed documentation on numerical implications of the three sets of BCs is to our
knowledge not found elsewhere in the literature. Lastly, the implementation of the
mortar method is tested.

This thesis ends with some concluding remarks in Chapter 7, and some sug-
gestions for further work are listed.

For all numerical computations we use an open source simulation toolbox pro-
vided by the Open Porous Media (OPM) project. OPM is built on DUNE (the
Distrubuted and Unified Numerics Environment), which is a software toolbox for
solving partial differential equations (PDEs) numerically. A short description of
OPM and DUNE and instructions on how to use them are given in Appendix A.
All implementation and models used in this thesis are open for anyone to use, and
in Appendix A it is explained where this can be found and how to use it. Thus, it
should possible for the reader to reproduce the results of this thesis.
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Chapter 2

Reservoir Simulation

A reservoir is built up of different types of porous media with hydrocarbons, e.g.
oil and gas, and water situated in the pores. The fraction of the void pore volume
and the total volume is called the porosity and determines how much fluid that
is present in the reservoir. Further, the saturation of a phase (e.g., oil, water or
gas) is the fraction of the pore volume that contains the current phase. Another
important reservoir parameter is permeability, which is a measure of the ability
of a material to allow fluid to pass through it. Often, a reservoir is built up
of many different layers as we see an example of in Figure 2.1. The layers are
typically alternating and parallel to each other. The rock properties may vary
on a large scale between the different layers. Materials with low permeability,
e.g. mud, are often referred to as low-permeability materials, while materials
with high permeability are referred to as high-permeability materials. It is not an
objective of this thesis to give a detailed background on porous media theory. For
an introduction, the reader could consult for instance [1] or references therein.

Figure 2.1: Example of a section of a reservoir with three different materials.

In reservoir simulation it is common to refer to many different length scales.
The smallest scale is the pore scale (∼ 10−3 m), and this is where the actual flow
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8 Chapter 2. Reservoir Simulation

takes place. Pressure differences and gravitational forces drive the fluid flow in a
pore, and the fluid velocity, ~v, can be assumed do obey Darcy’s law,

~v = −k
µ
∇(p− ρ~g), (2.1)

where k is the permeability, µ is the fluid viscosity, p is the pressure, ρ is the fluid
density and ~g is the gravitational constant.

The next scale is the core scale (∼ 10−2 m). Often, rock samples on core
scale from real reservoirs are used to measure the properties of different rocks in
a laboratory. The information from both pore and core scales are used to build
geological models. A geological model is a three-dimensional representation of a
reservoir, and is built up of cells with constant porosity and permeability. The
permeability is now represented by a tensor, where the diagonal terms represent
flow in the direction caused by a pressure drop, and the off-diagonal terms repre-
sent flow perpendicular to the pressure drop. We say that a model is isotropic if
the permeability is equal in all directions. In this case, the permeability can be
expressed as a scalar. Notice that on pore scale — see equation (2.1) — permeabil-
ity is treated as a scalar. This is because the direction is given by the orientation
of the pore. The size of a cell in a geological model is typically 10–50 m in the
horizontal directions and 0.1–1 m in the vertical direction. A collection of geolog-
ical cells forms a simulation cell, whose size is typically 100 m in the horizontal
directions and 5 m in the vertical direction.

2.1 Representative Elementary Volume
The notion of a representative elementary volume (REV) is important in reservoir
simulation, especially in an upscaling point of view. A REV denotes a volume
of the property field that is large enough to capture a representative amount of
the heterogeneity [6]. In Figure 2.2, we see how a measured property can vary
with the sample volume. When the volumes are small they capture little of the
heterogeneity, so that a measurement is unstable with respect to the volume size
and location. This means that a small change of volume can result in a large change
in the measured property. As the volume gets larger it captures more heterogeneity
and small scale variations become less dominant. Thus, the measured property
stabilizes, and at some point a REV is identified. An appropriate volume is a
volume where the measured property is relatively insensitive to small changes in
volume and location [19].

In a reservoir it is common to identify several different REVs. Figure 2.3 shows
how three different REVs are identified at different approximate length scales. At
the smallest volumes the measured property is dependent on whether a pore or
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Figure 2.2: Schematic graph of how a measured property varies with sample volume.
The domain of the REV is also shown. The figure is taken with permission from [19].

a grain is measured. As the volume increase, the fraction of pores stabilizes and
eventually we reach the first REV, the lamina REV. With a further increase in
the measurement volume, the measured property starts to oscillate again. This
is because different types of laminae are now captured by the volume. When a
sufficient amount of the different laminae are captured by the volume, we encounter
a new REV, the lithofacies REV. The same pattern repeats again — we get new
oscillations and we finally reach a new REV, the facies association REV. Figure
2.4 gives a nice overview of different geological heterogeneity types that can be
identified in a reservoir. In general the number and types of REVs are not restricted
to the three mentioned here.

Identifying REVs is important because we know that the measurements are
representative for the whole material structure under consideration. Measurements
that do not coincide with a REV should be rescaled to a REV for consistent flow
simulation [19]. However, identifying REVs is a difficult task, as they are different
from reservoir to reservoir and also dependent on which property that is measured.
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Figure 2.3: A conceptual sketch of different REVs that may occur in a reservoir. In
this illustration there are four different lamina types that combine into two lithofacies
which again combine in one facies association. It is important to notice that this figure
illustrates an example of one particular reservoir type and that the REVs may be different
for other reservoirs. The figure is taken with permission from [19].
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Figure 2.4: Overview of different geological heterogeneity types and the relation to
the REV framework for a fluvial reservoir. The illustration is credited Kjetil Nordahl,
Statoil.
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2.2 Flow Equations
On larger scales Darcy’s law (2.1) extends to

~v = −K
µ
∇(p− ρ~g), (2.2)

where K is the 3×3 permeability tensor. This is valid if only one phase is present.
If we have a multi-phase system with n phases, we need to take into account the
interactions between the phases. The phase permeability tensor, Ki, of a phase i,
can be expressed as

Ki = KriK, i = 1, 2, . . . , n, (2.3)
where Kri is the relative permeability of phase i and depends on the saturation
of the other phases. When considering multi-phase systems, the permeability,
K, is often referred to as the absolute permeability. In the literature, relative
permeability is often described by a scalar. This is the case in for instance [1],
[2], [10] and [11]. However, as for absolute permeability, relative permeability is
often spatially dependent, and assuming otherwise may be wrong is some cases.
In cases where we assume that relative permeability is isotropic, we write kri for
relative permeability. In Figure 2.5 we see typical curves for relative permeability
of oil and water as functions of water saturation. Darcy’s law for a multi-phase
system can be expressed as

~vi = −KriK
µi
∇(pi − ρi~g), (2.4)

where subscript i denotes the property for phase i.
The second fundamental equation is conservation of mass,

∂

∂t
(φρiSi) +∇ · (ρi~vi) = qi, (2.5)

where t is time, φ is the porosity, Si is the saturation of phase i and qi is a source
term. If we assume that the fluids and the rocks are incompressible and insert
Darcy’s law (2.4) into (2.5), we get the full flow equation,

φ
∂Si
∂t
−∇ ·

[
KriK
µi

(∇pi − ρi~g)
]

= qi
ρi
. (2.6)

I addition, the sum of the saturations must be equal to one, ∑n
i=1 Si = 1. Observe,

that for a single-phase system, (2.6) reduces to

−∇ ·
[

K
µ

(∇p− ρ~g)
]

= q

ρ
. (2.7)
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Notice that fluid flow in a single-phase system is not time dependent when we
assume incompressibility. In the theory of partial differential equations, (2.7) is
classified as elliptic when K is symmetric positive definite (SPD) [12, p. 312–313].

We will now investigate equation (2.6) further for a two-phase system consisting
of oil(o) and water(w). This will enlighten which forces that act on the fluids in a
reservoir. We assume isotropic relative permeability. First, we need to introduce
capillary pressure,

pc = po − pw,
i.e., the pressure difference between the two phases. Further, denote by λi = kri

µi

the mobility of phase i (i = o, w), and by λt = λw+λo the total mobility. Following
[2], one can introduce a global pressure p, and a total velocity ~vt = ~vw + ~vo. Oil
saturation, So, can be eliminated from the two transport equations (2.6) via the
relationship Sw + So = 1, and we are left with the system

∇ · ~vt = qt, where ~vt = −K [λt∇p− (λwρw + λoρo)~g] , (2.8)

φ
∂Sw
∂t

+∇ · [fw(~vt + Kλo∇pc + Kλo(ρw − ρo)~g)] = qw
ρw
, (2.9)

where fw = λw
λt

is the fractional flow of water, and qt = qw
ρw

+ qo
ρo

is the total source
scaled by density. Equation (2.9) includes three terms that represent the three
types of forces that act on the fluids [2]:

1. Viscous forces, represented by the term fw~vt.
2. Capillary forces, represented by the term fwKλo∇pc.
3. Gravitational forces, represented by the term fwKλo(ρw − ρo)~g.
Viscous forces stems from pressure gradients and are due to the inertia and

viscosity of the fluids. Capillary forces are due to the capillary pressure. If you
put the bottom of a sugar cube in a cup of coffee, it is capillary forces that make
the coffee penetrate the cube. The balance of these forces vary a lot and depends
particularly on model size, flow-rate, heterogeneities and which fluids that are
present [2]. On small scales or in regions with low flow rate, capillary forces tends
to dominate the viscous forces and vica verca. Because of larger difference in
density, gravitational forces are more dominant in oil-gas or water-gas systems
than in oil-water systems. For vertically thin reservoirs, gravity is less dominant.

Capillary pressure is dependent on the saturation, but also on the process due
to hysteresis1. Capillary pressure as a function of saturation is strictly monotone.
1Hysteresis means that a quantity is not only dependent on the current state, but also on its
past. For a oil-water system, the capillary pressure have different curves for imbibition (water
displaces oil) and drainage (oil displaces water).
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A typical curve for capillary pressure can be seen in Figure 2.5. In the oil industry
it is common to use a dimensionless scaling of the capillary pressure called the
Leverett J-function (hereafter only denoted J-function),

J(Sw) =
pc(Sw)

√
k
φ

σ cos(θ) , (2.10)

where σ is the surface tension and θ is the contact angle between the phases. It is
only possible to use the J-function when the model is isotropic, since permeability,
k, is represented by a scalar.
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Figure 2.5: Typical curves for relative permeability, kr, and capillary pressure, pc, as
functions of water saturation, Sw, in an oil-water system.

2.3 Corner-Point Grids
Corner-point grids [20] are commonly used by the oil industry. A corner-point grid
is built up of several vertical or inclined pillars, which are straight lines defined
by two points each. A constant number of points are defined on each pillar, and
the hexahedron defined by four neighbouring pillars and two neighbouring points
on each pillar, makes up a grid cell [23], see Figure 2.6. The points on the pillars
are called corner points and are allowed to coincide, which result in degenerated
cells with less than eight corners. Some cells may also disappear completely, and
this introduce connections between cells that are not seen as neighbours. Another
feature of corner-point grids is that they easily allow for discontinuities across
faces. This can be used to include fractures and faults in the model. A fracture is
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a crack or a surface of breakage, across which the rocks have not been displaced,
while a fault is a planar surface in the rocks, across which the rocks have been
displaced [2]. Introducing fractures and faults results in non-conforming grids.
Conforming grids are grids where the intersection of two arbitrary cells is either
empty, a face, an edge or a vertex. With these features it is possible to make
complex geological models.

Figure 2.6: To the left, a general corner-point cell is shown. The black pillars and the
red points define the corner-point cell in light red. To the right we see four examples of
degenerated cells.

The flexible grid geometry introduces some additional difficulties [3]. First,
since a grid face is defined by four points, the faces will generally be bilinear and
possibly strongly curved. We also notice that corner-point grids are not uniquely
defined as a surface defined by four points is not unique. Next, one needs to
handle cells with zero volume, and the resulting non-neighbour connections, which
may result in discretization matrices with a complex sparsity pattern. Further,
the presence of degenerated cells calls for a very flexible discretization that is not
sensitive to the geometry of each cell or to the number of faces and corner points.
The discretization method should also be able to handle non-conforming grids,
where the intersection of two connected cells not necessarily coincides with the
two touching cell faces, as it does for conforming grids. In addition, the variation
in the reservoir properties are typically much higher in the vertical direction. This
results in corner-point cells that are thin compared to their horizontal propagation.
Thus the aspect ratio will be high.

To this end, we will distinguish between faces and interfaces. An interface will
be referred to as an intersection between two neighboring cells, whereas a face is
related to one specific cell. In a conforming grid, they will coincide, but the total
number of faces in a grid will be twice that of interfaces plus boundary faces.
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In the literature, it is often referred to K-orthogonal grids. Assume that a cell
has s faces, and let ~nk and ~ck, for k = 1, . . . , s, be the unit normal vector of face k
and the vector from the cell centroid to the kth face centroid respectively. Then,
the grid is said to be K-orthogonal [17] if for all cells,

~c>
k K~nk = 0, for k = 1, . . . , s.

2.4 Discretization Methods
We now return to the elliptic pressure equation (2.7) and present some commonly
used discretization methods. Notice that the steady-state equation of the multi-
phase problem (2.6) is on the exact same form. We state this problem as a system
of two equations,

~v = −K
µ
∇p, on Ω, (2.11a)

∇ · ~v = b, on Ω. (2.11b)

Here b = b(~x) is the source term and Ω is the computational domain with bound-
ary ∂Ω. For simplicity, we have neglected gravity and we assume homogeneous
Dirichlet boundary conditions, i.e., p|∂Ω= 0, where p|∂Ω means p evaluated on ∂Ω.
Let Ω be discretized into a corner-point grid with N cells, Ni interfaces and Nf

faces. Generally we require that our methods are mass conservative in each cell,
E, and to be exact for linear pressure.

Let pE be the pressure at the cell centroid. Further, let sE be the number of
faces of cell E, and denote by πkE and vkE, for k = 1, . . . , sE, the pressure and the
flux respectively at face k of cell E. Flux is defined as the normal component
of the velocity, ~v · ~n. General finite volume methods can now be written in the
form [17]

vE = TE(eEpE − πE), eE = [1, . . . , 1]>, (2.12)

where TE is a sE× sE matrix, vE = [v1
E, . . . , v

sE
E ]> and πE = [π1

E, . . . , π
sE
E ]>. This

is the discrete analogue to Darcy’s law (2.11a). Different choices of TE leads to
different methods.

Mass conservation (2.11b), can be stated as ∑sE
k=1 v

k
E = bE. We also require the

flux to be continuous across cell interfaces, i.e., vk1
E1 = −vk2

E2 if cell E1 shares is k1th
face with face k2 of cell E2. Together with (2.12), we get the following system of
equations [17],



2.4. Discretization Methods 17

M C> D>

C 0 0
D 0 0


 v
−p
π

 =

0
b
0

 , (2.13)

where v, p and π are the global vectors of unknown fluxes, cell pressures and
interface pressures respectively. We have one flux unknown for each face, and one
interface pressure unknown for each interface. Further, M is a block diagonal
matrix with blocks T−1

E , C is a N × Nf matrix, where each row corresponds to
a cell having ones at the positions corresponding to the cells faces, and D is a
Ni × Nf matrix, where each row corresponds to an interface having ones at the
positions corresponding to the two cell faces. Finally, b is a vector of cell sources.

The two-point flux approximation (TPFA), see for instance [1], have two flux
unknowns per interface and TE is diagonal [17]. TPFA requires the grid to be
K-orthogonal, which in general is not satisfied for corner-point grids. The multi-
point flux approximation (MPFA), see for instance [4] or [1], have more unknowns
at the interfaces and can be applied to more general grids. However, it is hard to
implement on corner-point grids, especially if the grid is non-conforming [3]. The
newly developed mimetic finite difference method (MFDM) [8] is quite flexible
and easy to use with corner-point grids as it handles degenerated cells and non-
conforming grids [3]. We will go further in details of the MFDM in Chapter 4.

For completeness we also mention that mixed finite element methods (MFEM)
can be used to solve (2.11). This will also result in a system equal to (2.13), but
for degenerated cells, the MFEM is not trivial to use [3].
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Chapter 3

Upscaling of Permeability and
Relative Permeability

Upscaling of a reservoir property refers to the technique of determining the effective
property value of a heterogeneous bulk as if the bulk was homogeneous, see Figure
3.1. For porosity and saturation, a simple volume weighted average is commonly
used as the upscaling technique. For permeability it is often necessary to take fluid
flow into account in order to capture most of the heterogeneity in a simulation cell.
We will assume that we have a fine scale model with small scale heterogeneity and
a coarse scale model (typically the simulation model). Further, let K(~x) be the
permeability field and φ(~x) the porosity in the fine scale model.

Figure 3.1: Illustration of the upscaling process.

The goal of permeability upscaling is to calculate an upscaled permeability
tensor, K̃(~x), which is constant in each coarse cell and which captures as much of
the fine scale variations as possible. The reason for doing so is that the number
of geological cells in a full reservoir typically is so large that running full field
simulations are very demanding and in some cases impossible with today’s numer-
ical methods and computer power. Anyway, running on a coarser grid will reduce
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the computational costs considerably. It is also a goal that the cell that is to be
upscaled for is a representative elementary volume (REV), so that it can be used
several places in the simulation model.

A large class of different upscaling techniques is presented in [10], and these
will be introduced and discussed in this chapter. We will initially consider only
single-phase upscaling, but we return to two-phase upscaling in Section 3.4. We
assume that no wells are present in our models and that the coarse grid cells are
non-overlapping unions of underlying fine grid cells. See [10] for a treatment of
wells and irregular coarse grid cells.

In [10] flow based gridding techniques are also presented. These are not up-
scaling methods, but try to construct grids that have high level of grid refinement
in regions with high flow rates and coarser descriptions in regions with lower flow
rates. The motivation behind this is to reduce the number of cells so that global
simulation can be performed sufficiently efficient and still capture important ge-
ological features. However, this technique does not fit into the framework of a
REV. Flow-based gridding techniques will therefore not be further discussed in
this thesis.

Upscaling methods can be divided into two main types. First, we have different
averaging methods. These are analytical and easy to calculate. Secondly, we
have flow based methods. These calculate upscaled permeability by solving a flow
problem. Analytical solutions exists only for very simple geometries, so numerical
calculations are required. There are two main types of flow based methods. Local
methods only take into account the permeability field of the target cell, while
global methods try to include global effects into the upscaling. In between these
two, different hybrid methods have been developed. At the end of this chapter,
we will make a discussion on which methods are preferable in different scenarios.

Some of the upscaling techniques that will be presented upscales transmissi-
bility rather than permeability. Thus, a short introduction to transmissibility is
needed. Transmissibility is a numerical interface quantity which relates the flow
from one cell to a neighboring cell. Let i and i+1 be two neighboring cells with cell
pressures pi and pi+1 respectively, and with a flow rate qi+1/2 across the common
interface. Then, we write

qi+1/2 = Tx,i+1/2(pi − pi+1), (3.1)

where Tx,i+1/2 is the transmissibility between the cells in the x-direction. In a
two-point flux approximation scheme, Tx,i+1/2 can be expressed as [10]

Tx,i+1/2 = 2kx,i+1/2Ai+1/2

∆xi+1 + ∆xi
,

where Ai+1/2 is the area of the interface, ∆xi is the average cell size in the x-
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direction, and kx,i+1/2 is the volume weighted harmonic average of the x-component
of the permeability in the two cells, i.e.,

kx,i+1/2 = (∆xi + ∆xi+1)kx,ikx,i+1

∆xi+1kx,i + ∆xikx,i+1
.

Here, kx,i is the x-component of the permeability tensor in cell i. Transmissibilities
in the other directions are defined similarly. We see that transmissibility and
permeability are related.

3.1 Power Averaging Methods
Power averaging methods are analytical, so they do not require numerical calcu-
lations. This makes them computationally very efficient. They can be viewed as
local methods, as they only depend on the fine scale permeability field in the tar-
get cell. These methods assume that the fine scale permeability tensor is diagonal,
and also calculates a diagonal upscaled permeability tensor. Hence, off-diagonal
terms are neglected.

Let Ω denote the target cell and |Ω| its volume. Further, let kξ(~x) denote the
fine scale permeability at position ~x ∈ Ω in the ξ-direction and k̃ξ the (constant)
upscaled permeability in Ω in the ξ-direction. Then each upscaling component can
be calculated via

k̃ξ =
(

1
|Ω|

∫
Ω

(kξ)wξ dΩ
) 1
wξ

, for ξ = x, y, z. (3.2)

The upscaled permeability tensor is now given as

K̃ =

k̃x 0 0
0 k̃y 0
0 0 k̃z

 .
The power average exponent, wξ, can vary with the direction, so even if we have
an isotropic permeability field, the upscaled tensor can be anisotropic. We require
that wξ ∈ [−1, 1] and observe that the extremes, wξ = −1 and wξ = 1, corresponds
to the harmonic and arithmetic averages respectively. In the limit wξ → 0, (3.2)
becomes

k̃ξ = exp
(

1
|Ω|

∫
Ω
log(kξ) dΩ

)
.

A great advantage of the power average methods is that they are applicable to
coarse cells of any shape. However, in many cases, it is a too simple approach and
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neglecting off-diagonal terms can be a poor assumption. For a motivation of these
methods, see for instance [2].

3.2 Local Methods
Local upscaling methods consider the elliptic pressure equation (2.7) locally on
the target cell,

∇ · [−K(~x)∇(p− ρ~g)] = 0, on Ω. (3.3)

The source term is omitted as we assume no wells. Local methods assume that the
target cell, Ω, is a hexahedron. Let ∂Ωξ,i, for ξ = x, y, z and i = 1, 2, denote the six
boundary faces of Ω as illustrated in Figure 3.2. We first solve (3.3) numerically
for pη, and then calculate ~vη from Darcy’s law (2.2). The subscript η denotes the
solution with a unit pressure drop imposed in the η-direction. Now the upscaled
permeability tensor can be calculated as

K̃ =

k̃xx k̃xy k̃xz
k̃yx k̃yy k̃yz
k̃zx k̃zy k̃zz

 , where k̃ξη = Qη
ξLη, ξ, η = x, y, z. (3.4)

Lη is the average distance between opposite faces in the η-direction and Qη
ξ is the

net flow in the ξ-direction when a pressure drop is imposed in the η-direction, i.e.,

Qη
ξ = 1

2|∂Ωξ,2|

∫
∂Ωξ,2

~vη · ~n dS − 1
2|∂Ωξ,1|

∫
∂Ωξ,1

~vη · ~n dS, (3.5)

where ~n is the outward pointing unit normal vector on ∂Ω. We see that (3.3) has
to be solved for η = x, y, z to get all the entries of K̃.

The local upscaling methods depend on which boundary conditions (BCs) we
choose. Three sets of BCs are often used in the upscaling procedure; fixed, linear
and periodic. All three BCs have in common that a unit pressure drop is imposed
in one direction. We will denote by η the direction for the pressure drop, and by
ξ the other directions.

Fixed BCs

Fixed BCs, also known as no-flow or sealed BCs, enforces no flow on the boundaries
parallel to the pressure drop, i.e.,
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Figure 3.2: The target cell, Ω, and naming conventions for the six boundary faces.

pη|∂Ωη,1 = 1,
pη|∂Ωη,2 = 0,

(~vη · ~n)|∂Ωξ,i = 0, i = 1, 2.

Since no flow is allowed on the boundaries parallel to the pressure drop, we see
from (3.5) that the off-diagonal terms in (3.4) will vanish. Thus, cross terms of K̃
is neglected, and we get a diagonal upscaled tensor. In some cases, for instance
when the grid is not K-orthogonal, these cross terms can be significant [10].

One approach for generating a full upscaled tensor from fixed BCs is presented
in [10]. Instead of calculating the net flow over the boundaries, as it is done in
(3.5), volume weighted averages of the fine scale solutions over the hole domain,
Ω, is calculated,

〈~vη〉 = 1
|Ω|

∫
Ω
~vη dΩ, η = x, y, z, (3.6)

〈(∇p)η〉 = 1
|Ω|

∫
Ω

(∇p)η dΩ, η = x, y, z. (3.7)

Each of these two equations have three components, and we denote by 〈~vη〉ξ the
ξ-component of 〈~vη〉, and similarly for 〈(∇p)η〉. We can now set up a linear system
of nine equations, whose solution gives us the nine components in the upscaled
permeability tensor (3.4),
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〈~uη〉x = −
(
k̃xx〈(∇p)η〉x + k̃xy〈(∇p)η〉y + k̃xz〈(∇p)η〉z

)
,

〈~uη〉y = −
(
k̃yx〈(∇p)η〉x + k̃yy〈(∇p)η〉y + k̃yz〈(∇p)η〉z

)
,

〈~uη〉z = −
(
k̃zx〈(∇p)η〉x + k̃zy〈(∇p)η〉y + k̃zz〈(∇p)η〉z

)
,

(3.8)

for η = x, y, z. The upscaled tensor calculated from this linear system will in
general be full, but not symmetric. To get a symmetric tensor, one can simply use
the average for the cross terms, that is, use 1

2(k̃ηξ + k̃ξη) for η 6= ξ. Alternatively,
one can add the three equations

k̃ηξ − k̃ξη = 0, η = x, y, ξ = y, z, η 6= ξ, (3.9)

to the linear system (3.8) and use the least squares solution as the upscaled tensor.

Linear BCs
Linear BCs specify linearly decreasing pressure on the boundaries parallel to the
pressure drop. If the coarse cell is a rectangular hexahedron with side lengths Lx,
Ly and Lz, this can be expressed as

pη|∂Ωη,1 = 1,
pη|∂Ωη,2 = 0,

pη|∂Ωξ,i = 1− η

Lη
, i = 1, 2,

We see that flow is allowed out of all boundaries, and hence we get a full tensor
from the calculations (3.4) and (3.5). However, the upscaled tensor is in general
not symmetric. To obtain a symmetric tensor, the technique given by the equations
(3.6) to (3.9) can be used.

Periodic BCs
Periodic BCs connects opposite faces, so that what flows out at one boundary
flows in at the opposite boundary, or more precisely,

(~vη · ~n)|∂Ωξ,1 = −(~vη · ~n)|∂Ωξ,2 ,

pη|∂Ωξ,1 = pη|∂Ωξ,2+δξ,η,
(3.10)

where δξ,η is the Kronecker delta, i.e., δξ,η = 1 if ξ = η and 0 otherwise. For periodic
BCs we must require Ω to be a regular hexahedron, so that opposite boundary
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faces can be connected. In addition, the problem given by (3.3) and (3.10), must
be closed by specifying the pressure at a given point. This is necessary to ensure a
unique solution. The upscaled permeability tensor obtained from (3.4) and (3.5)
is symmetric and positive definite [10]. The technique given by the equations (3.6)
to (3.9) will result in the same tensor.

Analytical Solutions
For the special case where the model is built up of parallel layers, we can easily
derive analytical solutions. We consider a model with different layers alternating
in the z-direction, that is all layers are parallel to the xy-plane. Since this model
is periodic, which means that the materials matches on opposite boundaries, the
upscaled permeability tensor for the fixed and periodic cases should be equal. The
upscaled permeability tensor, K̃fp, for these two cases, can be calculated exact
using arithmetic and harmonic averages (3.2),

K̃fp =

k̃a,x 0 0
0 k̃a,y 0
0 0 k̃h,z

 , (3.11)

where k̃a,ξ and k̃h,ξ, for ξ = x, y, z, are the arithmetic and harmonic averages in
the ξ-direction respectively. The analytical solution can be used to verify that the
upscaling procedures are implemented correctly. This result holds for the fixed and
periodic BCs only. For linear BCs, an analytical solution is not so easy derived.

A special feature of the upscaled permeability tensor for the periodic case, is
that it is SPD, and hence it can be diagonalized. By symmetry arguments, it is
possible to calculate the analytical permeability tensor for a periodic model with
alternating parallel layers even if the layers are not perpendicular to any of the
coordinarte directions. The analytical solution is given by

K̃p = A>K̃diagA, (3.12)

where A is the linear transformation matrix taking the coordinate system ~x onto
a coordinate system, ~x′, which has two coordinate directions parallel to the layers
and the third direction perpendicular to the layers. K̃diag is the analytical solution
in the ~x′ system, i.e., given by (3.11). We must require A to be unitary, A>A = I,
where I is the identity matrix.

Extended Local Methods
Extended local upscaling methods try to capture some of the effect of the surround-
ing permeability field by including a border region. The border region consists of
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a ring of neighboring coarse cells with the fine scale permeability field, see Figure
3.3. The problem (3.3) is now solved over this extended domain, accompanied
with any of the BCs presented above. Next, one uses (3.6) and (3.7) to calculate
〈~vη〉 and 〈(∇p)η〉 over the target cell (the shaded cell in Figure 3.3). Then (3.8) is
used to calculate the upscaled tensor.

Figure 3.3: The border region and the target cell (shaded). Both fine grid (thin lines)
and coarse grid (bold lines) are shown. These grids are two-dimensional and structured
for simplicity of the illustration, but extended local methods are valid for more general
grids. The figure is modified from [10].

Notice that this method in general will result in a full tensor for all BCs. Also
notice that the tensor is no longer symmetric in general for the periodic case as
this was lost when introducing the border region. To ensure symmetry, the least
squares technique introduced by equation (3.9) can be applied. In [10] it is pointed
out that introducing the border region may reduce the effect of using different BCs.
But on the other hand, the problem to be solved is much bigger than in the pure
local method. For a two-dimensional grid, the total number of fine cells will be
nine times bigger, and for a three-dimensional grid, it will be 27 times bigger
if we assume that all coarse cells contains the same number of fine cells. This
will increase the computational costs significantly. It is also possible to extend
the domain even more by adding more rings of coarse cells to the border region.
However, this has shown little improvement [10] and the computational costs will
increase even more.
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3.3 Global Methods
Global methods primarily upscale transmissibility rather than permeability, but
as we have seen these quantities are related. The idea of global methods is to
solve a global flow problem on the fine grid model and use the solution to compute
upscaled transmissibilities (or permeabilities) on the coarse grid. At a first glance
this seems to violate the purpose of upscaling, as the computational costs of solving
the global flow problem is huge. However, when this is done once, one can solve
several different flow scenarios on the coarse grid by using the upscaled quantities
calculated from the fine scale solution.

Let i and i+1 be the index of two neighboring coarse cells, and denote by T̃i+1/2
the upscaled transmissibility between the cells. Let qi+1/2 be the flow rate across
the common interface and 〈p〉i the average over cell i of the fine scale pressure
solution. From (3.1), upscaled transmissibilities can now be calculated as

T̃i+1/2 = qi+1/2

〈p〉i − 〈p〉i+1
.

This gives a first estimate for the upscaled transmissibilities. In highly heteroge-
neous models, this procedure may lead to negative transmissibilities, and iterations
are performed until all are positive and a sufficient level of agreement between the
fine and coarse solution is achieved [10]. The level of agreement can be measured
in many ways, and this gives rise to different versions of global methods.

Quasi Global Methods
Quasi global methods, also called local-global methods, try to take into account
effects from the global flow without actually solving the global fine scale problem.
Instead they try to utilize coarse scale simulations to estimate which BCs to be
used in the extended local calculations. Transmissibility is primarily considered
when doing quasi global upscaling, but the method is analogous for permeability,
which we will consider here.

First, upscaled permeability tensors for all coarse cells are calculated from
the extended local method with any of the BCs described above. Next, a global
simulation on the coarse grid is performed using the upscaled permeability tensors.
Further, the extended local method is performed again, now with the pressure
solution from the previous global simulation as BCs. Notice that the pressure
solution on the boundary needs to be interpolated onto the fine scale grid in order
to be used as BCs. These steps are iterated until the upscaled permeabilities no
longer change with iteration. Usually, a thresholding procedure is included, so
that only coarse cells with flow rates bigger than a preset magnitude is upscaled in
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each iteration. This handles unfeasible results (such as negative transmissibilities)
and decreases the computational costs.

Multiscale Methods
Multiscale methods are not in themselves upscaling methods, but may be viewed
as alternatives to the classical upscaling methods described above. They are just
briefly mentioned in [10], so we base this presentation on [3]. The main idea of
the multiscale method presented therein is to solve the global flow problem on a
coarse grid, where the local discrete approximation spaces are constructed in such
a way that fine-scale heterogeneity is accounted for. In a finite element setting,
this means that the basis functions are computed numerically by solving local flow
problems [3]. An algorithm for calculating these basis functions is given in [3].
The method can be applied to very general coarse grid geometries, but to ensure
accurate solutions, some guidelines should be followed.

The main advantage of the multiscale method is that it can be as efficient
as the classical upscaling methods, and at the same time produce a detailed and
conservative velocity solution on the fine grid [3]. It should be mentioned that this
is based on a comparison with quasi-global methods. Another advantage is that
it handles more general coarse cell geometry, as most of the classical upscaling
methods require the coarse cells to be a hexahedrons.

Many different variants of the multiscale methods have been developed, not
just the one mentioned here. However, the principles are the same.

3.4 Two-Phase Upscaling
When considering a multi-phase system, it is often necessary to upscale relative
permeability in addition to absolute permeability. Relative permeability is depen-
dent on saturation and the governing equation (2.6) is also time dependent. Thus,
upscaling of a multi-phase system is much more involved than for a single-phase
system. In this presentation we will restrict ourselves to a two-phase system of
oil(o) and water(w), but the methods described here can also be applied to other
two-phase systems. We also assume that the permeability on the underlying fine
grid is isotropic, and that we for each rock type present in the model, are given
relative permeability for both phases and the J-function as functions of water sat-
uration. We denote these functions by kri(Sw) and J(Sw) respectively. In this
thesis, only local steady-state upscaling will be considered. Other techniques are
introduced for instance in [2].

Steady-state upscaling methods assume that the time dependency in equation
(2.6) can be neglected [2]. Without any wells, the governing equation is
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∇ · [Ki(~x)(∇pi − ρi~g)] = 0, on Ω, i = o, w. (3.13)

This is on the same form as (3.3), so we can use the local methods from Section
3.2. This will result in an upscaled phase permeabilty tensor, K̃i, from which we
can use relation (2.3) to calculate the upscaled relative permeability,

K̃ri = K̃i · K̃−1. (3.14)

This deviates slightly from most literature, as we assume relative permeability to
be a tensor, not just a scalar. The phase permeability on the underlying fine grid,
can be computed from the relative permeability curves, i.e.,

Ki(~x) = kri(Sw)K(~x). (3.15)

Notice that one has to use the relative permeability curve associated with the
rock type at position ~x. Since Sw is a dependent parameter, the upscaled relative
permeability calculated from (3.14) is valid for this particular saturation distri-
bution. It is common to upscale Sw, and say that one particular K̃ri is valid for
this upscaled water saturation. To get the full picture, the upscaling procedure is
repeated for a given number of saturation points. Water saturation is upscaled by
volume averaging, i.e.,

S̃w =
∫
Ω φ(~x)Sw(~x) dΩ∫

Ω φ(~x) dΩ . (3.16)

The only problem we are left with now is to find the saturation distribution,
Sw(~x), in the model at steady-state. This is not a trivial problem, and generally
this forces us to run the full flow problem (2.6) until steady-state is reached. This
problem is further discussed later, but first we look at two methods to approximate
the steady-state distribution.

Two-Phase Upscaling at Capillary Equilibrium
In the first approach we assume that capillary pressure is constant in time and
space and that capillary forces dominates, so that we can neglect viscous and
gravitational forces. This is typically a good approximation on small scales or in
regions with low flow rate. Recall that the J-function (2.10) is dependent on the
water saturation and can be expressed as

J(Sw) =
pc
√

k
φ

σ cos(θ) .
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For each rock type, J(Sw) is a known function, and it is strictly monotone. Hence,
we can find the saturation by taking its inverse [2],

Sw(~x) = J−1

 pc
√

k
φ

σ cos(θ)

 . (3.17)

This means that given the capillary pressure, we can calculate the water saturation
in each cell from (3.17). Notice that we must use the correct J-function, that is,
the one that corresponds to the rock type at position ~x.

It is relatively easy to include gravitational effects into this method [2]. Now
the capillary pressure is not constant in space, but assumed to be in gravitational
equilibrium, which means that

pc(~x) = p̂c + (ρw − ρo)gz0,

where p̂c is the capillary pressure at a fixed point, for instance at the model center,
and z0 is the vertical distance between ~x and the model center. Since gravitational
effects are not taken into account in the J-function, J(Sw), capillary forces should
still be the dominant force [2].

The upscaling process is repeated for several capillary pressures (or center
capillary pressures). In practice, one initially select a uniform distribution of
upscaled saturation points that one wants to upscale for. Then the corresponding
capillary pressure points, are calculated from the J-function curves. This process
is done to ensure that the upscaled relative permeabilities correspond to upscaled
saturations which are nearly uniformly distributed.

In practice, the J-function and the relative permeabilities as functions of Sw
are given as discrete values. Interpolation is needed in order to evaluate these
functions between the discrete points. One can assume that these curves origi-
nally are continuously differentiable, and that the interpolation therefore should
be at least cubic. Also, both the J-function and the relative permeability func-
tions, are monotonic, and we have seen that this is a necessary property for the
upscaling procedure to work. Hence, the interpolation should also be monotonicity
preserving.

Two-Phase Upscaling in the Viscous Limit
The second approach assumes that viscous forces are dominant, and that capillary
and gravitational forces can be neglected. This can be a good approximation
in regions with high flow rate. Further, the fractional flow is assumed constant
throughout the model. In [11] it is argued why this is a reasonable assumption
for stable displacements. Since capillary pressure is neglected, the pressure of
the phases are equal. Thus, we write p ≡ pw = po. We still assume that the
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permeability is isotropic. The fractional flow rate in any direction is now given by
Darcy’s law (2.4),

vw
vo

=
−kkrw
µw
∇p

−kkro
µo
∇p

= krwµo
kroµw

. (3.18)

Since we are given the relative permabilities as functions of water saturation, we
can find the two unknowns Sw(~x) and So(~x) from the system of equations [2],

krw(Sw) = vw
vo

µw
µo
kro(Sw),

Sw + So = 1.
(3.19)

This system has a unique solution since kri(Sw) is strictly monotone and thus
invertible. Notice that the relative permeability curves associated with the rock
type at ~x must be used. The flow rate, vw

vo
, is constant by assumption, and the

upscaling procedure can be repeated for different flow rates to get the full picture.
For a given flow rate, the upscaled water saturation can be calculated from (3.16).
Observe that the saturation is equal for fine grid cells with the same rock type.
Thus, if we only have one relative permeability curve, the saturation will be equal
in all fine grid cells.

General Steady-State Upscaling

General steady-state upscaling involves solving the full transport equation (2.6)
until steady-state is reached [2]. This is very costly compared to the two ap-
proximations above, as we will see in Section 6.3. Together with one of the BCs
described in Section 3.2, one needs to specify the fluid injection rates at the bound-
aries and an initial saturation distribution. To ensure computational efficiency, it
is essential to make a good initial "guess". One approach is to use the saturation
distribution obtained at the capillary equilibrium (3.17). Another appraoch is to
use the distribution obtained in the viscous limit (3.19).

The main drawback of the general steady-state upscaling is that it is compu-
tational very costly. The method also assumes that the transport problem has
a unique steady-state solution, and this property is hard to prove in most cases.
But, on the other hand it is quite general, as it takes into account both viscous,
capillary and gravitational forces.
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3.5 Discussion
We have now seen that permeability can be upscaled in a variety of ways. Which
of the methods to choose depends on many factors. It is clearly important that the
upscaled properties capture as much of the fine scale heterogeneities as possible.
This means that there should be a high level of agreement between the full field
simulation on the fine grid and full field simulation on the coarse grid. This is
primarily a theoretical objective as full field simulation on the fine grid is seldom
performed for all flow scenarios. It is also important to specify which charac-
teristics that are most important to capture from the fine scale model. Further,
computational costs should be taken into account.

Global methods are expected to give a higher level of agreement between the
simulations than local methods. This is because global methods take into ac-
count global effects, while local methods only consider the target cell. But global
methods require to solve the global flow problem on the fine grid. This can be
computationally very costly and in some cases also impossible with today’s com-
puter resources. The upscaled quantities are also dependent on the specific choice
of global flow problem. Thus, global methods are expected to give good results for
flow scenarios that are similar to the fine grid simulation, but we have no guarantee
that this holds for more different scenarios.

Since global methods require to solve a global flow problem, they put restric-
tions on the underlying fine grid. This grid can not be a too fine refinement of
the simulation grid if it should be computationally possible to solve the global
flow problem. This means that global methods are best suited for upscaling from
geological models to simulation models, as geological models typically are just
small refinements of the simulation model. Local methods are more general since
they can be used to upscale also from finer grid models. They are also appli-
cable to other scales. Further, local methods fit better into a REV framework
than global methods do. Our main objective is to upscale REV that can be used
several places in the full field simulation model. Thus, upscaling of every simula-
tion cell is often not necessary or even meaningless if all parts of the reservoir do
not have unique measurements. Local methods are therefore considered better for
prediction, which is what we primary aim for, while global methods more or less
reproduce a particular historic flow.

Another advantage of local methods is that they are computationally less costly
compared to global methods. They are also independent of the rest of the reservoir.
Thus, the problem of upscaling reservoir cells can easily be split into smaller tasks.
This is for instance is very convenient for parallelization.

When using local methods, it can be difficult to determine which BCs to use in
the different cases. However, as we have seen, this issue is not completely removed
for global methods either. A claim stated by King [14] can be very useful in this
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context1:

Claim 1 The upscaled permeability resulting from the local method with fixed BCs
is a lower bound on the permeability, while the upscaled permeability resulting from
the local method with linear BCs is an upper bound.

Thus, if we get similar results for both fixed, linear and periodic BCs, we can be
more certain that the upscaled permeabilities are good. If not, one has to do a
more detailed analysis of the model to figure out which BCs that are most feasible.

Based on the discussion above, we have chosen to consider only local upscaling
methods in the following. Mathematically this corresponds to solving the elliptic
partial differential equation (3.3). For complex grids this has to be done numeri-
cally, and any of the methods mentioned in 2.4 can be used. In OPM, and also in
this thesis, the mimetic finite difference method (MFDM) is chosen.

1From private correspondence it was pointed out that this claim was built on a variational
argument based on dissipation and the number of degrees of freedom in the velocity field.
However, the proof was not found in the literature.
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Chapter 4

Mimetic Finite Difference Method

The mimetic finite difference method (MFDM) as solver for the elliptic diffusion
equation (3.3) has shown to work nicely on corner-point grids [3]. The main reason
for this is that the MFDM is very flexible with respect to cell geometry. Hence,
degenerated cells with less than six faces and extended cells with more than six
faces can easily be handled. Cells with more than six faces can be used to make
non-conforming grids conforming by introducing additional cell faces along non-
conforming surfaces in the grids. Based on this flexibility, and with the implications
of the other discretization methods discussed in Section 2.4 in mind, we have chosen
to use the MFDM in this thesis.

The MFDM can be presented in a variety of ways. The presentation given here
is based on [16] (but without the reaction term, i.e., c ≡ 0), since this gives an
element-based derivation which we find the most intuitive. For other presentations,
see for instance [8], [9] or [3]. The latter shows how the MFDM can be viewed
as a counterpart to a mixed hybrid finite element method. The main idea of the
MFDM is to mimic the underlying properties of the original continuum differential
operators [8].

We are considering the three dimensional elliptic diffusion problem (3.3), which
may be written as a system of two equations,

~v = −K∇p,
∇ · ~v = b,

in Ω ⊂ R3. (4.1)

For simplicity, we have neglected gravity. The source term, b = b(~x), is zero in
the upscaling problem, but it is included here for completeness. The permeability
tensor, K = K(~x), is assumed to be full in general and strongly elliptic, i.e., there
exists constants α1 and α2 such that

α1‖~u‖2≤ ~u>K(~x)~u ≤ α2‖~u‖2, ∀~u ∈ R3, ∀~x ∈ Ω. (4.2)

35
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Equation (4.1) is accompanied with some appropriate boundary conditions (BCs),
which are described later.

Let Ωh be a partition of Ω into N closed simply-connected polyhedrons Ei,
that is,

Ωh =
N⋃
i=1

Ei.

Notice that in a corner-point grid, Ei corresponds to a cell. However, the number
of faces will not be restricted to six. Hereafter, we denote by E an arbitrary
polyhedra in {Ei, i = 1, . . . , N}, and by ∂E its boundary. Further, if E has sE
faces, we denote by FkE, for k = 1, . . . , sE, the faces of E. If there is no ambiguity
which polyhedron we are on, we simplify and just write Fk, for k = 1, . . . , s.

Following [16], we integrate the second equation of (4.1) over E, and apply the
divergence theorem. This yields

s∑
k=1

∫
Fk
~v · ~n dS =

∫
E
b dΩ,

where ~n is the unit normal vector pointing out of E. This equation motivates why
the normal components of the velocity averaged over the faces are used as discrete
unknowns in the MFDM. We will refer to these quantities as flux.

Next, we introduce the flux operator, G, and the generalized divergence oper-
ator, D,

Gp = −K∇p, (4.3)

D~v =

∇ · ~v on E,
−~v · ~n on ∂E.

(4.4)

Further, let X and Q denote the velocity and pressure spaces respectively, and
define the following scalar products on them:

[~v, ~u]X =
∫
E
~vK−1~u dΩ, (4.5)

[p, q]Q =
∫
E
pq dΩ +

∫
∂E
pq dS. (4.6)

Now recall Green’s formula,

−
∫
E
~v∇p dΩ =

∫
E
p∇ · ~v dΩ−

∫
∂E
p~v · ~ndS, (4.7)

which we can rewrite as
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[~v,Gp]X = [p,D~v]Q, (4.8)
and hence we see that G and D are adjoint, G = D∗, with respect to the scalar
products (4.5) and (4.6) [16]. This property is preserved in the MFDM when
discrete counterparts to G and D are defined.

4.1 Discretization on Element
The MFDM is usually presented in four steps, and so it will be here. This section
is purely based on [16], but with some additional intermediate calculations. The
first step is to specify the degrees of freedom (DOF) and their location. For the
pressure unknown we set the DOF to s + 1, one at the center of mass of E and
the rest at the centroids of the s faces. Hence, let Qh

E be the s + 1 dimensional
vector space of discrete pressure functions, pE = (p0

E, p
1
E, . . . , p

s
E), where p0

E is the
pressure unknown at the center of mass, and pkE, for k = 1, . . . , s, are the pressure
unknowns at the face centroids. We use subscript E to denote that these unknowns
are associated with element E.

The unknowns for the discrete velocity are chosen to be the normal components
of the velocity, v1

E, . . . , v
s
E, located at the face centroids. That is, vkE approximate

the scalar product ~v ·~n on face FkE. Hence, the discrete velocity space Xh
E is defined

as the s dimensional vector space of discrete flux functions vE = (v1
E, . . . , v

s
E).

The second step is to define scalar products on the discrete spaces:

[pE,qE]QhE = p0
Eq

0
E|E|+

s∑
k=1

pkEq
k
E|Fk|, ∀pE,qE ∈ Qh

E, (4.9)

[vE,uE]Xh
E

= v>
EMEuE =

s∑
r,c=1

ME,r,cv
r
Ev

c
E, ∀vE,uE ∈ Xh

E, (4.10)

where |E| is the volume of E, |Fk| is the area of Fk and ME is a s× s symmetric
positive definite (SPD) matrix with entries ME,r,c. The choice of ME is one of the
most crucial part of the MFDM as it must somehow approximate the continuous
one with sufficient accuracy. We will return to how this matrix can be constructed
later.

The third step is to define the discrete counterpart to D, Dh. First, we define
the discrete divergence operator,

DIVhvE = 1
|E|

s∑
k=1

vkE|Fk|, (4.11)

which is motivated by the divergence theorem,
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∫
E
∇ · ~v dΩ =

∫
∂E
~v · ~n dS =

s∑
k=1

∫
Fk
~v · ~n dS.

We can now define Dh as

DhvE = (DIVhvE,−v1
E, . . . ,−vsE). (4.12)

Finally, the fourth and last step is to define the discrete flux operator, Gh, as
the adjoint to Dh with respect to the scalar products (4.9) and (4.10), i.e.,

[vE,GhpE]Xh
E

= [pE,DhvE]QhE , ∀pE ∈ Qh
E, ∀vE ∈ Xh

E. (4.13)
If we look closer on the left and right hand sides of this equation and use the
definitions, we see that

LHS = v>
EMEGhpE

RHS =
[(
p0
E, p

1
E, . . . , p

s
E

)
,
(
DIVhvE,−v1

E, . . . ,−vsE
)]
QhE

= p0
E

1
|E|

s∑
k=1

(
vkE|Fk|

)
|E|+

s∑
k=1

pkE(−vkE)|Fk|

=
s∑

k=1
(p0
E − pkE)vkE|Fk|= v>

EDEdE,

where

DE =


|F1| 0

. . .
0 |F s|

 and dE =


p0
E − p1

E
...

p0
E − psE

 . (4.14)

Since (4.13) should hold for all vE ∈ Xh
E, we conclude that MEGhpE = DEdE or

GhpE = M−1
E DEdE. (4.15)

We are now ready to present the local discretization equations, which follows
from substituting the continuous operators with the discrete ones into (4.1),

vE = GhpE,

DIVhvE = 1
|E|

bE,
(4.16)

where

bE =
∫
E
b(~x)dΩ.
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4.2 Interface and Boundary Conditions
To close the system, we impose continuity conditions on the interfaces. This
section is also built on [16]. Hereafter, let vki and pki denote the flux and pressure
respectively on FkEi , which we for simplicity will denote Fki from now. Thus, the
continuity conditions can be expressed as

vk1
i1 = −vk2

i2 (4.17)
pk1
i1 = pk2

i2 (4.18)

if polydron Ei1 shares its face k1 with the k2th face of Ei2 .
For those faces that lie on the boundary ∂Ω, we must impose some boundary

conditions. Here, Dirichlet and Neumann conditions will be considered. Periodic
BCs will be treated in Chapter 5. We assume that ∂Ωh can be partitioned into
two domains, ΓD and ΓN , such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. The BCs
can now be written as

p = gD on ΓD,
~v · ~n = gN on ΓN ,

where gD = gD(~x) and gN = gN(~x) are known functions. If Fki is on ΓD, then

pki = 1
|Fki |

∫
Fki
gD(~x) dS, (4.19)

or if Fki is on ΓN , then

vki = − 1
|Fki |

∫
Fki
gN(~x) dS. (4.20)

4.3 Assembly Process
We now split the pressure unknowns on a polyhedron E into cell pressure, pE = p0

E,
and interface pressures, πE = (π1

E, . . . , π
s
E) = (p1

E, . . . , p
s
E). If we use the relation

(4.15), the first equation in (4.16) can be written as

MEvE −C>
EpE + DE πE = 0,

where DE is as defined in (4.14) and

CE =
[
|F1| · · · |F s|

]
. (4.21)
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Further, the second equation can be written as

CEvE = bE.

Finally, the element contribution from the continuity condition (4.17) multiplied
with the face areas, can be written as

DEvE = 0.

If we first assume that we are on an internal polyhedron E, we can write the
local system of equations on matrix form,ME C>

E D>
E

CE 0 0
DE 0 0


 vE
−pE
πE

 =

 0
bE
0

 . (4.22)

If we are on the boundary, that is, if some of the faces of E are on ∂Ω, we use the
boundary conditions (4.19) and (4.20). This will remove some entries on the left
hand side and introduce new terms on the right hand side that are related to the
boundary conditions.

Let Nf be the total number of faces, that is Nf = ∑N
i=1 sEi . Notice that internal

faces in Ωh are counted twice. Let Ni denote the number of unique interfaces in
Ωh. We now collect the flux unknowns into a global vector v = (vE1 , . . . ,vEN ) of
dimension Nf , and the cell pressure unknowns into a global vector p = (p1, . . . , pN)
of dimension N . Further, we use the continuity condition on the pressure (4.18)
to reduce the number of unknown interface pressures from Nf to Ni, and denote
by π = (π1, . . . , πNi) the global vector of unknowns for the interface pressures.
By using local to global mappings, we can assemble the local contributions into a
global system [16], M C> D>

C 0 0
D 0 0


 v
−p
π

 =

gD
b

gN

 . (4.23)

Here, M is a Nf ×Nf matrix, C is a N ×Nf matrix, and D is a Ni ×Nf matrix.
The Nf dimensional vector gD stems from Dirichlet boundary contributions, and
its ith component is given by (4.19) if the ith flux unknown is on ΓD, and 0
otherwise. Similarly, the Ni dimensional vector gN stems from Neumann boundary
contributions, and its ith component is given by (4.20) if the ith interface pressure
unknown is on ΓN , and 0 otherwise.

The first block system of (4.23) is the discrete analogue to Darcy’s law, ~v =
−K∇p, while the second block system is the discrete analogue to mass conserva-
tion, ∇ · ~v = b. The third block system corresponds to the continuity condition
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(4.17). Notice that for v and p, the unknowns are only connected within a single
polyhedron, and hence we have that

M =


ME1 0

. . .
0 MEN

 and C =


CE1 0

. . .
0 CEN

 . (4.24)

The matrix D will not have this structure as one unknown interface pressure
is shared by two polyhedrons, unless we are at the boundary. Now, take a look at
the third block system of (4.23), Dv = gN . Here, each row corresponds to one in-
terface, and for an internal interface the row vectors of D has two non-zero entries,
both equal to the area of the corresponding interface. These non-zero entries are
located at the positions corresponding to the two flux unknowns associated with
this interface, and hence the continuity condition (4.17) is satiesfied.

4.4 Schur-Complement Reduction
We will now show that the system (4.23) can be reduced to a symmetric positive-
definite (SPD) system [16]. We start by solving the first block system for v,

v = M−1(C>p−D> π+gD). (4.25)

Insertion into the two other blocks of (4.23) gives the reduced system[
E −F>

F −DM−1D>

] [
p
π

]
=
[

b−CM−1gD
gN −DM−1gD

]
, (4.26)

where E = CM−1C> and F = DM−1C>. Since M is block diagonal with SPD
blocks, we have that

M−1 =


M−1

E1 0
. . .

0 M−1
EN

 ,
so inverting M is fairly cost effective. In practice, M−1

E can be calculated directly,
not ME, as we will see in the next section. Because of the block structure of C
and M−1, E is diagonal, and hence E is trivially invertible.

Next, solve the first equation in (4.26) for p,

p = E−1(F> π+b−CM−1gD), (4.27)

and insert this into the other block system. This results in the SPD system
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Sπ = r, where

S = DM−1D> − FE−1F>,

r = (D− FE−1C)M−1gD − gN + FE−1b.
(4.28)

The system is now reduced considerably, and once π is calculated, p and v can be
found from (4.27) and (4.25) respectively.

It is also possible to do Schur-complement reduction directly in the local matrix
(4.22). This results in the system

SE πE = rE. (4.29)
The linear system (4.28) can now be obtained by assembling (4.29). In OPM, and
also in this thesis, (4.28) is solved iteratively by preconditioned conjugate gradient
methods. These numerical linear solvers are provided by DUNE.

4.5 Scalar Product in the Discrete Flux Space
We now return to how the element matrix ME can be constructed. In the following,
denote by [v,u]E the local scalar product on the discrete flux space, i.e., [v,u]E =
[vE,uE]Xh

E
, see (4.10). In [9] it is shown how this scalar product can be calculated.

This derivation is reviewed here, but we have chosen to include some additional
intermediate calculations.

Let Xh be the global function space of discrete flux. Further, let Ls(Ω) be the
set of Lebesgue measurable real-valued functions w on Ω for which [12, p. 702]

‖w‖Ls(Ω)≡
(∫

Ω
|w|s dΩ

) 1
s

<∞, 1 ≤ s <∞.

We now define an interpolation operator. For every ~u ∈ (Ls(Ω))3, s > 2, with
∇ · ~u ∈ L2(Ω), we define uI ∈ Xh by

(uI)kE = 1
|FkE|

∫
FkE
~u · ~nkE dS, ∀E ∈ Ωh, k = 1, 2, . . . , sE. (4.30)

By ~u ∈ (Ls(Ω))3 we mean that each component of ~u is in Ls(Ω), i.e., ui ∈ Ls(Ω)
for i = 1, 2, 3.

According to [8], two conditions are sufficient to prove convergence and stability
in pressure and velocity of the MFDM for very general polyhedrons:

(S1) There exists two positive constants s∗ and S∗ such that for every element
E ∈ Ωh we have
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s∗

sE∑
k=1

(ukE)2|E|≤ [u,u]E ≤ S∗
sE∑
k=1

(ukE)2|E|, ∀u ∈ Xh. (4.31)

(S2) For every element E, every linear function q1 on E and every u ∈ Xh, we
have

[(K∇q1)I ,u]E +
∫
E
q1(DIVhuE) dΩ =

sE∑
k=1

ukE

∫
FkE
q1 dS. (4.32)

The first condition states that there should exist a global bound on the eigen-
values of all ME, and the second condition states that the inner product [·, ·]E
should obey the discrete version of Green’s formula (4.7) for linear pressure. A
direct consequence is that the method will be exact for linear pressure [8].

We will rewrite (S2) by, for each E, setting the origin equal to the center of the
mass of E, and use that for any q1 linear we can write q1 = a0 +a1x1 +a2x2 +a3x3,
where (x1, x2, x3) are the Cartesian coordinates. Observe that∫

E
xi(DIVhuE) dV = (DIVhuE)

∫
E
xi dV = 0 for i = 1, 2, 3,

since (0, 0, 0) is the center of mass of E. Further, {1, x1, x1, x2} is a basis for q1,
and hence we can replace (S2) by the following one1.

(S2’) For every element E with center of mass at the origin and every u ∈ Xh,
we have

[(K∇xi)I ,u]E =
sE∑
k=1

ukE

∫
FkE
xi dS, i = 1, 2, 3. (4.33)

If we apply the divergence theorem on the vector field f = xjK∇xi and observe
that∇(K∇xi) = 0 since K is assumed constant on E, we get the following identity,∫

∂E
(K∇xi) · ~nxj dS =

∫
E

(K∇xi) · ∇xj dV = |E|Kj,i, (4.34)

where Ki,j is the entry (i, j) of K. Next, define the sE × 3 matrices R and N as

Rk,i =
∫
Fk
xi dS and Nk,i = (K∇xi) · ~nkE, (4.35)

for k = 1, 2, . . . , sE and i = 1, 2, 3. If we look at the matrix product RTN and use
(4.34), we see that
1The identity basis (1) results in the definition of the discrete divergence operator (4.11) when
inserted into (4.32).
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(RTN)i,j =
sE∑
k=1

{∫
Fk
xi dS (K∇xj) · ~nkE

}

=
sE∑
k=1

{∫
Fk
xi(K∇xj) · ~nkE dS

}
=
∫
∂E
xi(K∇xj) · ~n dS = |E|Ki,j.

Thus, we see that

RTN = |E|K. (4.36)
We now rewrite (4.33) by using (4.30), (4.10) and (4.35). We begin with the

left hand side (LHS):

LHS =
sE∑
k,l=1

ME,k,l

(
(K∇xi)I

)k
E
ulE

=
sE∑
k,l=1

ME,k,l

(
1
|Fk|

∫
Fk

(K∇xi) · ~nkE dS
)
ulE

=
sE∑
k,l=1

ME,k,l
1
|Fk|

∫
Fk
Nk,i dS ulE

=
sE∑
k,l=1

ME,k,lNk,iu
l
E.

Next, consider the right hand side (RHS) of (4.33),

RHS =
sE∑
k=1

Rk,iu
k
E.

Since (4.33) is to hold for all u ∈ Xh and for i = 1, 2, 3, we conclude that

MEN = R, (4.37)
and that this is equivalent to (S2). Next, define

M0 = 1
|E|

RK−1R>. (4.38)

We easily see from (4.36) that M0 satisfies (4.37). Also, M0 is symmetric, but
only positive semidefinite [9]. The following theorem, stated in [9], shows that we
can add an extra term to M0 to make it SPD.
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Theorem 1 Let G be a sE × (sE − 3) matrix whose columns span the null space
of the full rank matrix N>, so that N>G = 0. Then, for every (sE − 3)× (sE − 3)
SPD matrix U, the following symmetric matrix

ME = M0 + GUG> (4.39)
satisfies (4.37) and is SPD.

By construction, MEN = M0N, so ME satisfies (4.37). ME is also by con-
struction symmetric and positive semidefinite. Hence, it remains to show that ME

is non-singular. For a proof of this, see [9].
Analogously, the next theorem, also stated and proved in [9], shows how to

construct M−1
E directly.

Theorem 2 Let H be a sE × (sE − 3) matrix whose image span the null space of
R>, that is im(H) = ker(R>). Then, for every (sE − 3) × (sE − 3) SPD matrix
Ũ, the following symmetric matrix

M−1
E = 1

|E|
NK−1N> + HŨH> (4.40)

satisfies (4.37) and is SPD.
The matrix ME calculated from (4.39) is certainly not unique. The SPD matrix

U has at least 1
2(sE−d+1)(sE−d) free parameters [9], and the family of matrices

defined by (4.39) also includes the TPFA [17].
We have now explained how to calculate SPD matrices ME and M−1

E , so that
(S2) is satiesfied. To satisfy (S1), some additional mild restriction on U (or Ũ)
are necessary. This corresponds to making some restrictions on the grid cells.
These restrictions are mild, and a wide variety of shapes are allowed, for instance
degenerated and non-convex cells. These restrictions are handled in [8], and not
further discussed here.

4.6 Convergence Results
Stability and convergence of the MFDM is proved in [8]. The convergence results
are stated here without proofs. Let us first define norms on the spaces Xh and
Qh,

‖p‖2
Qh =

N∑
i=1

p2
E|E|,

‖v‖2
Xh =

N∑
i=1

[v,v]E.
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Further, let hE be the diameter of E, and h = supEhE. The diameter of a poly-
hedron is defined as the longest distance between two vertices. We denote by vh
and ph the numerical solutions obtained from solving (4.23), and by vI and pI
the interpolants of the exact solutions, ~v and p, respectively. An error estimate
for the velocity is now given by [8]

‖vI − vh‖Xh≤ Ch‖p‖H2(Ω),

where C is a constant only dependent on the geometry and on the constants given
in (S1), (S1) and (4.2). Similarly, an error estimate for the pressure is given by [8]

‖pI − ph‖Qh≤ C∗h2
(
‖p‖H2(Ω)+‖b‖H1(Ω)

)
,

where C∗ is a constant with the same dependencies as C. H1(Ω) and H2(Ω) are
the standard Sobolev spaces, defined for instance in [12, p. 258–259].

We end this chapter by concluding that the MFDM is of first order in velocity
and of second order in pressure [8].



Chapter 5

Implementing Periodic Boundary
Conditions

Periodic boundary conditions (BCs), see (3.10), have some properties that make
them very interesting. First of all they intuitively seem to be more correct (from
an upscaling point of view) than fixed or linear BCs, especially if the reservoir is
close to periodic in nature. In Chapter 6, we will support these statements by
numerical results. Further, Claim 1 (p. 33) states that fixed and linear BCs result
in lower and upper bounds respectively, and that the results from periodic BCs
will be somewhere in between the two extremes. Lastly, the permeability tensor
resulting from periodic BCs is SPD, which is a nice property in many contexts of
mathematics.

On the other hand, as we will see in Chapter 6, periodic BCs has some numerical
implications which makes them harder to solve, especially compared to linear
BCs. Further, periodic BCs connect opposite boundary faces, and this is not
always trivial. In this chapter we therefore look into how periodic BCs can be
implemented into the MFDM. The aim is to improve the current representation
in OPM. Three different approaches will be described, where the first is the one
currently implemented in OPM. The second is not implemented or tested in this
thesis, but included for completeness. The latter is based on mortar methods, and
is derived, implemented and tested in this thesis.

We assume that our domain Ω is formed like a regular hexahedron, see Figure
3.2. When we refer to the grid on a boundary face, we mean the two-dimensional
grid obtained by taking the trace of the three-dimensional corner-point grid onto
the boundary face. Further, we say that two such grids are matching if they are
equal to each other, see Figure 5.1 for an example. We will assume that all pillars
are vertical. This means that the grids on ∂Ωz,1 and ∂Ωz,2 are matching. This is
in general not the case for the other boundary faces, so enforcing periodicity is not
straightforward.

47
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5.1 Single-Point Constraints
Single-point constraints (SPC) require the grids on opposite boundaries to be
matching. Let L and R denote two opposite boundaries. If the grid on L and R
matches, then every face on L has what we will refer to as a periodic partner on
R. Let i be the global index of a cell face on either L or R. Then we denote by i′
the index of its periodic partner, see Figure 5.1.

Figure 5.1: Example of a matching grid, here in the x-direction. Periodic partners, i
and i′, are also shown.

The periodicity of the interface pressure is now enforced by simply connecting
periodic partners,

πi = πi′ or πi = πi′ + ∆p (5.1)
if there is a pressure drop, ∆p, in the current direction. Next, we define which of
our degrees of freedom (DOFs) on the boundary that should be treated as masters
and which should be treated as slaves. Master DOFs are the real unknowns in
our system, while slaves are calculated from (5.1). In the assembly process, all
contributions to slave DOFs should be redirected to their corresponding master
DOFs. Master and slave DOFs could be defined in any way such that either i or i′
is the master, and the other one is the slave. In the OPM framework, it is chosen
to define the DOFs with the lowest index as the master. That is, if i < i′ then i
is the master and vica versa. So, in the assembly of the system (4.28), whenever
you are on a boundary face, you have to check if the periodic partner has a lower
index. If so, the contribution from the element matrix should be directed to the
index of the periodic partner. If there is a pressure drop, this should be included
on the right hand side of equation (4.28).

Periodicity of the flux unknowns are enforced similarly, i.e.,

vi = −vi′ . (5.2)
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The minus sign is due to the opposite directions of the normal vectors on the two
faces. This constraint states continuity in the flux across boundary faces. Recall
that flux continuity across interfaces are weakly enforced through the equation
Dv = gN in (4.23). Thus the constraint (5.2), can be included into this system.

For realistic reservoir models, it is very seldom that the grids on opposite
boundaries match in the horizontal directions. So, to be able to use SPC, one
needs to make the boundary grids matching. This can be done, as illustrated in
Figure 5.2, by introducing extra faces on the two opposite boundaries so that the
two grids are the intersection of the original grids. This process can be costly in
itself, and the number of unknowns increases, which makes our linear system larger
and possibly harder to solve. Also notice that the corresponding cells now can have
more than six faces. This is not a problem in the MFDM, as the derivation in
Chapter 4 was done for arbitrary polyhedrons. Once the process of adding extra
faces is done, the SPC method can be applied as described above. This technique
is used in OPM.

Figure 5.2: The process of making two non-matching grids matching. The new grids
are simply the intersection of the two original grids. As we see, new faces are introduced.

5.2 Multi-Point Constraints
Multi-point constraints (MPC) are not implemented or tested in this thesis. How-
ever, the method is included for completeness. MPC is a generalization of SPC,



50 Chapter 5. Implementing Periodic Boundary Conditions

as it builds on the same principles with master and slave DOFs, but it does not
require matching grids. The basic idea is to define the DOFs at one of the two
opposite boundaries as the master DOFs, and define the DOFs at the other bound-
ary as the slave DOFs. Then, the contributions to the slave DOFs are redirected
to one or several master DOFs.

Assume that we are at a DOF on the slave boundary with index i and with a
corresponding unknown πi. If the face which the DOF is on has a matching face
on the opposite boundary, then we are lucky and can use the SPC (5.1). If not,
the DOF will be connected to ni DOFs, with indexes i1, . . . , ini , at the opposite
boundary,

πi =
ni∑
k=1

wkπik + ∆p, (5.3)

see Figure 5.3 for an illustration. The weights, wk, reflects the distance from the
slave DOF to the connected master DOF, and we must require that ∑ni

k=1wk = 1.
Now the contributions to πi from the assembly should be redirected, with fractions
wk, to πik , for k = 1, . . . , ni. Any pressure drop will be added to the right hand side
as in the SPC method. The number of connected DOF, ni, will vary depending
on the spesific connection, but one way to do this is to connect a slave DOF to all
master DOFs which are on faces that intersect with the face associated with the
slave DOF. This is done in the example in Figure 5.3.

Periodicity of flux can be enforced by the constraint

Aivi = −
ni∑
k=1

Ai,ikvik . (5.4)

The minus sign is due to the opposite directions of the normal vectors on the faces.
In this context, ni is the number of faces on the master grid which intersect with
face i (which was assumed to be on the slave boundary). Further, Ai is the area of
face i, and Ai,ik is the area of the intersection between face i and face ik. Clearly,
Ai = ∑ni

k=1Ai,ik . The constraint (5.4) can be included into the equation Dv = gN
in the linear system (4.23).

5.3 A Mortar Method
Mortar methods are usually used to connect non-matching grid blocks, e.g., in do-
main decomposition methods, see for instance [5] or [7]. Here, we will use a variant
of them to impose periodic BCs on non-matching boundary grids. This variant
has been studied (not yet published) on a similar problem related to elasticity with
a finite element method as the underlying discretization. However, for the elliptic
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Figure 5.3: Example of two matching pillars on the master and slave boundary and
how DOF i can be connected to DOF i1, i2 and i3. DOF i can also be connected to
DOF on other pillars, but this is not taken into account here.

diffusion equation (4.1) and in connection to the MFDM, this technique has not
been studied before.

Since the grids are matching in the z-direction, we can simply use SPC here, so
in this section we focus on the x- and y-directions. We will also only consider con-
tinuity of the interface pressures. Continuity in the flux can be enforced similarly.
We assume that the pillars on opposite boundary faces are matching. Let ∂Ωξ

denote the boundary that we want to impose periodicity on. The mortar method
enforces periodicity weakly by adding the constraint∫

∂Ωξ
λ (p|∂Ωξ,1−p|∂Ωξ,2) dS = 0, ∀λ ∈ Λ (5.5)

to our original system of equations (4.1). Here, λ is a Lagrangian multiplier and
Λ its function space. The mortar method introduced here is not a classical mortar
method due to our choice of function space Λ. However, we will still refer to it
as a mortar method. Classical mortar methods takes the intersection of the two
boundary grids, and do integration over each resulting element, see Figure 5.4.
But finding this intersection is non-trivial and it may result in very degenerated
elements. We also see from Figure 5.4 that the number of faces may increase,
which results in increased computational costs. Instead, we take advantage of
our grid geometry, and define Λ to be the set of bilinear functions on elements
defined by two neighboring pillars. Thus the dimension of Λ, Nl, is two times the
number of pillars on the boundary grid. The grid consisting of elements defined
by neighboring pillars, will be referred to as the mortar grid, see Figure 5.4. This
may seems like a coarse discretization, but it has shown to work quite nice on the
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elasticity problem.
If there is defined a pressure drop, ∆p, in the current direction, the mortar

constraint (5.5) will be
∫
∂Ωξ

λ (p|∂Ωξ,1−p|∂Ωξ,2) dS =
∫
∂Ωξ

∆pλ dS, ∀λ ∈ Λ. (5.6)

Figure 5.4: Example of how the intersected grid will look like given two arbitrary
boundary grids. The mortar grid consisting only of the pillars is also shown along with
the DOF for the Lagrangian multiplier, λ. The basis function for the upper right DOF
is also illustrated.

System of Equations

We now show how the mortar constraint (5.6) can be transformed into a linear
system of equations that can be added to the linear system (4.28). The derivations
of the linear systems are the same for the x- and y-directions. Hence, let ξ be
either x or y in the following. For easier notation, denote by L the left side of the
boundary, i.e., L ≡ ∂Ωξ,1, and by R the right side of the boundary, i.e., R ≡ ∂Ωξ,2.
Let nL and nR be the number of faces on L and R respectively. Further, denote
by QLj , for j = 1, . . . , nL, the faces on L, and by QRj , for j = 1, . . . , nR, the faces
on R. Next, define the mappings
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βL : {1, . . . , nL} → {1, . . . , Ni},
βR : {1, . . . , nR} → {1, . . . , Ni},

which maps the boundary interface index to the global interface index. We have
already discretized the pressure at the interfaces in the previous chapter, denoting
those unknowns π = (π1, . . . , πNi). Hereafter, let pLj denote the interface pressure
on QLj , so that pLj = πβL(j). Similarly, let pRj denote the interface pressure on QRj ,
so that pRj = πβR(j). Hence, we can write

p|∂Ωξ,1(~x) =
nL∑
j=1

pLj χ
L
j (~x), where χLj (~x) =

1 if ~x ∈ QLj
0 otherwise.

p|∂Ωξ,2(~x) =
nR∑
j=1

pRj χ
R
j (~x), where χRj (~x) =

1 if ~x ∈ QRj
0 otherwise.

If we further let {ϕ1, . . . , ϕNL} be a basis for Λ, we can rewrite (5.6) as

∫
∂Ωξ

ϕi

 nL∑
j=1

pLj χ
L
j −

nR∑
j=1

pRj χ
R
j

 dS = ∆p
∫
∂Ωξ

ϕi dS, i = 1, . . . , Nl

nL∑
j=1

pLj

∫
∂Ωξ

ϕiχ
L
j dS −

nR∑
j=1

pRj

∫
∂Ωξ

ϕiχ
R
j dS = ∆p

∫
∂Ωξ

ϕi dS, i = 1, . . . , Nl

nL∑
j=1

pLj

∫
QLj
ϕi dS −

nR∑
j=1

pRj

∫
QRj

ϕi dS = ∆p
∫
∂Ωξ

ϕi dS, i = 1, . . . , Nl.

(5.7)

Next, let L be a Nf ×Nl matrix whose entries are defined as

Li,j =



∫
QL
k

ϕj dS if i = βL(k) for some k ∈ {1, . . . , nL},

−
∫
QR
k

ϕj dS if i = βR(k) for some k ∈ {1, . . . , nR},

0 otherwise.

(5.8)

Further, let h be a Nf dimensional vector with entries

hi =

∆p if i = βL(k) for some k ∈ {1, . . . , nL},
0 otherwise.
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Now, (5.7) can be written in matrix form,

L> π = L>h. (5.9)
Notice that if we do not have a pressure drop in the current direction, then h = 0,
and the right hand side of (5.9) is zero.

The matrix L is referred to as the mortar matrix, and (5.9) is the mortar
constraints that are imposed on the original linear system (4.28) in order to enforce
periodicity. The system matrix S is SPD, so from the theory of optimization [18],
(4.28) can be formulated as a optimization problem,

min q(π) ≡ 1
2 π

> Sπ−π> r.

Next, we add the mortar constraints (5.9) and end up with a constrained
optimization problem,

min q(π) ≡ 1
2 π

> Sπ−π> r.

subject to L> π = L>h.

The Karush-Kuhn-Tucker (KKT) conditions [18, p. 451] states that there exists a
Nl dimensional vector of Lagrange multipliers, `, s.t.[

S L
L> 0

] [
π
`

]
=
[

r
L>h

]
.

So far we have only enforced periodicity in one of the horizontal directions. In
the following, denote by L1 and L2 the mortar matrices in the x- and y-directions
respectively, by `1 and `2 the vectors of Lagrangian multipliers, and by L>

1 h1 and
L>

2 h2 the corresponding right hand sides of (5.9). As mentioned, we use SPC in
the z-direction. By the argument based on optimization theory presented above,
we get the augmented system S L1 L2

L>
1 0 0

L>
2 0 0


π`1
`2

 =

 r
L>

1 h1
L>

2 h2

 . (5.10)

This system is clearly symmetric, but not proven to be positive definite. Hence,
we use a bi-conjugate gradient stabilized method (Bi-CGSTAB) [22] with an in-
complete LU zero fill-in (ILU0) preconditioner [21] as the linear solver. This solver
is provided by DUNE.

The magnitude of the elements in the system matrix, S, and the mortar ma-
trices, L1 and L2, can differ on a large scale. To avoid floating point issues, the
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mortar matrices should be scaled by a factor, α, approximating the ratio between
the typical magnitude of the elements in the matrices. If we look at the augmented
system (5.10), such a scaling can be done without changing the solution. Moti-
vated by the the built-in routines provided by DUNE, we have chosen to define α
as the ratio between the infinity norms of the matrices, i.e.,

α = ‖S‖∞
‖Li‖∞

, i = 1, 2.

The infinity norm is defined as the maximum absolute row sum of the matrix.

Calculating the Mortar Matrices
We now show how the entries in L can be calculated. We focus merely on the left
side, and look at a particular face QLk . Because of our choice of function space for
the Lagrangian multipliers, Λ, only four basis functions has support on QLk . Let
ϕi1 , . . . , ϕi4 be those basis functions, see Figure 5.5. This means that each row
of L that corresponds to a boundary face, has exactly four non-zero entries. All
other rows are simply zero.

Let Q̂ be the unit square, i.e., Q̂ = {(x̂, ŷ) ∈ R2 : 0 ≤ x̂, ŷ ≤ 1}, also referred to
as the reference element. Then there exists a one-to-one transformation θ taking Q̂
onto QLk , i.e., (x, y) = θ(x̂, ŷ). Similarly, there exists a one-to-one transformation
ϑ taking Q̂ onto the pillar element on which QLk is, see Figure 5.5. Further, let
J(x̂, ŷ) be the Jacobian of the transformation θ,

J(x̂, ŷ) =
∂θ1
∂x̂

∂θ1
∂ŷ

∂θ2
∂x̂

∂θ2
∂ŷ

 ,
and denote by |J|(x̂, ŷ) its determinant. The integral in equation (5.8) can now be
written as

∫
QL
k

ϕj dS =
∫
QL
k

ϕj(x, y) dxdy

=
∫
Q̂
ϕj (θ(x̂, ŷ)) |J |(x̂, ŷ) dx̂dŷ

=
∫
Q̂
ϕ̂φ(j)

(
ϑ−1θ(x̂, ŷ)

)
|J |(x̂, ŷ) dx̂dŷ, (5.11)

where φ : {1, . . . , Nl} → {1, . . . , 4} is a global to local mapping of the Lagrangian
multipliers, and ϕ̂φ(j) is the shape function associated with corner number φ(j) on
the reference element Q̂. The four shape functions are bilinear and defined as
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ϕ̂1(x̂, ŷ) = 1− x̂− ŷ + x̂ŷ,

ϕ̂2(x̂, ŷ) = x̂− x̂ŷ,
ϕ̂3(x̂, ŷ) = x̂ŷ,

ϕ̂4(x̂, ŷ) = ŷ − x̂ŷ.

Notice that these shape functions are Lagrangian, that is, they are 0 in all corners
of Q̂ except in their associated corner where they equals 1.

We use Gaussian quadrature to evaluate the integral (5.11). Since all shape
functions are bilinear, it suffices to use an order 1 method, which means that only
one quadrature point is needed — the geometric center (x̂, ŷ) =

(
1
2 ,

1
2

)
with weight

1. Hence the integral can be evaluated as∫
QL
k

ϕj(x, y) dxdy = ϕ̂φ(j)
(
ϑ−1θ

(
1
2 ,

1
2

))
|J |
(

1
2 ,

1
2

)
.

Figure 5.5: Shows the current face QLk and the pillar element it is on, together with
the two transformations θ and ϑ from the reference element Q̂ onto the face and the
pillar element respectively. The basis functions with support on QLk are also displayed.



Chapter 6

Numerical Results

In this chapter numerical results for different upscaling scenarios are presented.
Based on the discussion in Section 3.5, we only consider flow based local upscaling
methods. The aim is to compare different boundary conditions (BCs). One aspect
is to look at which BCs that gives the most correct upscaling results. This may
depend on the particular model under consideration. Another aspect is to enlighten
the numerical implications associated with the upscaling methods.

We start by looking at single-phase systems. First, simple synthetic models are
considered, before we increase complexity by looking at larger realistic reservoir
models. Next, we expand our analysis to two-phase systems, where both the capil-
lary equilibrium approach, the viscous limit approach and the general steady-state
upscaling from Section 3.4 will be used and compared. The latter is close to full
simulation, but without any wells. Thus, we have a natural increase in complexity
throughout the chapter. The last section is devoted to the implemented mortar
method for enforcing periodic BCs. We compare it with the current implementa-
tion in OPM to see if the numerical convergence is improved.

6.1 Verification of Single-Phase Upscaling
We start with three simple synthetic test cases to verify the calculated upscaled
permeability tensors. This will also give an intuition of permeability upscaling that
will be useful when analyzing realistic reservoir models. We need to understand
the simple problems before moving to larger and more complex problems.

Simple Uniform Layered Model
Consider the model displayed in Figure 6.1a. This is a uniform 3 × 3 × 3 grid,
where the top and bottom layers is a high permeability material, while the mid
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layer is a low permeability material. The permeability is isotropic in all layers and
equals 100 mD and 0.1 mD respectively. The porosity is set to 0.1 throughout the
model.

The calculated upscaled permeability tensors for fixed (f), linear (l) and peri-
odic (p) BCs are shown in (6.1). First observe that all off-diagonal entries are 0.
This means that there is no flow out of the boundaries parallel to the pressure drop.
This is as expected due to the simplicity of our model. The x- and y-components
of the upscaled permeability tensor should obviously be equal because of the sym-
metry in our model. For this simple model, they should equal the volume weighted
arithmetic average, i.e., k̃ = 1

3(2 · 100 mD + 0.1 mD) = 66.7 mD. We see that all
BCs give the correct x and y components of the upscaled permeability.

In the fixed and periodic case, the z-component should equals the volume
weighted harmonic average, i.e., k̃ = 3

(
2

100 mD + 1
0.1 mD

)−1
= 0.299 mD. We see

that this is satisfied. For linear BCs the z-component is much larger. This is
because linear BCs allow fluid to flow out of the boundary, while for fixed BCs
the fluid must flow through the low permeability layer. The result is the same
for periodic BCs as for fixed since the grid layers are periodic in the the x- and
y-directions, so the flow is also here forced through the mid layer. For this simple
model, we conclude that linear BCs overestimate the z-component significantly.

K̃f =

66.7 0 0
0 66.7 0
0 0 0.299

 , K̃l =

66.7 0 0
0 66.7 0
0 0 78.5

 ,

K̃p =

66.7 0 0
0 66.7 0
0 0 0.299

 .
(6.1)

Perodic Tilted Model
Next, we consider the model displayed in Figure 6.1c. This model is built up of
alternating parallel layers of two isotropic materials, one high permeability material
and one low permeability material. The permeability is set to 100 mD and 0.1 mD
respectively, and porosity is set 0.1 throughout the model. The layers are tilted
such that the model is periodic with respect to the material. By this, we mean
that the grids and the materials on opposite boundary faces are matching.

The calculated upscaled permeability tensors are shown in (6.2). We start by
looking at the case where the pressure drop is imposed in the x-direction. We see
that one of the low permeability layers covers the yz-plane, so with fixed BCs the
fluid has to pass through this layer. This results in a low upscaled permeability.
For the periodic case, the fluid can flow out of one boundary and in to the opposite
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boundary. Thus, the flow can avoid the barrier, and the upscaled permeability will
be much higher than for fixed BCs. This is observed in (6.2). Most of the flow
will follow the direction of the layers, causing flow out of the bottom and into the
top. This corresponds to the negative z-direction and explains why k̃zx is negative
and significantly different from 0 in the periodic case. There are no such effects in
the y-direction, and hence k̃yx = 0. Linear BCs also allow flow out of the top and
bottom boundaries, and the upscaled permeability should be much higher than for
fixed BCs. It is even higher than for periodic BCs, because the flow in and out of
the boundaries are not restricted to the layers.

Next, consider a pressure drop in the y-direction. As noticed earlier, there
are now flow barriers in this direction, and for fixed x and z, the permeability
is constant for all y. Thus, the upscaled permeability should equal the volume
weighted arithmetic average, i.e., k̃ = 1

2(100 mD + 0.1 mD) = 50.05 mD. We see
that this is the case for all BCs.

For a pressure drop in the z-direction we should expect similar results as for a
pressure drop in the x-direction, since these two cases are almost equal. However,
observe that the domain is not a cube, but that the distance between the boundary
faces in the x-direction is twice that in the z-direction. Hence, the angle between
the pressure drop direction and the layers is bigger for a pressure drop in the z-
direction than in the x-direction. This results in more resistance in the z-direction
and explains why the z-component of the upscaled permeability is less than the
x-component. This is confirmed by running on a similar model, but stretched by
a factor 2 in the z-direction. In this case the angle is 45 degrees in both the x-
and z-directions, and k̃xx = k̃zz for all BCs.

K̃f =

3.053 0 0
0 50.05 0
0 0 0.9051

 , K̃l =

 39.69 0 −19.65
0 50.05 0

−19.28 0 10.41

 ,

K̃p =

 38.80 0 −19.30
0 50.05 0

−19.30 0 9.848

 .
(6.2)

The exact solution for the periodic case can be calculated by using equation
(3.12). The transformation matrix A is here given as

A =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 = 1√
5

2 0 −1
0
√

5 0
1 0 2

 ,
where α is the angle between the layers and the xy-plane. Thus, from (3.12), the
exact solution is
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K̃p,exact = A>

50.05 0 0
0 50.05 0
0 0 0.1998

A =

 40.44 0 −20.12
0 50.05 0

−20.12 0 10.26

 .
We see that these values depart approximately 4% from the calculated ones. Ob-
serve that the upscaled tensor with linear BCs is also very close to the exact
solution. Thus, in this case, linear BCs are quite accurate. Fixed BCs are however
far away from the exact solution as flow in the x- and z-directions are considerably
underestimated.

Non-Periodic Tilted Model
Finally, we include one more model, see Figure 6.1b. This model is similar to
the previous one, but less tilted. Observe that the model is not periodic in the
y-direction. The upscaled permeability tensors are seen in (6.3). We observe again
that the z-component is overestimated in the linear case.

Next, consider k̃yy in the periodic case. This is much lower than for the fixed
and linear cases. By a first glance, this seems to be an computational error, as
we expect the fluid to flow relatively easy through the high permeability layers.
However, with periodic BCs, what flows out at ∂Ωy,2 must flow in at ∂Ωy,1. And
since the model is non-periodic, the flow through a high permeability layer has
to flow into a low permeability layer at the boundary. This explains the low
permeability in the y-direction for periodic BCs. It is not realistic that the true
permeability is so low, and hence this is a weakness of the periodic BCs. We also
observe that the off-diagonal terms are very small in the periodic case. This is due
to the same effect. By intuition, one would expect these cross terms to be larger
because of the layered structure. These cross terms are better captured by linear
BCs, and if it were not for the overestimated z-component, linear BCs might be
the best choice here.

K̃f =

49.97 0 0
0 44.67 0
0 0 0.2132

 , K̃l =

49.97 0 0
0 48.82 9.253
0 5.195 8.336

 ,

K̃p =

49.97 0 0
0 1.989 0.2041
0 0.2041 0.2363

 .
(6.3)

Lastly, we observe that kp,yy < kf,yy < kl,yy. This is a contradiction of Claim
1 (p. 33), and we conclude that this claim is not valid under all circumstances. It
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might be that the claim only is valid for periodic models, but without any proof
at hand it is hard to say. Anyway, the claim should be treated with some care.

(a) Simple uniform layered model. (b) Non-periodic tilted model.

(c) Periodic tilted model.

Figure 6.1: Synthetic test models used for verification of single-phase upscaling. All
models are isotropic with permeability equal to 100 mD and 0.1 mD in the red and blue
layers respectively. The porosity is set to 0.1 throughout all models.
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6.2 Single-Phase Upscaling on Realistic Models

In this section we will look at realistic models, one small, which we call test
model 1 (TM1), and one bigger, which we call test model 2 (TM2). The size
and the degrees of freedom (DOF) for the two models can be seen in Table 6.1.
Observe that the DOF for the periodic grids are larger than for the non-periodic.
This is because of the process of making opposite boundary grids matching as
explained in Section 5.1. The geometry of the models and the x-component of
the permeability field can be seen in Figure 6.3. We see that both models contain
complex patterns, degenerated cells and great variance in the permeability field.
The x- and y-components of the permeability fields are equal in both models, but
the z-component is different. Hence, both models are anisotropic.

Table 6.1: Number of active cells and degrees of freedom (DOF) for both the non-
periodic and the periodic grid for the two models TM1 and TM2.

Model Active cells DOF non-periodic DOF periodic
TM1 40350 64593 71996
TM2 93531 175724 186696

The single-phase upscaling results for TM1 and TM2 can be seen in (6.4) and
(6.5) respectively. Observe that K̃p is close to symmetric in both cases. Due to
numerical errors in the MFDM and the linear solver, they are not exactly sym-
metric. The upscaled tensors seems reasonable by a first glance. However, there
are great differences between the tensors, and this enlighten that the upscaling
results from flow based local methods can be highly dependent on the BCs. A
more detailed analysis of the models must be performed in order to understand
the results better. Observe that Claim 1 (p. 33) does not hold here either, as
k̃p,xx < k̃f,xx < k̃l,xx for both models.

K̃f =

63.42 0 0
0 18.86 0
0 0 0.8773

 , K̃l =

 95.70 −5.293 −2.587
−1.621 56.43 6.892
−0.2360 0.1864 1.623

 ,

K̃p =

 46.82 −2.153 0.08838
−2.153 18.90 −0.1765
0.09117 −0.1788 0.8559

 .
(6.4)
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K̃f =

62.36 0 0
0 14.03 0
0 0 0.1082

 , K̃l =

 67.46 −2.854 0.2095
−8.750 42.07 6.429
0.1134 1.027 0.6289

 ,

K̃p =

 48.49 −0.5352 −0.002006
−0.5352 17.97 0.06417
0.005045 0.06870 0.1100

 .
(6.5)

We now turn to study the numerical implications of single-phase upscaling
with respect to BCs and linear solver. Recall from Section 3.2 that equation (3.3)
must be solved for three different pressure drop directions (PDD) to get the full
upscaled tensor. The computation time and the memory usage for single-phase
computations for the different BCs and PDD were measured. Two different linear
solvers where used — the conjugate gradient (CG) method with an incomplete
LU zero fill-in (ILU0) preconditioner and CG with an algebraic multigrid (AMG)
preconditioner, see [21] for both. The linear solvers are provided by DUNE.

The results are shown in Table 6.2. The condition number for the system matrix
in (4.28) is also calculated numerically by using the condest routine provided by
Matlab. This routine is based on Higham’s modification of Hager’s method [13],
and gives a lower estimate of the condition number. The convergence of CG is
dependent on the condition number [21]. In Figure 6.2, we see the sparsity pattern
for the system matrices for different BCs for test model 1. The sparsity pattern is
equal for all PDD.

We first consider the condition numbers. Observe that for the linear and fixed
cases, the condition numbers are of the same order of magnitude. For the periodic
case the condition number is much bigger, approximately a factor 106 larger than
for fixed and linear BCs. This can be explained by the sparsity patterns seen in
Figure 6.2. In the periodic case, the system matrix is much more dense than for
the fixed and linear cases. The periodic system matrix also contains more entries
away from the diagonal. The additional entries are due to connection of periodic
partners on the boundary.

If we look at the computation times, we observe that the problem with lin-
ear BCs is by far the fastest to solve. This is also reflected by the number of
iterations (IT) required. These observations were also documented in [15]. The
reasons for this is probably compounded. One argument is that the flow is less
restricted with linear BCs, as fluids may flow freely out of the boundary. We also
see that the sparsity pattern (Figure 6.2) has lower bandwidth than with fixed
and periodic BCs. However, having in mind that the degrees of freedom for test
model 2 is almost three times as big as for test model 1, it is quite remarkable
that the computation time only increase from 1.24 s to 2.75 s for ILU0/CG and
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from 1.57 s to 4.11 s for AMG/CG when going from test model 1 to test model
2. In the fixed and periodic case, we observe an increase by a factor close to 10 in
total computation time. This is closer to what one could expect.

It is also interesting to observe that with fixed and periodic BCs, the problem
with a pressure drop in the z-direction is faster to solve. This is especially seen for
test model 2, where the total iteration time (TIT) and the number of iterations (IT)
for PDD z is up to 10 times smaller than PDD x and y. A feasible explanation
is that this has to do with the restrictions that are enforced on the boundaries
perpendicular to the pressure drop, and that these restrictions are easier satisfied
on ∂Ωz,1 and ∂Ωz,2 (the bottom and top boundaries). The fact that this effect
is not seen in the linear case, where fluids freely can flow out of the boundaries,
supports this argument. Maybe more intuitively, one would expect the opposite
result — that the problem with a pressure drop in the z-direction should be harder
to solve — since there is more variation in the permeability field in the z-direction
and also more flow barriers (i.e., layers with low permeability). One could expect
this to result in numerical complications, but as reported this is not the case.
To fully understand this result a more detailed analysis of the models and the
numerical methods (both the MFDM and the linear solvers) would be required.

We now turn to comment on the differences between the linear solvers. For
linear and fixed BCs, ILU0/CG is faster than AMG/CG for both test models.
We see that AMG/CG uses considerably less iterations than ILU0/CG, but that
the total iteration time is higher. This means that one iteration with AMG/CG
is more expensive. This is confirmed by the memory usage, which is higher for
AMG/CG than for ILU0/CG. Further, it takes more time to build the AMG
preconditioner. For large systems it is expected that this effort will be payed back
by reduced computation time, but for the systems considered here, this is not the
case. However, if we look closer to the fixed case on test model 2, we see that the
total iteration time in fact is lower for AMG/CG than for ILU0/CG. The relative
differance in total computation time for the two linear solvers is also smaller for
test model 2 than for test model 1. There are therefore reasons to believe that
AMG/CG is faster than ILU0/CG for bigger systems, at least for fixed BCs. It
should be mentioned that the AMG preconditioner is only dependent on the grid,
so it is the same for all PDD. Thus it only needs to be built once. This means
that in cases where we solve many flow problems on the same grid, the savings of
AMG/CG would be greater. This is for instance the case in steady-state two-phase
upscaling, where the problem is solved for different saturations.

Next, consider periodic BCs. In contrast to fixed and linear BCs, the total iter-
ation time and the total computation time is less for AMG/CG than for ILU0/CG.
In fact, with AMG/CG the total computation time is smaller for periodic BCs than
for fixed BCs even though the original system matrix is much worse conditioned in
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the periodic case. This shows that the AMG preconditioner is especially powerful
on the periodic problem, which is worst conditioned.

As mentioned earlier the memory usage (MEM) for AMG/CG is higher than
for ILU0/CG. This shows that the iterations for AMG/CG are more costly. But, as
observed, AMG/CG requires considerably less iterations. If we consider ILU0/CG,
we see that the memory usage is almost equal for fixed and linear BCs. For periodic
BCs the memory usage is approximately 10% higher. This might be due to the
increased number of unknowns for the periodic problem as reported in Table 6.1.

The tesselation times for the non-periodic and the periodic grids were also
measured. By tesselation time we mean the time to build the corner-point grid.
For test model 1 the tesselation times were 0.15 s and 0.21 s for the non-periodic
and the periodic grids respectively, and for test model 2 the tesselation times
were 0.34 s and 0.52 s respectively. The differences are quite small and close to
negligible compared to the total computation time, at least for fixed and periodic
BCs. Hence, we conclude that the process of making opposite boundary grids
matching is not so costly.

Figure 6.2: Sparsity pattern for the system matrices for fixed, linear and periodic BCs
respectively for test model 1. The patterns are the same for all PDD.
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(a) Test model 1.

(b) Test model 2.

Figure 6.3: Test model 1 and 2, here scaled by a factor 10 in the z-direction. The
x-component of the permeability fields are shown on logarithmic scales with unit m2.
Model sizes are seen in Table 6.1.
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Table 6.2: Computational data for test model 1 (a) and test model 2 (b). Single-phase
upscaling were run for different BCs and with two different linear solvers, ILU0/CG and
AMG/CG. The tables show estimated condition number (COND), number of iterations
(IT), total iteration time (TIT) and memory usage (MEM) for the three pressure drop
directions (PDD). Also total computation time (TOT) is shown. All timing results are
given in seconds, whereas memory usage is in megabyte.

(a) Test model 1.

ILU0/CG AMG/CG
BCs PDD COND IT TIT MEM TOT IT TIT MEM TOT

f
x 2.7 · 1016 178 0.70 70

2.29
39 0.55 81

3.22y 2.7 · 1016 196 0.76 70 40 0.59 96
z 1.3 · 1016 103 0.44 70 31 0.53 96

l
x 1.3 · 1016 51 0.21 70

1.24
13 0.20 81

1.57y 1.3 · 1016 49 0.19 70 12 0.18 81
z 1.3 · 1016 88 0.33 70 24 0.35 81

p
x 3.5 · 1022 231 1.31 79

3.68
34 0.71 98

2.65y 3.5 · 1022 231 1.28 79 29 0.60 98
z 3.5 · 1022 62 0.34 79 8 0.18 98

(b) Test model 2.

ILU0/CG AMG/CG
BCs PDD COND IT TIT MEM TOT IT TIT MEM TOT

f
x 2.9 · 1017 879 9.35 177

21.58
279 11.15 213

25.23y 2.9 · 1017 938 10.05 177 221 8.15 256
z 2.3 · 1017 93 0.99 177 21 0.87 257

l
x 2.3 · 1017 42 0.44 178

2.75
10 0.42 212

4.11y 2.3 · 1017 40 0.44 178 16 0.66 212
z 2.3 · 1017 51 0.59 178 19 0.78 212

p
x 9.7 · 1022 1281 17.48 193

37.34
167 8.31 239

22.20y 9.7 · 1022 1228 16.68 193 198 9.64 239
z 9.7 · 1022 111 1.51 193 25 1.23 239
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6.3 Two-Phase Upscaling

We now turn to two-phase upscaling and consider upscaling of relative perme-
ability based on the three methods described in Section 3.4, namely the capillary
equilibrium approach, the viscous limit approach and the general steady-state ap-
proach. Two-phase upscaling is considered to be computationally more demanding
than single-phase upscaling, and we continue our focus on numerical implications.
We compare the different BCs to see if the variations observed in the single-phase
computations also are observed here. Further, we compare the three different
upscaling approaches to test their validity. We also discuss whether relative per-
meability is directional dependent and thus should be treated as a tensor, or if it
is satisfactory to treat it as a scalar.

Throughout this section, test model 1 (Figure 6.3a) is considered. Realistic
relative permeability curves for each rock type are used as input. These are as-
sumed isotropic for each rock type, but the (absolute) permeability is anisotropic.
The model consists of 12 rock types, and the input curves for each of them are
displayed in Figure 6.4.
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Figure 6.4: Input relative permeability curves for the 12 rock types present in test
model 1. Decreasing curves are relative permeability of oil, while increasing curves are
relative permeability of water.
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We start with the capillary equilibrium approach. We use fixed BCs and upscale
for a uniform distribution of 10 saturation points. The results are shown in Figure
6.5, where we also see the input curves for reference. Our first observation is
that the shape of the upscaled curves are different from the input curves. This
shows that flow based upscaling is meaningful, and that some kind of averaging
of the input curves are not sufficient in this case. We also observe that there are
great differences among the directional components. This supports that relative
permeability should be treated as a tensor, and that assuming otherwise may be
wrong in some cases.

In the previous section we documented that there are great differences in nu-
merical convergence between the three types of BCs. We will now see if there
are any differences between the different saturation points that are upscaled for.
Table 6.3 shows the number of iterations (IT), total iteration time (TIT) and the
condition number (COND) of the system matrix for the different saturation points
and for different pressure drop directions (PDD). Numerical data for both oil and
water phase calculations are shown. ILU0/CG was used as the numerical solver.

If we consider oil first, we see that the data are quite similar in the two hori-
zontal directions (PDD x and y). This is as expected since these two case are quite
similar. For the z-direction, the data are smaller, meaning that the numerical con-
vergence is faster. This was also observed in the previous section. Apart from this
the variation with respect to water saturation, Sw, follows the same pattern for all
three directions. The main finding is that there is a sudden drop in the condition
number for Sw = 0.80, followed by a huge jump for Sw = 0.85. The consequences
on the number of iterations and the total iteration time is small for Sw = 0.80.
However, at Sw = 0.85, the computation time blows up by a factor ∼ 6 for the
horizontal directions and a factor ∼ 2 for the vertical direction.

The same observations are made for the calculation of upscaled relative per-
meability of water, but turned up side down. Here the condition number and the
calculation time is significantly larger for Sw = 0.40. For water, the jump is largest
for the vertical direction, in contrast to the observation for oil computations. A
feasible argument that explains these observations is that at the end points the
relative permeabilities, and thereby the phase permeabilities, are close to zero.
From (4.40), we see that the system matrix is directly dependent on the perme-
ability tensor (or the phase permeability tensor in a two-phase system, cf. (3.13)).
So if the (phase) permeability tensor is close to zero, the resulting system matrix
may be ill-conditioned. This explains the high condition numbers and the high
computational costs.

The viscous limit approach was also applied to the same problem. The results
are seen in Figure 6.6. If we compare with the results from the capillary equilib-
rium approach (Figure 6.5), we observe that the y- and z-components are almost
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equal, but that the x-component is quite different. We also see that the spatial
dependency is less in the viscous limit approach, especially for oil. Further, the
upscaled curves for the viscous limit approach has the same shape as the input
curves, and the results looks more like some kind of an average of the input curves.

The effect of using different BCs is also investigated. In Figure 6.7 and 6.8,
we see the upscaling results from the capillary equilibrium approach with periodic
and linear BCs respectively. By comparing these with Figure 6.5, we clearly see
that the upscaled relative permeabilities are dependent on the BCs. It is kro,xx,
kro,yy and krw,yy that deviate the most.

At last, general steady-state upscaling were performed. Recall that in order
to get the saturation distribution, full simulation must be performed. This is
computationally very costly compared to the two previously used approaches. The
general steady-state upscaling is however expected to be more correct as is takes
both capillary, viscous and gravitational forces into account.

For the full simulation problem, a pressure drop of 1 bar (105 Pa), corresponding
to a water flow rate of ∼ 0.01 feet/day, were enforced in the direction that was
upscaled for. This is a quite small flow rate and representative for regions far away
from wells. Fixed BCs were used1 and the initial saturation distribution was set
to the capillary equilibrium. The results are shown in Figure 6.9. We see that the
spatial differences are small, especially for oil, and that the shape of the curves
are similar to the input curves. In Figure 6.10 we compare with the results from
the viscous limit approach. Observe that the differences are small, and it seems
like the viscous limit approach is a good approximation in this case. This result
is surprising, as we expected the capillary equilibrium approach to be closer to
general steady-state upscaling due to the low flow rate2.

It should be mentioned that the results presented here are dependent on the
particular model considered, and that with other models, the results may look
different. We know, for instance, that test model 1 is not a REV. However, we
have observed for many other models that the upscaling problem at the saturation
end points are harder to solve.

Figure 6.11 displays the water saturation distribution for test model 1. In (a)
we see the distribution at capillary equilibrium for an upscaled water saturation
of 0.65, while in (b) we see the distribution at steady-state when a pressure drop
is imposed in the x-direction. The upscaled water saturation is 0.714 at steady-
state. The distributions in the two cases are almost equal, and we conclude that
the capillary equilibrium is a good initial "guess".

1It was also intended to use periodic BCs, but due to some errors in OPM, this was not done.
2Based on feedback from the OPM developers, there are reasons to questioning the correctness
of the current implementation of the general steady-state upscaling routine. This result should
therefore not be fully trusted and verification of the code is necessary.
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Table 6.3: Numerical data for the capillary equilibrium approach on test model 1. The
number of iterations (IT), total iteration time (TIT) and the condition number (COND)
for the different upscaled water saturations for the three different pressure drop direc-
tions (PDD) are shown. Both data from oil (a) and water (b) computations are included.
All timing results are given in seconds, whereas memory usage is in megabyte.

(a) Oil.

PDD x PDD y PDD z
Sw IT TIT COND IT TIT COND IT TIT COND
0.40 244 1.67 2.7 · 1016 267 1.81 2.7 · 1016 138 0.96 1.4 · 1016

0.45 262 1.82 4.5 · 1016 283 1.90 4.5 · 1016 146 0.93 2.3 · 1016

0.50 276 1.82 7.1 · 1016 296 1.95 7.1 · 1016 156 1.03 3.6 · 1016

0.55 281 1.88 1.2 · 1017 303 2.07 1.2 · 1017 160 1.07 5.8 · 1016

0.60 281 1.94 1.9 · 1017 305 2.08 1.9 · 1017 165 1.14 9.6 · 1016

0.65 273 1.83 3.0 · 1017 293 2.12 3.0 · 1017 167 1.10 1.5 · 1017

0.70 268 1.92 4.3 · 1017 289 1.98 4.3 · 1017 169 1.14 2.2 · 1017

0.75 260 1.76 4.7 · 1017 281 1.83 4.7 · 1017 163 1.11 2.3 · 1017

0.80 239 1.68 8.8 · 1015 260 1.84 8.8 · 1015 130 0.94 4.4 · 1015

0.85 1577 10.47 2.8 · 1019 1654 11.76 2.8 · 1019 320 2.19 2.8 · 1019

(b) Water.

PDD X PDD Y PDD Z
Sw IT TIT COND IT TIT COND IT TIT COND
0.40 333 2.38 2.7 · 1019 295 2.10 2.7 · 1019 1207 8.51 2.7 · 1019

0.45 207 1.53 1.6 · 1015 216 1.58 1.6 · 1015 84 0.59 1.6 · 1015

0.50 211 1.37 2.3 · 1015 220 1.43 2.3 · 1015 86 0.56 2.3 · 1015

0.55 215 1.39 2.9 · 1015 227 1.49 2.9 · 1015 88 0.58 2.9 · 1015

0.60 222 1.61 3.7 · 1015 232 1.50 3.7 · 1015 91 0.63 3.7 · 1015

0.65 224 1.44 4.5 · 1015 242 1.70 4.5 · 1015 93 0.67 4.5 · 1015

0.70 232 1.66 5.2 · 1015 248 1.76 5.2 · 1015 96 0.64 5.2 · 1015

0.75 238 1.68 5.5 · 1015 257 1.86 5.5 · 1015 109 0.76 5.5 · 1015

0.80 244 1.60 6.3 · 1016 270 1.86 6.3 · 1016 148 1.00 3.1 · 1016

0.85 240 1.65 5.5 · 1016 270 1.87 5.5 · 1016 148 1.03 2.7 · 1016
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Figure 6.5: Upscaled relative permeability as function of water saturation for TM1
obtained by the capillary equilibrium approach with fixed BCs. Both oil and water
curves are shown, and the input relative permeability curves are shown in light grey for
reference.
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Figure 6.6: Upscaled relative permeability as function of water saturation for TM1
obtained by the viscous limit approach with fixed BCs. Both oil and water curves are
shown.
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Figure 6.7: Upscaled relative permeability as function of water saturation for TM1
obtained by the capillary equilibrium approach with periodic BCs. Both oil and water
curves are shown.
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Figure 6.8: Upscaled relative permeability as function of water saturation for TM1
obtained by the capillary equilibrium approach with linear BCs. Both oil and water
curves are shown.
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Figure 6.9: Upscaled relative permeability as function of water saturation for TM1
obtained by the general steady-state approach with fixed BCs. Both oil and water curves
are shown. The steady-state saturation distribution is found by imposing a pressure drop
of 1 bar in the flow direction and starting at capillary equilibrium.
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Figure 6.10: Comparison of the results from the viscous limit (VL) approach and the
general steady-state (SS) approach with fixed BCs.
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(a) Initial distribution (capillary equilibrium).

(b) Steady-state distribution.

Figure 6.11: Water saturation in TM1. In (a) we see the distribution at capillary
equilibrium for an upscaled water saturation of 0.65. This is used as the initial guess
for the general steady-state upscaling. In (b) we see the steady-state distribution when
a pressure drop of 1 bar is imposed in the x-direction. The upscaled water saturation is
0.714 at steady-state. The deviations are largest in regions with high permeability (cf.
Figure 6.3a), as the water saturation is lower at capillary equilibrium.
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6.4 Testing the Mortar Method
In this section, we test the implementation of the mortar method derived in Sec-
tion 5.3. We have seen that periodic BCs may be preferable in some cases, but
at the same time we have encountered some numerical implications. This moti-
vates a new implementation of the periodic BCs, and the aim of this section is to
test whether the mortar method is better in terms of numerical convergence and
memory consumption than the current implementation based on SPC.

We use SPC in the vertical direction, as the boundary grids are matching
here, and the mortar method in the horizontal directions. However, we have only
enforced periodicity on the interface pressures. As we will explain later, using the
mortar method to enforce periodicity on the flux is not easily implemented in the
OPM framework. However, we wanted to test whether the implementations are
correct and if the results are correct in some cases.

Simple Uniform Homogeneous Model
We start with the simplest problem of this type and consider a constant perme-
ability field equal to 1 on the unit cube. We use periodic BCs with a pressure drop
in the x-direction. This problem can be formulated as

~v = −∇p in Ω = (0, 1)3,

∇ · ~v = 0 in Ω,
(~v · ~n)|∂Ωξ,1= −(~v · ~n)|∂Ωξ,2 for ξ = x, y, z,

p|∂Ωξ,1= p|∂Ωξ,2 for ξ = y, z,

p|∂Ωx,1= p|∂Ωx,2 +1.

(6.6)

To complete the system, we set the pressure equal to 1 on ∂Ωx,1. It is easy to
verify that a solution to (6.6) is

p(x, y, z) = 1− x and ~v(x, y, z) = [1, 0, 0]>.
Problem (6.6) was solved on a uniform 8×8×8 grid, and the numerical solution

is displayed in Figure 6.12. The numerical solution is verified to be equal to the
analytical solution within computer precision. This is as expected since the MFDM
is exact for linear pressure. We conclude that the implementations of the mortar
method work for a constant permeability field on a uniform grid.

Simple Uniform Layered Model
We now introduce a model with a high permeability layer in the mid layers, i.e.,
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Figure 6.12: The numerical solution of problem (6.6). The cell pressures are colored,
while the arrows denote the velocity field, here given at each vertex. The velocity at the
vertices are calculated as the mean of the surrounding face values.

K(x, y, z) =

10 for |z − 0.5|≤ 0.25,
1 elsewhere.

The permeability field is shown in Figure 6.13. The numerical solutions from the
mortar method, will be compared to the solutions from the SPC method, which
is the original solver used in OPM and assumed to be correct. Recall that the
problem considered are given by (3.3) and (3.10), but without gravity.

We start with imposing a unit pressure drop in the x-direction. The solutions
are displayed in Figure 6.14a and 6.14b. We see that the SPC solution is exactly
equal to the solution of the simple uniform homogeneous model, see Figure 6.12.
This is as expected since the pressure drop is parallel to the layer, and hence the
permeability at a point (x, y, z) does not change for fixed y, z. The mortar solution
is significantly different and wrong – we clearly see that p|∂Ωx,1 6= p|∂Ωx,2 +1. How-
ever, if we integrate the pressure over the boundary faces, the mortar constraint
(5.6) is satisfied. This also holds for the flux, that is, if we integrate the flux over
the boundary faces, we observe that the total flow into one boundary equals the
total flow out of the opposite boundary. A pressure drop in the y-direction, yields
the same results, only rotated. This is due to symmetry of the model.

The numerical solutions for the problem with a pressure drop in the z-direction
are shown in Figure 6.14c and 6.14d. First, observe that the pressure gradient is
much smaller in the mid layer than for the solution in Figure 6.14a. This is due
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Figure 6.13: The permeability field for the simple layered model.

to the high permeability layer. Further, the two solutions are equal, and hence we
conclude that the mortar method works fine with a pressure drop in the z-direction.

From these results, we conclude that the mortar method implemented in this
thesis only works on very limited models. As long as the permeability field in
every section perpendicular to the pressure drop is constant, it works fine, but for
more general permeability fields, it fails. The mortar method only imposes that
the integrals of the pressure over opposite boundary faces are equal, and does not
strongly impose periodicity. This explains why the solutions differ. Hence, we can
conclude that pressure must be imposed strongly.

An approach that might work, is to impose the mortar constraints (5.6) directly
on the flux unknowns, i.e.,

∫
∂Ωξ

λ ((~v · ~n)|∂Ωξ,1−(~v · ~n)|∂Ωξ,2) dS = 0, ∀λ ∈ Λ, ξ = x, y, z. (6.7)

Added to the system (4.23), this would result in a linear system,
M C> D> L
C 0 0 0
D 0 0 0
L> 0 0 0




v
−p
π
`

 =


gD
b

gN
0

 .
However, in the framework of OPM, this is not straightforward as the matrix in
(4.23) is not assembled directly. Instead the local matrix (4.22) is calculated and
reduced to (4.29) by Schur-complement reduction, before the total system (4.28) is
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assembled and solved numerically. In order for the mortar method (6.7) to work,
we need to add the mortar constraints to the global system (4.23). So to test if it
is possible to impose mortar constraints on the flux, it is necessary to build a new
flow solver almost from scratch. This would have been way beyond the scope of
this thesis. Another approach is to use the MPC method, but the same problem
is encountered.

(a) SPC solution, PDD x. (b) Mortar solution, PDD x.

(c) SPC solution, PDD z. (d) Mortar solution, PDD z.

Figure 6.14: Numerical pressure solution on a uniform 8 × 8 × 8 grid of the simple
layered model displayed in Figure 6.13. Solutions for pressure drop direction (PDD)
x and z with both SPC and Mortar methods are shown. The solutions for PDD y is
similar (only rotated) to PDD x.



80 Chapter 6. Numerical Results

Realistic Test Model
Finally, we have tested the mortar implementations on a more realistic model, see
Figure 6.15. The aim is to document the numerical implications. We have run the
single-phase upscaling procedure with periodic BCs on this model with both the
SPC and the mortar methods. The results are shown in (6.8).

K̃mortar =

 5705 −30.06 0.2287
−86.26 4899 0.5921
−181.9 −48.31 2.895

 ,

K̃SPC =

 106.4 −0.1435 −0.006907
−0.1434 110.2 −0.01295
−0.006907 −0.01296 2.280

 .
(6.8)

We understand from these results that the mortar method is not working prop-
erly. However, it is observed that both the pressure and the flux integrals over
opposite boundary faces are equal. Hence, we conclude that the implementations
are correct.

To test the numerical convergence of the two methods, the number of itera-
tions (IT), total iteration time (TIT), memory usage (MEM) and an estimate on
the condition number (COND) where measured. ILU0/CG were chosen as the lin-
ear solver for the SPC method, while ILU0/Bi-CGSTAB were used for the mortar
method (cf. discussion in Section 5.3). The results for different PDD are shown
in Table 6.4. Further, the sparsity pattern of the system matrices are displayed in
Figure 6.16. The sparsity patterns are almost equal, expect for the entries associ-
ated with unknowns on the boundary. The mortar matrix seems to be a little less
dense and have fewer unknowns in total. Apart from this, we see from Table 6.4
that the mortar method is significantly worse conditioned than the SPC method,
and that the SPC method is faster and uses less memory.

The results from this section shows that the mortar method considered in this
thesis is correct implemented, but fails both in terms of correctness and in terms
of numerical convergence.

Table 6.4: Numerical data for the realistic test model (Figure 6.15).

Mortar SPC
PDD IT TIT MEM COND IT TIT MEM COND
X 270 0.61 38 Inf 121 0.16 22 1.2 · 1019

Y 302 0.65 38 Inf 123 0.16 22 1.2 · 1019

Z 255 0.56 38 Inf 115 0.15 22 1.2 · 1019
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Figure 6.15: The model used for testing the mortar method. Three different isotropic
materials are present, two high permeability materials with average permeabilities 300
mD and 100 mD respectively, and a low permeability material with average permeability
0.1 mD. The average porosities are 0.3, 0.2 and 0.01 respectively. The permeability field
in m2 is shown on a logarithmic scale.

Figure 6.16: Sparsity pattern for the system matrices associated with the mortar
method (left) and the SPC method (right), see equations (5.10) and (4.28) respectively.
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Chapter 7

Concluding Remarks

We now try to summarize the results of this thesis. We have given a basic intro-
duction to reservoir simulation and upscaling in particular. Upscaling was seen
in relation to the notion of a representative elementary volume (REV), and we
argued why flow based local upscaling methods can be preferable in this context.

Different traditional discretization methods for solving the elliptic diffusion
equation has been introduced, in particular the MFDM. The main advantage of
the MFDM is that it is easy to implement on corner-point grids that are non-
conforming and contain degenerated cells. The MFDM was explained in some
details in order to fully understand how periodic BCs are implemented and to be
able to derive and implement a new representation of periodic BCs.

We have documented that flow based local upscaling is highly dependent on the
BCs. This was the case for both (absolute) permeability and relative permeability.
We have tried to analyze the differences both in terms of correctness and in terms
of numerical convergence. Linear BCs were shown to have faster convergence, that
is, requiring less iterations of the numerical solver and hence reducing the com-
putation time. But linear BCs tend to avoid flow barriers, and thus overestimate
the permeability in directions with flow barriers. This is often encountered in the
vertical direction due the the geology of reservoirs.

Fixed BCs enforce no flow out of boundary faces parallel to the pressure drop.
This seems rather artificial and results in diagonal upscaled permeability tensors.
Thus, off-diagonal terms are neglected, and this may be wrong in many cases,
especially in models where there exists flow channels not parallel to the pressure
drop. Fixed BCs are also very sensitive to flow barriers, and may underestimate
flow in such cases.

Periodic BCs seems intuitively most correct in the REV framework. But as
observed, permeability may be underestimated in situations where the model is
not periodic. It might seem like periodic BCs are best in cases where the layers
are aligned with the xy-plane. This choice is often done in reservoir modeling.

83



84 Chapter 7. Concluding Remarks

Claim 1 (p. 33) states that fixed and linear BCs represent lower and upper
bounds on the upscaled permeability respectively. This is a nice result, because
it lets us create an interval on which the true upscaled permeability is contained.
However, we have created an counter-example, on which the claim fails. This
shows that the claim is not valid under all circumstances.

In terms of numerical convergence, we have seen that the problems with fixed
and periodic BCs are hard to solve compared to using linear BCs. The implemen-
tation of periodic BCs was tried improved by using a variant of mortar methods,
but without success.

7.1 Further Work
This thesis gives an overview of the status of upscaling as of today, and it enlightens
many of the problems that upscaling face. A natural extension of this thesis would
be to dig deeper into why linear BCs are much faster to solve for. As suggested
here, this may have a physical argument based on more freedom for the fluid
flow. Mathematically, we have shown that linear BCs result in a system matrix
with a nicer sparsity pattern that for the other BCs. This has to do with the
current implementation, and another representation might improve the numerical
convergence for fixed and periodic BCs.

The attempt to improve the implementation of periodic BCs that was tested in
this thesis was not successful. We believe, however, that the work done here can
be built upon later, and that a further study may reveal a variant that is better.
But, as pointed out, this may require to change the way the assembly process
is structured and implemented in OPM. This is probably beyond the scope of a
single Master’s thesis.

A third aspect of this thesis that would be interesting to examine further, is
the relation between the three two-phase upscaling approaches described in Section
3.4. The capillary equilibrium approach is expected to be a good approximation
in regions with low flow rates, while the viscous limit approach is expected to be
a good approximation in regions with high flow rate. But how fast does general
steady-state upscaling converge to these limits as the flow rate either decrease or
increase? As mentioned, general steady-state upscaling is computationally very
demanding, so if either the capillary equilibrium approach or the viscous limit
approach are close enough to general steady-state upscaling, this would reduce the
computation time considerably. Before this work is started, a verification of the
general steady-state upscaling routine provided by OPM must be performed.



Appendix A

Source Code and Model Data

The Open Porous Media (OPM) project is an important part of this thesis, as it is
used for all numerical computations. In this appendix we give a short introduction
to OPM and provide information on how the source code can be obtained and
instructions for building it. Further, we list the OPM routines used in this thesis
and explain were the implementations done in this thesis are located. Lastly, we
describe how the models used in this thesis can be obtained. The main purpose
of this appendix is to make it easier for the reader to reproduce the results of this
thesis.

A.1 What is OPM?
OPM1 is an open source software suite for porous media flow under the terms of
the GNU General Public License (GPL)2 (version 3). All source code is available
as git repositories on GitHub, visit https://github.com/OPM. The source code
can be viewed directly on this link or downloaded (see intructions in Section A.2).
OPM has several contributors from both universities, industry and research orga-
nizations. It aims for being flexible and it should be relatively easy to use and
contribute to it. This, and that it is open source, is of great importance in trying
to lower the gap between researchers and the industry.

OPM is built on DUNE3 (the Distributed and Unified Numerics Environment),
which is a C++ based software toolbox for solving PDE’s numerically. DUNE is
also open source and licensed under the GNU GPL (version 2) with a so called "run-
time exception". It is grid-based and supports both finite elements, finite volumes
and finite differences. DUNE is built up of modules and contains the fundamental
1http://opm-project.org
2http://www.gnu.org/licenses/gpl.html
3http://www.dune-project.org
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routines needed to build a PDE solver, e.g., grid implementations, reference ele-
ments, shape functions, sparse vectors and matrices, assemblers, iterative linear
solvers etc.

OPM is also modular. The four modules used in this thesis are described below:

• opm-core is the base module and provides generic infrastructures.
• dune-cornerpoint provides routines for building and using corner-point
grids.

• opm-porsol contains different flow solvers, e.g., the MFDM.
• opm-upscaling contains local upscaling methods, both averaging methods
and flow based methods.

A.2 Building DUNE and OPM
This section provides instructions for downloading and building DUNE and OPM.
The instructions are based on a Linux operating system, and we use DUNE’s own
building system, dunecontrol4. The following packages and libraries are prerequi-
sites that must be installed in advance; svn, git, g++, gcc, gfortran, automake,
autoconf, libtool, pkg-config, blas, lapack, boost-system, boost-filesystem, boost-
date-time, boost-test and superlu.

DUNE is given as svn repositories. To obtain the DUNE modules (we use the
stable 2.2 release in this thesis), issue the following commands in a terminal:

# svn co https://svn.dune-project.org/svn/dune-common/branches/release-2.2
dune-common

# svn co https://svn.dune-project.org/svn/dune-geometry/branches/release-2.2
dune-geometry

# svn co https://svn.dune-project.org/svn/dune-grid/branches/release-2.2
dune-grid

# svn co https://svn.dune-project.org/svn/dune-istl/branches/release-2.2
dune-istl

The OPM modules can be obtained by the following commands:

# git clone https://github.com/OPM/opm-core.git
# git clone https://github.com/OPM/opm-porsol.git
# git clone https://github.com/OPM/opm-upscaling.git

4Recent updates make it possible to also use cmake for building. Debian packages are also under
construction.



A.3. Upscaling Routines 87

# git clone https://github.com/OPM/dune-cornerpoint.git

OPM is in constant progress. In this thesis the following revisions are used:
opm-core @ 8741c93a1a
dune-cornerpoint @ 7de40f2a9a
opm-porsol @ 99f42af258
opm-upscaling @ bf5f8c56d2

To checkout a specific revision, e.g., for opm-core, issue

# cd opm-core
# git checkout 8741c93a1a

If all DUNE and OPM modules are downloaded, the command ls should produce
dune-common dune-grid opm-porsol
dune-cornerpoint dune-istl opm-upscaling
dune-geometry opm-core

You are now ready to build5:

# ./dune-common/bin/dunecontrol all

A.3 Upscaling Routines
If you have successfully built all modules, you will find the upscaling routines in
opm-upscaling. The routines used in this thesis are:

• opm-upscaling/examples/upscale_perm.
Single-phase upscaling.

• opm-upscaling/examples/upscale_relperm.
Two-phase upscaling at capillary equilibrium.

• opm-upscaling/examples/upscale_relpermvisc.
Two-phase upscaling in the viscous limit.

• opm-upscaling/dune/upscaling/test/steadystate_test_implicit.
General steady-state upscaling.

Explanation of use are printed if calling a routine without arguments, e.g.,

# ./opm-upscaling/examples/upscale_perm

5See www.dune-project.org/doc/buildsystem/buildsystem.pdf for a complete tutorial on
the DUNE build system.
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Visit for instance https://public.ict.sintef.no/openrs/wiki/Main_Page or
www.opm-project.org for more documentation.

A.4 Implementation of the Mortar Method
The implementation of the mortar method is available as forks of the modules
opm-porsol and opm-upscaling. The source code can be viewed directly at
https://github.com/laods, where the repositories are found. The mortar method
is implemented in the branch mortar. The code can also be checked out (requires
that the steps in A.2 are fulfilled):

# cd opm-porsol
# git pull https://github.com/laods/opm-porsol.git mortar
# git checkout bc25a6330a
# cd ../opm-upscaling
# git pull https://github.com/laods/opm-upscaling.git mortar
# git checkout aade33bfe6

The implementations done in this thesis are primarily found in the directory
opm-porsol/dune/porsol/mortar/, and especially the file mortar.hpp therein.
The implementations are compatible with revision 9571b30556 of opm-core and
revision 7de40f2a9a of dune-cornerpoint. Thus, these need to be checked
out, see instructions above. After changing the revision, you will have to run
dunecontrol again:

# dune-common/bin/dunecontrol --only=opm-core,dune-cornerpoint,opm-porsol,
opm-upscaling make

The routines implemented or used in this thesis are:

• opm-porsol/examples/mortar_mimetic_periodic_test.
Solve elliptic diffusion equation with periodic BCs using the MFDM and
mortar couplings.

• opm-porsol/examples/mortar_mimetic_uniform_test.
Solve elliptic diffusion equation on a uniform grid using the MFDM and
mortar couplings.

• opm-porsol/examples/mimetic_periodic_test.
Solve elliptic diffusion equation with periodic BCs using the MFDM and
SPC couplings.
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• opm-upscaling/examples/upscale_perm_mortar_test.
Single-phase upscaling using the MFDM and mortar couplings if periodic
BCs.

A.5 Model Data
All models used in this thesis are free for anyone to use. A zip-file (models.zip)
containing all models is attached to this thesis. If the zip-file is not received, it can
be downloaded from this link: http://ubuntuone.com/3sFtyARJ5p0v7jXEau2TxG.
The contents of the zip-file is shown in Table A.1.

Table A.1: Contents of models.zip sorted for each section.

Section Model name File name

6.1
Simple uniform layered model simpleLayeredUniform.grdecl
Non-periodic tilted model non-periodicTilted.grdecl
Periodic tilted model periodicTilted.grdecl

6.2 Test model 1 (TM1) testModel1.grdecl
Test model 2 (TM2) testModel2.grdecl

6.3
List of rock files for TM1 file_list.txt
Rock files containing rock_files/input curves for TM1

6.4 Realistic test model mortarTestModel.grdecl

Remark 1: The rock files for TM1 are also valid for TM2.

Remark 2: The uniform cartesian models referred to as simple uniform homo-
geneous model and simple uniform layered model in Section 6.4 were
constructed by routines provided by dune-cornerpoint, see for in-
stance opm-porsol/examples/mortar_mimetic_uniform_test.cpp.
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