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Abstract. Shifted superimposition is a resolution-enhancement method that has gained popularity in the pro-
jector industry the last couple of years. This method consists of shifting every other projected frame spatially with
subpixel precision, and by doing so creating a new pixel grid on the projected surface with smaller effective pixel
pitch. There is still an open question of how well this technique performs in comparison with the native resolution,
and how high the effective resolution gain really is. To help investigate these questions, we have developed
a framework for simulating different superimposition methods over different image contents, and evaluate
the result using several image quality metrics (IQMs). We have also performed a subjective experiment with
observers who rate the simulated image content, and calculated the correlation between the subjective results
and the IQMs. We found that the visual information fidelity metric is the most suitable to evaluate natural
superimposed images when subjective match is desired. However, this metric does not detect the distortion in
synthetic images. The multiscale structural similarity metric which is based on the analysis of image structure is
better at detecting this distortion. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.3.033017]
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1 Introduction
Resolution is one of the key performance parameters of
a projector, and the projector industry continuously aims
to increase it. Superimposition of projected images is a
cost-effective way of enhancing the resolution in a projector
above the native resolution of the spatial light modulator
(SLM). Superimposition may be implemented either with
a multiprojector setup or with an opto-mechanical system
within a single projector. As long as a superimposition con-
sists of two or more images superimposed on one projected
surface, the resulting image will be an additive function of
the projected images.

Currently, resolution enhancement has gained some
momentum because of the market drive for 4K images
and video. Not all SLM technologies have cost-efficient
4K modulators available. For these kinds of modulator
technologies, it is appealing to push the resolution above
the native resolution of the SLM. Even though the actual
pixel count on the canvas will increase, this method also
introduces some artifacts in the image. As the optical overlap
of superimposed images acts like a low-pass filter, some
high-frequency content is lost in the image. The spatial arti-
facts manifest as blurring in the image, and these artifacts
impact both the visual quality and the resolution measure-
ments. The introduced artifacts raise the question of whether
the resulting image on the canvas really has a higher reso-
lution and a higher quality than downscaling the high-
resolution image and displaying it at the native resolution
of the SLM.

This paper investigates different methods of superimpo-
sition and explores how these methods compare to each
other in quality. Then we seek out to find the most suitable
image quality metric that correlates with how we subjectively
rate the quality as observers. The goal of this paper is to find
a way to evaluate the quality of superimposition algorithms
through simulations, so that it is possible to achieve a level of
confidence before building up a complete physical system.

The rest of this paper is organized as follows: the Related
Work section provides an insight into the prior work done in
the field of superimposition and how the quality is evaluated
in these papers. The next section presents a set of relevant
quality metrics, while the Methodology section describes
the experimental setup that is used to tests different metrics
and superimposition methods. The simulated results and the
subjective experiment are presented in the following section.
Thereafter, the findings are summarized and discussed in
the Discussion section. Finally, the last section concludes on
how to evaluate the resulting image quality for this particular
application and the future work still to be done.

2 Related Work
Takahashi et al.1 proposed a setup in 1995 with four liquid
crystal display (LCD) projectors projecting on the same
screen with an elaborate mirror-setup. By taking advantage
of the small fill factor in the LCD pixels, the overlap between
the pixels is very low in this case. By interleaving the pixels
from all of the projectors, the idea here is to fill out the
blocked area of the pixels with the other projector channels,
and together double the resolution both horizontally and
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vertically. This setup is very cumbersome and requires care-
ful adjustment in the installation phase. Over time, the fill
factor of LCD panels has also increased, leaving one of
the main prerequisites of this method obsolete. They used
the modular transfer function (MTF) as a main parameter
to evaluate the resolution enhancement. The MTF is obtained
in this case through optical simulations of the projector prism
and projection lens, and then calculating the resulting MTF
based on the pixel overlap, amount of projectors and the
projection lens, and prism performance.

Jaynes and Ramakrishnan2 proposed a system where sev-
eral projectors project at the same screen, and then they are
calibrated to determine the relative subpixel shift for each
projector. The goal of this calibration is to derive an accurate
mapping of each projector’s framebuffer coordinates to the
high-resolution target frame. Such a calibration needs to be
very accurate and represents a significant challenge in prac-
tice, and the system is quite fragile when fully calibrated.
Jaynes et al. verified their work by printing close-up photo-
graphs of the superimposed resolution enhancement showing
the quality improvement. The authors presented the gained
image quality as visual results printed side-by-side for the
reader to compare them, and they do not quantify the quality
gain. The images presented are close-up photography of the
two projected scenes from natural images and two projected
images containing text.

Allen and Ulichney3 made a breakthrough with their idea
to keep the whole system within one projector unit, and
instead include an optomechanical image shifter to shift
every nth image frame spatially on the projected surface.
This method, called wobulation, ensures uniform pixel
shift and a controlled overlap of the pixels. Wobulation
allows each pixel in the SLM to address multiple locations
(pixels) in the final projected image. The cost of using the
same SLM to show different image positions is that the tem-
poral resolution decreases with a factor equal to the number
of image positions used in the wobulation. In the paper by
Allen and Ulichney, the same subframe is used in both posi-
tions resulting in a slightly blurred image. The authors
present the gained image quality as visual results printed
side by side for the reader to compare them, and they do
not quantify the quality gain. Two natural images were
used in this evaluation.

Said4 presented in 2006 an extensive work on how to gen-
erate the subframes. The focus of his work was to establish
a theoretical framework for understanding the potential and
limitations of the superimposition method. The objective in
Said’s work is not to obtain the most optimal generation of
the subframes, but to understand the mathematical properties
that define the quality of the solution. Said used peak signal-
to-noise ratio (PSNR) as a quality metric and also printed the
native resolution and the superimposed resulting images side
by side for the reader to compare them. Two natural images
were used to showcase the enhanced quality of the superim-
positioning methods.

Damera-Venkata and Chang5 proposed the year after a
method to produce superimposed images through multipro-
jector systems. This work proves that the superimposition
method is valid for displaying frequencies above the
Nyquist frequency of a single projector. Other than these
theoretical results, the work lacks real quality measurements
besides printing the results for the reader to visually inspect

the superimposed results. Damera-Venkata and Chang used
two computer-generated images as test-scenes in their
evaluation.

Okatani et al.6 explored the theory from Damera-Venkata
and Chang5 further, and showed how the quality of the super-
imposed images changes with the maximum brightness of
the system. In this work, the quality decisions are also made
by printing the resulting images for the reader to judge the
enhanced quality, and no quality metric is used. Okatani et al.
used a low-resolution image of computer-generated text and
a natural image of a horse to evaluate their method.

Sajadi et al.7 presented in 2012 a different image enhance-
ment approach, where two cascaded SLMs are used for
enhancing the edges of the image, and by that approach
also enhancing the resolution. Between the SLMs an optical
pixel sharing unit is introduced to create smaller pixels in the
spatial domain. This approach seems to work quite well, and
they use just noticeable difference (JND) in CIELAB ΔE to
analyze the image for local variance and to identify the edges
of interest in the image. But the quality evaluation of their
algorithm is determined only by printing the resulting
images, and encouraging the reader to zoom in on the images
to observe the quality enhancement. Sajadi et al. used six
different natural scenes, one computer-generated image of
a building, and a technical drawing as test scenes in their
work. Some of the resulting images were simulated results
and other results were photographs taken from test setups.

The year after, Sajadi et al.8 proposed a low-cost approach
that shifts the whole image with subpixel precision and
superimposes the shifted image on top of the original
image. This may seem similar to the wobulation method pro-
posed by Allen and Ulichney,3 but the method proposed by
Sajadi et al. does not time-multiplex the images, but rather
superimposes the image on a shifted version of itself. When
it comes to spatial quality this method may be suboptimal,
but it is very computationally cost efficient. The quality gain
of this method is quantified through the structural similarity
(SSIM)9 metric, and they used the CIELAB ΔE to check if
the colors have drifted. Sajadi et al. also evaluated the con-
tent preservation in the image by calculating histogram of
gradients for different combinations of pixel-shift and num-
bers of superimposed frames. Six natural images, mostly
buildings, and one map were used as test scenes in this work.

Heide et al.10 made an interesting twist in 2014 to project
the image on a new SLM instead of superimposing the
images on the projected surface. By shifting the second
SLM with subpixel accuracy, the second SLM is subtracting
light instead of adding it. This method is named multiplica-
tive superimpositioning as opposed to the regular additive
superimpositioning, where the light from the subimages is
added on top of each other. This method apparently provides
good results, which is verified by PSNR, SSIM, and MTF
analysis. Heide et al. used seven natural images, mostly
motorsport scenes with commercial decals in them, and
two computer-generated images, as test scenes in their work.

Barshan et al.11 proposed their own superimposition
scheme in 2015 named shifted superposition. This method
is quite similar to the wobulation method proposed by
Allen and Ulichney,3 but the generation of the subimages
is done independently instead of using the same subimage
for both positions. The quality improvement in this work
is verified by visual inspection and using the SSIM9 metric
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as well. Barshan et al. used two computer-generated test
images and one natural image as test scenes in their work.

Hansen et al.12 presented in 2017 a study of how a
selected set of IQMs detect distortion and loss of detail in
shifted superimposition. The IQMs included in that work
was PSNR, PSNR- human visual system (HVS),13 PSNR-
HVSM,14 ESSIM,15 feature-SIM16 (FSIM), DCTex,17 visual
information fidelity (VIF),18 SSIM,9 SRSIM,19 and multi-
scale structural similarity metric (MSSSIM).20 As that work
is based solely on simulations and not on subjective experi-
ments, most of the quality criteria are objective. Hansen et al.
used three computer-generated test images and two natural
test images as test scenes in their work.

3 Image Quality Metrics
As seen in the previous section, there are some variations of
how the quality is evaluated by different authors in the field
of superimpositioning. The most common method is to
present different resulting images representing the improve-
ment in visual quality of the superimpositioning, but this is a
poor method for comparing different algorithms objectively.
This section will look briefly into different quality metrics
mentioned in the previous section, and present some other
quality metrics that may also be suitable.

As we have the reference image available, we will focus on
full-reference metrics for evaluating the superimposed images.
We categorize these metrics mainly into two main categories:
raw error-based calculations and HVS-inspired metrics.

The error-based calculations are mathematical metrics
based on error quantification between two images. They
are popular as they are simple to understand, easy to use,
and have a low computational cost. Typical examples of
these metrics are mean square error and different versions
of SNR. SNR and PSNR are based on the principle that
the distorted image consists of the original image and a
noise component in addition to an independent signal. SNR
is defined as the ratio of average signal power to noise signal
power, whereas PSNR is defined as the ratio of peak signal
power to noise signal power.

The weighted SNR (WSNR) was developed to take the
HVS contrast-sensitivity function into account.21 WSNR
is defined as the ratio of the averaged weighted signal
power to the average weighted noise power. The WSNR
is a hybrid between the raw error-based calculations and
the HVS-inspired metrics as it is an error-based metric
(SNR) modified slightly using some of the HVS attributes.
Other metrics such as PSNR-HVS13 and PSNR-HVSM14 use
the principles from PSNR and modify this metric based on
the frequency-based contrast sensitivity of the HVS. PSNR-
HVS is calculated utilizing the mean shift and contrast
stretching to highlight the areas of the image that the
HVS is most sensitive to. The PSNR-HVSM on the other
hand uses DCT to calculate contrast masking, and by taking
the contrast-sensitivity function of the HVS into account the
metric ignores the same contrast steps that the HVS will also
ignore.

Pure HVS-inspired metrics take the attributes of the HVS
into account and aim to measure specific image attributes
that the HVS is particularly sensitive to. SSIM9 is such a met-
ric, which compares the luminance, contrast, and structure in
both images to measure the similarity between them. The
approach of taking the HVS fully or partially into account

has fostered several quality metrics, such as multiscale
SSIM20 (MSSSIM), ESSIM,15 SR-SIM,19 FeatureSIM16

(FSIM), DCTex,17 VIF,18 and VSNR.22 MSSSIM is a multi-
scale structural similarity method, which supplies more
flexibility than single-scale methods in incorporating the
variations of viewing conditions. ESSIM aims to model
the perceptual fidelity of semantic information between
two images by assuming that the semantic information of
images is fully represented by edge-strength of each pixel.
SR-SIM is based on a specific visual saliency model, spectral
residual visual saliency. This metric follows the theory that
an image’s visual saliency map is closely related to its per-
ceived quality. FSIM is based on the fact that the HVS under-
stands an image mainly according to its low-level features.
By considering the phase congruency and the gradient mag-
nitude of the image, the image quality is calculated. DCTex
is based on a key assumption that the signal error in each
subband and local region contributes to the entire distortion
independently. This assumption is reasonable as most typical
distortions have few (linear) correlations both between the
subbands and between the neighborhoods at large spatial
scales. The HVS contrast-sensitivity function and texture
mapping property is used to weight the contribution from
the different subbands into a global metric for the distortion
over the whole image. VIF quantifies the information that is
present in the reference image, and also quantifies how much
of this reference information can be extracted from the
distorted image. Combining these two quantities, the visual
information fidelity measurement is calculated. VSNR
quantifies the visual fidelity of natural images based on
near-threshold and suprathreshold properties of the HVS.
In addition the metric operates on physical luminances and
visual angle (rather than on digital pixel values and pixel-
based dimensions) to accommodate different viewing
conditions.

The metrics included in this setup are the following:
PSNR is one of the most widely used error calculation met-
rics. For metrics taking the HVS into account, we have
included the metrics PSNR-HVS, PSNR-HVSM, ESSIM,
FSIM, VSNR, DCTex, and VIF. In addition to these
categories, we also have used metrics that are purely looking
at the structure in the image, that is SSIM, SR-SIM, and
MSSSIM.

4 Simulation Framework
In the first part of this research, we concentrate on verifica-
tion of the objective quality differences through simulation,
thus the entire part of this setup is carried out within a sim-
ulation environment written in MATLAB.

We have implemented four different ways of generating
the superimposed image in this simulation framework, and
are also comparing the superimposed methods with images
presented in the native SLM resolution. We are not aiming to
develop the best method for superimposing images in this
work, so we have picked some methods that are distinguish-
able from each other, with different properties.

The superimposition methods described in this paper are
either mentioned in previous papers3,4,8 or methods that build
further upon them. The Naïve and the filtered Naïve methods
are actual methods that are quite close to what is actually in
use in several products on the market. Several vendors use
the idea of upscaling the input image to double the resolution
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of the SLM, and then do some image processing in that
doubled resolution domain.23,24 The main idea here is that
they are not downscaling the input image to the SLM reso-
lution with the loss of detail that downscaling gives. Instead
they are upscaling the input image for preserving more
details, before the subframe pixels are chosen among the
resulting upscaled pixels.

In theory, iterative algorithms like the one presented by
Sajadi et al.8 may achieve higher quality of the superimposed
image. But since processing latency is crucial in a lot of high
end projection applications, such algorithms are not used
as they typically introduce frame(s) of latency and the hard-
ware implementation is very expensive. This is the reason
why this class of algorithms is not taken into account in
this paper.

4.1 Downscaled
This method is included for reference. The goal of the super-
impositioning is to enhance the resolution above the native
resolution of the SLM, so the downscaled image represents
the SLM resolution. The resulting output image will then be
given by

EQ-TARGET;temp:intralink-;e001;63;506OutImage ¼ ResizeðRefImage; SLMresolutionÞ; (1)

where Resize in this example is the corresponding MATLAB
function and SLMresolution is the resolution of the SLM in
use. RefImage is the original high-resolution image.

4.2 Downscaled Superimposed
This method generates the subimages as the downscaled
method, but then these subimages are spatially shifted and
superimposed on themselves. It is not an ideal method,
but as seen in Sec. 6 it is a step up in perceived quality
from the regular downscaled version in some instances.
Allen and Ulichney3 used this version to verify the superim-
positioning in their wobulation paper. In this method, both
subframes will be equal and given by

EQ-TARGET;temp:intralink-;e002;63;328SubframeA ¼ SubframeB

¼ ResizeðRefImage; SLMresolutionÞ: (2)

4.3 Naïve
In the Naïve method, we upscale the input image to the
double horizontal and vertical resolution of the SLM, then
we pick the pixels for the different subframes directly from
the up-scaled frame. The Naïve method produces quite sharp
images, but some details will be lost as we just select every
other pixel
EQ-TARGET;temp:intralink-;e003;326;672

IntermediateFrameNaive ¼ ResizeðRefImage; 2

� SLMresolutionÞ
SubframeAði; jÞ ¼ IntermediateFrameð2 � i − 1;2

� j − 1Þ
SubframeBði; jÞ ¼ IntermediateFrameð2 � i; 2 � jÞ:

(3)

4.4 Gaussian
This method starts out with the same intermediate frame as
the Naïve, but in addition we have filtered the up-scaled
image with a Gaussian filter. By doing this, we produce
an image that is slightly more blurred, but we will not lose
as much details as in the Naïve method. This operation is
performed in MATLAB as

EQ-TARGET;temp:intralink-;e004;326;468IntermediateFrameGauss

¼ imfilter½IntermediateFrameNaive; fspecialð‘gaussian’Þ�;
(4)

and then selecting the pixels in the same way as in the Naïve
method. The imfilter function in MATLAB filters the multi-
dimensional array IntermediateFrameNaive with a multidi-
mensional filter, in this case a Gaussian filter.

4.5 Gaussian Sharpened
The Gaussian sharpened method is the same as Gaussian, but
in addition, we apply a sharpening filter after applying the
Gaussian filter. This will remove some of the blur added,
but with the possibility of amplifying noise in the image.
This operation is performed in MATLAB as

EQ-TARGET;temp:intralink-;e005;63;267

Sfilter ¼ b � ½0; a; 0; a; ð−4Þ � a; a; 0; a; 0�
InputImageMask ¼ imfilterðIntermediateFrameGauss; SfilterÞ

IntermediateFrameSharpened ¼ IntermediateFrameGaussþ k � InputImageMask; (5)

and then selecting the pixels in the same way as in the Naïve
method. The constants in the sharpening filter are set to
a ¼ −1, b ¼ 0.25, and k ¼ 0.5.

4.6 Superimpositioning
The superimpositioning is done by shifting every other
image half a pixel in the up-left/down-right diagonal of
the image. This results in a two-position additive superimpo-
sitioning scheme, which is the use case for our experiments.
We have not investigated more than two positions or other
techniques, but only additive superimpositioning in our
experiments.

4.7 Test Images
We have used 13 different test-images to test different image
properties. Ten natural images that are included in the sub-
jective experiment, and three synthetic images that are gen-
erated to provoke different types of errors in the algorithms
mentioned above. The natural images are images containing
different types of high-frequency contents, ranging from
buildings and architecture to random edge structure in
waves. The natural images are shown in Fig. 1, whereas
the synthetic images are shown in Fig. 2.

Natural images are in itself a very diverse group of
images, and it is not given that one IQM will be optimal
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Fig. 2 Synthetic test images used (a) cross, (b) line pairs, and (c) H-frequency.

Fig. 1 Natural images used for the subjective experiment. (a) Downtown, (b) dog, (c) crowd, (d) archi-
tecture, (e) Porsche, (f) Michael Rutter, (g) medieval castle, (h) helicopter, (i) sign, and (j) church. The
images (a, b, c, d, e, g) and (h) is from pixabay, (f) is fromWikipedia under the creative commons license,
and (i) and (j) are from the CID:IQ database.25
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for the whole group of images. Different scenes have very
different characteristics in textures, contrast, and frequency
content. How the different IQMs react on these differences
depends on what attributes in the image the IQM analyze. To
accommodate these facts, we have included a broad selection
of natural images that include different features, but also that
include details that make the resolution enhancement worth-
while. Flat images with no high-frequency content will not
benefit from a higher resolution, so we have not included any
images of this kind. The natural images presented in Fig. 1
show that most of the images in this study have a lot of high-
frequency details. The optical overlap in the superimposition
acts as a low-pass filter, so the possible artifacts introduced
by this method is that we may lose details in high frequency
areas of the image. The selected images all have some kind
of objects with a high degree of detail that the different super-
imposition algorithms may affect in different ways.

The three synthetic images included in this study are:

Cross. A white cross on a black background with single
pixel diagonals. This is included to see how the metrics
detect distortion of single pixel details.

Line pairs. A synthetic image consisting of three line
pairs in a horizontal direction and three line pairs in
a vertical direction. This is included to see how the
metrics perform in detecting missing line pairs.

H-frequency. Synthetic image that includes bands of five
different frequencies starting at the highest possible
spatial frequency at the image native resolution. The
natural images are presented in the subjective experi-
ment section.

The synthetic images are rendered at the different resolu-
tions given in the paper, so that the description of the images
fits the given resolution. This means that single pixel details

remain single pixel at all resolutions. In the experiments, we
keep the SLM resolution fixed, so the ratio between the refer-
ence image pixel size and the SLM pixel size is changed in
that sense.

4.8 Test Scenario
In our work to identify the objective imperfections in the syn-
thetic images, we have defined an SLMwith the resolution of
250 × 250 pixels. We have chosen to set the resolution low
for keeping the computational time down. We have then iter-
ated the input resolution in 25 pixel steps from 225 × 225 to
600 × 600 to generate different input-resolution/output-reso-
lution ratios, and use this as a parameter to provoke different
behavior from both the subframe generation methods and
the quality metrics. With this input resolution range, we are
simulating input resolutions from below the native resolution
to above double of the native resolution.

For the natural images, we have set up a subjective experi-
ment as described in Sec. 6. In this experiment, the input
images are 512 × 512 pixels, whereas the SLM resolution
is kept at 256 × 256 pixels.

As we are simulating subpixel behavior, each pixel of
the reference image is quadrupled into four pixels in the
subimages. The superimpositioning system shifts every other
frame half a pixel diagonally, and this is simulated by shift-
ing one pixel diagonally after quadrupling each pixel. This
doubles the resolution of the simulated result both horizon-
tally and vertically, bringing the simulated resulting image
into the same resolution as the reference image.

5 Simulation Results
For the synthetic images, we have concrete symptoms to
look for. The line pair image has three distinguishable line
pairs that will eventually fuse together when the input/output
ratio gets too high. The goal of the superimpositioning is to

Fig. 3 Zoomed in on the resulting line pairs at 275 pixels input resolution. (a) Reference image, (b) down-
scaled, (c) downscaled superimposed, (d) Naïve, (e) Gaussian, and (f) Gaussian sharpened. Note how
(b) and (c) have lost one line pair.
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preserve the details in the image at frequencies above the
spatial frequency of the SLM, so the superimpositioning
methods should preserve the line pairs better than the down-
scaled method. In addition, we are looking for metrics that
detect when we lose line pairs in the different superimposi-
tioning methods. The different methods perform as the
following; downscaled and downscaled superimposed both
lose one line pair when the input resolution goes above the
SLM resolution at 250 pixels. The Naïve method preserves
the three line pairs up to 300 pixels, and the Gaussian and
Gaussian sharpened preserves the line pairs up to around
350 pixels. Figure 3 shows how the different algorithms per-
form at 275 pixels input resolution. The line pairs have lost
much of the local contrast when pushing the limits, but it is
still distinguishable as three line pairs. None of the metrics
detect these details, and some of the metrics even rate the two
visually worst methods as the two best ones. We note the
preference for the downscaled and the downscaled superim-
posed methods may be because they add less blur and pre-
serve more local contrast in the image, even though they lose
details in the image.

The test image cross is made to test single-pixel details.
When given the cross image as an input, the Naïve method
deteriorates the diagonal in the nonshifted direction. This
diagonal gets worse at higher resolutions and is completely
lost at 500 pixels and above. The loss of details is shown in
Fig. 4, showing how the Naïve superimpositioning looks
with and at input resolution of 300 × 300, 400 × 400,
450 × 450, and 500 × 500 pixels.

Several of the metrics do not detect this severe loss of
details, but ESSIM, SR-SIM, FeatureSIM, and MSSSIM
pick this up. Figure 5 shows how the different metrics evalu-
ate the degradation of quality with the synthetic cross as

an input image. Note how the Naïve method drops in perfor-
mance after 400 pixels input resolution at the metrics men-
tioned above.

The synthetic H-frequency image is by nature problem-
atic for the superimpositioning method to represent correctly.
This is because when the input resolution increases, the fre-
quency of the patterns goes above the frequency the SLM is
naturally able to reproduce, and in some cases this introduce
aliasing. We see in Fig. 6 that the Gaussian and the Gaussian
sharpened methods are less prone to the aliasing effect than
the other methods. We do not find any metrics picking up this
feature. The metrics seem to favor the methods that introduce
less blur instead, even though these methods introduce
quite severe aliasing in some instances. Figure 6 shows how
the different superimpositioning methods produce varying
amounts of aliasing.

6 Subjective Experiment
The subjective experiment is designed to see which of the
IQMs that correlate best with our subjective opinion of
how the different methods of superimpositioning perform
over natural images. For this experiment, we have selected
natural images with a variety of content and structure, and we
have included images of persons, texture, nature, buildings,
vehicles, and text. Please see Fig. 1 for the complete set of
scenes used in this experiment.

In this experiment, we have simulated the superimposed
image for all five algorithms over the 10 images. We have
kept the input resolution over SLM resolution ratio at a factor
of 2×, meaning that an input image of 512 × 512 is simulated
with an SLM resolution at 256 × 256. We then made a paired
comparison test, testing each superimpositioning algorithm
against each other once, resulting in 10 pair-tests for
each image. Twenty six participants took part in this test,
which was performed using the online evaluation platform
QuickEval.26 The participants were told to select the visually
preferred image in each image pair. As this was an online
experiment conducted on the subjects’ own computer, the
viewing conditions were different for the different subjects.
QuickEval makes sure that no images are scaled, and that all
of the images are presented in fixed resolutions. As this
experiment tests the perceived resolution and spatial quality
enhancement of the image, this condition was deemed to be
good enough. The z-scores27 from this test are shown in
Fig. 7. The general trend in Fig. 7 shows that the methods,
where each superimposition subframe is calculated individu-
ally give a much better perceived image than the downscaled
and downscaled superimposed methods.

The correlation of each IQM toward these z-scores was
then calculated for both Pearson and Spearman coefficients,
and the results from these calculations are shown in Tables 1
and 2, and these results are shown in Figs. 8 and 9. The
Pearson coefficient is a measurement of the linear correlation
between the different metric results and the subjective
ratings, and the Spearman coefficient is a measurement of
how well the different metric results and the subjective rat-
ings may be described using a monotonic function. VIF is
the IQM that performs best according to these correlation
coefficients when looking at the mean values in Figs. 8
and 9.

Several of the IQMs perform well in the subjective experi-
ment. Based on the Pearson and Spearman correlation

Fig. 4 Results from Naïve superimpositioning with (a) 300, (b) 400,
(c) 450, and (d) 500 pixels input resolution.
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coefficients, the VIF IQM is the metric that performs best
when rating according to the subjective view of the observ-
ers. Figure 10 shows how the VIF performs on all the images,
with markers for different superimpositioning algorithms
(markers) and the fitted linear regression curve (solid line).

7 Discussion
To determine which metric is the best one to use, we must
first decide what the metric should detect. The purpose of the
superimpositioning is to increase the perceived resolution of
the image above the native resolution of the SLM. This
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Fig. 5 Synthetic cross scene evaluated by all of the metrics. The x -axis represents the input resolution
and the y -axis represents the IQM value. (a) Cross-DCTex, (b) cross-ESSIM, (c) cross-FeatureSIM,
(d) cross-MSSSIM, (e) cross-PSNR, (f) cross-PSNR-HVS, (g) cross-PSNR-HVSM, (h) cross-SR-SIM,
(i) cross-SSIM, (j) cross-VIF, and (k) cross-VSNR.
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increased resolution should result in both an improved visual
experience of the image, and preservation of more details
from the input image. For this reason, we divide our inves-
tigation into two parts, objective detail preservation and sub-
jective visual preference.

For detail preservation, we have generated three images
provoking different types of image artifacts. The single
pixel detail loss in the cross image is detected by the metrics
ESSIM, SR-SIM, FeatureSIM, and MSSSIM. These metrics
have been designed to analyze the structure in the image and
evaluate the structural similarity between the original refer-
ence image and the target image. These algorithms should
then be ideal for detecting the distortion in the objective
detail preservation, and they perform well for the single
pixel detail loss. The two other test images test pattern pres-
ervation and provoke errors that are more visible in the fre-
quency domain, and that seems hard to detect in the spatial
domain. All of the metrics fail to detect both the loss of line-
pairs in the line pair image and the added aliasing in the H-
frequency image. It is apparently not enough to analyze the
structural similarity to detect the errors in this case. This may
be because the local contrast goes down, even when we still
may distinguish the different line-pairs in the line pair image.
This contrast shift may trick the structural metrics. The same
shift in contrast may also trick the metric when evaluating the
H-frequency image. Here we look for aliasing, but one may
advocate that the structure in the H-frequency image is quite
similar with or without the aliasing.

Many of the other metrics favor the downscaled version
more when evaluating the synthetic images, and we may
argue that the downscaled image is more similar to the origi-
nal image as the superimpositioning is adding some noise
and blur in the image. However, the metrics that rate the
downscaled image higher are not suitable in the superimpo-
sitioning case as we are looking for a metric that evaluates
the superimpositioning way of enhancing resolution and that
differentiates different ways of superimposing.

As seen in the Z-scores27 in Fig. 7, there are some notice-
able differences in the subframe generation methods. The
downscaled method is always the worst rated, showing
that all of the superimpositioning methods are increasing
the perceived quality in all of the images. The next algorithm
is the downscaled superimposed. The fact that this algorithm
is better rated than the regular downscaled algorithm shows
that superimposing two equal images and by that removing

Fig. 6 Horizontal frequency image at 350 pixels input resolution.
(a) Reference image, (b) downscaled, (c) downscaled superimposed,
(d) Naïve, (e) Gaussian, and (f) Gaussian sharpened. Note how, for
instance, the Naïve method (d) has severe aliasing. The methods
containing the Gaussian filter have less aliasing as this method
has filtered out some of the highest frequency components.

Fig. 7 Z -scores from the subjective test of the superimposed images. Notice how different algorithms
give better results for different images. There is no universal best algorithm for all images.
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both the screen-door effect and blurring out some of the
sharp and jaggy edges may produce a visually more pleasing
image. The three best algorithms are the algorithms that gen-
erate different contents for the two spatially shifted positions.
This shows that to really utilize the potential of the shifted
superimpositioning one should have different contents for
the two positions, and consider the spatial shift in the algo-
rithm itself when generating the subframes.

The top three subframe generation methods also have
some independent differences. The Naïve method is picking
pixels in a way that ensures sharpness in the image, but it also

lose a lot of information. Images with sharp details without
straight geometric lines like the stray hairs on the dog in
Fig. 1(b), the random-shaped stones in the Medieval
castle in Fig. 1(g), and the braking waves on the Helicopter
image in Fig. 1(h) are benefiting from this technique. But
when looking at images with geometric structures like the
buildings in architecture in Fig. 1(d) and the text in the
Michael Rutter image in Fig. 1(f) and Porsche in Fig. 1(e),
the missing details that your mind still knows are there prob-
ably influence our view of these images. These images are
then visually better enhanced with the Gaussian method that

Table 1 Pearson correlation coefficients.

Scene DCTex ESSIM Feature Sim MSSSIM PSNR PSNR–HVS PSNR–HVSM SR–SIM SSIM VIF VSNR

Architecture 0.59 −0.61 −0.38 0.39 −0.75 0.90 0.89 −0.52 −0.09 0.97 0.52

Crowd 0.49 −0.25 −0.11 0.54 −0.57 0.90 0.88 −0.10 0.12 0.97 −0.25

Dog −0.38 0.86 0.89 0.92 0.22 0.84 0.86 0.90 0.11 0.99 1.00

Medieval castle −0.36 0.81 0.88 0.78 0.24 0.95 0.96 0.94 0.42 0.97 1.00

Porsche 0.06 0.68 0.82 0.78 −0.01 0.86 0.84 0.71 0.25 0.96 0.89

Sign −0.20 0.23 0.37 0.70 −0.03 0.96 0.95 0.40 0.26 0.99 0.98

Church −0.17 0.49 0.41 0.73 0.20 0.93 0.92 0.39 0.21 0.96 0.94

Michael Rutter 0.54 0.17 0.15 0.31 −0.59 0.70 0.68 0.06 0.01 0.88 0.54

Downtown −0.24 0.92 0.96 0.61 0.21 0.94 0.94 0.97 0.37 0.98 0.97

Helicopter 0.16 0.13 −0.32 0.42 −0.55 0.83 0.82 0.02 0.17 0.88 0.96

Average correlation 0.05 0.34 0.37 0.62 −0.16 0.88 0.88 0.38 0.18 0.95 0.75

Table 2 Spearman correlation coefficients.

Scene DCTex ESSIM Feature SIM MSSSIM PSNR PSNR–HVS PSNR–HVSM SR–SIM SSIM VIF VSNR

Architecture 0.1 −0.79 0.1 0.7 −0.5 0.9 0.9 0.1 0 0.9 0.9

Crowd 0.5 0.05 0.3 0.3 −0.1 0.8 0.6 0.3 −0.3 0.8 −0.2

Dog 0.1 0.78 0.8 0.87 −0.3 0.8 0.8 0.8 −0.3 0.8 0.9

Medieval castle 0.1 0.56 0.6 0.6 −0.4 0.8 0.8 0.6 −0.1 0.8 0.9

Porsche 0.3 0.37 0.6 0.5 −0.3 0.5 0.5 0.6 −0.4 0.7 0.6

Sign −0.4 0.56 0.7 0.9 −0.1 1 1 0.7 0 1 1

Church −0.5 0.41 0.5 0.6 −0.1 0.6 0.7 0.5 −0.3 0.9 0.7

Michael Rutter 0.7 −0.1 −0.1 0.1 −0.3 0.5 0.5 −0.1 −0.4 0.6 0.3

Downtown 0 0.9 0.9 0.6 0 0.8 0.8 0.9 0 0.9 0.9

Helicopter 0.1 −0.1 −0.5 0.6 −0.4 0.8 0.6 −0.1 −0.1 0.5 0.9

Average correlation 0.1 0.27 0.39 0.58 −0.25 0.75 0.72 0.43 −0.19 0.79 0.69
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is low-pass filtering the high-resolution image a bit just to
ensure that the details in the missing pixels are not com-
pletely lost. The Gaussian-sharpened algorithm is combining
these two approaches by sharpening the edges in the
Gaussian method. The Gaussian-sharpened algorithm is
the method that has the highest overall score, but it is not
the best algorithm for all contents. It seems that the most
suitable algorithm is dependent on the structure of the
image, and on what type of geometry the details is made
up from.

For the visual preference, we see that several of the met-
rics do well. VIF have the best results in this experiment,
with PSNR-HVS and PSNR-HVSM close behind. All of
these metrics have been designed with the HVS in mind,
and they correlate best with our subjective assessment of
the quality in the natural images. Most of the structural met-
rics do not perform as well as the HVS metrics. This may be

because the HVS is a complex system, and the sensibility for
structural similarity is just one of the many criteria to look for
when matching against subjective quality.

From Fig. 10, we see that the VIF metric fits very well
with the observer ratings of the different test images. We
also notice that for most of the images, both the VIF metric
and the observers rate the three methods based upon the
Naïve approach close to each other. Especially the last two
methods are close to each other in the quality, like we see, for
instance, in the graph for the dog image in Fig. 10.

Most IQMs have been designed to meet special require-
ments, for instance, to detect degradation in specific
elements of the image. The requirement we have in this
work is to rate the image enhancement of different superim-
positioning methods against each other. We see that the
metrics that are performing well in rating the algorithms
with regard to visual preference take the HVS into account,

Fig. 8 Pearson correlation coefficient for the different IQMs and the z-score.

Fig. 9 Spearman correlation coefficient for the different IQMs and the z-score.

Journal of Electronic Imaging 033017-11 May∕Jun 2018 • Vol. 27(3)

Hansen et al.: Preferred image quality metric for shifted superimposition-based. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 22 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



whereas the metrics that are better at picking up detail pres-
ervation analyze the structure in the image. It is important
to pick a metric from the correct category to evaluate the
case you are looking at. As shown in the results section,
metrics that are good at rating the visual preference may
not be as good to evaluate the objective distortions and
vice versa. Using the wrong metric may very well lead to
false results.

8 Conclusion and Further Work
We have evaluated several image quality metrics to assess
which metric is most suitable to evaluate different methods
of generating superimposed images for enhancing the reso-
lution in projector systems. Of the metrics tested, none of the
metrics is covering all of the criteria. But when partitioning
the problem into finding a metric to evaluate objective dis-
tortion in synthetic images and a different metric to rate natu-
ral scenes subjectively, we find that VIF correlates well with
our subjective preferences, whereas some of the structural
metrics are good at picking up single pixel defects in syn-
thetic images. However, all of the metrics included in this
survey fail in detecting loss of line-pairs and also fail in
detecting aliasing introduced in high-frequency patterns.

Different applications have different image features that
are most important. For the application where the detail pres-
ervation in line pairs and high-frequency content is crucial,
we should develop new methods for evaluating the image.
These methods may include analysis in the frequency
domain to detect the pattern deviation.

It would also be valuable to find a way to utilize these
IQMs in practical applications and real setups. This introdu-
ces some challenges as we need to standardize the over-
sampling factor on the captured image and on how to get
the reference image and the captured image into the same
resolution or pixel domain for comparison. Resizing this
in software may introduce some deviances, and also other
physical factors that influence the HVS, such as brightness,
should also be taken into account.

Another domain to explore is video sequences instead of
still images. It would be valuable to investigate how the
shifted superimposition method performs on moving objects
and how to evaluate this performance.
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