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Distributed Adaptive Filtering of α-Stable Signals
Sayed Pouria Talebi, Stefan Werner, and Danilo P. Mandic

Abstract—A cost-effective framework for distributed adaptive
filtering of α-stable signals over sensor networks is proposed.
First, the filtering paradigm of α-stable signals through multiple
observations made over a network of sensors is revisited and
an optimal solution is formulated. Then, an adaptive gradient
descent based algorithm for distributed real-time filtering of α-
stable signals via multi-agent networks is derived. This not only
provides an approximation of the formulated optimal solution,
but also a cost-effective algorithm which scales with the size of
the network. Moreover, performance of the derived algorithm is
analyzed and convergence conditions are established.

Index Terms—Sensor networks, distributed adaptive filtering,
consensus fusion, fractional differential, α-stable random signals.

I. INTRODUCTION

Most signal processing and machine learning approaches,
assume a Gaussian model for the signal, as this often leads
to mathematically tractable and computationally efficient so-
lutions. However, in an increasing number of modern applica-
tions, the encountered signals exhibit sharp spikes, resulting in
distributions that decay slower than the Gaussian case [1]–[8].
For modeling such signals, α-stable random processes have
proven to be advantageous [3,6,7].

A general closed-form expression for the probability distri-
bution function of the entire class of α-stable random vectors
does not exist. However, the class of real-valued α-stable ran-
dom vectors with elliptically symmetric distributions, referred
to as SαS, admit characteristic function of the form [1,9]

ΦZ(s) = E
{
eis

Tz
}
= eis

Tξe−(
1
2 sTΓzs)

α
2 (1)

where i2 = −1, while (·)T and E {·} denote the transpose
and statistical expectation operators, with ΦZ(·) denoting the
characteristic function of the random vector Z, and the positive
semi-definite covariation matrix Γz determining the elliptical
shape of the distribution of Z which is centered at ξ. The
characteristic exponent α ∈ (0, 2] in (1) specifies tail heaviness
of the density function [1,3]. A small value of α indicates
severe impulsiveness, resulting in heavier tails, while a value
close to 2 indicates a more Gaussian type behavior. Indeed
when α = 2, random vector Z has a Gaussian distribution
with covariance matrix Γz and mean vector ξ.

In addition to their trade-mark stability property [6], SαS
random processes also admit a generalized version of the
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central limit theorem [2], which makes them attractive for
modeling a large variety of signals. However, with the excep-
tion of the Gaussian case, SαS random processes only have
finite statistical moments of orders strictly less than α [2]–[4].
Therefore, in filtering applications it is implicitly implied that
α ∈ (1, 2], to ensure that finite conditional expectations do
exist. Indeed, we limit our study to real-valued SαS processes
with α ∈ (1, 2], where the mean vector corresponds to ξ in (1).

Since out of the entire class of SαS random variables only
the Gaussian case has well-defined variance and higher-order
statistical moments, filtering techniques based on minimizing
the second-order moment of an error measure, such as the least
mean square (LMS), do not perform well when applied to the
generality of SαS random processes [10]–[13]. The distributed
particle filter in [13] addresses this issue; however, the solution
is too cumbersome for many filtering applications. Although a
number of gradient based techniques for filtering SαS signals
have been proposed [11,14,15], a distributed approach suitable
for implementation over a large-scale sensor network accom-
panied with a rigorous convergence and stability analysis is
still lacking.

In recent years, fractional-order calculus is experiencing a
renaissance, finding applications in statistics and control [16]–
[18], where they have been used to derive fractional-order
statistical moments and describe complex physical systems.
However, the potential of fractional-order calculus in adaptive
learning remains largely untapped.

In light of the advantages that distributed learning tech-
niques offer [19]–[25], this work introduces a class of practical
distributed adaptive filtering solutions for SαS signals. To this
end, based on the characteristic function in (1), an optimal so-
lution to such a problem is formulated. However, calculation of
such a solution requires knowledge of the signal statistics and
is impractical for implementation over large-scale networks.
Therefore, an adaptive filtering algorithm, where agents of
the network collectively minimize the fractional square of an
error measure in a gradient descent manner using fractional-
order differentials is derived. Moreover, performance of the
so derived algorithm is analyzed and convergence criteria
are established. Finally, the introduced concept is validated
through a simulation example.

Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted respectively by lowercase, bold lowercase,
and bold uppercase letters. Multi-variate random processes
are represented by uppercase bold Italic letters. The transpose
and statistical expectation operators are denoted by (·)T and
E {·}, while ⊗ denotes the Kronecker product. Finally, (·)〈τ〉
denotes the element wise implementation of the function
f(z) = |z|τ sign(z), with sign(·) denoting the sign function.
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II. PROBLEM FORMULATION

We consider the classical distributed filtering problem [23,
26]–[29] from the more general perspective of SαS random
signals. This includes Gaussian random signals as a special
case, for which α = 2.

A. The Network
The sensor network is modeled as a connected graph
G = {N , E}, where the node set N represents agents of the
sensor network, while the edge set E represents bidirectional
communication links between agents of the sensor network.
The neighborhood of a node, l, is denoted by Nl and is defined
as the set of nodes that are connected to node l, including
itself. The number of nodes in the set Nl, i.e., its cardinality,
is denoted by |Nl|, with |N | denoting the total number of
nodes in the network.

B. The Filtering Problem
The aim is collaborative estimation of a parameter matrix,

H, through observations made via sensors of the network. The
observations and desired parameter vector are interrelated as

∀l ∈ N : yl,n = Hxl,n + wl,n (2)

where, for node l and time instant n, yl,n and wl,n denote
the observation and background noise vectors, with xl,n rep-
resenting the regression vector used to identify the system.
The regression vectors {xl,n : ∀l ∈ N} and background
noise vectors {wl,n : ∀l ∈ N} are assumed to be tempo-
rally and spatially independent white zero-mean SαS random
sequences.1

III. OPTIMAL SOLUTION

In order to derive an optimal solution to the proposed
filtering problem, the parameter matrix, H, is first formulated
in terms of the regression and observation vector statistics. To
this end, the observation, regression, and background noise
vectors are organized into the column vectors

yn =[yT
1,n, . . . ,y

T
|N |,n]

T

xn =[xT
1,n, . . . ,x

T
|N |,n]

T

wn =[wT
1,n, . . . ,w

T
|N |,n]

T

(3)

which allows the expression in (2) to be formulated from a
network-wide perspective as

yn = (I ⊗H)xn + wn (4)

where I is an |N | × |N | identity matrix.
Now, from (1) the joint characteristic function of yn and

xn can be expressed as

ΦY,X(sy, sx) =E
{
ei(s

T
yyn+sTxxn)

}
=E

{
ei(s

T
y(I⊗H)+sTx)xneis

T
ywn

}
=ΦX

(
(I ⊗HT)sy + sx

)
ΦW(sy).

(5)

1The assumptions on temporal and spatial independence are congruent with
the seminal work in [23,29]. In addition, without loss of generality, we assume
that Γw , statistic of the system zero input response, is known. In essence,
the classical distributed filtering problem (see [23,26]–[29]) is generalized to
an SαS setting.

On the other hand, considering the general characteristic
function of SαS random processes in (1) we have

ΦX
(
(I ⊗HT)sy + sx

)
= e−(

1
2Θx(sy,sx))

α
2 (6)

where

Θx(sy, sx) =sTy(I ⊗H)Γx(I ⊗HT)sy + sTxΓxsx (7)

+ sTy(I ⊗H)Γxsx + sTxΓx(I ⊗HT)sy.

In a similar fashion, we have

ΦW(sy) = e−(
1
2Θw(sy))

α
2 with Θw(sy) = sTyΓWsy. (8)

From the expressions in (5)-(8), ΦY,X(sy, sx) can be for-
mulated as

ΦY,X(sy, sx) = e−(
1
2Θy,x(sy,sx))

α
2 (9)

with Θ
α
2
y,x(sy, sx) = Θ

α
2
x (sy, sx) + Θ

α
2
w(sy) and

Θx(sy, sx) =
[
sTy sTx

] [ Γy Γyx

Γxy Γx

] [
sy

sx

]
where Γy = (I ⊗H)Γx(I ⊗H)T, Γxy = Γx(I ⊗H)T, and
Γyx = (I ⊗H)Γx. Therefore, it can be shown that

(I ⊗H) = ΓyxΓ
−1

x . (10)

The temporal and spatial independent assumption of the re-
gression and background noise sequences leads to Γyx and
Γx being block diagonal matrices so that

Γyx =block-diag{Γylxl : ∀l ∈ N}
Γx =block-diag{Γxl : ∀l ∈ N}.

(11)

Finally, upon replacing (11) into (10) and summing the block
diagonal elements we have

H =
1

|N |
∑
∀l∈N

ΓylxlΓ
−1

xl
. (12)

Akin to what was performed in [13], sufficient statistics for
calculating the solution in (12) can be found from empirical
estimates of characteristic functions of the regression and
observation vectors. Thus the expression in (12) is considered
as the optimal solution to the defined filtering problem. How-
ever, this approach is neither cost-effective nor is it suitable
for implementation over a network. To this end, an adaptive
gradient descent based technique is next developed.

IV. DISTRIBUTED ADAPTIVE APPROACH

Consider ŷl,n, the estimate of yl,n, obtained through the
strictly linear filter

ŷl,n = Ĥnxl,n (13)

where Ĥn is the estimate of desired parameter matrix H at
time instant n. The estimates {Ĥn : n = 1, 2, . . .} are selected
to iteratively minimize expected value of the cost function

Jn =
1

|N |
∑
∀l∈N

εTl,nε
〈α′−1〉
l,n with εl,n = yl,n − ŷl,n (14)

where 1 < α′ < α.
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Remark 1. The fractional order of “α′−1” ensures that the cost
function, Jn, retains a convex shape. This also ensures that the
terms ∀l ∈ N : εTl,nε

〈α′−1〉
l,n have finite statistical expectations.

At each time instant, the estimate of the parameter matrix
is updated in a steepest descent manner expressed as

Ĥn+1 = Ĥn − η∇α
′−1Jn (15)

where η is a positive real-valued gain and ∇α′−1 denotes
the (α′−1)-order gradient operator.2 Adopting the framework
introduced in [30,31] for calculating fractional differentials,
the update term in (15) yields

Ĥn+1 = Ĥn+η
∑
∀l∈N

εl,n

(
x
〈α′−1〉
l,n

)T
=

1

|N |
∑
∀l∈N

Φl,n (16)

where constant multiplicative terms are absorbed into η, while

Φl,n = Ĥn + µεl,n

(
x
〈α′−1〉
l,n

)T
(17)

represents the intermediate estimate of H at time instant n at
node l, whereas µ = η/|N | is an adaptation gain.

The average in (16) can be calculated in a distributed
manner using an average consensus filter (ACF) [32,33]. In
the context of this work, the state of the ACF after κ iterations
is expressed as

Fi,(κ) = Fi,(κ−1) +
∑
∀j∈Ni

mi,j

(
Fj,(κ−1) − Fi,(κ−1)

)
(18)

where Fi,(κ) is the state of the filter at node i after κ iterations
and mi,j denotes a positive real-valued weight. This can be
expressed in a more mathematically convenient fashion as

F(κ) = (M⊗ I)F(κ−1) = (Mκ ⊗ I)F(0) (19)

where F(κ) = [FT
1,(κ), . . . ,F

T
|N |,(κ)]

T, whereas I is an identity
matrix of appropriate size, while the element on the ith row
and jth column of M is selected so that

Mi,j =


1 +mi,i −

∑
∀l∈Ni

mi,l if i = j,

mi,j if i ∈ Nj\j
0 otherwise.

Furthermore, assuming the weights are selected so that M is
also doubly stochastic and meets the conditions in [32], from
the work in [32,33], we have

lim
κ→∞

Fi,(κ) =
1

|N |
∑
∀j∈N

Fj,(0) (20)

which is the ACF required to calculate the averages in (16).
The operation of the ACF at node i after κ iterations is
represented via the following schematic

Fi,(k) ← ACF ← {∀j ∈ N : Fj,(0)}.

The ACF described in (18)-(20) allows the update operation
in (16) to be performed in a distributed manner. The operations
of such a distributed fractional least mean square (DFLMS)
filter are summarized in Algorithm 1, where Ĥl,n denotes

2For more information on application of fractional differentials, the reader
is referred to [16]–[18,30,31].

the estimate of H obtained at time instant n at node l. For
the case of α = 2, as α′ → 2; then, the proposed DFLMS
(Algorithm 1) simplifies into the distributed least mean square
(DLMS) in [34,35].

Algorithm 1. Distributed Fractional Least Mean Square
For nodes l = {1, . . . , |N |}:
Estimate Filter Output & Error Term:

ŷl,n = Ĥl,nxl,n (21)
εl,n = yl,n − ŷl,n (22)

Perform Local Update:

Φl,n = Ĥl,n + µεl,n

(
x
〈α′−1〉
l,n

)T
(23)

Perform Consensus Update:

Ĥl,n+1 ← ACF ← {∀i ∈ N : Φi,n} (24)

V. CONVERGENCE AND STABILITY ANALYSIS

From the error term defined in (14) we have

εl,n = yl,n − ŷl,n =
(
H− Ĥl,n

)
︸ ︷︷ ︸

Υl,n

xl,n + wl,n. (25)

Now, substitution of εl,n from (25) into (23) yields

Φl,n =Ĥl,n + µΥl,nxl,n

(
x
〈α′−1〉
l,n

)T
+ µwl,n

(
x
〈α′−1〉
l,n

)T
.

(26)
Subsequently, considering Φl,n in the formulation in (26) gives

H−Φl,n =Υl,n

(
I− µxl,n

(
x
〈α′−1〉
l,n

)T)
− µwl,n

(
x
〈α′−1〉
l,n

)T
.

(27)

From (24) and (27), the error of the estimated parameter
matrix can be expressed in a regressive fashion as

Υl,n+1 ← ACF ← {∀i ∈ N : H−Φi,n}. (28)

Replacing the expression in (19) as the ACF in (28) yields

En+1 = AnEn − µ (Mκ ⊗ I)Qn (29)

where An = (Mκ ⊗ I) (I ⊗ I− µXn), while

En =[Υ1,n, . . . ,Υ|N |,n]
T

Xn =block-diag{x〈α
′−1〉

l,n xT
l,n : ∀l ∈ N}

Qn =[QT
l,n, . . . ,Q

T
|N |,n]

T with Ql,n = x
〈α′−1〉
l,n wT

l,n.

Alternatively, (29) can be formulated as

vec(En+1) = (I⊗An) vec(En)
− µvec ((Mκ ⊗ I)Qn)

(30)

where vec(·) transforms a matrix into a column vector by
stacking its columns.3

3The effect of network topology and selection of ACF parameters, i.e.,
number of iterations and weights, on the estimation error dynamics are
indicated by Mκ.
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Considering the expressions in (29) and (30), for the case of
1 < p < α, ‖vec(E)‖pp will converge if the eigenvalues of An

lie within the unit circle. In statistical terms, E
{
‖vec(En)‖pp

}
will converge to a stabilizing solution if the eigenvalues of
E {An} lie within the unit circle. Given that

E {An} = (Mκ ⊗ I) (I ⊗ I− µE {Xn})

and M was assumed doubly stochastic, resulting in the
eigenvalues of Mκ lying on or within the unit circle; then,
the sufficient condition for convergence is given by

µ <
1

λmax(E {Xn})
(31)

where λmax(E {Xn}) is the largest eigenvalue of E {Xn}.
Remark 2. The criterion 1 < p < α guarantees that all
statistical expectations exist and are finite.
Remark 3. If statistics of the regression vectors are not avail-
able, a straightforward technique for guaranteeing convergence
would be to normalize the adaptation step-size at each time
instant, that is, to replace (23) from Algorithm 1 with

Φl,n = Ĥl,n + µεl,n

(
x
〈α′−1〉
l,n

)T (
xT
l,nx

〈α′−1〉
l,n

)−1
(32)

where µ < 1 will guarantee convergence.
Remark 4. Taking into account that the background noise
and regression processes were assumed to be temporally and
spatially independent white zero-mean SαS sequences, taking
the statistical expectation of (29) yields

E {En+1} = (Mκ ⊗ I) (I ⊗ I− µE {Xn})E {En} . (33)

Therefore, if the condition in (31) is satisfied, any misadjust-
ment in initialization values decreases exponentially fast.

VI. PERFORMANCE EVALUATION

In order to demonstrate the performance of the proposed
algorithm, the filtering problem defined in Section II-B was
considered, where α = 1.7, whereas the parameter matrix was

H =

[
1 0.5 −1.5
0.6 1 −0.6

]
while the covariation matrices of the regression and back-
ground noise sequences were

Γx = I⊗

 1 0.2 0.2
0.2 2 0.5
0.2 0.5 1

 and Γw = 10−2×I⊗
[
1 0.1
0.1 1

]
with the adaptation gain set to µ = 0.01 and α′ = 1.6. The
network with |N | = 20 and the topology shown in Figure 1
was used to estimate the parameter matrix.

Figure 1. The sensor network with 20 nodes and 48 edges used in simulations.

Two performance indicators were considered: i) the mean
absolute error (MAE) term at each node, that is, E {|εl,n|};
ii) the mean absolute deviation (MAD) term at each node,
that is, E

{
|H− Ĥl,n|

}
. The mean-values were calculated

empirically via averaging of the results obtained from 103

independent realizations of the experiment. In addition, at each
time instant the ACF was iterated κ = 4 times to approximate
the required averages and the initial value for the parameter
matrix estimate was ∀l ∈ N : Ĥl,0 = 0.

In Figure 2, the performance of the developed DFLMS is
compared to that of the traditional DLMS in [35]. Observe that
the proposed DFLMS, both in its formulation in Algorithm 1
and with the normalized step-size given in (32), performed
well in a 1.7-stable environment and achieved lower MAE
and MAD than the DLMS. In addition, the DFLMS framework
outperformed the DLMS in terms of convergence rate. Finally,
notice that the DLMS exhibited large jitters (sharp spikes) in
its MAE (cf. MAD) behavior as a result of regression and
background noise sequences that were heavy-tailed, whereas
such behavior was greatly attenuated in the developed DFLMS
framework. To enable a fair performance comparison, for
DFLMS with normalized step-size, adaptation gain was chosen
as µ = 0.08 to achieve a similar convergence rate to that of
the DFLMS in Algorithm 1.

0 500 1000 1500
10

0

10

20

30

40

Sample Number

M
A

E
 (

dB
)

DLMS
DFLMS (with normalized step size)

DFLMS (without normalized step size)

0 500 1000 1500

10

0

10

20

30

Sample Number

M
A

D
 (

dB
)

DLMS DFLMS (without normalized step size)
DFLMS (with normalized step size)

Figure 2. The MAE (top) and MAD (bottom) performance of the DFLMS and
DLMS. Performance of the DFLMS across all nodes lies within the region
in green, while performance of the DFLMS with normalized step-size lies
within the region in red, whereas performance of the DLMS lies within the
region in blue.

VII. CONCLUSION

Adaptive filtering of real-valued SαS signals over sensor
networks has been considered where, based on the charac-
teristic function of such signals, an optimal filtering solution
has been derived. In addition, an algorithm for filtering SαS
signals in a distributed fashion, based on minimizing real-time
fractional powers of an error measure using differentials of
order “α′ − 1”, where 1 < α′ < α, has been proposed. The
performance of the proposed distributed filtering algorithm has
been analyzed and convergence bound on the adaptation gain
has been established.
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