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Abstract

Snow density is an important measure in hydrological applications. It is used to con-
vert snow depth to the snow water equivalent (SWE). A model developed by Sturm
et al. (2010) predicts the snow density by using snow depth, the snow age and a snow
class defined by the location. In this work the model is extended to include seasonal
weather variables and variables concerning the location. The model is tested and
fitted for 4040 Norwegian snow depth and densities measurements in the period
1998−2011. A Bayesian modeling framework is chosen. To do inference a Markov
Chain Monte Carlo method with Gibbs sampler is used, and cross-validation is used
for model evaluation. The final model improved the snow density predictions for
the Norwegian data compared to the model of Sturm et al. (2010). In addition year
specific measurements are performed in different areas, and included in the model
by using random effects. The associated reduction in the prediction error is com-
puted, indicating a significant improvement by utilizing information of annual snow
measurements.





Sammendrag

Snøtetthet er et viktig mål i hydrologiske sammenhenger. Snøtettehet og snødybde
kan brukes for å finne snøens vannekvivalent (SVE). En metode utviklet av Sturm
et al. (2010) estimerer snøtettheten ved hjelp av snødybde, hvilken dag det er på
året, og en snøklasse definert av målingens lokasjon. I oppgaven er denne modellen
utvidet til å inneholde sesongavhengige værvariable og variable knyttet til lokasjon.
Modellen er tilpasset og testet på 4040 norske snødybde- og tetthetsmålinger fra pe-
rioden 1998−2011. Bayesiansk statistikk og Markov Chain Monte Carlo simulering
med Gibbs Sampler er brukt for å tilpasse og finne modellparametre, og kryssvalid-
ering blir brukt for å evaluere modellen. Den endelige modellen forbedret predik-
sjonene av snøtettheten for norske målinger sammenlignet med modellen til Sturm
et al. (2010). Årsspesifikke målinger er lagt til i modellen ved å bruke tilfeldige
effekter. Den assosierte reduksjonen i prediksjonsfeilen er regnet ut og viser en
signifikant forbedring ved bruk av informasjon fra årets målinger i modellen.
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Chapter 1

Introduction

1.1 Motivation and objectives
Density is an important physical property of snow and establishes the relationship
between the snow depth and the water content in the snow. A large proportion of the
precipitation in Norway falls in the form of snow. When the snow melts, it makes a
major contribution to the water in the rivers and in reservoirs. Keeping track of the
snow distribution is essential in connection with risk of flooding, avalanche warning,
climate research and hydropower production. Therefore it is important to have good
and reliable estimates of the amount of snow through the winter. In the hydropower
production, where snow represents an energy storage, exact estimates of the snow
reservoir are important for planning the power generation.

In hydrological applications, the amount of snow is characterized by its snow water
equivalent (SWE). The SWE can be determined from the snow depth and the snow
bulk density. Measuring the SWE have traditionally been done manually by taking
the weight of a cylindrical snow sample. The disadvantage of manual methods is
that it is time consuming and costly. Other methods to determine the amount of
snow are use of mobile snow radar and satellite pictures. The snow radar measures
the snow depth, and the satellite images give information of areas of the earth cov-
ered with snow. Measuring the snow depth is much cheaper than measuring the
snow density.

Since SWE can be calculated from the snow depth and snow density, estimating the
snow density can be done equally as estimating the SWE. The snow density varies
with the shape and crystal size, and is influenced by physical processes in the atmo-
sphere during and after snowfall. This can make it difficult to determine the exact
snow density. Different models have been developed in hydrology that can be used
to calculate the snow density from the snow depth. One rule of thumb is that 10 cm
of snow melts to 1 cm of water, but this is a very inaccurate approximation (Duesken
and Judson, 1997). Sturm, Tara, and Liston (2010) came up with a model that esti-
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4 1. Introduction

mates the local snow bulk density with respect to snow depth, snow age and snow
class (Sturm et al., 1995). Their study was based on snow data from the United
States, Canada and Switzerland.

The method presented in Sturm et al. (2010) is of great interest also in Norway.
But a problem with the model is that it does not consider the seasonal variation in
the snow density in terms of climate. In Norway there are big differences in local
climate and topography, and therefore a large variation in the snow density can be
observed. An alternative is to include the effect of the weather directly in the model.
In this work the model of Sturm et al. (2010) is extended to include seasonal weather
variables, together with other explanatory variables. By using n = 4040 snow mea-
surements given by Statkraft, the model is fitted to the Norwegian data by using
Bayesian analysis, and model parameters are estimated using a Gibbs sampling
Markov Chain Monte Carlo method. We compare our model to the model in Sturm
et al. (2010).

The snow measurement data used in this study are carried out in different areas
in Norway in the period 1998−2011. The snow density conditions for each of these
areas may vary between areas and from year to year. We can assess the variation
among the different areas and years by including random effects that are estimated
from year and area specific measurements. When using year-area random effects,
an important question is how many year specific measurements in each area are
needed to gain reduction in the prediction error.

The aims of this thesis are (i) to describe and test a method that predicts the snow
bulk density in conjunction with snow depth, climate and location, (ii) develop the
model by means of weather data, (iii) to fit and test different models by using Nor-
wegian data, (iv) include random year and area effect to see if performing multiple
area and year specific measurements provide better predictions, and (v) look at the
associated reduction in the error by collection of year specific snow density measure-
ments.

In Chapter 2 some background information of snow processes and the model of
Sturm et al. (2010) are given. The study region and data are described in Chap-
ter 3, together with some exploratory analysis. Chapter 4 gives an overview of the
fundamentals in Bayesian analysis that are used for modeling. In Chapter 5 the
snow model is outlined, followed by Chapter 6 describing the model evaluation cri-
teria. In Chapter 7 different models are fitted to the data, model parameters are
estimated and finally the models are tested to find the model that provides the most
reliable predictions. The model is extended to include random effects and tested
against uncertainty reduction for a different number of annual measurements. In
Chapter 8 we look closer at the area Ulla-Førre. The thesis ends with discussion and
conclusion in Chapter 9.



Chapter 2

Background theory

2.1 Snow water equivalent and bulk density
The snow water equivalent (SWE) is a measure of the amount of water contained
within a snowpack, for instance the height of water you get when you melt the snow.
SWE is a function of the snow depth (hs) and the bulk density (ρb), defined by

SWE = hs
ρb

ρw
, (2.1)

where ρw is the density of water, 1 g/cm3. The bulk density ρb of snow is mass per
unit volume, an indicator of how compact the snow is. One commonly used conver-
sion from snowfall to water content is that 10 cm of snow melt to 1 cm of water
(ten-to-one ratio), i.e. a snow density of 0.1. This is an inaccurate approximation.
The density of pure ice is 0.917, and the density of snow can vary from 0.01 to as
high as 0.7 g/cm3. For snow on the ground, the density is normally between 0.15 and
0.5 g/cm3 (Killingtveit and Sælthun, 1995).

2.2 Snow processes
Snow density is influenced by the atmospheric conditions during crystal formation
and descent, and conditions experienced when and after landing on the surface.
Snow depth is the accumulation of new and old snow measured on the ground. The
density increases with age and compaction under the weight of new snow.

The conditions of temperature, wind and humidity determine the form of the snow
crystals. The wind breaks down the crystal structure in the snow, and consequently
the snow will be more packed and the density will increase. After snowfall, wind
action will increase the density when there is minus degrees. Low density usu-
ally requires light winds. If the temperature during snowfall is well below freezing
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6 2. Background theory

point, the snow has typically a rather low density, while warm temperature favors
high density (Duesken and Judson, 1997).

2.3 Sturm’s model
A model that estimates the snow bulk density has been developed by Sturm et al.
(2010), based on data from the United States, Canada and Switzerland. It takes
snow depth, snow age and snow class as input variables.

The snow class is found by a classification system for seasonal snow cover proposed
in Sturm et al. (1995). It has six classes, where each class is defined in terms of
physical characteristics of the snow and the snow layers. The classes are also de-
rived by using three different climate variables given by the weather stations at the
different location - wind, precipitation and air temperature, in a binary classifica-
tion system. The snow class distribution in Scandinavia is shown in Figure 2.1. In
Norway tundra and maritime snow are dominant.

Figure 2.1: Snow class distribution in Norway. Source: Glen Liston (2011).

In the model of Sturm et al. (2010) bulk density is a function of snow depth (hs), the
day of year (DOY), and the snow class parameters k1, k2, ρ0 and ρmax,

ρhi ,DOYi = (ρmax −ρ0)[1−exp(−k1 ·hi −k2 ·DOYi)]+ρ0, (2.2)

where 0 < ρ0 ≤ ρmax < 1. k1 and k2 are the densification parameters for depth and
DOY, and ρmax is maximum bulk density and and ρ0 is the initial density of the
individual snow layer. The snow class parameters are given in Table 2.1. The snow
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season begins early in October. DOY represents the effect of snow aging and the
number of days in the winter season, and runs from 1 October (-92) to 30th of June
(+181).

Table 2.1: Model parameters by snow class (Sturm et al., 2010).

Snow class ρmax ρ0 k1 k2

Tundra 0.3630 0.2425 0.0029 0.0049
Maritime 0.5979 0.2578 0.0010 0.0038
Prairie 0.5940 0.2332 0.0016 0.0031
Alpine 0.5975 0.2237 0.0012 0.0038
Taiga 0.2170 0.2170 0.0000 0.0000





Chapter 3

Data

3.1 Study region
In this study, snow depth and snow density observations from 244 locations within
17 different areas in Norway are available. In addition, meteorological data from
representative weather stations are used.

The climate in Norway is characterized by the influence of the Gulf Stream and
elevation differences. Norway is located between latitudes 57◦ and 71◦ N, and longi-
tudes 4◦ and 32◦ E, with almost one-third of the country situated north of the Arctic
Circle (Figure 3.1). Norway shares the same latitudes as Alaska and Greenland, but
because of the location in the westerlies and a position on the east side of a great
ocean with a warmer temperatures, Norway has a different climate in relation to
these areas.

In the interior of Norway the temperature is determined by the solar radiation with
warm summers and cold winters, while on the coast the sea temperature does not
change that much, and there are relative mild winters and cool summers. The lowest
temperatures can be found on Finmarksvidda, and the coldest temperature recorded
is -51.4◦C. The highest temperature measured is 36.5 ◦C in Nesbyen in the interior
of Norway. The yearly mean temperatures varies from −3.1 ◦C in Finmarksvidda in
the north to 7.7 ◦C on Karmøy on the west coast (met.no).

The west coast has some of the areas in Europe with most precipitation. The low
pressure often comes towards the west coast, bringing mild and humid air from the
ocean. In some places, up to 200 days of measurable precipitations are registered
with more than 3000 mm of precipitation a year. The east of Norway is protected
from the mountains, so there is less precipitation, normally around 1000 mm a year.
Areas in the north are also protected by mountains, and have less precipitations,
around 400 mm a year (met.no).

9



10 3. Data

Figure 3.1: Locations in the study region. In Figure 3.2 each of the region A-F showed in this
map are displayed in a separate map.

The location in the westerlies brings westerly and southwesterly winds over the
country. The wind speed may reach storm on the coast, especially in the autumn
and winter.

3.2 Snow data
Statkraft performs snow depth and density measurements in different areas in Nor-
way. In this study we have used n = 4040 of these observations, from the period
1998−2011. Snow data from 17 areas are used, and each area consists of several lo-
cations. These location compositions are set by Statkraft and displayed in Table 3.1
and specified in Figure 3.2. All locations are displayed in Figure 3.1.

Snow depth and density data are carried out from November to May, 1−7 times a
year for each measurements area. The observations are based on manually snow
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(a) 5: Innset, 7: Kobbelv,
12: Skjomen.

(b) 10: Rana, 11:Røssåga. (c) 3: Aura/Grytten,
8: Nea-Nidelv, 13: Svorka/Troll-
heim.

(d) 1: Adamselv, 2: Alta. (e) 4: Tysso-Folgefonn,
6: Jostedal,9: Nore,
16: Vik/Høyanger.

(f) 14: Tokke, 15: Ulla-Førre,
17: Sira-Kvina.

Figure 3.2: Map of the locations (black) and representative weather stations (red) used in this
study. Figure (A)-(F) are the regions labeled in Figure 3.1.

measurements. The snow density is measured by taking the weight of a cylindrical
snow sample tube. The density is obtained by dividing the weight by the volume of
the tube. The snow depth is found by using a yardstick that measures the depth of
accumulated snow.

3.2.1 Exploratory analysis
Table 3.1 displays the different measurement areas along with number of locations
in each area, number of snow measurements used and mean characteristics of the
snow data for each area.

There is variability in snowfall, temperature and wind between locations and be-
tween years. Because of differences in local climate and topography, a variation in
the snow density in Norway can be observed both among areas and from year to year.
To illustrate the variability, box and whiskers plots of the snow density in different
years and in different locations are used. In these plots, the central mark indicates
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Table 3.1: Information of the measurements areas used in this work: Number of locations,
mean depth, snow density and snow water equivalent (SWE), and total number of measure-
ments in each measurement area (n). Each area is given an id number that is used when
refering to a specific area.

Id Area No. of
locations

Depth Density SWE n

(cm) (g/cm3) (mm)

1 Adamselv 5 74.1 0.345 26.4 42
2 Alta 1 51.7 0.266 13.4 18
3 Aura/Grytten 24/3 119.3 0.349 43.2 439
4 Tysso-Folgefonn 12 219.5 0.390 87.7 168
5 Innset 32 90.5 0.282 27.1 556
6 Jostedalen 1 190.3 0.327 64.1 39
7 Kobbelv 7 162.5 0.414 68.8 188
8 Nea-Nidelv 10 108.8 0.338 36.6 144
9 Nore 19 81.8 0.295 25.2 306
10 Rana 9 107.4 0.315 35.3 254
11 Røssåga 15 103.3 0.353 37.7 273
12 Skjomen 24 123.6 0.340 43.4 324
13 Svorka/Trollheim 3/9 126.5 0.376 50.3 243
14 Tokke 40 99.9 0.306 31.9 535
15 Ulla-Førre 10 138.6 0.398 57.6 243
16 Vik/Høyanger 5/2 184.8 0.384 75.4 191
17 Sira-Kvina 13 82.3 0.339 28.8 77

Total 244 118.2 0.337 42.5 4040

the median, while the edges of the box are the 25th and 75th percentiles. The out-
liers extend to the most extreme data. In Figure 3.3, densities from Ulla-Førre in
the period 1983−2012 are used to show differences in the mean densities from one
year to another. In Figure 3.4 densities in the different areas from the period used
in this work are displayed.
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Figure 3.3: Box and whiskers plot: Observed snow density in the area Ulla-Førre in the period
1983−2012.

Figure 3.4: Box and whiskers plot: Observed density in the different areas in the period
1998−2011 (see Table 3.1 for definition of area id).
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3.3 Meteorological data
Meteorological data from weather stations close to the locations need to be available.
The weather stations used in this work are listed in Table 3.2, and their position rel-
ative to the locations are shown in Figure 3.2. Wind, precipitation and temperature
data are available by Statkraft’s own weather stations and from some operated by
The Norwegian Meteorological Institute (DNMI). The weather observations used are
registered hourly from 26 weather stations.

3.3.1 Correction of weather data
Temperature data for the different locations are taken from weather stations nearby.
However, there are differences in the elevation between the locations where the
measurement is made and at its representative weather station. The temperature
normally decreases with an increase in elevation. Therefore, the temperature is
corrected in relation to altitude by

T = T0 +a(h−h0), (3.1)

where T is the air temperature to be found for the location at height h. T0 and h0
are the air temperature and height of the representative weather station. a is the
rate of temperature change in the given region. In the troposphere a =−6.5◦C /km
(Jacobson, 2005).

All of Statkraft’s weather stations have wind measurements at the same height as
the precipitation measurement, normally 2 meter above ground level. The DNMI
weather stations have wind measurements 10 meters above the ground. The wind
speed is a function of the logarithms to the altitude, so the wind speed for these sta-
tions needs to be corrected to a 2 meter level. A formula used by Statkraft is applied
to these time series.

All precipitation measurements have error sources. Wind speed is the most impor-
tant environmental factor which contributes to the underestimation of actual pre-
cipitation, and especially for snow precipitation (Killingtveit and Sælthun, 1995).
Because of wind, the amount of precipitation measured in a gauge is less than ac-
tual precipitation reaching the ground. Thus the precipitation time series that are
used are wind corrected by Statkraft.

3.3.2 Exploratory analysis
As mentioned in Section 3.1, different factors affect weather in Norway. Table 3.2
is an example of weather data in the period January-March 2011. In this period
we can observe a variability in temperature, wind and precipitation. These climate
variables may have a great impact on the accumulation and melting of snow, and
consequently we can have a great variability in the amount of snow and snow den-
sity.
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Table 3.2: In this table the 26 weather stations that are used in this study are listed. As
an example, the characteristics of temperature, wind and precipitation data in the period
January-March 2011 are shown.

Weather station Area id Temperature Wind speed Precipitation
(◦C) (m/s) (mm)

mean max min mean max total

Adam-Muora 1 -7.2 4.9 -25.3 5.2 18.7 112.9
Alta-Aidijavrre 2 -13.5 1.7 -36.2 1.6 7.0 2.3
Aura-Aursjøen 3 -5.9 4.3 -21.4 4.0 14.3 337.0
Aura-Eikesdal 3 0.8 13.9 -11.5 1.3 4.8 400.5
Folg-Botnane 4 -4.0 5.2 -16.4 2.8 18.0 923.6
Inns-Innset 5 -9.1 5.6 -26.1 2.1 5.4 349.5
Jost-Vigdøla 6 -4.7 4.9 -20.0 1.4 7.9 580.2
Kobb-Reinoksvatn 7 -5.5 6.0 -15.8 5.8 19.4 600.5
Sylsjøen 8 -6.9 5.1 -25.7 5.7 17.7 391.6
Nesjøen 8 -6.3 5.1 -25.1 2.9 14.4 527.5
Hersjøen 8 -3.7 7.1 -25.7 0.7 5.1 453.5
Nore-Lappstein 9 -8.8 1.2 -27.9 5.0 18.7 178.2
Nore-Pålsbu 9 -7.5 5.8 -32.9 0.9 4.8 81.77
Rana-Tverrvatn 10 -5.9 4.6 -30.0 2.8 11.7 564.3
Lang-Bjøllånes 10 -6.7 5.0 -26.8 0.8 5.9 632.2
Roes-Tustervatn 11 -5.6 4.8 -22.0 1.5 9.2 535.0
Skjo-Elvegård 12 -2.9 8.2 -19.6 1.3 4.7 206.7
Skjo-Kjørisdal 12 -8.2 3.3 -20.6 4.4 13.8 344.0
Svor-Solåsvatn 13 -4.3 8.7 -28.7 1.5 8.4 805.8
Tokk-Vinje 14 -3.9 9.9 -23.1 1.4 10.6 200.2
Tokk-Vågsli 14 -6.3 7.3 -27.0 1.7 9.6 430.6
Troll-Gråsjø 13 -2.6 11.4 -19.7 2.1 6.9 536.5
Ulla-Lauastøl 15 -0.7 13.9 -18.8 2.6 11.5 1021.0
Ulla-Osali 15 -2.6 4.9 -11.9 5.0 24.7 932.6
Vikf-Hestvollan 16 -5.3 2.7 -19.8 4.8 15.4 689.6
Sirdal-Sinnes (dnmi) 17 -3.7 6.0 -26.8 2.4 10.9 525.5

3.4 Construction of explanatory variables

Different factors influence the snow density. In this section we construct explanatory
variables we believe might affect the snow density. These include seasonal weather
variables as well as variables that relate to the location. In order to compute some
of these variables we first need to explain a model that estimates the snow-melt pro-
cess, the process of runoff caused by snow melting.

Snow accumulation and melt are important elements in the hydrological cycle in
Arctic areas. In this application we use a snow-melt model to find a period for which
the snow-melt does not exceed the snow accumulation.
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3.4.1 Snow-melt: Degree-day model
This section is based on Chapter 3 in Killingtveit and Sælthun (1995).

The snow cover is exposed to thermodynamical processes. When these processes
produce a positive energy supply to the snow cover, the snow melts. There are many
factors that influence the melting of snow, like temperature, absorption of solar ra-
diation, rain, wind, humidity and heat input from the ground (Duesken and Judson,
1997).

The degree-day model is an alternative to the more complex ’Energy balance’ model,
which is considered the most accurate for snow-melt computations (Killingtveit and
Sælthun, 1995). A degree day is a measure that expresses a combination of temper-
ature and time, and can be defined in different ways.

By using the air temperature above a given threshold temperature, the snow-melt
can be computed by using a degree-day factor that assumes a correlation between
average daily temperature and daily snow-melt. The degree-day model is expressed
as

SM= CX · (Ta −Ts) if Ta > Ts
SM= 0 if Ta < Ts

where SM is the amount of snow (mm/day) that is melted per day. This model as-
sumes that the snow is melting as a function of the air temperature.

Table 3.3: Notation in snow accumulation and snow-melt model.

Parameter Units

Ta Mean daily air temperature ◦C
Ts Threshold air temperature for melting (usually 0◦C) ◦C
Tp Threshold temperature rain-snow ◦C
Cx Degree-day factor mm/(◦C·Day)

The two others parameters are the degree-day factor CX and the threshold air tem-
perature for snow-melts, Ts. Ta is the mean air temperature in the location being
investigated.

The HBV hydrology model is a mathematical model of the hydrological processes
much used in Scandinavia (Killingtveit and Sælthun, 1995). Different areas operate
with different degree-day factors and threshold temperatures. The parameters in
Table 3.3 are estimated in the HBV-model for each area. To achieve the best model
performance, these estimated parameters from Statskraft’s operative HBV-model
are used in this work. In the locations used in this study, the degree-day factors
vary within a range 2.3 to 7, Ts from -0.9 to 0.8 and Tp between -0.5 and 0.6.
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The accumulated snow (ACC) is the sum of precipitation (P), in mm/day, that comes
as snow, minus the amount of snow that has melted (SM):

ACCi =max{0,Pi +ACCi−1 −SMi} if Ta > Tp
ACCi =max{0,ACCi−1 −SMi} if Ta > Tp

where the ACCi represents the accumulated snow at time i. Tp is the threshold
temperature between rain and snow. In this study hourly measurements are used,
so the degree-day factor needs to be adjusted to a degree-hour factor by dividing by
24 hours/day. Consequently, the snow-melt and precipitation measures in the model
are recorded in mm/hour.

This snow-melt model is used in order to find which day in the snow season, before
the day when the density measurement is performed (DOY), when the estimated
snow-melt does not exceed the snow accumulation. This day is referred to as A0.
Day of year (DOY) was defined in Section 2.3 and can have values in the range -92
to +181. Hence, A0 can take values between -92 and DOY, where -92 represents 1st
of October. The use of A0 will be further discussed in Section 3.4.2.

Figure 3.5 shows examples of the snow-melt and accumulation process in four differ-
ent locations for different measurement dates, with different values of DOY. In Fig-
ure 3.5d we can see an estimated accumulation followed by an estimated snow-melt
that exceeds the snow accumulation. A0 in this plot is -18, and the accumulation
period runs from A0 = 18 to DOY= 61.
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(a) Sira-Kvina (b) Adamselv

(c) Høyanger (d) Kobbelv

Figure 3.5: Examples of the snow-melt process in four different locations. The red line in-
dicate the day of year (DOY) of the observation, the black line shows the accumulation start
day (A0), and the blue line the estimated accumulated snow.



3.4. Construction of explanatory variables 19

3.4.2 Explanatory variables
Snow density at the time of observation is a product of the initial density of snow
fall and further densification due to the weather and compaction of overlying snow.
From the snow hits the ground, it begins a process of metamorphism, a process as-
sociated with recrystallization. The densification of snow is an irreversible process
and the density increases with time and pressure.

Different explanatory variables (covariates) xi are used in relationship to estimate
the snow density. Three variables describe the snow density by its location and
age, and six variables describe the climate during the snow season for the specific
area. Here Tt(i) is the air temperature (◦C), Pt(i) the amount of precipitation (mm)
and Wt(i) is the wind speed (m/s) registered at the weather stations at time t. The
subscription i, means that the weather observation belongs to snow density mea-
surement number i.

Below all accumulation of weather data are summarized hourly from the accumula-
tion start date A0(i) to the day of measurement i, DOY(i). The accumulation starts
from the time t corresponding t = A0. The accumulation start date (A0) is found by
using the degree-day model in Section 3.4.1. If the snow-melt exceeds the snow ac-
cumulation, there will be no snow left on the ground. If this happens at some point
before the snow depth measurement, there is no point in observing the weather’s
influence on the snow in this period, since the snow has nevertheless disappeared.
A0 is the last day after the beginning of the snow season (after 1st October) and
before the measurement day, when this happens. In other words, A0 is the day that
defines the start of accumulation of snow towards the day the measurement is made
(DOY).

All accumulated sums are scaled by a common number H. Here, H is chosen to be 24
for all locations and years, so the accumulation of for example hourly recorded wind
speeds can be interpreted as accumulation of mean daily wind speeds. The index t
represents the time in hours. The covariates are summed up in Table 3.4.

Snow depth, snow age and elevation: The snow density increases with age and
higher compaction (snow depth). x1(i) represents the observed snow depth, which is
the accumulated sum of new and old snow. x2(i) the day of year measurement i is
carried out (DOYi), representing the snow age. DOY starts at -92, the 1st of October
and runs to +181, 30th of June. If DOY is 1, it means that the snow depth and den-
sity is measured 1st of January. x3(i) is the elevation, or the height, in meter above
sea level (MASL) of the location of measurement i.

Plus degrees: In order to include the influence of high temperatures on the snow
density, x4 is the accumulated sum of plus degrees,

x4(i)= 1
H

DOY(i)∑
t=A0(i)

Tt(i) ·1{Tt > 0}. (3.2)



20 3. Data

The function 1{Tt > 0} is the indicator function of the event Tt > 0 and has value 1 if
Tt > 0, and 0 else.

Wind: Wind speed less than 2 m/s is here assumed to give no effect on the snow
density. The variable x5 is a measure of the accumulated sum of wind velocities
above 2 m/s while temperature is below freezing point,

x5(i)= 1
H

DOY(i)∑
t=A0(i)

Wt(i) ·1{Tt < 0}1{Wt > 2}. (3.3)

Snowfall and wind: x6 is the amount of accumulated precipitation falling as snow
when there is wind,

x6(i)= 1
H

DOY(i)∑
t=A0(i)

Pt(i) ·1{Tt < 0}1{Wt > 0}. (3.4)

Precipitation type: It can snow at +2◦C, and it can rain at -2◦C. Therefore the
density of the snow during precipitation are classified in three categories: x7 is ratio
of the total precipitation that comes when there is light snow, x8 mixed snow and
rain and x9 when it is raining.

Light snow: x7(i)= 1
Ptot(i)

∑DOY(i)
t=A0(i) Pt(i) ·1{Tt <−2}

Mixed snow/rain: x8(i)= 1
Ptot(i)

∑DOY(i)
t=A0(i) Pt(i) ·1{−2< Tt < 2}

Rain: x9(i)= 1
Ptot(i)

∑DOY(i)
t=A0(i) Pt(i) ·1{Tt > 2}

Ptot(i) is the total precipitation at the location of snow density observation i.

Table 3.4: Summary of the 9 explanatory variables constructed for the model.

Covariate Name Restrictions

x1 Snow depth -
x2 Snow age (DOY) -
x3 Elevation (MASL) -
x4 Temperature After and during snowfall/rain
x5 Wind During snowfall
x6 Snow and wind Snowfall and wind
x7 Precipitation Ratio as snow
x8 Precipitation Ratio as mixed snow/rain
x9 Precipitation Ration as rain
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3.4.3 Correlation between covariates and snow density
Figure 3.6 shows the snow depth and SWE as a function of snow depth. We can
observe a strong correlation between snow depth and SWE and also a tendency of
increasing snow density with increasing snow depth.

Figure 3.6: Measured depth versus measured density and SWE.

To measure the correlation between the density and the covariates, Pearson’s coef-
ficient of correlation is applied. Pearson’s correlation coefficient between two vari-
ables is defined as the covariance of the two variables divided by the product of their
standard deviations,

ρX ,Y = COV (X ,Y )
σXσY

,

and can have a value between -1 and 1. The larger the value of the coefficient, the
stronger the relationship is between the two variables, and the more likely it is pos-
sible to predict one variable by knowing the other one.

Table 3.5 contains all the correlations between the covariates and the density. This
table shows that the correlation between depth and density is relatively high, mean-
ing that high snow depth measured tends to be paired with relatively high snow
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Density x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 0.48 1
x2 0.39 0.25 1
x3 0.20 0.39 -0.00 1
x4 0.16 -0.05 0.40 -0.30 1
x5 0.24 0.21 0.42 0.32 -0.06 1
x6 0.29 0.20 0.23 0.34 -0.02 0.53 1
x7 -0.05 0.08 0.09 0.34 -0.53 0.15 0.09 1
x8 0.07 -0.04 -0.09 -0.17 0.34 -0.02 0.08 -0.75 1
x9 0.03 -0.08 0.03 -0.35 0.60 -0.19 -0.19 -0.69 0.33 1

Table 3.5: Correlation coeffisient ρ(xi , x j) between density and the covariates, and between
two covariates, xi and x j . x1: snow depth, x2: day of year, x3: elevation, x4: accumulated
wind, x5: accumulated plus degrees, x6: accumulated snow when there is wind, x7: ratio light
snow, x8: ratio mixed snow and rain, x9: ratio rain.

densities. The relationship between DOY and snow density exhibits an increase of
snow density with DOY with a correlation coefficient of 0.39. This indicates that the
snow depth and DOY can be used to predict the snow density. The correlation be-
tween density and elevation (x3), wind (x5) and precipitation (x6), are also implying
that there is an association between the density and these variables.

We can observe high correlations between the explanatory variables. For example
there is a strong positive correlation between plus degrees (x4) and type of precip-
itation (x7,8,9). A positive correlation between x4 and x9 means that an increase in
accumulated plus degrees gives a higher ratio of precipitation as rain.

Except among the variables x7,8,9, the relationships between variables might not be
as obvious as they seem. For example, high correlation between plus degrees and
ratio of precipitation as rain does not necessarily mean that it is normally raining
when there are high temperatures. There may be warmer periods without any pre-
cipitation, and more rain in colder periods.



Chapter 4

Bayesian analysis

4.1 Introduction
In statistics we distinguish between frequentistic and Bayesian statistics. In the
frequentist approach, conclusions are drawn solely based on information provided
by the random sample. One assumes that the data comes from some probability
distribution, and considers the parameters in the distribution to be constant, but
unknown. The key difference between these two approaches is that in the Bayesian
one, these parameters are viewed as random variables. This chapter about Bayesian
analysis is based on Chapter 2, 4 and 5 in Gamerman and Lopes (2006).

Statistical inference can be formulated as the process where conclusions are drawn
from data. Let θ be the unknown parameter of interest and x the observation re-
lated to θ. f (x|θ) is the likelihood function of θ, and describes the assumption that
the observed data were generated by θ.

In Bayesian inference, prior beliefs of the parameter θ before observing the value of
x is defined. This is expressed as a probability distribution p(θ), and is called the
prior distribution of θ. By combining the prior knowledge on θ and the information
of θ provided by the data through the likelihood, the posterior distribution p(θ|x) can
be obtained. It describes the information of θ after observing x. When the posterior
distribution is obtained, inference using this distribution can be made.

The foundation of Bayesian statistics is Bayes’ theorem. From the definition of con-
ditional probability the posterior distribution is expressed as

p(θ|x)= f (x|θ)p(θ)
f (x)

, (4.1)

where f (x) = ∫
f (x|θ)p(θ)dθ is the marginal density of x, and can be regarded as a

normalizing constant in expression 4.1. However f (x) is often difficult to evaluate,
and only for very simple models the posterior p(θ|x) can be derived analytically. One

23
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way to evaluate p(θ|x) is to use Markov Chain Monte Carlo (MCMC) methods which
construct a Markov chain that generates samples for p(θ|x). Samples of the posterior
distribution can be summarized through quantities as posterior mean, median and
variance. Many summarization quantities are provided by integration of the form

I = E[t(θ)]=
∫

t(θ)p(θ|x)dθ. (4.2)

This expression provides the posterior mean for t(θ). t(θ) is a function and p(θ|x) a
probability function. It can be used in Monte Carlo approximation, when sampling
from, for example, p(θ|x).

4.2 Markov Chain Monte Carlo (MCMC)

MCMC is a class of methods for sampling from a probability distribution using
Markov chains. The MCMC approach is based on two ideas; Monte Carlo sampling
and the stationary distribution of Markov chains.

Let θ(t) denote the value of a random variable at time t, and let the state space re-
fer to the range of possible θ values. The random variable is a Markov process if
the transition kernel between different values in the state space depends only on
the random variable’s current state, i.e: p(θ(t+1)|θ(t),θ(t−1), ...,θ(1)) = p(θ(t+1)|θ(t)). A
Markov chain refers to a sequence of random variables θ = (θ0, ...,θk) generated by
a Markov process. MCMC methods sample dependent realizations, θ(1),θ(2), ...,θ(t),
that are asymptotically from the posterior distribution.

Assume a Markov chain θ(n) with a continuous state space, a transition kernel p(θ, ·)
and an initial distribution. To generate a value of this chain, a value for θ(t+1) is
sampled from p(θ(t), ·). This procedure is repeated until convergence and a station-
ary distribution is reached. The Markov transition kernel p(θ, ·) needs to be defined.
The two main methods to do this are Gibbs sampling and Metropolis-Hastings algo-
rithm. In this work only the Gibbs sampler, described in Section 4.3, is used.

If a sample θ(1),θ(2), ...,θ(t) from p(θ|x) is available, then the integral in Expres-
sion 4.2 can be estimated by Monte Carlo integration

Î = 1
t

t∑
i=1

t(θ(i)).

Sums of independent samples converge to Gaussian, but here the variables are de-
pendent. Convergence will not be as fast as for independent samples, but the Monte
Carlo estimator converges almost surely to the correct value when t →∞ (Gamer-
man and Lopes, 2006, p.96).
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4.3 The Gibbs sampler
The Gibbs sampler is an important subclass of MCMC methods. Gibbs sampling is
a MCMC scheme that uses the full conditional distribution as the transition kernel.

Assume that the distribution of interest is p(θ|x), where θ = (θ1,θ2, ...,θk), x is the
observation, and that the full conditional distributions of θi,

p(θi|x,θ1, ...,θi−1,θi+1, ...,θk)= p(θi|x,θ−i),

which condition on both the data and the parameters, are available. Gibbs sampling
is applicable when the joint distribution is not known explicitly, or when it is difficult
to sample from it directly. The idea is that it is easier to sample from full conditional
distributions than it is to obtain the marginal by integrations of the joint density.

One variable at a time is resampled, conditioned on all the others. This means that
a set of variables are initialized randomly. For each iteration through the loop, one
variable is selected and resampled based on all the other variables. This is repeated
for new variables until convergence.

Algorithm for simulating a Markov chain with Gibbs sampler
1. Initiate: θ(0) = (θ(0)

1 , ...,θ(0)
k ), t = 0

2. For t=1,...,T: a) Draw θ(t+1)
i ∼ p(θi|x,θ(t)

−i) for i = 1, ...k
b) Set θ(t+1)

i = θ(t+1)
i

3. Change counter, t=t+1, and return to step 2 until convergence is reached.

The value of the ith variable is drawn from the distribution p(θi|x,θ−i). Thus dur-
ing the tth iteration of the sample, θ(t)

i is drawn iteratively from the full conditional
distributions θ(t)

i ∼ p(θi|x,θ(t)
1 , ...,θ(t)

i−1,θ(t−1)
i+1 , ...,θ(t−1)

k ). After one iteration with k vari-
ables the sampler becomes:

θ(t+1)
1 ∼ p(θ1|x,θ(t)

2 ,θ(t)
3 , ...,θ(t)

k ),
θ(t+1)

2 ∼ p(θ2|x,θ(t+1)
1 ,θ(t)

3 , ...,θ(t)
k ),

...
...

...
θ(t+1)

k ∼ p(θk|x,θ(t+1)
1 ,θ(t+1)

2 , ...,θ(t+1)
k−1 ).

The vectors θ(0),θ(1), ...,θ(t) represent the realization of the Markov chain.

The Gibbs algorithm randomly samples from the posterior distribution and requires
an initial starting point for the parameters. Then, one at a time, a value for each
parameter of interest is sampled, given values for the other parameters and data.

Achieving good convergence can be tricky. A problem can be to determine how many
iterations needed to reach the stationary distribution. Initial samples are not valid
because the Markov chain has not been stabilized. A good chain will have rapid
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burn-in, and convergence is reached quickly starting from an arbitrary position.
The samples before stationarity and convergence are discarded, and the burn-in pe-
riod is the number of these initial samples.

Another issue in MCMC is mixing. Mixing is the rate at which a Markov chain
advances towards and explores the target distribution, before or after reaching the
stationary distribution. Mixing problems can come from high correlations between
model parameters and weakly identified model specifications (Levin et al., 2008).

4.4 Posterior predictive distribution
Predictions of future observables are based on predictive distributions, which refer
to the distribution of the data averaged over all possible parameter values. The
prediction of a future data ỹ after observed data y is based on the likelihood of the
future data averaged over the posterior distribution (Ntzoufras, 2009). The posterior
predictive distribution is defined by

p( ỹ|y)= ∫
p( ỹ|θ)p(θ|y)dθ,

where p( ỹ|θ) is the sampling distribution, p(θ|y) is the posterior distribution p(θ|y)∝
l(θ; y)p(θ) and ỹ is the replicated value of y. The posterior predictive distribution
can be compared to the observed data in order to evaluate the model.

4.5 Software: BUGS
The software package BUGS (Bayesian Analysis Using Gibbs Sampling) is a Bayesian
analysis software that uses the Gibbs sampler to fit statistical models (Spiegelhalter
et al., 2003). In this thesis two versions of BUGS, WinBUGS and OpenBUGS, are
used to fit the models, and to find the posterior distributions for the model parame-
ters.



Chapter 5

Snow density model

5.1 Introduction
In this chapter the statistical ideas behind the model in Equation 2.2 are presented.
We also introduce a mixed model with random effects, where year and area specific
measurements are included directly in the model.

5.2 Model
The snow density is modeled following Sturm et al. (2010), by assuming a beta dis-
tribution

Yi ∼ Beta(α,β),

where Yi is the snow density for the i’th observation.

A random variable y ∈ [0,1], follows a beta distribution with parameters (α,β) if its
density is given by

f (y;α,β)= Γ(α+β)
Γ(α)Γ(β) yα−1(1− y)β−1,

where α,β > 0 and Γ(·) is the gamma function. The expected value and variance of
the beta-distributed variable Y are

E(Y )= α
α+β

Var(Y )= αβ

(α+β)2(α+β+1) .

It is convenient to parameterize a beta distribution in terms of its expectation. Fol-
lowing Kass and Raftery (1995, p.786), the beta distribution is reparameterized by
setting

ν= α

α+β and ω= 1
α+β

27
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where α and β are the parameters for the beta distribution: α= ν
ω

and β= 1−ν
ω

. ν is
the mean and ω is a precision parameter. So the model is reparameterized according
to (α,β)= (ν/ω, (1−ν)/ω), and the distribution of Y becomes

f (y;ν,ω)= Γ(1/ω)
Γ(ν/ω)Γ((1−ν)/ω) y(ν/ω)−1(1− y)((1−ν)/ω)−1,

with 0 < Y < 1 and ω > 0. We can write Y ∼ beta(ν,ω). Here, E(Y )=ν and Var(Y )=
ν(1−ν)/(1+ω−1).

Following Sturm et al. (2010), the expected value is modeled by

E(Yi)= (ρmax −ρ0)[1−exp(
P∑

p=1
−kpxp,i)]+ρ0, (5.1)

where kp are the P number of originally unknown model parameters to be esti-
mated, and xp,i are the explanatory variable for observation i belonging to model
parameter p constructed in Section 3.4.2. It is the variables x1, x2, ..., x9 that we in
Chapter 7.2 will attempt to use in the model in different compositions.

The form of the equation implies that the expected value is between ρmin and ρmax.
The sign in front of the model parameters is negative, meaning that if the model
parameters are positive, an increase in the covariates will consequently lead to a
higher density.

Further, following Sturm et al. (2010) and WinBUGS code (see Appendix A) obtained
by personal communication, ω is set to

ω= exp(β0 +β1 · x1)
1+exp(β0 +β1 · x1)

.

Also, following Sturm et al. (2010), a uniform distribution was used for all pa-
rameters, k1 ∼ Unif(0.0001,0.0045), k2 ∼ Unif(0.0001,0.0045), ρ0 ∼ Unif(0.3,0.6),
ρmax ∼Unif(0.1,0.7), β0 ∼Unif(−10,1) and β1 ∼Unif(−0.1,0).

In this work, other covariates with a different range of values are used, so the priors
we have used are more vague and wider than the prior used in Sturm et al. (2010).
They were chosen sufficiently vague to permit convergence and avoid run failure
and set to

kp ∼ Uniform(0, 0.08),
ρ0 ∼ Uniform(0.1, 0.5),
ρmax ∼ Uniform(0.3, 0.8),
β0 ∼ Uniform(-10, 1),
β1 ∼ Uniform(-0.1, 0).

The densification parameters kp are chosen positive, since the explanatory variables
xp are assumed to make the snow more compact and increase the snow density.
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The MCMC with Gibbs sampler is run with 15000 iterations were the first 5000
discarded as a burn-in period to draw closer to the stationary distribution. After
the model has converged, samples from the conditional distributions are used to
summarize the posterior distribution of the model parameters. In this analysis there
is no convergence problem, and only one set of initial values is used, generated by
WinBUGS. The model that is implemented in BUGS is shown in Appendix A.

5.3 Random area and year effects
5.3.1 Area and yearly variation of snow density
In models where we use a dataset where the observations are grouped, it can be
interesting to introduce random effects. We assume that there exist unobserved la-
tent variables for each group of data, and the random effect describes the variation
among groups in the dataset (Madsen and Thyregod, 2011).

The snow measurements used in this study are carried out in different areas in
Norway annually in the period 1998−2011. The snow density conditions for each of
these areas and years can vary among each other. The variability can be caused by
various effects that is not explained by the weather variables or the other covariates.
We can try to assess this variation among different areas by using random effects.

5.3.2 Model with random effects
Our model with random effects can be written as:

E(Yi jk)= (ρmax −ρ0)[1−exp((
P∑

p=1
−kpxp,i jk)−ε jk)]+ρ0, (5.2)

where Yi jk is the response variable for observation i in area j in year k and xp,i are
the explanatory variables.

The j different areas are likely to have different overall response for each year k.
The model accounts for this by including a term ε jk. ε jk is the random effect for area
j in year k. A distributional assumption needs to be added and we have chosen to
use a uniform distribution as the random effects prior,

ε jk ∼Uniform(-0.1,0.1).

The uniform distribution expresses the magnitude of the variability among loca-
tions, allowing stochastic group differences in various levels.

The random effects are estimated from annual measurements, because the model
needs some kind of input of the specific year’s condition. Computationally, the ran-
dom effects can be implemented in the model in different ways. We have used three
methods:
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Method a) Here the model parameters kp are fixed effects (effects that are assumed
to be constant), and of the same value as the parameters in Table 7.3, and the ran-
dom effect ε jk are estimated in BUGS for each area and each year from the year
and area specific measurements. This model equals to the model in Section 5.2 if no
manually measurements are performed.

Method b) First the model parameters kp are estimated together with the random
effects ε jk from all data in the training set. After, model parameters ,kp, are used
as fixed effects, while new random effects are estimated from measurements of the
specific year. In a way the model expects random effects to be added to the model.

Method c) In a fully Bayesian setting it is desirable that all model parameters
are estimated in terms of probabilistic distributions, and all parameters should be
updated except for the data for which the model is tested.



Chapter 6

Evaluation

6.1 Introduction
Markov Chain Monte Carlo (MCMC) simulations are applied for Bayesian estima-
tion by simulating the posterior distribution of the parameters of the model by using
the softwares WinBUGS and OpenBUGS. The model performance is based on their
predictive ability. To evaluate the models the mean error (ME), the mean absolute
error (MAE), the root mean squared error (RMSE) and the continuous ranked prob-
ability score (CRPS) are used.

6.2 Mean error (ME)
The mean error is calculated by

ME= 1
n

n∑
i=1

yi − ŷi, (6.1)

where yi is the ith observation, ŷi is the prediction and n is the number of obser-
vations. A positive value of the mean error implies that the predictions tends to be
underestimated, and the opposite if the mean error is negative.

6.3 Mean absolute error (MAE)
The mean absolute error (MAE) measures the average of the absolute differences
between predictions and observations. It is defined by

MAE= 1
n

n∑
i=1

|yi − ŷi|. (6.2)

It is a quantity used to measure how close predictions are to the true observations,
without considering the direction of the errors. The MAE is a linear score which
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means that all the individual differences are weighted equally in the average. The
error is measured in the same unit as the original data and the perfects score is 0.

6.4 Root mean square error (RMSE)
Another way of quantifying the error is the root mean square error. RMSE mea-
sures the square root of the average squared difference between the predicted and
observed values. It is defined by

RMSE= 1
n

√
n∑

i=1
(yi − ŷi)2. (6.3)

Since the errors are squared before they are averaged, the RMSE gives a relatively
higher weight to large errors than to small errors. RMSE is preferred when large
errors are not desirable. The error is measured in the same unit as the original data
and the perfect score is 0.

6.5 Continuous ranked probability score (CRPS)
The continuous ranked probability score (CRPS) is described in Gneiting and Raftery
(2007). It can be used to compare the full probabilistic distribution with the obser-
vation.

Let the variable of interest be denoted y. In this work the prediction, y, is the snow
density. The prediction pdf system is given by f (y) and the observation yo. The
CRPS measures the distance between the probabilistic prediction f and the obser-
vation yo. Figure 6.1 illustrates the idea behind CRPS.

CRPS is measured by the integrated squared difference between the cumulative
distribution functions (cdf) of the predictions (F(y)) and the observations (Fo(y)).
Here the cumulative distributions are

F(y) = ∫ y
−∞ f (x)dx and

Fo(y) = H(y− yo),

where F(y) is the predicted probability that yo will be smaller than x, and H is the
Heaviside function,

H(y)=
{

0, if y≤ 0
1, if y≥ 0

.

Then the equation for calculating the CRPS is

CRPS(F, yo)=−
∫ ∞

−∞
(F(y)− 1{y≥ yo})2d y. (6.4)
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Figure 6.1: Illustration of the continuous ranked probability score. The CRPS is the integral
of squared heights in the (shaded) region. The figure shades the absolute values not the
squared heights of the CRPS. A normal distribution with mean µ= 0 and standard deviation
σ= 3 is used in the illustration.

The CRPS can be decomposed into a reliability and a resolution part. Following
Gneiting and Raftery (2007), CRPS can be written in closed form as

CRPS(F, yo)= E|yi −Y |− 1
2

E|Y −Y ′|, (6.5)

where F is the cdf of the predictive distribution for the model, yi is the ith observed
value, and Y and Y ′ are independent random variable from the distribution F. The
expression in 6.5 can be approximated by and calculated from the MCMC samples
using the estimates

Ê|yi − ỹi| = 1
N

∑N
n=1 |yi − ỹ(n)

i |
Ê| ỹi − ỹ′i| = 1

N2
∑N

i=1
∑N

j=1 | ỹ(n)
i − ỹ(n)

j |,
where ỹi and ỹj are independent replicated from the posterior predictive distribu-
tion p( ỹ|y). The CRPS can then be calculated by

ˆCRPS= 1
N

N∑
n=1

|yi − ỹ(n)
i |− 1

2N2

N∑
i=1

N∑
j=1

| ỹ(n)
i − ỹ(n)

j |. (6.6)

CRPS is negative oriented, so models with smaller CRPS are preferred. A perfect
deterministic prediction has a CRPS of zero. The lowest possible score is achieved
when F = F0. CRPS is measured on the same scale as the observations. If the model
is deterministic single-valued predictions, CRPS corresponds to the mean absolute
error (Gneiting and Raftery, 2007).

The CRPS measures both sharpness and reliability of probabilistic predictions. Reli-
ability says something about how many of the observations that are contained by the
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predictive distribution. Sharpness refers to how wide the predictive distribution is,
and CRPS rewards small spread (sharpness) if the prediction is accurate (Gneiting,
Balabdaoui, and Raftery, 2007).

6.6 Weighted scores
In some locations there are more snow measurements than in other locations. If the
mean score in each area are found based on all scores in the belonging locations,
all areas contribute equally to the final score in MAE, RMSE and CRPS than other
areas. The weighted score account for the difference in number of measurement in
the locations.

The weighted score is the weighted combinations of all the scores in a set of data.
For example, the weighted mean of a dataset {y1, y2,...,yn} with non-negative weights
{w1, w2,...,wn} is

ȳ=
∑n

i=1 wi yi∑n
i=1 wi

. (6.7)

6.7 Evaluation schemes
6.7.1 Cross-validation in model selection
In order to get a more realistic prediction error, we would like to have a test dataset
that is separated from our training dataset. A training set is the set of data that is
used to estimate the model parameters, and a test dataset is the data used to assess
the strength of the predictive model by using the evaluation criteria. In Table 6.1
a list of the training and test period is given for each area. Some areas have more
than one period of training and test set. This is because one area can use multiple
weather stations with different years of data, or because the various locations in
one area do not have the same length in years of historical snow data. The training
datasets in Table 6.1 are used to find model parameters both for the model with and
without random effects.

6.7.2 Cross-validation in models with random effects
In the analysis of models with random effects, cross-validation is used. The data are
partitioned k times into subsets, one training set and one test set. The training set
is interpreted as the "measurements of the year". The data in the training set are
randomly sampled from all the measurements of the specific year. The MCMC anal-
ysis is performed on the training subset, to estimate the random effect. The other
test dataset is retained to evaluate the models by making predictions of the data.
The average of the mean absolute values of the five subsets are used as prediction
error.
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Table 6.1: Years of snow and weather data in the training and test dataset.

Id Area Training years Test years

1 Adamselv 2008-2010 2010-2011
2 Alta 2002-2007 2007-2011
3 Aura/Grytten 1998-2005 2006-2011
4 Tysso-Folgefonn 1999-2005 2006-2011
5 Innset 1998-2005 2006-2011
6 Jostedalen 1999-2005 2006-2011
7 Kobbelv 1998-2005 2006-2011
8 Nea-Nidelv 1998-2004 2006-2011
9 Nore 2001-2007/1998-2005 2007-2011/2006-2011
10 Rana 1998-2005 2006-2011
11 Røssåga 1998-2005 2006-2011
12 Skjomen 1998-2005 2006-2011
13 Svorka/Trollheim 1998-2005 2006-2011
14 Tokke 2005-2009 2009-2011
15 Ulla-Førre 1998-2005/2004-2008 2006-2011/2006-2011
16 Vik/Høyanger 1998-2005/2005-2009 2006-2012/2008-2011
17 Sira-Kvina 2009-2011 2011





Chapter 7

Results

7.1 Introduction
Based on about 4000 snow depth and density data, the model is tested and fitted for
the Norwegian data. Bayesian analysis is used to estimate model parameters and
random effects. We ran the Gibbs sampler for 15000 iterations. A burn-in of 5000
iterations was used for all MCMC runs, and model parameter estimates were based
on a further 10000 iterations. First the model is found that predicts the snow den-
sity best without random effects. Afterwards, this model is tested with and without
year and area specific measurements. The focus of the analysis is the snow density,
since Equation 2.1 can be used to convert depth to SWE for all densities.

7.2 Model selection
In this section models with different explanatory variables (covariates) are tested.
The models are tested for Norwegian snow depth data to see which model that pro-
vides reliable estimates of the bulk density. Equation 2.2 is applied to each observa-
tion using the different covariates, to estimate the bulk density.

The snow density is also calculated by Sturm’s model in Equation 7.1, which uses
the parameters in Table 2.1 defined by the snow classes. The snow classes for each
of the 244 locations are found by the snow classification scheme described in Sec-
tion 2.3.

All the models are compared between each other, and in addition versus Sturm’s
model, based on the the predictive distribution and the true measurement. To mea-
sure the model performance, the three criteria described in Section 6 are used.

10 different models where tested from the constructed explanatory variables. The
models are listed in Table 7.1. We started with prior beliefs of what would affect the
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Table 7.1: Different test models. x1: snow depth, x2: day of year, x3: elevation, x4: accu-
mulated wind, x5: accumulated plus degrees, x6: accumulated snow when there is wind, x7:
ratio light snow, x8: ratio mixed snow and rain, x9: ratio rain.

Model x1 x2 x3 x4 x5 x6 x7 x8 x9

A X X X X
B X X X X
C X X X X X X
D X X X
E X X X X
F X X X X
G X X X X
H X X X
I X X X X X
J X X X X X X X X X

snow density. Manually weight samples of the snow are potentially replaced by snow
depth measurements. The snow density is highly correlated with the snow depth,
so the snow depth is a part of every model. From one model to another, explanatory
variables are removed or added, and a potential improvement is calculated by using
the evaluation criteria MAE, RMSE and CRPS. Table 7.2 displays the result.

As a start, snow depth together with the ratio of the three precipitation ratio vari-
ables, x7, x8 and x9, were selected (Model A). This was suggested by experts in
Statkraft. Further, x4 and x5 were added (Model C), giving better results. By re-
moving x7,8,9 from Model C, we observe that the predictions are better without these
variables (Model D).

By adding x6 to Model D and E we get Model B and I, respectively, and we can see
from Table 7.2 that x6 provides poorer scores. This may be caused by the fact that
the amount of snow is already represented through the snow depth x1. Adding x2 to
Model D (Model G) and removing x5 from Model E (Model H) give also worse predic-
tions.

Model B, C and E provide quite similar results. Model B and C score best in the
MAE, but Model E have a better score in CRPS. Since we are considering a pre-
dictive distribution, this model were chosen based on the lowest CRPS. The only
difference between Model D and E is that the covariate elevation (x3) is included in
Model E. The wind is not corrected with respect to altitude, but one can assume that
the elevation is already incorporated for example in the correction of air tempera-
ture due to altitude. But the CRPS implies a slightly better estimate.

In Figure 7.1 snow density estimates, Sturm’s model and the posterior mean from
model A, E, G are plotted together with the observed snow density. Sturm’s model
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Table 7.2: Various evaluation criteria: Mean absolute error, root mean square error, contin-
uous ranked probability score and weighted scores of MAE and RMSE. Different model are
tested against measured densities using the test dataset. The framed value indicate the best
score for the different evaluation criteria.

Model MAE Weighted MAE RMSE Weighted RMSE CRPS

A 0.0508 0.0537 0.0607 0.0648 0.03776
B 0.0465 0.0491 0.0567 0.0602 0.07472
C 0.0460 0.0487 0.0556 0.0590 0.03440
D 0.0460 0.0486 0.0555 0.0589 0.03440
E 0.0462 0.0488 0.0558 0.0590 0.03418
F 0.0493 0.0520 0.0596 0.0632 0.07675
G 0.0467 0.0490 0.0561 0.0590 0.03451
H 0.0477 0.0504 0.0572 0.0608 0.03538
I 0.0465 0.0490 0.0567 0.0600 0.06931
J 0.1487 0.1497 0.1577 0.1593 0.08074
Sturm 0.0617 0.0636 0.0719 0.0743 0.06170

tends to underestimate the snow density for the tundra snow class. We can observe
that these three other models perform quite similar results. In Figure 7.1b and 7.1c
these three models predict the density well. In Figure 7.1a and 7.1d the estimated
density are being overestimated and underestimated, respectively, but they still per-
form better than Sturm’s model.

Evaluating the MAE and RMSE, most of the models in Table 7.2 provide better
estimates than Sturm’s model. This model must be assumed to be a determinis-
tic model, hence the CRPS reduces to the MAE. Considering the CRPS, five of the
models perform better than Sturm’s model. Model J includes all the variables, and
provides very poor results. This may be because the model has become overparam-
eterized. Overparameterized models can cause overfitting to the training dataset,
and consequently cause a poor fit to the test dataset.

All combinations were not tested, but from Table 7.1 and Table 7.2, we can get a
good idea of which explanatory variables that give an improvement or not. Other
combinations of explanatory variables were tested, for example only including the
ratio of heavy snow x9. These models did not provide a better result and are not
included in Table 7.2.
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(a) Snow class: Maritime, location: Vinjerui, area: 14, period: 2009-
2011.

(b) Snow class: Tundra, location: Illekleiv, area: 4, period: 2006-2011.

(c) Snow class: Tundra, location: Stordalen, area: 3, period: 2006-
2011.

(d) Snow class: Tundra, location: Stearuvuggi, area: 7, period: 2006-
2011.

Figure 7.1: Posterior mean estimates and observed density in four different locations for four
different models without random effects.
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7.3 Model 1:
Prediction without year specific measurements

7.3.1 Model
Model E was selected by the CRPS criteria. This model is from now on referred to
as ’Model 1’. The goal of the model is to predict the snow density in places where
the density is not measured. The model takes snow depth (x1), the elevation where
the snow depth measurement is made (x2), plus degrees (x4), and wind speed (x5) as
input variables. Extending Sturm’s model with new covariates, gives the following
model

E(Yi)= (ρmax −ρ0)[1−exp(−k1x1,i −k3x3,i −k4x4,i −k5x5,i)]+ρ0, (7.1)

where Yi is the estimated snow density for snow depth observation i.

A 5000 update burn-in followed by 10000 updates gave the parameter estimates in
Table 7.3. The summary statistics, the empirical mean and standard deviation are
displayed for each model parameter.

Table 7.3: Mean and standard deviation (std dev) of estimated model parameters and number
of samples.

Variable Mean std dev Sample size

ρ0 0.1481 0.0148 10000
ρmax 0.4720 0.0128 10000
k1 0.00503 5.48E-4 10000
k3 0.00018 4.63E-5 10000
k4 0.00477 6.82E-4 10000
k5 0.00042 7.41E-5 10000

When using MCMC methods, it is important to make sure that the chain converges
and reaches its stationary distribution. We need to make sure that we generate suf-
ficient number of samples to provide a good estimate. Here we evaluate convergence
based on the trace plot of the MCMC samples. Figure 7.2 shows that there is no
convergence problems.
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Figure 7.2: Trace plot of MCMC samples. The x-axis shows the number of iterations. The
plot shows the 1500 first iterations.
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7.3.2 Explanatory variables
For each of the snow density measurements, the values of the explanatory variables
were calculated by using the equations in Section 3.4.2. Figure 7.3 shows the distri-
bution of the explanatory variables. We observe that the SWE and snow depth have
very similar distribution. The covariates vary within a different range of values,
thus the model parameter values are adjusted to this value.

(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Histograms of the value of explanatory variables (both the training and test
dataset).
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7.3.3 Model properties
The model predicts the snow density by using the snow depth and other covariates
as input variables. In Figure 7.4 different covariates are tested to see how the model
estimates change within the value range of each covariate. The effects on density
of one covariate are plotted, while the others are held fixed, using a representative
value for each of these covariates. We can see that depth has the greatest impact on
the snow density and elevation the least.

Figure 7.4: Estimated density by model with different values of x1, x3, x4 and x5. For the
covariates not being evaluated, fixed values are used: Depth = 120, elevation = 800, accumu-
lated plus degrees = 30, accumulated wind speeds = 250.
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7.3.4 Error analysis Model 1
Additional error analyses of Model 1 are carried out by looking at the error in dif-
ferent years and in different locations. For simplicity only the mean error between
measured density and posterior mean estimate of the density is considered.

Box and whiskers plot of the mean error for the different areas and in different
years are illustrated in Figure 7.5 and in Figure 7.6. In these plots the central mark
indicates the median, the edges of the box are the 25th and 75th percentiles. The
outliers are plotted individually and extend to the most extreme data. In Figure 7.5
we can see that the error varies a lot. Area 5, 6 and 7 are some of the areas with
the greatest prediction error, and while the mean error in area 13 is small, the error
varies over a greater range than for example in area 1 and 2 with relative small
mean errors. In Figure 7.6 the mean error in different years at Ulla-Førre is illus-
trated.

In Table 7.4 the mean error is found for different years in different areas. The bold
numbers in this table are numbers that represent a positive/negative mean error,
where the underlying errors the mean is calculated from, constitutes of 75% or more
positive or negative errors of total errors, respectively. From Figure 7.6 and Table 7.4
we can conclude that the density in Ulla-Førre (area 15) tends to be underestimated.
Table 7.4 together with Figure 7.5 may indicate that annual measurements and
random effects can improve the model. This is discussed further in Chapter 7.4.

Figure 7.5: Box and whiskers plot: The mean error between observed and estimated snow
density for the 17 different areas in the test period (see Table 3.1 for definition of area id).
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Figure 7.6: Box and whiskers plot: The mean error between observed and estimated snow
density in the area Ulla-Førre in the period 2006−2011.

Table 7.4: Prediction mean error (ME) between observed and estimated snow density in the
period 2006−2011 for all areas. Some of the areas do not have snow measurements from this
period and can not be evaluated. The bold numbers are numbers where the underlying errors
of the positive/negative ME constitute 75% or more positive or negative errors of total errors,
respectively.

PPPPPPPPArea id
Year

2006 2007 2008 2009 2010 2011

1 - - - - 0.015 0.030
2 - 0.046 -0.033 0.022 0.024 0.062
3 -0.045 0.007 0.000 0.034 -0.019 -0.005
4 0.000 -0.016 -0.005 -0.027 -0.018 0.009
5 -0.065 -0.020 -0.052 -0.049 -0.076 -0.020
6 -0.026 -0.050 -0.080 -0.087 -0.064 -0.047
7 0.034 0.064 0.065 0.052 0.025 -0.003
8 -0.056 -0.037 -0.025 -0.014 0.004 -0.014
9 -0.134 0.018 -0.009 -0.039 -0.041 -0.028

10 -0.017 -0.015 -0.022 0.036 -0.013 -0.027
11 0.020 0.019 0.002 0.054 0.004 -0.001
12 - 0.021 -0.029 -0.017 -0.037 -0.026
13 0.010 0.038 -0.030 0.072 -0.033 -0.009
14 - - - -0.021 -0.024 -0.023
15 0.062 0.041 0.027 0.035 0.026 0.052
16 -0.009 0.007 0.003 0.016 0.004 -0.020
17 - - - - - 0.046
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7.4 Model 2:
Predictions with year specific measurements

7.4.1 Model
To improve the predictions it is possible to collect annual measurements in every
area. Here, the snow density is treated as different across areas and different among
years following a random effects specification,

E(Yi jk) = (ρmax −ρ0)[1− exp(−k1x1,i jk − k3x3,i jk − k4x4,i jk − k5x5,i jk − ε jk)]+ρ0
(7.2)

where Yi jk is the estimated snow density for snow measurement i in area j for year
k. i ∈ (1, ...,n), j ∈ (1, ...,17) and k ∈ (1998, ...,2012), and ε jk is the random effect of
area j in year k.

Two different models with random effects are tested against the reduction in the
prediction error by using snow density measurement information. This information
is given by 5 and 20 snow density measurements in each area. These measure-
ments are chosen randomly from all the location in the different areas and from the
training dataset for the random effect. After randomly selecting a number of year
specific snow densities for each area, these specific measurements are excluded from
the evaluation and the remaining data are used as the test dataset.

In Chapter 5.3 we discussed three different implementations of the random effects.
Here method a) and b) are modeled:

Model 2a) The parameters in Table 7.3 are fixed, and ε jk are estimated by perform-
ing a MCMC simulation with 15000 iterations. These variables range from -0.1 to
0.1.

Model 2b) The model parameters and ε jk are first estimated using the training
dataset. The estimated fixed effects are displayed in Table 7.5. Thereafter new ε jk
are estimated in the same way as in Model 2a, by holding the pre-estimated kp fixed,
and new random effects are estimated using the specific training dataset of year
specific measurements. In this way the model assumes that annual measurements
are performed.

7.4.2 Error analysis Model 2
In Table 7.6 and Table 7.6 we show the mean absolute error for Model 2a and 2b and
the associated uncertainty reduction compared to Model 1, discussed in Section 7.3
without the random effects. This model is tested on the same data as random effects
Model 2a and 2b. The models are tested for all areas where 5 and 20 observations
are available.
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Table 7.5: Mean and standard deviation (std) of model parameters in Model 2a) and 2b).

Model ρ0 ρmax k1 k3 k4 k5

2a) Mean 0.1481 0.4720 0.00503 0.00018 0.00477 0.00042
Std 0.0147 0.0128 5.48E-4 4.63E-5 6.82E-4 7.41E-5

2b) Mean 0.2036 0.7966 0.00093 0.00011 0.00137 0.00015
Std 0.0057 0.0033 5.76E-5 7.13E-6 1.02E-4 1.59E-5

The improvement from Model 1 to Model 2a and 2b with year specific measurements,
is calculated as the relative change in percentage by y−yref

yref
, where y is the mean

absolute prediction error from one of the two models with random effects and yref is
the model without random effects from Section 7.3 used as a reference model.

Table 7.6: Prediction mean absolute error (g/cm3) and improvement (relative change in error)
from Model 1 to Model 2a for available areas.

MAE (n = 5) MAE (n = 20)
Year Model 2a Improvement % Model 2a Improvement %

1998 0.051 -3.0 0.035 -11.7
1999 0.070 -2.1 0.063 -10.9
2000 0.052 -1.2 0.037 -2.2
2001 0.056 -2.8 0.052 -10.8
2002 0.052 -2.4 0.050 -2.8
2003 0.054 -2.3 0.045 -5.3
2004 0.052 -0.4 0.051 -1.9
2006 0.055 -1.8 0.051 -9.2
2007 0.045 -0.7 0.043 -0.9
2008 0.044 -2.2 0.043 -6.7
2009 0.040 -3.9 0.033 -11.1
2010 0.051 -2.3 0.049 -7.2
2011 0.050 -0.6 0.051 -3.4

For Model 2a, the results are slightly improved by collecting n = 5 measurements.
We can see that the results is consistently improved by the collection of more infor-
mation through snow density measurements.

In Model 2b, the majority of the results for the different years are better with 20
measurements than for 5 measurements. The results are also much better than
Model 2a. The two models are tested with the exact same dataset for the different
years, and Model 2b performs better for all years when n = 20.

To illustrate the improvement of the model by performing annual measurements we
look at snow density prediction with and without random effect in one specific year.
Figure 7.7 displays the reduction in the error as a function of n = {0,5,10,15,25}
number of annual measurements in year 1998 for areas where data is available. To
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Table 7.7: Prediction mean absolute error (g/cm3) and improvement (relative change in error)
from Model 1 to Model 2b for available areas.

MAE (n = 5) MAE (n = 20)
Year Model 2b Improvement (%) Model 2b Improvement (%)

1998 0.046 -12.3 0.032 -19.5
1999 0.058 -23.8 0.048 -32.9
2000 0.051 -3.2 0.037 -2.7
2001 0.046 -20.1 0.039 -33.2
2002 0.047 -11.2 0.050 -2.9
2003 0.050 -10.3 0.044 -6.7
2004 0.052 -1.2 0.050 -4.3
2006 0.052 -8.0 0.042 -25.5
2007 0.044 -2.5 0.042 -4.1
2008 0.043 -3.6 0.036 -21.7
2009 0.034 -18.1 0.029 -22.0
2010 0.049 -6.6 0.041 -23.1
2011 0.051 +1.7 0.048 -9.7

evaluate on an equal basis, the random effects estimated for each area, year and n,
are used on the exact same test dataset. This means that some of the random effects
might have been estimated from some of these data, and will provide a better result
than if proper cross validation was used. Still this plot can underpin the theory
that Model 2b provides better results than Model 2a. It also supports the idea that
multiple annual measurements give better result, but it is not necessarily true that
the more the better. In Table 7.6 and 7.6 only 5 and 20 measurements in each area
were tested. In the plot the error reduction stagnate after n = 10−15 measurements.

Figure 7.7: Error reduction in absolute error by collection of n = {0,5,10,15,20,25} number of
year specific measurements. Data from year 1998.
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7.4.3 Predictive distribution
A sample of 8 snow densities and the associated predictive distributions provided
by models with and without year specific measurements are chosen. Posterior pre-
dictive densities of the snow density are shown in Figure 7.8. Densities are shown
for Model 1 without random effects and Model 2b and 2c with random effects. We
can observe that the models with random effects provide better predictions in most
cases. Data from the area Ulla-Førre (area 15) are used to illustrate the predictive
distributions, and we discuss this area and also Model 2c further in Chapter 8.

Figure 7.8: Predictive distribution of Model 1 (blue), Model 2b (purple) and Model 2c (green)
for data from area 15 in year 2006. The number of year specific measurements is n = 5.. The
black line indicates the observation and the other lines on the x-axis are the posterior mean
of the three other models. y-axis: Probability density estimate of the samples, x-axis: Snow
density (g/cm3)



Chapter 8

Case study: Blåsjø

8.1 Introduction
In this chapter we look at snow measurements in one specific area in Norway - Blåsjø
in Ulla-Førre (area 15). Ulla-Førre is Northern Europe’s largest hydropower com-
plex. Water for power generation comes from an area of about 2000 km2. Blåsjø is
the largest reservoir and consists of several mountain lakes 1000-1100 meters above
sea level. They are governed into one large coherent reservoir. A large storage and
pumping capacity makes Blåsjø an important part of the hydropower system in Nor-
way (Statkraft).

Figure 8.1: This map displays the two weather stations (red) and the locations (black) in this
case study of the Ulla-Førre area.

51
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Figure 3.3 in Section 3.2.1 shows the observed densities in the Ulla-Førre for differ-
ent years. In this case study we want to apply the models with and without year
specific measurements in this specific area. As Figure 7.6 and Table 7.4 indicated,
utilizing information of annual measurements may be advantageous. The models
are tested by collection of n = {0,5,10,15,20} year specific measurements, that are
used to estimate the random effects for each year in this area. We investigate the as-
sociated reduction in prediction error. The model with random effects are compared
to the model without random effects.

8.2 Blåsjø
The data comprises n = 141 snow depth and density measurements from 10 loca-
tions in Ulla-Førre. Five locations close to Blåsjø are used: Grasdalshei, Leirdalen,
Beinlei, Storvatn and Eiavatn. In order to get more data, five other locations in the
Ulla-Førre area are also used: Hellestølen, Dyrskar, Osalia, Karinuten and Osane.
Two weather stations are used in this case study, Ulla-Lauastøl and Ulla-Osali. The
locations and belonging weather stations are presented in Table 8.3 and Figure 8.1.

In Table 8.2 the snow measurements from the training and test period, elevations
and snow class for each location are presented. We can see that the snow depth
varies over a much greater range than the snow density. By the snow classification
system, 6 locations were classified as Tundra snow class, and 4 locations as Mar-
itime snow class.

Table 8.1: Two weather stations are used for the locations in Ulla-Førre.

Name Locations Training dataset Test dataset

Ulla-Lauastøl 231, 492, 315, 103 2004−2008 2008−2012
Ulla-Osali 27, 109, 841, 636, 389, 637 1998−2005 2006−2012
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Table 8.2: Elevation, snow class and characteristics of density, depth and SWE data from the
10 locations in Ulla-Førre.

Location Elevation Snow class Density Depth SWE
(MASL) (cm) (g/cm3) (cm)

Mean Std Mean Std Mean Std

27 1080 Tundra 0.392 0.064 130.8 66.8 53.5 31.8
103 900 Maritime 0.418 0.092 166.4 65.6 72.6 37.2
109 1100 Tundra 0.419 0.066 165.9 61.4 71.1 33.2
231 1200 Tundra 0.414 0.061 157.2 43.9 66.2 23.9
315 650 Tundra 0.366 0.066 87.1 43.8 32.1 18.2
389 850 Maritime 0.413 0.064 153.0 74.6 65.5 37.3
492 1140 Tundra 0.403 0.051 239.8 78.4 99.3 42.2
636 750 Maritime 0.395 0.082 65.5 47.0 27.0 22.3
637 650 Maritime 0.384 0.094 69.7 37.4 27.5 17.3
841 1130 Tundra 0.422 0.047 193.4 73.4 83.3 35.8

8.3 Models
Different models are tested by collection of n = {0,5,10,15,20} year specific measure-
ments that are used to estimate the random effects for each year in this area. The
model is compared to the model without any measurements. A brief summary of the
models are given below:

Model 1: This is the base model from Section 7.3 which predicts the snow densities
without any year specific measurements.

Model 2a: A random effect is added to model 1, estimated by using the measure-
ments of the year (model described in Section 7.4). If n = 0 measurement is collected,
the model equals to model 1.

Model 2b: This model assumes that random effects will be added to the model, and
thus information through year specific measurements needs to be collected (model
from Section 7.4). This model has other model parameters than model 1.

Model 2c: From a Bayesian view, it is desirable that the model parameters are es-
timated and not held fixed from training period. So in this model we use method
c) described in Section 5.3. Except from the relevant test dataset, we are using all
available information and the year specific measurements to estimate the model pa-
rameters.



54 8. Case study: Blåsjø

8.4 Results
8.4.1 Analysis 1
Since Model 2b provided better results than 2a, Model 2b will be tested in this anal-
ysis. Model 2b requires annual measurements, so this model will be compared to
Model 1 which equals to Model 2a with no annual measurements.

In this analysis we partition the data k = 5 times into training sets and test sets for
each year, following the cross-validation procedure described in Section 6.7.2. The
model predictions are compared with the observed snow densities. The average of
the mean absolute values of the five subsets are shown in Table 8.3. The procedure
is repeated for n = {5,10,15,20} number of year specific measurements in the period
2006−2011.

Table 8.3: Prediction mean absolute error (g/cm3) and improvement (Imp.) from Model 1 to
Model 2b for the data from Ulla-Førre.

Year Total n Mod 1 Mod 2b Imp. Mod 1 Mod 2b Imp.

n = 0 n = 5 % n = 0 n = 10 %

2006 18 0.052 0.039 -24.2 0.054 0.037 -31.1
2007 20 0.058 0.047 -19.5 0.062 0.053 -14.8
2008 24 0.040 0.049 23.0 0.040 0.042 5.0
2009 26 0.050 0.043 -13.4 0.046 0.045 -3.1
2010 25 0.054 0.048 -11.4 0.053 0.052 -1.0
2011 27 0.064 0.059 -7.8 0.066 0.059 -11.3

n = 0 n = 15 % n = 0 n = 20 %

2006 18 0.029 0.027 -7.8 - - -
2007 20 0.067 0.053 -21.0 - - -
2008 24 0.040 0.040 0.5 0.041 0.035 -14.5
2009 26 0.044 0.038 -14.9 0.051 0.042 -17.9
2010 25 0.063 0.058 -8.5 0.047 0.042 -10.8
2011 27 0.065 0.057 -12.6 0.056 0.052 -7.5

The results presented in Table 8.3 show that Model 2b with year specific measure-
ments provides almost consistently better results than Model 1 and 2b without year
specific measurements. The only exception is year 2008, where Model 1 provides
better estimates than the model with measurements. We notice that Model 2b in
year 2008 is improving as the number of measurements increases. If we look at Ta-
ble 7.4, we can see that the error in year 2008 in area 15 is relative small. If the
model would have been perfect, the n = 5 collected measurements in the training
dataset will influence the model in a disruptive way, and as n increases, the training
set will approach the true model.
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Another conclusion we can draw from this analysis is that an increase in the number
of year specific measurements does not necessarily reduce the uncertainty. This can
indicate that for example only n = 5−10 year specific of measurements are sufficient
to establish the effects we want for the area in the specific year.

In Figure 8.2 some of the results of the mean posterior estimate of the snow density
and the observations versus depth are presented. From this plot we can see that
the effect of random effects potentially can change the estimated density up to 0.1
g/cm3.

(a) Year: 2006, n=5 (b) Year: 2006, n=10

(c) Year: 2006, n=15 (d) Year: 2007, n=5

(e) Year: 2007, n=10 (f) Year: 2007, n=15

Figure 8.2: Observed and estimated density versus snow depth in Ulla-Førre in 2006 and
2007 for {n = 5,10,15} measurements. Observation (black), Model 1 (blue), Model 2b (red).
The x-axis is snow depth (cm) and on the y-axis the snow density (g/cm3).
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8.4.2 Analysis 2
In analysis 1 we observed that year specific measurements improved the model pre-
dictions, but not necessarily that the more measurements we make, the better the
model predicts. In this analysis all the models are tested for {n = 0,5,10}. Here, also
Model 2b is tested with n = 0 measurements, something that is missing in former
analysis in this work.

Cross-validation for MCMC is time consuming. In this analysis the cross-validation
procedure in Section 6.7.2 is performed, but only k = 1 training set is used to esti-
mate the random effect, and one test dataset to evaluate the models. Consequently
the analysis is not as robust as analysis 1, but we can get an impression of the
strength of the different models. The results are presented in Table 8.4.

Table 8.4: The result of snow density and obtained by different model with and without
random effects for each year in period 2006−2011. The models are evaluated by mean error
(ME), mean absolute error (MAE) and continuous ranked probability score (CRPS) for n =
{0,5,10} annual observations.

Measure Evaluation N 2a (n = 0) 2b (n = 0) 2b (n = N) 2c (n = N)

Density ME 5 0.034 0.029 0.012 0.021
(g/cm3) 10 0.034 0.029 0.010 0.013

MAE 5 0.050 0.048 0.043 0.044
10 0.052 0.050 0.044 0.043

CRPS 5 0.044 0.053 0.043 0.043
10 0.043 0.042 0.035 0.041

SWE ME 5 3.0 2.7 0.4 1.8
(cm) 10 3.2 2.9 -0.1 0.8

MAE 5 5.9 6.1 5.6 5.6
10 6.4 6.7 6.3 6.0

From Table 8.4 we can read that results with n = 5 and n = 10 are quite similar,
but that models with random effects consistently leads to better predictions. It is
noticeably that also Model 2b with n = 0 and Model 2a with n = 0 does not differ that
much. This means that Model 2b actually predicts well, even if a random effects are
assumed to be added. Model 2c was in advance assumed to give the best results,
but gives very similar results as Model 2b with equal n. This may indicate that the
training dataset in previous analysis is large and representative.
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Discussion and conclusion

In many applications the snow water equivalent needs to be measured. Measure-
ments of the SWE provide an estimate of how much water that can potentially runoff
into rivers and streams. For the long term inflow forecast it is important to have
good and reliable estimates of the snow storage.

SWE can be determined by measurements of snow depth and density. Generally
snow is not uniform in coverage, and several measurements are needed. The vari-
ability in snow depth are higher than for density, and the number of depth measure-
ments are much greater than the number of density measurements. Snow depths
are easier to measure than the snow density.

In this work, a method converting snow depth to SWE through estimating the snow
bulk density has been discussed. However, the snow density is not always easy to
estimate. A number of different processes influence the snow density. This can be
climatic effects, topography and vegetation.

Sturm et al. (2010) came up with a model that uses snow depth, the age of the snow
(DOY) and snow class found from geographical coordinates of the location as input
variables. The snow density predicted from this model was in most cases underesti-
mated for the snow class tundra. By using the snow classification dataset in Sturm
et al. (1995) most of the 244 locations were classified as maritime (58) and tundra
(175) snow class, and a few were classified as taiga snow. Apart from snow depth,
the model of Sturm et al. (2010) does not include the variability in the density due to
yearly variability in the climate. Using the snow classes to predict the snow density
means that if depths measured on the same date in various years are equal, then
the estimated density will be equal too.

Based on the previous work of Sturm et al. (2010), a model that directly includes the
seasonal variability in the weather is developed. Our model is also an extension of
the model of Sturm et al. (2010), using other explanatory variables and new model
parameters found by Markov Chain Monte Carlo simulation with Gibbs sampler.

57
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Several models consisting of different explanatory variables were tested against
Norwegian snow data. The final model included the following predictor variables;
(1) measured snow depth, (2) elevation (MASL) at the location, (3) temperature - ac-
cumulated plus degrees, and (4) wind - accumulated wind speeds above 2 m/s when
the temperature is below freezing point. These variables need to be known for each
location where snow density is to be predicted. We have used weather data from
weather stations nearby the measurement locations.

The extended model includes the seasonal variability by the variables wind and tem-
perature. The day of the year (DOY) is excluded from the model. This variable was
relatively high correlated with the snow density, but gave worse predictions. This
might be explainable since the effect of the age is already embedded in the measure-
ment of snow depth and accumulation of weather variables. The elevation of the
location did not influence the model much, but was chosen based on the CRPS score.
An explanation can be that the effect of location altitude is already explained in the
model through the correction of temperature due to altitude.

The accumulation period of the explanatory variables is defined from the last day
after when the snow-melt does not exceed the snow accumulation to the day of year
the measurements is performed. This is calculated by using the degree-day model.
This model estimates the snow-melt based on the air temperature and takes loca-
tion specific parameters as inputs.

Hence, various parameters and variables are involved in influencing the outcome of
the model; Temperature, wind and precipitation data, parameters used in correct-
ing these data series, the elevation of location and weather station, and of course
the snow depth. In addition, parameters and data in the degree-day model, thresh-
old temperatures for snow-melt and rain/snow and the degree-day factor are needed
in each location. These parameters influence the number of weather data that are
accumulated in the explanatory variables.

The model is easy to use as long as one have these input variables. All variables
are subject to errors and there is a challenge to achieve the correct input data. Snow
depth and elevation are almost exact variables, but there are more uncertainty asso-
ciated with the weather data. The model requires that representative weather data
are available, and hence the model is restricted by use of the data from weather
stations nearby the locations. There can be a variation in topography between the
location and the weather stations, and among locations using data from the same
weather station. The model adjusts for this by correcting the temperature due to
altitude of the different location. But still there might be a lot of difficulties in find-
ing the correct precipitation, wind and temperature to each location. For example,
the wind is not corrected due to altitude and some locations can be within a wind-
protected area.
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Even if the variability among areas and years is considered through the use of
weather variables, it is conceivable that there is some other kind of variation in
the properties of the snow densities that does not emerge through the explanatory
variables. Thus, a random year-area effect is added to the model. This random effect
is estimated by year specific measurements in different ways. The best predictions
came from a model with random effects. This model used information from year
and area specific measurements already in the beginning while estimating model
parameters from the training dataset in the MCMC simulation. The use of year and
area specific measurements assisted in bias removal and improved the model.

By increasing the collection of year specific measurements, it could in advance be
assumed that the error in the estimated snow density would continue to decline.
Analysis indicated that the model was improved, but that the result does not neces-
sarily get better after more than n = 10 measurements.

The main focus of the evaluation and analysis in this work has been the bulk den-
sity and not the SWE. This is because it is the snow density that is dependent of the
explanatory variables, and the SWE can be found from the density and snow depth.
The snow density range is greater than the SWE range which has narrow limits.
Consequently the SWE estimates derived from the measured snow depths fall close
to the measured value. So even if there are relatively big differences between the
measured and the estimated snow densities, the method gives better estimates for
the SWE. If the error in snow density becomes large for small snow depths, the as-
sociated error in SWE will not be that much affected as it would have for large snow
depths. As specified in the model, the uncertainty is larger for small snow depths.
In future work different spatial models could be considered, and with other specifi-
cations of the variance.

The snow density prediction model developed in this study can be useful for estimat-
ing the snow density instead of manually measurements. As it takes wind speeds,
temperature, elevation and snow depth as input variables, it is easy to use and ap-
plicable wherever weather stations are available and representative. This model is
compared to the original model it is based on (Sturm et al., 2010), and gives more
reliable predictions. Analyses show that information gained by collecting about 10
annual snow densities in each area can improve the predictions significantly.
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Appendix A

WinBUGS code

WinBUGS code for model and priors

#Likelihood
model
{
for(i in 1:n){
density[i]~dbeta(alpha[i],beta[i])
alpha[i]<-nu[i]/omega[i]
beta[i]<-(1-nu[i])/omega[i]
nu[i]<-(denmax-den0)*(1-exp(-k1*x1[i]-k3*x3[i]-k4*x4[i]-k5*x5[i]))+den0
omega[i]<-exp(beta0+beta1*depth[i])/(1+exp(beta0+beta1*depth[i]))
}

#Priors
denmax~dunif(0.3,0.8)
k1~dunif(0,0.08)
k3~dunif(0,0.08)
k4~dunif(0,0.08)
k5~dunif(0,0.08)
den0~dunif(0.1,0.5)
beta0~dunif(-10,1)
beta1~dunif(-0.1,0)
}

Table A.1: WinBUGS code for the model in Section 7.3
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