
Simulation of crack propagation using
isogeometric analysis applied with
NURBS and LR B-splines

Oda Kulleseid Nilsen

Master of Science in Physics and Mathematics

Supervisor: Trond Kvamsdal, MATH
Co-supervisor: Kjetil André Johannessen, IMF

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

This report features the isogeometric finite element method ap-
plied to the elastodynamic problem in a brittle medium with a po-
tential for cracking. Griffith’s theory for fracturing is used. The
development of the model is outlined, complete with the Euler-
Lagrange equations. The cracking is described with a phase field
supplemented with a history field, contrary to the usual way of build-
ing the crack directly into the geometry by modification of the basis,
facilitating the use of isogeometric analysis even with simplistic basis
functions such as Non-Uniform Rational B-Splines (NURBS). The
introduction of the crack-phase field results in non-linearity in the
coupled problem. The problem is semi-discretized, upon which the
spatial sub-problem is treated with isogeometric analysis. The nu-
merical time-stepping solution routine is built around the Newton-
Raphson method, but includes both pre-conditioning and correc-
tors and is known as the predictor/multi-corrector time integration
scheme. The Jacobian of the semi-discretized system (needed for the
Newton-Raphson iteration) is developed analytically. In addition to
the numerical tests with NURBS as our basis, we will also test the
method with Locally Refined B-splines (LR B-Splines), ensuring bet-
ter resolution along the crack path. The LR B-spline represents an
alternative to the more commonly used T-Spline.

1

Sammendrag

Rapporten inneholder isogeometrisk endelig elementmetode an-
vendt p̊a det elastodynamiske problemet i et sprøtt medium med
potensial for sprekkdannelse. Griffiths teori for sprekkdannelse er
benyttet. Utledningen av modellen er gitt, komplett med Euler-
Lagrangelikningene. Oppsprekkingen er beskrevet ved et fasefelt og
et historiefelt, i motsettning til den mest benyttede metoden hvor
man i stedet bygger sprekken direkte inn i geometrien ved å modi-
fisere basis. Dette fasiliterer bruk av selv en s̊a enkel basis som ikke-
uniform rasjonell b-spline (NURBS). Introduksjonen av sprekkfase-
feltet resulterer i ikkelinearitet i det koplede problemet. Problemet
blir først semidiskretisert, hvorp̊a det romlige underproblemet blir
behandlet med isogeometrisk analyse. Den numeriske løsningen i
tid er bygget rundt Newton-Raphson metoden, men inkluderer b̊ade
prekondisjonering og korrektorer. Jakobianten til det semidiskre-
tiserte systemet blir utviklet analytisk (denne behøves til Newton-
Raphson iterasjonen). I tillegg til testene utført med NURBS som
basis er det ogs̊a utført en utprøving av metoden med lokalt forfinede
b-splines (LR B-spline) benyttet som basis. Dette gjør at man kan
spesifisere bedre oppløsning eksklusivt langs sprekklinjen. LR B-
spline representerer et alternativ til den mer brukte T-spline.

2

Preface
It is assumed throughout that the reader is familiar with the Finite Ele-
ment Method (FEM), as this is the building brick upon which isogeomet-
ric analysis is built. For those not familiar with Non-Uniform Rational
B-Splines (NURBS) and its use within isogeometric analysis, we recom-
mend starting off with the relatively thorough introduction included in
the appendices. Although there is given an introduction on NURBS in
the appendices there will not be given a proper introduction to the LR
B-spline as the subject is outside the scope of this report, instead I refer
to [7, 12].

Notice that throughout the report I assume the convention that scalars
and tensors (as well as scalar and tensor functions) that belong to a set is
numbered in boldface. I do this to clarify for myself that the subscript
indicates that it is a part of a set as opposed to an entry of a tensor (this
distinction is of course somewhat artificial, but very helpful none the less).

The following report is the Master thesis with course code TMA4910
Numerical Mathematics, written in the spring semester of 2012.

The thesis is written under the supervision of associate professor Trond
Kvamsdal and PhD fellow Kjetil André Johannessen. The idea for this
thesis was theirs, and they encouraged me with much enthusiasm to keep
on when I was about to abandon the ship for an easier way out. Kjetil
kindly supplied me with all the code and framework needed to generate
and refine LR B-spline meshes, and helped with the installations and any
small questions I had, for which I am very grateful.

3

4

Contents

Preface . 3

1. Introduction 9

2. Modelling the fracturing process 11
2.1. Fracturing described by a phase field 11
2.2. Displacement field . 12
2.3. Multivariate Euler-Lagrange equations 12

2.3.1. Elastic energy . 12
2.3.2. Fracture energy . 13
2.3.3. Kinetic energy . 14
2.3.4. The work integral 14

2.4. Strain-History field . 16
2.5. Strong form formulation . 16
2.6. Weak form formulation . 17
2.7. Reformulation for the linear case by Voigt notation 18

3. A computational model 21
3.1. Numerical model for the crack phase-field 21
3.2. Numerical model for the non-linear elastodynamics problem 22
3.3. Numerical model for the history field 30

3.3.1. Implementing the pre-existing crack in the initial
conditions . 30

4. Numerical example 33
4.1. Crack branching . 33

4.1.1. Set-up: Parameters, initial and boundary conditions 33
4.1.2. Results with NURBS 34
4.1.3. Results with LR B-splines 38

4.2. Remarks on the implementation 44

5

5. Concluding remarks 45

A. Introduction to NURBS 49
A.1. Isogeometric analysis and NURBS type basis functions . . . 49
A.2. Definitions, conventions and useful formulas 51

A.2.1. Knot Vectors and corresponding B-splines 51
A.2.2. Derivatives . 52
A.2.3. Control points and corresponding NURBS-geometries 53
A.2.4. Knot insertion . 56

6

List of Figures

4.1. Domain of interest with initial fracture 33
4.2. Time series of a crack phase field. NURBS 36
4.3. Continuation, time series of a crack phase field. NURBS . . 37
4.4. Locally refined domain . 38
4.5. Crack phase field. LR B-spline 39
4.6. Displacement field. LR B-spline 42
4.7. Energy plots . 43

A.1. Sparse matrix . 50
A.2. A B-spline example . 51
A.3. A B-spline/NURBS curve 53
A.4. Mesh refinement by knot insertion 56
A.5. The components of a NURBS geometry 59

List of Tables

4.1. Method specific parameters 41

7

8

1. Introduction

The term isogeometric analysis was coined by its inventor Tom Hughes
et al. in [11]. Cottrell, Hughes et al. wrote the up until recently only text
book on the subject [6]. Isogeometric analysis is in its concepts similar
to the finite element method (FEM). The key difference lies within the
geometry, and the basis used. In isogeometric analysis the geometry is
always expressed using the same basis that will be used to approximate
the solution. This is what we refer to as the “isogeometric concept”. The
idea itself is very simplistic and should be easy to understand, to predict
its consequences we must look a bit further.

The main motivation behind isogeometric analysis is to spend less time
on the mesh and model generation and free up time for analysis. By using
the same basis in the geometry and numerical solution we can avoid the
often costly step of discretizing (meshing) the original design. Further-
more, we avoid introducing any errors that would follow by discretizing
the design. In certain applications this can be of great importance, i.e.
boundary layer effects will be sensitive to the geometry of the boundary.

To model the fracturing process we will use Griffith’s theory of crack
propagation superimposed onto the theory of linear elasticity. Griffith’s
theory conditions the formation/prolongation of a crack upon a critical
energy release rate. At the backdrop of everything we do lies a variational
approach to this fracturing process, thoroughly described in by Bourdin
et al. in [4], see also [5].

To account for existing fractures in the material the most intuitive ap-
proach is to model the fracture by including it directly into the geometry
or the basis used. One early attempt was the embedded discontinuity
method yielding a discontinuous fracture surface [9, 21]. Today the most
common approach is possibly the extended finite element method allowing
for a smooth fracture [2, 14]. This method has also been used successfully
with isogeometric analysis [15, 10].

Another opportunity is to instead model the fracture by a damage field,

9

a relatively new approach stemming from [4]. Although the concept is
harder to grasp the implementation is straight forward. For an excellent
introduction to the damage field we will use (later dubbed the crack phase
field) see Miehe, Hofacker and Welschinger [16, 18]. To obtain a set of
governing equations we will minimize a energy functional by use of the
Euler-Lagrange equations, following the footsteps of Borden, Verhoosel,
Scott, Hughes and Landis in [3].

The first attempts at isogeometric analysis were performed with NURBS
as the choice of basis [11]. (By selecting weights equal to unity they de-
generate to B-Splines.) This choice of basis does not facilitate local re-
finement, as dictated by the tensor-product like structure of any NURBS
mesh. T-Splines are another commonly used choice of basis that allow
for local refinement [20, 19, 1]. However, implementation of effective re-
finement strategies is not straight forward. Dörfel et al. [8] have shown
that existence of a worst case scenario where the local refinement turns
global. A newcomer to the game is LR B-splines by Dokken et al. [7], see
also [12]. In this thesis we will undertake isogeometric analysis on crack
propagation with both NURBS and LR B-splines.

10

2. Modelling the fracturing process

2.1. Fracturing described by a phase field

The most intuitive approach to modelling a crack, Γ, is to track its progress
and build it into the geometry as it evolves. Although the concept is simple
enough the implementation is all the more challenging. An alternative
approach is to model the crack with a phase field c(x, t), that at any given
point takes on a value between 0 and 1, nil indicating a crack and one
indicating undamaged material. As we force the damage field to yield
a sharper and sharper crack topology, with decreasing areas containing
intermediate values, this becomes a viable option.

The tricky part comes when we want to formulate an elasticity problem
on the cracking domain. The work integral will contain an integral over the
crack face. This is eloquently solved by introducing a crack surface density
function γ(c,∇c), that takes in the phase field and its spatial derivative
as parameters.

γ(c,∇c) = 1
4e(c− 1)2 + e|∇c|2, (2.1)

where we have c(x, t) = 0 at x ∈ Γ(t). e is a model parameter that
controls the amount of smearing of the crack (we use e instead of the
more common ε to avoid any confusion with the strain). The underlying
idea is that running e towards zero the area integral over the crack density
function γ(c,∇c) will converge towards the line integral tracing the crack
surface. For details refer to [16].

Observe that we have yet to obtain the equation governing the crack
phase field, this will be undertaken in section 2.3.4.

11

2.2. Displacement field
We choose to describe the displacements of our bounded domain/body of
interest in terms of a separate vector-field u(x, t).

The strains will then be defined the following way:

εij = u(i,j) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.2)

often written in matrix notation in terms of the symmetric nabla-operator,
∇s

ε = ∇su = 1
2
(
∇u + (∇u)T

)
. (2.3)

2.3. Multivariate Euler-Lagrange equations
2.3.1. Elastic energy
By the standard theory of elasticity for isotropic solids we can represent
the elastic energy density as

ψ0(ε, c) =
∑
i

∑
j

[
λ

2 εiiεjj + µεijεji

]
(2.4)

= λ

2 tr(ε)2 + µ · tr(ε2), (2.5)

where λ is Lamé’s first parameter and µ is the shear modulus (also called
Lamé’s second parameter). But we must not forget to include changes in
the elastic energy due to cracking as material stiffness will develop in the
failure zone. We will separate between tensile and compressive loading,
as only the first is expected to yield further cracking. The first step is to
perform a splitting of the elastic energy in the base case:

ψ0(ε) = ψ+(ε)︸ ︷︷ ︸
tensile

+ ψ−(ε)︸ ︷︷ ︸
compressive

. (2.6)

12

To perform this splitting we must first identify the principal strains εa
by performing a spectral decomposition of the strain, ε:

ε =
∑
a

εa · na ⊗ na, (2.7)

where {na} form an orthonormal basis, with each na being identified
as a direction of principal strain. We may then perform a splitting of the
strain into a “positive” and a “negative” part

ε+(ε) :=
∑
a

εa + |εa|
2 na ⊗ na, (2.8a)

ε−(ε) :=
∑
a

εa − |εa|
2 na ⊗ na, (2.8b)

such that ε = ε+ + ε−. Using these definitions we may form the tensile
and compressive components of the elastic energy

ψ+(ε) := λ

2

(tr(ε) + |tr(ε)|
2

)2
+ µ · tr(ε2

+), (2.9a)

ψ−(ε) := λ

2

(tr(ε)− |tr(ε)|
2

)2
+ µ · tr(ε2

−). (2.9b)

Allow the first term to be driven towards zero in the case it is in the
materials failure zone (as modelled by the phase-field). We want ψ(ε, c) =
ψ0(ε) in the undamaged material (where c = 1) and will therefore follow
Borden [3].

ψ(ε, c) = [(1− k)c2 + k]ψ+(ε) + ψ−(ε), (2.10)

with artificial parameter k << 1 to enhance numerical stability. (We
will not make use of this and choose k = 0.)

2.3.2. Fracture energy
By Griffith’s theory on fracture the fracture energy depends on the size
of the crack surface. Therefore the energy/work consumed to create the

13

diffusive crack topology might be expressed as a product of the Griffith-
type critical energy release rate and the crack density function

Gc · γ(c,∇c), (2.11)

where Gc is the critical fracture energy density

Gc = [energy]
[fracture surface] .

2.3.3. Kinetic energy

To describe a dynamic system we must include the kinetic energy

1
2ρu̇

2, (2.12)

where ρ is the density of the material and u̇ = ∂u/∂t.

2.3.4. The work integral

We combine the contributions in a work integral, where we integrate over
both the full domain and our designated time interval. (In the literature
the integration over time is often left implicit.)

I =
∫ ∫

Ω

the Lagrangian︷ ︸︸ ︷
L(x, t,u, u̇, c,∇c) dx dt

=
∫ ∫

Ω

1
2ρu̇u̇︸ ︷︷ ︸

kinetic energy

− [(1− k)c2 + k]ψ+(ε(u))− ψ−(ε(u))︸ ︷︷ ︸
elastic energy

dx dt

−
∫ ∫

Ω
Gc

[
(c− 1)2

4e + e
∑
i

(
∂c

∂xi

)2]
︸ ︷︷ ︸

=γ(c,∇c)︸ ︷︷ ︸
fracture energy

dx dt.

14

We need the following definitions to proceed:

u̇ := ∂u
∂t

(2.13a)

ċ := ∂c

∂t
(2.13b)

uxi := ∂u
∂xi

(2.13c)

cxi := ∂c

∂xi
. (2.13d)

The Euler-Lagrange functions minimize the work integral. We write out
the Euler-Lagrange equations for multiple functions; u(x, t) and c(x, t),
and multiple variables; x and t.

∂L
∂u︸︷︷︸
=0

−
∑
i

∂

∂xi

(
∂L
∂uxi

)
− ∂

∂t

(
∂L
∂u̇

)
= 0, (2.14a)

∂L
∂c
−
∑
i

∂

∂xi

(
∂L
∂cxi

)
− ∂

∂t

(
∂L
∂ċ

)
︸ ︷︷ ︸

=0

= 0. (2.14b)

Insertion of the Lagrangian, L, and some rearranging yields the coupled
system

∑
j

∂σij
∂xj

= ρüi ∀i, (2.15a)

(
4e(1− k)ψ+

Gc
+ 1

)
c− 4e2∑

j

∂2c

∂x2
j

= 1. (2.15b)

where we used the the following definition

σij := ∂ψ

∂εij
= [(1− k)c2 + k]∂ψ

+

∂εij
+ ∂ψ−

∂εij
. (2.16)

15

To calculate the derivatives we introduce the short notation 〈x〉+ :=
(x+|x|)/2 for the ramp function and 〈x〉− := (x−|x|)/2 for its counterpart.
Let “I” denote the second order identity tensor. We have that

∂ψ+

∂ε
= λ〈tr(ε)〉+I + 2µε+, (2.17a)

∂ψ−

∂ε
= λ〈tr(ε)〉−I + 2µε−. (2.17b)

The first term of each expression is easily calculated while the second term
is substantially more involved.

2.4. Strain-History field
We must somehow ensure Γ(t) ⊂ Γ(t + ∆t). We make the observation
that the tensile elastic energy ψ+ clearly drives the evolution of the crack
as all other factors in equation (2.15b) describing the crack-density c are
constants. The “ad hoc” solution: Replace ψ+ by its maximum through
history, resulting in the history field H(t,x) [16].

The equations that together enforce “maximum through history” are

ψ+ −H ≤ 0, (2.18a)
Ḣ ≥ 0, (2.18b)

Ḣ(ψ+ −H) = 0. (2.18c)

(Numerically we will make a simplifying assumption.)
The central idea of an algorithmic decoupling of the coupled equations

(2.15a) and (2.15b) bases on an approximation of the current history field
Hn+1 on the displacement at the previous time step tn [16].

2.5. Strong form formulation
As before we have the equations of motion∑

j

∂σij
∂xj

= ρüi ∀i, (2.19a)

(4e(1− k)H
Gc

+ 1
)
c− 4e2∑

j

∂2c

∂x2
j

= 1. (2.19b)

16

We must also specify sufficient boundary conditions:

ui = gi on ∂Ωg ∀i, (2.19c)∑
j

σijnj = hi on ∂Ωh ∀i, (2.19d)

∂c

∂xi
ni = 0 on ∂Ω ∀i, (2.19e)

where nj are the components of the outward normal vector at the bound-
ary. It is also possible to have Neumann boundary conditions in one
direction of the displacement field and Dirichlet boundary conditions in
another but we will not make use of this opportunity in our experiments.
To start off the time iteration scheme we will also need a specification of
the initial conditions:

u(x, t = 0) = u0(x) x ∈ Ω, (2.19f)
u̇(x, t = 0) = v0(x) x ∈ Ω, (2.19g)
c(x, t = 0) = c0(x) x ∈ Ω, (2.19h)

where any pre-existing cracks may either be modelled by c0(x) or directly
in the geometry.

2.6. Weak form formulation
To obtain the weak form formulation of our problem we multiply the equa-
tions with arbitrary test functions w and q respectively, both subject to
certain integrability conditions, then integrating over the domain of inter-
est. We also perform partial integrations, and we arrive at two coupled
equations. The weak form formulation of eq. (2.19a) amounts to:

ρ

∫
Ω

ü ·w dx +
∫

Ω
∇w :

(
σT
)

dx =
∫
∂Ωh

h ·w ds, (2.20a)

where “·” is the usual dot product while “:” is the double dot product,
when taken between two second order tensors A and B it is defined as
A : B =

∑
i

∑
j AijBji.

Balance of angular momentum dictates that σT = σ, so we may rewrite
the second integral of eq. (2.20a) in terms of the symmetric nabla-operator

17

if so preferred. The weak form formulation of eq. (2.19b) is:

∫
Ω

(4e(1− k)H
Gc

+ 1
)
cq dx + 4e2

∫
Ω
∇c · ∇q dx =

∫
Ω
q dx. (2.20b)

The boundary integral stemming from the partial integration is zeroed
out by the Neumann boundary condition, given in equation (2.19e) and
we say that this boundary condition is enforced weakly.

2.7. Reformulation for the linear case by Voigt notation

Unfortunately equation (2.20a) will in general be non-linear, due to the
splitting of the elastic energy in a compressive and tensile part. However,
whenever there is no crack present in the crack phase field (c = 1 every-
where) we still enjoy linearity, and we may use this to do benchmarking on
the time integrators and so on. The following reformulation of the problem
is also used whenever one opt out of the damage field approach and instead
tackle the crack tracking problem directly, thus avoiding non-linearity in
the displacement field. To exploit our software maximally we wish to tai-
lor our problem description such that it eventually1 can be stated as the
general matrix-equation Au = b, A being a matrix and u and b vectors.
The problem we face is the presence of the double dot product, indicating
an expression with double summation signs whereas the matrix equation
only allows for a single summation sign. A workaround is found by intro-
ducing Voigt notation for the strains ε and stresses σ both second order
tensors in the usual notation, in two spatial dimensions they are:

σ =
[
σxx σxy
σyx σyy

]
, (2.21)

ε =
[
εxx εxy
εyx εyy

]
. (2.22)

1That is; after the introduction of a suitable basis and a choice of a numerical inte-
gration procedure as well as a time integration method, then finally performing a
Galerkin projection.

18

Instead we will use the Voigt notation vector form:

σ̃ :=

σxxσyy
σxy

 , (2.23)

ε̃ :=

 εxxεyy
2εxy

 . (2.24)

Notice that the strain is defined differently (any shear strains is scaled
by two). This ensures that ε : σ = ε̃·σ̃ (as ε and σ are both symmetric due
to the definition of strain and balance of angular momentum respectively).

Now we may reformulate equation (2.20a) step by step:

ρ

∫
Ω

ü ·w dx +
∫

Ω
∇sw : σ(ε(u)) dx =

∫
∂Ωh

h ·w ds, (2.25)

ρ

∫
Ω

ü ·w dx +
∫

Ω
ε(w) : σ(ε(u)) dx =

∫
∂Ωh

h ·w ds, (2.26)

ρ

∫
Ω

ü ·w dx +
∫

Ω
ε̃(w) · σ̃(ε̃(u)) dx =

∫
∂Ωh

h ·w ds, (2.27)

ρ

∫
Ω

ü ·w dx +
∫

Ω
Dw · CDu dx =

∫
∂Ωh

h ·w ds. (2.28)

where by eq. (2.2) and (2.5) we have that

D :=


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 , (2.29)

C :=

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 . (2.30)

19

20

3. A computational model

3.1. Numerical model for the crack phase-field

As seen earlier the weak form formulation of the governing equation of the
crack is∫

Ω

(4e(1− k)H
Gc

+ 1
)
cq dx + 4e2

∫
Ω
∇c · ∇q dx =

∫
Ω
q dx, ∀q ∈ H1(Ω),

(3.1)

where H1(Ω) = {q|
∫

Ω q
2dA,

∫
Ω q

2
xdA,

∫
Ω q

2
ydA <∞}. The only unknown

at this point of calculation will be the crack density function c(x) as we
assume the history function H(t,x) to be known. In the usual fashion
(within the finite element community) we can write this equation on the
form d(c, q) = z(q), where d(·, ·) is seen to be a bilinear form while z(·) is
linear. We let Xh be the space spanned by our choice of basis functions.
To determine the numerical solution, ch ∈ Xh = span(R1, ..., Rnnp), we
perform a spatial Galerkin projection. This is akin to asking that

d(ch, q) = z(q), ∀q ∈ Xh. (3.2)

By expanding ch in terms of our basis functions and using the bi-linearity
of d(·, ·) we get

nnp∑
A=1

cAd(RA, q) = z(q), ∀q ∈ Xh, (3.3)

where cA is the control variables that describes the numerical solution
such that ch =

∑nnp
A=1 cARA(~ξ). RA(~ξ) is just the basis function numbered

A while nnp is the total number of basis functions and {cA} are the control
variables that we shall solve for. Since q ∈ Xh is arbitrary, z(·) is linear

21

and d(·, ·) is bi-linear this is equivalent to

nnp∑
A=1

cAd(RA, RB) = z(RB), B = 1, ..., nnp. (3.4)

This can again be written in matrix form

Dc = z. (3.5)

where entry (i, j) of matrix D take on the value d(Ri, Rj), while entry
i of vector z is just z(Ri). Vector c is our solution vector, each entry i
corresponds to the control variable ci.

We recall that the Neumann boundary condition, equation (2.19e), is
enforced weakly through equation (3.1), so we need not make any further
steps to enforce this particular boundary condition.

Notice that in the event that the history field is not updated, the crack
phase field will remain unchanged, so we may save ourselves for the cal-
culation.

3.2. Numerical model for the non-linear elastodynamics
problem

The spatial part of the solution will be found by the isogeometric finite
element method. We continue from the weak form formulation

ρ

∫
Ω

ü ·w dx +
∫

Ω
ε̃(w) · σ̃(ε̃(u)) dx =

∫
∂Ωh

h ·w ds, ∀w ∈ (H1(Ω))2.

(3.6)

This is can be written in the usual form m(ü,w) + a(u,w) = l(w). We
see that both a(u, ·) and l(·) are linear forms while m(·, ·) is bilinear. We
let Yh be the (spatial) space spanned by our choice of basis functions. We
let uh ∈ Yh denote the numerical solution. As before we perform a spatial
Galerkin projection to obtain an expression for uh:

m(üh,w) + a(uh,w) = l(w), ∀w ∈ Yh. (3.7)

22

We will use finite difference formulas to discretize uh and u̇h in terms of
the second derivative üh, thus obtaining a system of ordinary differential
equations (ODEs), with one ODE for each time step. This is called a semi-
discretization. Starting from scratch one might chose a finite differences
scheme, plug it into the equation and perform Newton-Raphson iterations
(as the problem is non-linear we must solve it iteratively). But we have
an added bit of information we should exploit; we will know the zeroth,
first and second order time derivatives of the solutions at the previous
time step. This will be used to craft a better initial guess for the Newton-
Raphson iteration, and it will also be used to correct the Newton-Raphson
result in each iteration (this would be the multi-corrector). A much used
algorithm with these features is the predictor/multi-corrector algorithm.
We use the zero acceleration predictor. From here on we will drop the
subscript h (indicating a numerical solution), and instead let the subscript
be an iteration counter within each time step. In the description of the
predictor-multi-corrector algorithm, equations (3.8a)-(3.8p), the sign “=”
will be the assignment operator, not the equality sign.

Predictor:

q = 0 (3.8a)

un+1
q = un + ∆tu̇n + (∆t)2

2 (1− 2β)ün (3.8b)

u̇n+1
q = u̇n + ∆t(1− γ)ün (3.8c)

ün+1
q = 0 (3.8d)

Multi-corrector:

un+αf
q = (1− αf)un + αfun+1

q (3.8e)

u̇n+αf
q = (1− αf)u̇n + αf u̇n+1

q (3.8f)
ün+αm
q = (1− αm)ün + αmün+1

q (3.8g)

J∆ü = −f(un+αf
q , ün+αm

q) (3.8h)
un+1
q+1 = un+1

q + β(∆t)2∆ü (3.8i)
u̇n+1
q+1 = u̇n+1

q + γ∆t∆ü (3.8j)
ün+1
q+1 = ün+1

q + ∆ü (3.8k)
q = q + 1 (3.8l)

23

Equation (3.8h) is a single Newton-Raphson iteration where f(·, ·) =
0 are the equations for the displacement field and J its Jacobian, the
definition will be given in equation (3.20). The multi-corrector stage can
be iterated as many times as needed for convergence. Note however that
before we repeat the multi-corrector we should update the history field H
with the newest solution and solve for the crack phase field. After we have
reached convergence (and updated the history and crack phase fields) we
perform the assignments

un+1 = un+1
q (3.8m)

u̇n+1 = u̇n+1
q (3.8n)

ün+1 = ün+1
q (3.8o)

n = n+ 1 (3.8p)

and return to the Predictor if we wish to advance another time step.
As the predictor/multi-corrector algorithm above suggests we will eval-

uate the displacement field at the “predicted solutions” un+αf
q and ün+αm

q .

m(ün+αm
q ,w) + a(un+αf

q ,w) = l(w), ∀w ∈ Yh. (3.9)

The test function w ∈ Yh is arbitrary and may be expressed as a linear
combination of the basis functions RB, B = 1, ..., nnp. This combined with
the fact that functionals a,m and l are linear in w reduce our problem to
a finite set of (non-linear) equations

m(ün+αm
q ,RB) + a(un+αf

q ,RB) = l(RB), B = 1, ..., nnp. (3.10)

We may express un+αf
q and ün+αm

q in terms of their respective corre-
sponding control variables1 ũn+αm

A and ¨̃un+αm
A and basis functions, RA;

un+αf
q =

nnp∑
A=1

ũ
n+αf
A RA, (3.11)

ün+αm
q =

nnp∑
A=1

¨̃un+αm
A RA. (3.12)

1We suppress the dependency on q for the control variables for enhanced readability.
Recall that q is just counting how many passes there have been at the multi-corrector
stage within the current time step.

24

By substituting this and at the same time, exploiting the bi-linearity of
m(·, ·) we get

nnp∑
A=1

(
¨̃un+1

A m(RA,RB)
)

+ a

([nnp∑
A=1

ũn+1
A RA

]
,RB

)
= l(RB),

B = 1, ..., nnp. (3.13)

We use this to define the vector-valued function f(·, ·) by its entries:

(f(un+αf
q , ün+αm

q))B :=
nnp∑
A=1

(
¨̃un+1

A m(RA,RB)
)

+ a

([nnp∑
A=1

ũn+1
A RA

]
,RB

)
− l(RB),

B = 1, ..., nnp. (3.14)

Resulting is a non-linear multivariate system of equations;

f(un+αf
q , ün+αm

q) = 0. (3.15)

To solve eq. (3.15) for the control variables (numerically) we will use
the Newton-Raphson method. For the convergence criteria it suffices to
use the Euclidean norm on the evaluated function f(un+αf

q , ün+αm
q), as

each entry entails integration over the spatial domain Ω. The Newton-
Raphson method calls for a procedure to calculate the Jacobian, J of
the system. Our chosen algorithm demand that we develop the Jacobian
with respect to the temporal second derivative, so that we may solve
for the change in acceleration rather than the change in displacement.
(This technicality only yields differing constants, the main structures of
the Jacobian would remain the same if we developed it with respect to the
displacement instead.)

We wish to obtain an expression for un+αf
q where the dependency on

ün+1
q is explicit. By taking into account both of the equations (3.8d) and

(3.8k) we realize that we may write the following equivalent expression for
equation (3.8i):

un+1
q+1 = un+1

q + β(∆t)2ün+1
q+1 . (3.16)

25

Inserting this into equation (3.8e) we get the desired expression for
un+αf
q :

un+αf
q = (1− αf)un + αfun+1

q (3.17)
= (1− αf)un + αfun+1

q−1 + αfβ(∆t)2ün+1
q . (3.18)

We already have an expression for ün+αm
q where the dependency on

ün+1
q is explicit in equation (3.8g) but it is repeated here for convenience:

ün+αm
q = (1− αm)ün + αmün+1

q . (3.19)

We will begin to develop the Jacobian:

(J)ij := ∂

∂ ¨̃un+1
i

(f(un+αf
q , ün+αm

q))j

= ∂

∂ ¨̃un+1
i

[
m(

nnp∑
A=1

¨̃un+αm
A RA,Rj)

]
+ ∂

∂ ¨̃ui

[
a
(
un+αf
q ,Rj

)]

= αm
∂

∂ ¨̃un+1
i

[nnp∑
A=1

¨̃uαA ·m(RA,Rj)
]

+ ∂

∂ ¨̃un+1
i

∫
Ω

ε(Rj) : σ
(
ε
(
un+αf
q

))
dx

= αm ·m(Ri,Rj) +
∫

Ω
ε(Rj) :

(∂σ

∂ε︸︷︷︸
4th order tensor

:

2nd order tensor︷ ︸︸ ︷
∂ε

∂ ¨̃un+1
i

∣∣∣∣∣
u
n+αf
q

)
dx

= αm ·m(Ri,Rj)

+ αfβ(∆t)2 ·
∫

Ω
ε(Rj) :

(∂σ

∂ε︸︷︷︸
4th order tensor

:

2nd order tensor︷ ︸︸ ︷
∂ε

∂ ¨̃un+1
i

∣∣∣∣∣
ün+1
q

)
dx, (3.20)

where the double dot product between a 4th order tensor A and a 2nd

order tensor A is defined the following way: (A : A)ij =
∑
k

∑
j AijklAkl

and (A : A)ij =
∑
k

∑
j AklAklij . We already know that the mass matrix

26

stemming from the first term will be a sparse matrix since the support of
the basis functions is limited. Furthermore we can see that ε(Rj) may be
non-zero only where Rj has support. Similarly we will show that ∂ε/∂ũn+1

i
may be non-zero only where Ri has support, refer to equation (3.21). From
this we may infer that the Jacobian J will be a sparse matrix! (A very
useful feature as it is.)

We will first calculate ∂ε/∂ũn+1
k . To avoid confusion recall that the

physical interpretation of indicing is not common across all variables and
notice that k is fixed. Vector ei is the i-th unit vector.

 ∂ε

∂ũn+1
k

∣∣∣∣∣
ün+1
q


ij

= 1
2

∂

∂ũn+1
k

(
∂(un+1

q)j
∂xi

+
∂(un+1

q)i
∂xj

)

= 1
2

∂

∂ũn+1
k

(
ej ·

nnp∑
A=1

ũn+1
A

∂RA
∂xi

+ ei ·
nnp∑
A=1

ũn+1
A

∂RA
∂xj

)

= 1
2

(
ej ·

∂Rk
∂xi

+ ei ·
∂Rk
∂xj

)
. (3.21)

The tensor will of course have the same dimension and size as ε. Over
the next two pages we will step by step obtain an expression for the fourth
order tensor ∂σ/∂ε. We start by expanding it,

∂σ

∂ε
= ∂

∂ε

([
(1− k)c2 + k

] ∂ψ+

∂ε
+ ∂ψ−

∂ε

)

=
[
(1− k)c2 + k

] ∂
∂ε

(λ〈tr(ε)〉+I + 2µε+) + ∂

∂ε
(λ〈tr(ε)〉−I + 2µε−) .

(3.22)
We will develop the individual components. Use the chain rule and

obtain

∂

∂ε
(〈tr(ε)〉+I) = H(tr(ε)) ∂

∂ε
(tr(ε)I)

= H(tr(ε)) ∂
∂ε


∑
i εii 0 . . .
0

∑
i εii . . .

...
... . . .

 . (3.23)

27

Now, looking at the elements of the fourth order tensor on the right hand
side we see that we must have

(
∂

∂ε
(tr(ε)I)

)
ijkl

:=
∂ (tr(ε)I)ij

∂εkl
=


0 if i 6= j
0 if k 6= l
1 if i = j and k = l

(3.24)

This tensor resembles the fourth order identity tensor I, but it carries a
few extra non-zero entries. We failed to recover its usual name/symbol in
the literature, so we will just name this tensor J for the remainder of the
text.

∂

∂ε
(〈tr(ε)〉+I) = H(tr(ε))J, (3.25a)

and completely analogous we get

∂

∂ε
(〈tr(ε)〉−I) = H(−tr(ε))J. (3.25b)

It still remains to calculate ∂ε+
∂ε = ∂

∂ε (
∑
a〈εa〉+na ⊗ na) and its nega-

tive counterpart. First we introduce the short notation Ma := na ⊗ na.
We define the fourth order tensor Gab by its coordinates as (Gab)ijkl :=
(Ma)ik(Mb)jl+(Ma)il(Mb)jk. The formula for differentiation of the sep-
arate components of the spectral decomposition can be found in [17] and
reads as follows

∂εa
∂ε

= Ma, (3.26a)

∂Ma
∂ε

=
∑
b 6=a

1
2(εa − εb)(Gab + Gba). (3.26b)

With this in mind we will develop ∂ε+
∂ε by its individual entries:

28

(
∂ε+
∂ε

)
ijkl

= ∂(ε+)ij
∂εkl

= ∂

∂εkl

(∑
a

〈εa〉+(Ma)ij

)

=
∑
a

[
∂〈εa〉+
∂εkl

(Ma)ij + 〈εa〉+
∂(Ma)ij
∂εkl

]
=
∑
a

H(εa) · (Ma)kl(Ma)ij

+
∑
a

∑
b 6=a

〈εa〉+
2(εa − εb) [(Gab)ijkl + (Gba)ijkl] . (3.27)

The result for ∂ε−
∂ε is obtained similarly. Let us define the fourth order

tensor Qa by its coordinates: (Qa)ijkl := (Ma)kl(Ma)ij . We are now
ready to finish the formula we sought after:

∂σ

∂ε
=
[
(1− k)c2 + k

] [
λ
∂

∂ε
(〈tr(ε)〉+I) + 2µ∂ε+

∂ε

]
+
[
λ
∂

∂ε
(〈tr(ε)〉−I) + 2µ∂ε−

∂ε

]
=
[
(1− k)c2 + k

]
λH(tr(ε))J

+
[
(1− k)c2 + k

] [
2µ
∑
a

H(εa)Qa

]

+
[
(1− k)c2 + k

] [
2µ
∑
a

∑
b 6=a

〈εa〉+
2(εa − εb) [Gab + Gba]

]
+ λH(−tr(ε))J

+ 2µ
∑
a

(
H(−εa)Qa +

∑
b 6=a

〈εa〉−
2(εa − εb) [Gab + Gba]

)
. (3.28)

Although this fourth order tensor looks rather intimidating it is small
enough that we can easily work with it, in three dimensions it has 34 = 81
entries and in two spatial dimensions it has no more than 24 = 16 entries.

29

We have now completed all the formulas necessary to assemble the Ja-
cobian, J, as given in equation (3.20).

3.3. Numerical model for the history field
As mentioned in section 2.4 the idea behind the algorithmic decoupling of
the coupled equations (2.15a) and (2.15b) bases on an approximation of
the current history field Hn+1 on the displacement at the previous time
step tn [16].

We will use the following scheme:

Hh(tn+1,x) =
{
Hh(tn,x) if Hh(tn,x) ≥ ψ+(tn,x)
ψ+(tn,x) if Hh(tn,x) ≤ ψ+(tn,x)

(3.29)

In practice this strategy means that we keep a list with a corresponding
history field value for each evaluation point used in the numerical inte-
gration procedure of our choice (in our case the quadrature points). This
approach is obviously very cumbersome as it doesn’t immediately allow
for local refinement at each new time step; instead we must refine a priori.
If we were to refine at each time step we would either need a procedure
for solution transfer or another method to calculate the history field all
together.

3.3.1. Implementing the pre-existing crack in the initial conditions
As mentioned earlier we may model a pre-existing crack indirectly via the
initial condition c(x, t0) = c0(x). The alternative is to model it directly
with the geometry: In regards to the need for local refinement along all of
the crack as described in the crack phase field to enhance the sharpness
of the crack phase field this is a very good option.

To make sure that the induced crack doesn’t disappear after the first
time step we must include it in the history field. As the crack phase field
can be generated directly from the history field, we might perform this task
backwards and start with an initial history field and use this to generate
the initial condition for the crack phase field. Let C be the highest value
for the initial crack in the crack phase field, we choose C = 10−3. Now, let
the metric d(x,Γ) measure the distance between the chosen crack topology

30

Γ(x) and the point x. By [3] we may then use the following initial history
field

Hh(t0,x) =
{
Gc
4e

(
1
C − 1

) (
1− d(x,Γ)

e

)
if d(x,Γ) ≤ e,

0 otherwise.
(3.30)

The initial condition for the crack phase field may now be obtained by
following the procedure given in section 3.1.

31

32

4. Numerical example

4.1. Crack branching

Figure 4.1.: Domain of interest: a 40x100 mm plate. Along the top and
bottom (blue) boundary there is applied a traction force in
the outward facing direction. Along the left and right (black)
boundary there is a zero traction condition. The initial con-
ditions will include a crack along the yellow line, induced by
the initial history field.

4.1.1. Set-up: Parameters, initial and boundary conditions

The problem parameters is set equal to the suggested values in [3] to ease
the comparison of results. Material density is set to ρ = 2450 kg/m3 and
critical fracture energy density is set to Gc = 3 J/m2. Furthermore we
set Young’s modulus to E = 32 GPa and Poissons’s ratio to ν = 0.2.

33

Converted to Lamé constants in the case of plane strain this equals: λ =
Eν

(1+ν)(1−2ν) = 6.4
0.72 · 109 Pa ≈ 8.89 · 109 Pa and µ = E

2(1+ν) = 32
2.4 · 109 Pa ≈

1.33 · 1010 Pa.
The domain is a rectangle with width 100 mm and height 40 mm. Ini-

tially there is a crack induced by the prescribed history field, running
horizontally from the left-hand end of the rectangle to the midpoint of the
rectangle, see figure (4.1). The initial displacements and its first derivative
is chosen to be zero everywhere. As for the boundary conditions there is a
zero-traction condition along the left- and right-hand side (this amounts
to h = 0). An outward pointing traction load of σ = 1 MPa is applied
at the top and bottom edges, h = [0, 106]T . (This implies that the whole
boundary is governed by Neumann boundary conditions.)

The parameters for the time stepping scheme is chosen by the generalized-
α method, again in line with [3]. The spectral radius is set to ρ∞ = 0.5.
The parameters are prescribed as follows:

αf = 1
ρ∞ + 1 , (4.1)

αm = 2− ρ∞
ρ∞ + 1 , (4.2)

β = 1
4(1 + αm − αf)2, (4.3)

γ = 1
2 + αm − αf . (4.4)

The time step is set ∆t = h/vR, where h is the mesh size parameter
(the smallest element have roughly area h2) and vR = 2125 m/s is the
Rayleigh wave speed given in [3].

4.1.2. Results with NURBS
The following results were obtained using only one pass at the multi-
corrector stage at each time step (performing only one Newton-Raphson
iteration plus the successive corrector at each time step). Compared to the
results obtained in Borden et al. [3] we observe a significant qualitative
resemblance. The relative widening of the crack is due to a higher value
assigned to the crack phase field smearing parameter e. Remember that
we must have e > h/2 to capture the fracture correctly, so the sharpness

34

of the crack is in turn limited by the computational capacity we possess.
The time it took for the crack to propagate throughout the domain is seen
to be higher on our grid, this is in line with the trend seen in previous
results that indicate that a finer grid will result in faster crack propagation
[3].

We found that we could only obtain satisfactory results on a reasonably
refined grid. At coarse grids we found that the crack took on a pitchfork-
shape rather than the desired Y-shape, and at even coarser grids we saw
that the majority of the domain came to be either cracked or damaged
material. Given that we expect substantial changes in topology over small
areas this shouldn’t come as a surprise; we need a certain amount of basis
functions to capture the fracture. Despite this we will make a note of the
fact that it is remarkable that the phase-field approach allows us to make
use of NURBS (with one only patch), given that the mesh we operate on is
structured much like a tensor product. The method was also tested with
basis degrees two and three to satisfactory results. Figures (4.2a)-(4.2c)
and (4.3a)-(4.3c) shows a time series of the propagating fracture including
branching.

35

(a) T = 40dt = 1.98 · 10−5s.

(b) T = 80dt = 3.96 · 10−5s.

(c) T = 120dt = 5.94 · 10−5s.

Figure 4.2.: Crack phase field for basis degrees one. With NURBS as basis
and uniform elements. Degrees of freedom, ndof = 3744 and
h = 1.05 · 10−3m while dt = 4.95 · 10−7s for all three figures
above. The crack phase field smearing parameter is set to
e = 5.2 · 10−4m.

36

(a) T = 160dt = 7.93 · 10−5s.

(b) T = 200dt = 9.91 · 10−5s.

(c) T = 240dt = 1.19 · 10−4s.

Figure 4.3.: Crack phase field for basis degrees one. With NURBS as basis
and uniform elements. Degrees of freedom, ndof = 3744 and
h = 1.05 · 10−3m while dt = 4.95 · 10−7s for all three figures
above. The crack phase field smearing parameter is set to
e = 5.2 · 10−4m.

37

4.1.3. Results with LR B-splines

Figure 4.4.: The domain as partitioned by the LR B-spline approach with
local refinement centred along the crack path. Corresponding
to mesh no. 3 in table (4.1). Notice that the refinements
isn’t quite centred on top of each other, this is due to our
greedy strategy with regard to the crack phase field smearing
parameter, e, as we choose to lessen the smearing of the crack
phase field at each successive refinement.

Our choice of history field without easy access to solution transfer means
that we must refine a priori. To refine a priori we solve the problem on
a uniform mesh, mark elements for refinement, refine and repeat as many
times as we deem necessary. Although we don’t access any analytical
solution for comparison it is evident from similar problems that we might
expect the error to dominate at the crack tip [13]. The crack tip will of
course propagate along the crack path so we would want to refine this
area (as we refine a priori). We should also consider the fact that both
the time step, dt, and the crack phase field parameter, e, depends upon
the mesh size. To be able to capture the crack topology correctly and
at the same time minimize e we will therefore refine as uniformly as we
manage along the complete crack path, this includes refinement along the
pre-existing crack path of the initial conditions. The LR B-spline consists
of B-splines but is not kept in the usual tensor product-structured mesh,

38

(a) Parameters as in table (4.1), particularly e = 1.75 · 10−4m

(b) Parameters as in table (4.1), with the exception that e = 2.5 · 10−4m

Figure 4.5.: Crack phase field using LR B-splines as basis. Plots of the
fully formed crack for two different values of the crack phase
field smearing parameter e.

instead there is allowed for individual refinement of any element. As with
T-splines the local refinement will sometimes propagate into neighbouring
elements beyond the original intention. To us this effect was only a minor
inconvenience, hardly noticeable at all.

Our example features a twice refined grid, for details see table (4.1). The
crack phase field is shown in figure (4.5a), while the displacement field is
illustrated in figure (4.6) where we notice that the displacements depict as
we would expect them to intuitively. By examining the displacements in
the y-direction over the horizontal section of the crack in figure (4.6b) we
observe that the crack is in actuality much sharper than one would expect

39

from looking at just the crack phase field alone. This is due to the fact
that c < 1 represents damaged material, but only as c goes towards zero
do we have a fully formed crack (as we chose C = 10−3 in section 3.3.1 we
assume c ≤ C represents a fully formed crack in practice).

A second test was performed using all the parameters (except for those
of the grid) equal to those of Borden et al. [3], see figure (4.5b). The
results are similar qualitatively, in particular we see that the kink in the
crack trajectory near the edge of the domain is reproduced. The crack in
figure (4.5b) was also created using the mesh as depicted in figure (4.4).
We notice that the crack in figure (4.5b) isn’t fully contained in the twice
refined area, although it is contained in the once refined area. The chosen
crack phase field smearing parameter is approximately equal to half of
the mesh size parameter hmin of the once refined mesh and therefore this
doesn’t cause us any problems.

40

N
o.

D
eg

.
of

fr
ee

do
m

T
im

e
st

ep
M

es
h

siz
e

Sm
ea

rin
g

B
as

is
de

g.
T

hr
es

ho
ld

n
d
of

d
t/

[s
]

h
m
in
/
[m

]
e/

[m
]

p
θ

1
37

44
4.

95
·1

0−
7

1.
05
·1

0−
3

5.
26
·1

0−
3

1
0.

5
2

61
46

2.
48
·1

0−
7

5.
26
·1

0−
3

2.
63
·1

0−
4

1
0.

5
3

11
10

0
1.

24
·1

0−
7

2.
63
·1

0−
4

1.
75
·1

0−
4

1
-

Ta
bl

e
4.

1.
:T

hi
s

ta
bl

e
di

sp
la

ys
ou

r
ch

oi
ce

s
fo

r
th

e
su

cc
es

siv
e

re
fin

em
en

ts
.

T
he

de
gr

ee
s

of
fr

ee
do

m
is

ca
lc

ul
at

ed
fo

r
th

e
cr

ac
k

ph
as

e
fie

ld
,

fo
r

th
e

co
rr

es
po

nd
in

g
di

sp
la

ce
m

en
t

fie
ld

th
e

de
gr

ee
s

of
fr

ee
do

m
w

ill
be

tw
ic

e
th

at
nu

m
be

r.
d
t

is
th

e
tim

e
st

ep
,
h
m
in

th
e

sh
or

te
st

sid
e

w
al

l
of

an
y

on
e

el
em

en
t,
e

is
th

e
m

od
el

pa
ra

m
et

er
of

th
e

cr
ac

k
ph

as
e

fie
ld

th
at

co
nt

ro
ls

th
e

sm
ea

rin
g

of
th

e
ph

as
e

fie
ld

an
d

th
e

th
re

sh
ol

d
va

lu
e

is
us

ed
to

de
ci

de
w

hi
ch

el
em

en
ts

to
m

ar
k

fo
r

th
e

ne
xt

re
fin

em
en

t.
If

th
e

cr
ac

k
ph

as
e

fie
ld

is
fo

un
d

to
be

be
lo

w
th

e
th

re
sh

ol
d

va
lu

e
in

an
y

gi
ve

n
el

em
en

t,
it

is
m

ar
ke

d
fo

r
re

fin
em

en
t,

an
d

w
ill

be
in

se
rt

ed
a

ce
nt

re
d

cr
os

s
in

th
e

su
bs

eq
ue

nt
re

fin
em

en
t

pr
oc

es
s.

41

(a) Displacements in x-direction, measured in meters.

(b) Displacements in y-direction, measured in meters.

(c) The cracked plate. The displacements are magnified with a factor of 50 and
the area where c < 10−3 is taken out. It is coloured with the euclidean norm
of the displacements, measured in meters (not magnified).

Figure 4.6.: Plots of the displacement field calculated on the locally refined
domain. We refer to row no. 3 in table (4.1) for specifications.

42

Figure 4.7.: Energy plots. We observe that the energies are slightly over-
estimated compared to previous results [3]. This conforms
to the observation that energies are overestimated in coarser
grids.

We will attempt to reproduce the energy plots of [3]. The elastic strain
energy is defined as

Eelastic :=
∫

Ω
{[(1− k)c2 + k]ψ+(ε) + ψ−(ε)} dx (4.5a)

The dissipated energy is defined as

Edissipated :=
∫

Ω
Gc

[
(c− 1)2

4e + e

(
∂c

∂x ·
∂c

∂x

)]
dx (4.5b)

43

The results are plotted in figure (4.7). The shape of the plots are as
expected. Notice that we don’t experience convergence towards the re-
fined grid solution, this because of the greedy strategy with respect to the
model smearing parameter; by altering a model parameter (of the actual
mathematical model, we do not refer to the computational model) at each
step we cannot expect this. By choosing this strategy however we get a
confirmation that the shape of the crack phase field is similar to that in
[3]. As the very idea of a damage field is to force the smearing towards
zero as the grid is refined this is would also be the reasonable approach in
applications.

4.2. Remarks on the implementation
The programs used1 to generate the results are implemented using MAT-
LAB, but a high speed computing language such as C++ would probably
be a more suitable choice. As in ordinary FEM the assembly of the matri-
ces may be performed in parallel. We used the Parallel Computing Tool-
box, specifically using the single program multiple data option (the spmd
statement), useful because we accessed a computational server with multi-
ple central processing units. This is what allowed us to get reasonable run
times despite our choice of programming language. Another possibility
would be to use a suitable graphics processing unit for the parallelization.
We also obtained significant memory preservation by exploiting the sparse
structure of our matrices (for this we used the built-in spalloc function).

The finer details of implementing isogeometric analysis is left out and
those who do not wish to work them out for themselves may refer to the
excellent book by Cottrell et al. that features the necessary pseudo code
to get started on the implementation [6].

1Mesh generation, including generation of connectivity lists are provided externally.

44

5. Concluding remarks

In this thesis we explore a recently developed model on dynamic fracturing.
The literature is scarce and no traditional benchmark cases exists as of
now. To ease the comparison of results we attempted to reproduce (some
of) the plots of [3].

The model is outlined with some extra detail for enhanced clarity, in-
cluding the set-up of the multivariate Euler-Lagrange equations. The Ja-
cobian of the semi-discretized system is developed analytically. It is not
quite clear to us how the Jacobian have been treated previously and it
might well be that a numerical approximation to calculate the fourth or-
der tensor that is the derivative of the stresses with respect to the strains
would suffice. The formula for the Jacobian makes it easy to see that it
will be a sparse matrix, a very fortunate property that is exploited in the
implementation to save on the memory requirements.

To tackle the problem of non-reversibility of fracturing our model is en-
riched with a history field describing the maximal tensile energy density.
By use of a simplifying assumption on the history field we gain algorith-
mic decoupling of the crack and displacements. However we lack a good
strategy to deal with the history field, as of now the lack of a strategy
for solution transfer prohibits us from performing successive refinements
during the course of one simulation, instead we must refine a priori, a very
cumbersome task. While the introduction of solution transfer of some sort
would mitigate the reruns required to perform local refinement, we would
also need to assess the effects it would have on the solution quality.

The selected numerical solution procedure is implemented and found to
work satisfactory. In particular our tests confirm that we get the expected
results with both NURBS and LR B-splines. To obtain reasonable results
the grid must not be too coarse, this result is intuitive given that the
smearing parameter of the crack phase field is limited downwards by the
mesh size. It is the first time the model is tested with LR B-Splines, and
the results seem promising. We performed successful local refinement and

45

in particular we observed the propagation effects of the refinement to be
minimal.

46

Appendices

47

A. Introduction to NURBS

A.1. Isogeometric analysis and NURBS type basis functions
When performing isogeometric analysis we may use Non-Uniform Rational
B-splines (NURBS) as our basis. One great advantage is that they can
represent conic sections exactly, example in figure (A.4). Furthermore the
tensor-product like structure makes them supremely easy to work with. To
assemble neighbour and connectivity lists have never been easier. What
might seem surprising is that NURBS of higher polynomial order will
be supported in more elements (also called knot spans) than those of a
lower order. Fortunately the total number of non-zero basis functions
at any given point will not increase compared to FEM, so the desired
sparse matrix system is retained as you can see in figure (A.1). The
most significant drawback of using NURBS in isogeometric analysis is the
fact that it doesn’t allow for true local refinement; any refinement will
propagate throughout the domain.

To perform isogeometric analysis with a NURBS basis we leave behind
the notion of interpolated nodes and allow for some slack in our new control
points (see figure (A.3) for an example). Maybe even more confusing we
redefine elements to be equal to the spans of the knots in parameter space,
found in the always non-decreasing knot vectors that describe our basis:
We partition the domain into elements by the grid decided by the knots
in parameter space. The parameter space as decided by the knot vectors
is always a line/rectangle/cube depending on the dimension of parameter
space, and it is projected onto our geometry. A schematic illustration is
given in figure (A.5).

49

Figure A.1.: Sparse matrix A of the discretized system Au = f for the
Poisson equation (using isogeometric analysis). White is zero-
entries, blue represent non-zero matrix entries.

50

A.2. Definitions, conventions and useful formulas

Figure A.2.: B-splines. Notice how the end-points are interpolated, and
also the reduced continuity at the repeated knot ξ = 4. Also
notice that the set of basis functions sum to one over the
whole interval.

A.2.1. Knot Vectors and corresponding B-splines

Definition 1. An open knot vector Ξ = [ξ1, ..., ξn+p+1] is a non-decreasing
vector with elements in parameter space ξ ∈ R. The vector has p+ n+ 1
entries where p is the polynomial order of the basis and n is the total
number of basis functions in the ξ-direction. The first and last entries of
the open knot vector are repeated p+ 1 times.

We will only ever work with open knot vectors (characterised by p + 1
repeated knots in the ends), and will therefore refer to them simply as
knot vectors. Notice that the indices of the knot vector is often called
index space.

The founding pillar of the NURBS-function is the B-spline, which is
defined in the following way:

Definition 2 (Cox-de Boor recursion formula). B-splines are defined re-
cursively starting at polynomial order p = 0 :

51

Ni,p=0(ξ) =
{

1 if ξi ≤ ξ < ξi+1
0 otherwise. (A.1)

For p > 0 B-splines are defined recursively by

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (A.2)

Furthermore: Whenever the denominator in one of the terms is equals
zero the term in question is defined to take on the value zero.

The B-splines of order zero will be piecewise constants, B-splines of order
one will be piecewise linear functions (hat functions) etc. For each time p
increases by one the support of the B-spline spans one more element (knot
span). This can be seen directly of the recursion formula. An implication
is that every time p is increased by one the number of basis functions is
reduced by one. The B-splines are linearly independent.

Another property of the B-splines is their partition of unity, that is
the sum of the B-splines at any given point within the specified geometry
will always sum to one, a well known concept from FEM. Unlike the basis
functions most commonly used in FEM however, B-splines always remains
positive, turning into an advantage when we begin to invert matrices.

A.2.2. Derivatives
The formula for the B-spline derivative of order greater than or equal to
one can similarly to the B-spline itself be written as a recursion formula
[6]:

dk

dξk
Ni,p(ξ) = p

ξi+p − ξi

(
dk−1

dξk−1Ni,p−1(ξ)
)

− p

ξi+p+1 − ξi+1

(
dk−1

dξk−1Ni+1,p−1(ξ)
)

(A.3)

52

A.2.3. Control points and corresponding NURBS-geometries

Figure A.3.: With the same knot vector as in figure (A.2) and control
points where all weights are set equal to one. Because all
weights are of value one it is a B-spline curve as well as a
NURBS-curve.

One parametric dimension

In one parametric dimension there is assigned one control point Bi ∈ Rd
(arbitrary dimension d) for every basis function i = 1, ..., n. Every control
point is in addition assigned a positive weight wi. This weight wi will
also appear in the NURBS basis functions. (The weighs carry a nice
geometrical interpretation [6], but for our purposes the stated mechanical
interpretation suffices.)
Definition 3. The NURBS basis function in one parametric dimension
is defined by

Rpi (ξ) = Ni,p(ξ)wi∑n
î=1Nî,p(ξ)wî

53

The Ni,p are the B-splines defined by the Cox-de Boor recursion formula.

Summing over each NURBS basis function multiplied with its corre-
sponding control point, Bi we obtain a NURBS geometry C(ξ):

C(ξ) =
n∑
i=1

Rpi (ξ)Bi

Notice that the set of control points {Bi}ni=1 will not usually be ex-
actly interpolated by C(ξ), see figure (A.3) for an example of this. All
basis functions have continuity Cp−mi at the knots, where mi is the num-
ber of times the knot appear in the knot vector (inside the elements the
continuity is of course infinite). This implies that the endpoints will be
interpolated (because of the open knot vector structure) and also that
we should repeat p times any knot in the knot vector corresponding to a
control point we demand interpolated.

Multiple parametric dimensions

When we try to imagine the geometries we are challenged by two different
specifications: The dimension, d, of the control points, Bi decides which
euclidean space, Rd the geometry will be depicted in. On the other hand
the parametric dimension (how many parameters we must specify) decides
the dimension of the object, if it is a curve, a surface or a solid.

We will start with a two dimensional parameter space, such that we get
a curve, and therefore two separate knot vectors Ξ = [ξ1, ..., ξn+p+1] and
H = [η1, ..., ηm+q+1] , where n and m are the number of basis functions in
the ξ and η directions respectively while p and q are the respective orders.
One often refer to the space of all possible combinations of the knot vector
entries as the index space.

A control net Bi,j with corresponding weights wi,j must also be spec-
ified. (I like to think of the control net as a crude approximation of our
geometry.) The univariate B-spline basis functions corresponding to the
knot vectors Ξ and H are denoted Ni,p(ξ) for i = 1, ..., n and Mj,q(η) for
j = 1, ...,m respectively. We now define the tensor product structured
NURBS basis functions:

54

Definition 4. NURBS basis functions in parameter space of two dimen-
sions are defined by

Rp,qi,j (ξ, η) = Ni,p(ξ)Mj,q(η)wi,j∑m
ĵ=1

∑n
î=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

, i = 1, ..., n j = 1, ...,m.

The open knot vectors only guarantee that we will interpolate the corner
control points. The boundary points will only be ”interpolated in one
direction in parameter space”. This should make us realize that if we want
to interpolate a particular control point, we must make sure to repeat
the corresponding knots in each individual knot vector p and q times
respectively.

The surface is naturally constructed as a sum over the control points
multiplied with the corresponding NURBS function as before. The gener-
alization from two to three dimensions in parameter space (and further) is
completely analogous to the generalization from one to two dimensions we
just did here. As the parametric dimensions grow the notation becomes
tedious, so for any parametric dimension we will often just write R(~ξ),
suppressing the remaining parameters and indices. The denominator of a
NURBS basis function is often written just W (~ξ).

By basis function we will from now onwards understand the NURBS
basis function.

55

A.2.4. Knot insertion

Figure A.4.: Mesh refinement of a quartered torus/doughnut by knot in-
sertion for n = m = 3, 4, 5, 6 and p = q = 2. The elements, or
knot spans, are framed in black lines. Control points are de-
picted in green. In addition the Gaussian quadrature points
(used for numerical integration) are depicted in yellow.

A NURBS-geometry can be refined without changing the geometry.
That is; the elements (knot spans) can be shrunk which also results in
the control polygon closing in on the underlying geometry all while the
NURBS-geometry is left exact. The control polygon is the polygon as spec-
ified by the control points, that would be {Bi,j}n,mi,j=1 in two-dimensional
parameter space, see figure (A.3) for a one-dimensional example. Further-

56

more the continuity of the basis is preserved, recall that the basis for the
geometry is the same as for the numerical solution space and therefore it is
clearly an important feature when we attempt to model higher derivatives.

We start off with only one parametric dimension and with the initial
knot vector Ξ = [ξ1, ..., ξn+p+1]. We also have a set of n control points,
and we organize them by transposing the vector of their column vectors
(forming a matrix) B = [~B1, ..., ~Bn]T . The corresponding weights are
stored in a column vector w = [w1, ..., wn]T . In practice the weights will
usually be stored as the last entry of each control point in the control
point array. The first step is to formulate a new refined knot vector Ξ̄
such that Ξ ⊂ Ξ̄. The next step is to calculate the new control points B̄
and their weights w̄ by the formula

B̄ = TpB (A.4)
w̄ = Tpw (A.5)

where the matrix Tp is defined recursively by

T s+1
ij = ξ̄i+s − ξj

ξj+s − ξj
T sij + ξj+s+1 − ξ̄i+s

ξj+s+1 − ξj+1
T sij+1 for s = 0, 1, ..., p− 1 (A.6)

with base case

T 0
ij =

{
1 ξ̄i ∈ [ξj , ξj+1)
0 otherwise. (A.7)

When we operate with more than one dimension in parameter space we
can make it easy for ourselves and refine the mesh in only one parametric
direction at a time and also refining only one curve of the control polygon
at a time. That is: First we refine Ξ. We calculate the new control points
first row by row in index space (as defined by the indices of the knot
vectors). Note that while there are m + q + 1 rows in index space there
are only m rows of control points in two parametric dimensions, whereas
in three parametric dimensions we would have (m+ q+ 1)(l+ r+ 1) rows
in index space but only ml rows of control points. Then we refine H, and

57

calculate the new control points column by column. And so on in the
case that we have additional parameters. Of course we could just as well
refine all rows at once, then all columns. Because we can apply the knot
insertion algorithm separately to each direction in parameter space it is
therefore not necessary to generalize it to higher dimensions. (To clear any
confusion regarding the relationship between parameter and index space
take a look at figure (A.5).)

58

Figure A.5.: Single patch NURBS-geometry. Control points in green.
The basis functions are quadratic in both directions. The
knot vectors are Ξ = [ξ1, ..., ξ8] = [0, 0, 0, 1/3, 2/3, 1, 1, 1] and
H = [η1, ..., η9] = [0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1]. Notice that
the zero measure knot spans are coloured yellow and visible
only in index space. When we integrate over element number
two, coloured blue, we perform the integration on the parent
element, map it onto the knot span in parameter space and
finally onto the physical element. We use the notion of index
space to determine/visualize the support of basis functions.

59

60

Bibliography

[1] Y. Bazilevs, V. M. Calo, J.A. Cottrell, J. A. Evans, T. J. R. Hughes,
S. Lipton, M. A. Scott, and T. W. Sederberg. Isogeometric anal-
ysis using T-splines. Computer Methods in Applied Mechanics and
Engineering, 199:229–263, 2010.

[2] T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinu-
ities in finite elements. International Journal for Numerical Methods
in Engineering, 50:993–1013, 2001.

[3] M. J. Borden, C.V. Verhoosel, M. A. Scott, T. J. R. Hughes, and
C. M. Landis. A phase-field description of dynamic brittle fracture,
2011.

[4] B. Bourdin, G. A. Francfort, and J. J. Marigo. The variational ap-
proach to fracture. J Elasticity, 91:5–148, 2008.

[5] B. Bourdin, C. J. Larsen, and C. L. Richardson. A time-discrete
model for dynamic fracture based on crack regularization. J Fract,
168:133–143, 2009.

[6] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Anal-
ysis. John Wiley & Sons, Ltd, 2009.

[7] T. Dokken, T. Lyche, and K. F. Pettersen. Locally refinable splines
over box-partitions. Submitted to Computer Aided Geometric De-
sign, 2012.

[8] M. R. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analy-
sis by local h-refinement with T-splines. Computer Methods in Applied
Mechanics and Engineering, 199:264–275, 2010.

[9] E. N. Dvorkin, A. M. Cuiti no, and G. Gioia. Finite elements with
displacement interpolated embedded localization lines insensitive to

61

mesh size and distortions. International Journal for Numerical Meth-
ods in Engineering, 30:541–564, 1990.

[10] S. S. Ghorashi, N. Valizadeh, and S. Mohammadi. Extended isogeo-
metric analysis for simulation of stationary and propagating cracks.
Int. J. Numer. Meth. Engng, 2011.

[11] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement.
Computer Methods in Applied Mechanics and Engineering, 194:4135–
4195, 2004.

[12] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric anal-
ysis using LR B-splines. Submitted to Computer Methods in Applied
Mechanics and Engineering, 2012.

[13] T. Kvamsdal and K. M. Okstad. Error estimation based on supercon-
vergent patch recovery using atatically admissible stress fields. Int.
J. Numer. Meth. Engng., 42:443–472, 1997.

[14] J. Lasry, Y. Renard J. Pommier, and M. Salaun. eXtended Finite
Element Methods for thin cracked plates with Kirchoff-Love theory.
Computer Methods in Applied Mechanics and Engineering, 2009.

[15] E. De Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M. C.
Hsu. X-FEM in isogeometric analysis for linear fracture mechanics.
Int. J. Numer. Meth. Engng, 87:541–565, 2011.

[16] C. Miehe, M. Hofacker, and F. Welschinger. A phase field model
for rate-independent crack propagation: Robust algorithmic imple-
mentation based on operator splits. Computer Methods in Applied
Mechanics and Engineering, 199:2765–2778, 2010.

[17] C. Miehe and M. Lambrecht. Algorithms for computation of stresses
and elasticity moduli in terms of Seth-Hill’s family of generalized
strain tensors. Communications in numerical methods in engineering,
17:337–353, 2001.

[18] C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically
consistent phase-field models of fracture: Variational principles

62

and multi-field FE implementations. Int. J. Numer. Meth. Engng,
83:1273–1311, 2010.

[19] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes. Local re-
finement of analysis-suitable T-splines. Computer Methods in Applied
Mechanics and Engineering, 213-216:206–222, 2012.

[20] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and
T-NURCCs. ACM Transactions on Graphics, 22:477–484, 2003.

[21] J. C. Simo and F. Armero. Improved versions of assumed enhanced
strain tri-linear elements for 3D finite deformation problems. Com-
puter Methods in Applied Mechanics and Engineering, 110:359–386,
1993.

63

	Title Page
	masteroppgave.pdf

