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We perform a nonperturbative study of the electroweak phase transition (EWPT) in the two Higgs
doublet model (2HDM) by deriving a dimensionally reduced high-temperature effective theory for
the model, and matching to known results for the phase diagram of the effective theory. We find
regions of the parameter space where the theory exhibits a first-order phase transition. In particular,
our findings are consistent with previous perturbative results suggesting that the primary signature
of a first-order EWPT in the 2HDM is mA0 > mH0 +mZ .

I. INTRODUCTION

Accounting for the baryon asymmetry in the present
universe is a major unsolved problem in cosmology. One
of the leading candidates for a viable mechanism, elec-
troweak baryogenesis (EWBG) [1], suggests that the
asymmetry originates from the electroweak phase tran-
sition (EWPT) in the early universe. According to the
Sakharov conditions [2] the transition would have to be
first order, accompanied by a sizable violation of CP-
symmetry. Unfortunately, these conditions immediately
rule out EWBG within the minimal Standard Model
(SM), as it was demonstrated that the SM EWPT is
a crossover [3–6], and that SM CP-violating effects are
heavily suppressed at high temperatures [7–9].

Independently of the question of baryon asymmetry, a
host of beyond the Standard Model (BSM) theories have
been proposed to solve open problems in physics. Deter-
mining whether BSM theories can produce a first order
EWPT and thus facilitate EWBG is nontrivial: quantita-
tively reliable conclusions about the phase transition typ-
ically require a non-perturbative approach, deemed un-
manageable for large parameter spaces. Because of this
difficulty, analyses based on the finite-temperature effec-
tive potential have become standard [10–16]. Such stud-
ies can, however, have considerable uncertainties, partic-
ularly for physical observables: in one study [17], errors
in excess of 10% in the critical temperature and 50% in
the latent heat were found, compared to non-perturbative
studies.
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In contrast, a more reliable approach uses dimension-
ally reduced effective theories, originally applied to the
SM in Refs. [3–5, 18, 19], and recently applied to the SM
accompanied by a real singlet [20]. In this paper, we use
this method to treat a widely studied BSM model, the
two Higgs doublet model (2HDM), where the SM is aug-
mented with an additional Higgs doublet [see Ref. [21]
for a review, and Refs. [22–24] for earlier work on dimen-
sional reduction (DR) in the 2HDM]. We derive a three-
dimensional high-T effective theory, studying regions of
parameter space where this theory has the same form as
that of the Standard Model, similar to Ref. [25]. This
reduces determining the phase diagram of the theory to
mapping its parameter space to that of the SM effective
theory. Equipped with the analysis of [3–5], we discover
interesting and phenomenologically viable regions of pa-
rameter space where the EWPT is first order, corrobo-
rating key findings of perturbative studies of EWBG in
the 2HDM.

II. DIMENSIONAL REDUCTION
OF THE 2HDM

Our four-dimensional starting theory can be described
by the schematic action

S =

∫
d4x [Lgauge + Lfermion + Lscalar + LYukawa] , (1)

suppressing counterterm and ghost contributions. The
field content includes SU(3)c, SU(2)L and U(1)Y gauge
fields, two scalar doublets φ1 and φ2, as well as all
fermions present in the SM. In our present treatment,
we will consider only one quark flavor in the Yukawa sec-
tor, namely the top, since it has the largest coupling to
the Higgs field. The top quark couples to one doublet
only (by convention φ2), and we have not yet committed
to a specific type of 2HDM (I or II).
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The extended scalar sector of our model reads

Lscalar =

2∑
i=1

(Dµφi)
†(Dµφi) + V (φ1, φ2), (2)

with usual covariant derivative Dµ and the potential

V (φ1, φ2) = µ2
11φ
†
1φ1 + µ2

22φ
†
2φ2 + µ2

12φ
†
1φ2 + µ2∗

12φ
†
2φ1

+ λ1(φ†1φ1)2 + λ2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2)

+ λ4(φ†1φ2)(φ†2φ1) +
λ5

2
(φ†1φ2)2 +

λ∗5
2

(φ†2φ1)2.

(3)

In general, C(P) symmetry is broken when λ5 or µ2
12 are

complex; we have discarded so-called hard CP-breaking
terms, often parametrised by λ6,7, cf. [21, 26].

The first three-dimensional effective theory, obtained
by integrating out the ‘superheavy’ hard scale πT (see
e.g. Ref. [20] for details of the procedure), has schematic
form

S =

∫
d3x

[
L(3)

gauge + L(3)
scalar + L(3)

temporal

]
, (4)

again suppressing ghost and counterterm contributions.
The field content is now SU(2)L and U(1)Y gauge
fields; two Higgs doublets; and temporal scalar fields
Aa0 , B0, C

α
0 . The fermions are integrated out and the

SU(3)c gauge fields can be neglected [20]. The funda-
mental scalar sector remains of the form

L(3)
scalar = (Drφ1)†(Drφ1) + (Drφ2)†(Drφ2) + V (φ1, φ2),

where r = 1, 2, 3 is summed over. In the second step of
DR, the heavy temporal scalar fields are integrated out.

Although the theory in (4) is already suitable for lattice
simulations, it can be further simplified by noticing that
φ1 and φ2 mix when µ2

12 6= 0, and near the phase transi-
tion there typically exists a hierarchy between the mass
eigenvalues. This observation—specific to the 2HDM—
allows us to integrate out the heavy mode and study the
phase transition with only one scalar field coupled to the
gauge fields. Our final effective theory becomes

S =

∫
d3x

[
L̂(3)

gauge + L̂(3)
scalar

]
, (5)

L̂(3)
scalar = (Drφ)†(Drφ) + µ̂2

3φ
†φ+ λ̂3(φ†φ)2. (6)

Here, φ is the remaining light φ1-φ2 mode, and the pa-

rameters of the theory include µ̂2
3, λ̂3 and the 3D gauge

couplings ĝ′3 and ĝ3 for the U(1)Y and SU(2)L interac-
tions. As in the analysis of Refs. [3, 18], we omit all
non-perturbative effects related to the U(1)Y field.

The main task of DR is to perturbatively match the
parameters of the original 4D theory, Eq. (2), to those of
the final effective theory, Eq. (6). This is accomplished by
demanding that the effective theory reproduces the static
Green’s functions of the original theory at large distances

R� 1/T . This results in a number of matching relations
from which the effective theory parameters are solved.
This procedure is presented in Ref. [26] and summarised
in the Supplemental Material [27].

As discussed above, the effective theory of Eq. (6) has
the same form as that of the SM, studied in Refs. [3–5],
but with different matching relations. This allows us to
adopt existing numerical results for the strength of the
phase transition, and study the phase diagram through
our matching procedure alone.

The validity of DR can be quantified by estimating
the effect of neglected dimension-six operators. While
it is difficult to comprehensively gauge their effect, one
can evaluate the change in the vacuum expectation value
(vev) of the Higgs field in the effective theory caused by
the (φ†φ)3 operators. In Eq. (201) of Ref. [18], it was
shown that in the SM the dominant neglected contribu-
tion comes from the top quark; its effect is about one per-
cent. In the first DR step where the superheavy fields are
integrated out, we estimate the effect of new BSM contri-
butions by comparing their magnitude to the contribu-
tion from the top quark [see Eqs. (A34,A35) in the Sup-
plemental Material]. However, in many cases the opera-

tor O(6)
B = Λ̂6(φ†φ)3

3D generated when the heavier dou-
blet is integrated out dominates over the six-dimensional

operators of the first step, denoted {O(6)
A,i}. We discuss

these operators in detail below.
Finally, although the parameter matching is per-

turbative, the study of the 3D phase diagram is
non-perturbative and—within the limitations of lattice
methods—exact. The main advantage of our approach
lies in proper handling of the infrared physics, which
causes trouble in traditional perturbative studies of the
EWPT. Resummations are performed when the super-
heavy and heavy scales are integrated out perturba-
tively, and the problematic light modes are treated non-
perturbatively on the lattice. However, the mapping to
precise values of the 4D parameters, where this phase
transition occurs in the 2HDM, is limited by the accuracy
of the perturbative truncation. We organise the expan-
sion in terms of the gauge coupling g, and perform the
DR to O(g4). Thus the calculation is carried out at the
one-loop level for quartic couplings, and two-loop level for
mass parameters. This exceeds the accuracy used in the
perturbative calculations of e.g. Ref. [28] (see, however,
Ref. [29] for a recent two-loop perturbative calculation in
the inert doublet model). The uncertainty in the effec-
tive theory due to the choice of renormalisation scale is
discussed in the Supplemental Material.

III. SCANNING THE PARAMETER SPACE

The phase diagram of the dimensionally-reduced the-
ory can be mapped using the dimensionless parameters

x ≡ λ̂3/ĝ
2
3 , y ≡ µ̂2

3/ĝ
4
3 . It is known that within this the-

ory the EWPT occurs near y ' 0, where the Higgs mass
parameter becomes negative. In Refs. [3–5], it was found
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that the transition is first order for x . 0.11, and strongly
so for x . 0.04. In this paper we are focussed on finding
where the crossover turns into a first-order transition.

We search for areas of 2HDM parameter space that
map onto regions of the 3D effective theory with x <
0.11 and y ' 0. Since there are ten real parameters in
the 4D theory and only three in the 3D one, inverting
the mapping process is not unique. We perform scans
of the 2HDM parameter space, guided by the results of
Ref. [30] that combine phenomenological constraints with
a one-loop resummed perturbative determination of the
effective potential. Other recent treatments are found in
Refs. [31, 32].

A uniform scan through a 10-dimensional space is com-
putationally expensive; we must therefore make some
simplifying assumptions. We take all parameters of the
2HDM to be real, setting Im(λ5) = 0, Im(µ2

12) = 0. This
eliminates extra CP violation in the model, which would
be crucial for baryogenesis. However, the effect of these
imaginary parts on the strength of the transition is ex-
pected to be negligible; the CP-violating phase must nec-
essarily be small due to EDM constraints [33–35].

Next, we reparametrise the model following Ref. [30],
applying tree-level relations between the MS parameters
and physical quantities; accounting for (possibly sizeable)
loop effects from vacuum renormalisation is left for future
work. The masses of the CP-even scalars are denoted by
mh = 125 GeV and mH0 ; that of the CP-odd scalar
by mA0 ; and that of the charged scalar by mH± . We
also employ two angles α and β: α parametrises mix-
ing between the CP-even states, while β is related to
the ratio of the vevs tan(β) ≡ ν2

ν1
. Here, ν1 and ν2 are

the vevs for φ1 and φ2, respectively, with ν2
1 + ν2

2 = ν2

and ν = 246 GeV. Finally, there is the squared mass
scale M2 ≡ µ2(tan(β) + 1/ tan(β)), where we treat
µ2 ≡ −Reµ2

12 as an input parameter. The relations be-
tween the physical states and gauge eigenstates can be
obtained from Ref. [30].1

We also fix mH± = mA0
, since EW precision tests

require the mass of the charged Higgs to be roughly de-
generate with either H0 or A0 [36, 37]. Furthermore, we
work in the alignment limit, setting cos(β − α) = 0. In
this limit, the CP-even scalar h couples to SM particles
exactly like the SM Higgs. We investigate relatively few
values for tan(β), whereas we perform a more exhaustive
scan in a three-dimensional parameter space spanned by
mH0

, mA0
, and µ2. At each point, we require that tree-

level stability and unitary constraints be satisfied; for de-
tails, see Ref. [26]. Furthermore, for the scaling assump-
tions of DR to be valid, the tree-level mass parameters
µ11, µ22 and µ12 should be comparable to the Debye mass
mD ∼ gT near the phase transition. This sets an upper
bound for the input parameter µ . 200 GeV. Finally,

1 In Eq. (A.1) of Ref. [30], there is a misprint in the powers of
tan(β) in the equations for λ1 [cos(β − α) tan(β) → cos(β −
α)/ tan(β)] and λ2 [cos(β − α)/ tan(β)→ cos(β − α) tan(β)].

we verify that in the effective theory the other doublet
really is heavy near the phase transition, so it is justified
to integrate it out.

IV. RESULTS

Following our scanning protocol outlined above, we fix
tan(β) and scan in the two scalar masses mH0

and mA0

between 137.5 and 562.5 GeV at spacings of 6.25 GeV, a
total of 4624 points. A dense scan in µ is then carried out
for each pair, from 10 to 150 GeV at intervals of 2.5 GeV
for a total of 56 values. In all, each of our fixed-tan(β)
plots results from scanning approximately 260 000 points.
The upper limit on µ is chosen to ensure that DR is valid,
as explained above.

We first check whether each point is physical, accord-
ing to our criteria. If so, we then perform DR for evenly-
spaced temperatures between 80 and 200 GeV, at inter-
vals of 20 GeV. This allows us to find the value of x
when y = 0—on the critical line—by interpolation. We
then use x to characterise the phase transition. We take
0.0 < x < 0.11 as an indicator of a first-order EWPT,
the upper limit coming from previous lattice work.

Combining different values of µ, we indicate the rel-
ative number of points with a first-order phase transi-
tion as a heat map in Fig. 1, for three separate values of
tan(β). The majority of our points reside in the region
mA0

> mH0
+mZ , in accordance with Refs. [28, 30] (see,

however, Refs. [31, 32]). In our framework, sufficiently
strong interactions with the second doublet are necessary
to bring x down from its SM value of x > 0.11. Although
the relation between the 4D inputs and x is complicated
by the diagonalization, a mass hierarchy between H0 and
A0 generically results in large portal couplings λ3−5 and
small values of x in the upper region. However, at small
tan(β) we also see a considerable number of points in
regions where this does not hold.

In Fig. 2, we show a breakdown of the heatmap plot
with fixed tan(β) = 2.0 for two values of µ. We include
here an estimate of the effect of two of the neglected

six-dimensional operators O(6)
A,1 and O(6)

A,2 produced when
the superheavy scale is integrated out. Generally, de-
creasing values of x correspond to increasing importance
of six-dimensional terms: when the effect of these terms
becomes large, DR breaks down. These plots also show
how the lower first-order region disappears as µ increases.

We have found by explicit computation that the
negative-x region at large mA0 is due to the omission

of the six-dimensional operator O(6)
B in the last DR step

that, although inversely proportional to the heavy dou-
blet mass, obtains sizable contributions from the large
couplings. We estimate its effect by computing the
dominant tree-level diagram contributing to the oper-
ator coefficient (see [38] and the Supplemental Mate-
rial) and determining the two-loop effective potential
in the final effective theory with this operator included
(cf. Refs. [18, 39]). We stress, however, that the effective
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Figure 1. Heat maps with fixed tan(β), showing regions of first order EWPT (0 < x < 0.11 and y ' 0) in the alignment limit.
The dotted lines correspond to mA0 = mH0 and mA0 = mH0 ±mZ .
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Figure 2. Slices with different values of µ, µ = 50 GeV (top)
and 75 GeV (bottom), and fixed tan(β) = 2.0. The validity of
DR is estimated by showing the relative effect of the neglected

six-dimensional operators O(6)
A,1, O(6)

A,2. The white regions are
either unphysical or there is no transition. At large mH0 the
effects of six-dimensional operators render the first DR step
unreliable.

potential is only a tool for estimating errors from omit-
ted six-dimensional operators; our results concerning the
phase transition are obtained using the non-perturbative
phase diagram of [3, 5].

In Fig. 3, the effective potential is depicted at two

values2 of x, both with and without the effects of the

six-dimensional operator O(6)
B . The field ϕ is the 3D

background field, defined via 〈φ〉3D = ϕ√
2

(
0 1

)T
and

related to 4D fields as described in the Supplemental
Material. The figure demonstrates how at x = 0.108—
near the crossover boundary—the six-dimensional oper-

ator O(6)
B has a negligible impact on the potential, while

for x = 0.068 (which corresponds to φc/Tc ≈ 0.7) the ef-
fect is already sizable, continuing to grow as x decreases.
Hence integrating out the heavier doublet is expected to
be a valid approximation when the transition is of weakly
first order, but becomes increasingly challenged near the
strong transition limit of x . 0.04. While we expect our
results to be qualitatively robust even there, reaching
quantitatively accurate results for very small x clearly
calls for simulations with two dynamical doublets, which
we leave for future work.

Experimental constraints on the 2HDM parameter
space depend strongly on the way in which fermions cou-
ple to the Higgs doublets. With the exception of the top
quark, other Yukawa couplings have little effect on our
EWPT analysis, and we have still to indicate whether
we are considering Type I (all quarks couple to φ2) or
Type II (up-type quarks couple to φ2, down-type to φ1)
2HDM. The most stringent constraints come from flavour
physics, where B-decays set the bound mH± & 580 GeV
for the charged Higgs mass in Type II [40]. Assuming
that m±H is degenerate with mA0 in accordance with EW
precision tests, this rules out our regions of first-order
EWPT in Type II, but no such lower bound exists in
Type I for tanβ ≥ 2 [40, 41].

Additional restrictions come from direct searches for
neutral Higgses at the LHC [42]. For Type I, the

2 The exact input parameters used were mA0
= 270 GeV (x =

0.108) and mA0
= 280 GeV (x = 0.063), with tan(β) =

2, mH0
= 180 GeV, µ = 75 GeV, mH± = mA0

and cos(β−α) =
0 for both cases.
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Figure 3. Two-loop effective potential in the final effective

theory with the dominant six-dimensional operator O(6)
B of

the last DR step included, evaluated at the critical tempera-
ture. At small x, integrating out the second doublet causes
significant error, as is seen from the shift in the potential
minimum.

H0 → ττ cross section is suppressed by cot2 β, and our
choices of tanβ are within current experimental bounds.
Finally, we have verified that the mass range we scan in
is allowed by measurements of the h → γγ decay [43],
as well as the relatively recent search for A0 → Zh pro-
cesses [44]. Having not scanned in the hidden-Higgs re-
gion where constraints from charged-scalar searches be-
come important [45], we conclude that our first-order
EWPT regions are currently not ruled out by experi-
ments if a Type I 2HDM is assumed.

V. DISCUSSION

It is a shortcoming of present-day particle cosmology
that it is still impossible to reliably determine the nature
and strength of the EWPT for a given BSM scenario.

This information would be valuable not only for EWBG,
but also for gravitational wave physics, as a first-order
EWPT would leave an imprint in the sensitivity range of
the LISA mission and other proposed gravitational-wave
detectors [46].

We have taken a step towards remedying the situation
by studying the mapping of the phase diagram of one
viable BSM theory, the 2HDM. Our results concern the
EWPT in the alignment limit cos(β −α) = 0. Our work
so far supports the idea that the primary signature of
a first order transition in this theory is indeed mA0

>
mH0

+mZ , as suggested by Refs. [28, 30].

The techniques discussed in this paper can be applied,
with suitable modifications, to a host of other models
where a substantial region of parameter space can be
mapped onto the three-dimensional theory of the mini-
mal Standard Model. In the future, our aim is to per-
form a thorough comparison of perturbative and non-
perturbative results in the 2HDM by keeping both dou-
blets dynamical in the effective theory. Similar projects
to study the EWPT and benchmark the accuracy of per-
turbation theory are already underway in the Standard
Model augmented by a real singlet [47] or triplet field [48];
the EWPT has been perturbatively analysed for the for-
mer in Refs. [49, 50], and for the latter in Ref. [51].
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Supplemental Material

Appendix A: Dimensional reduction of 2HDM

In this Supplemental Material we collect the matching relations between the full four-dimensional theory and
effective theories. A detailed derivation can be found in Ref. [26].

1. Three-dimensional effective theories

We denote the fields of the effective theories with the same symbols as those of the four-dimensional theory,
even though their normalisation is different and will affect the mapping between full and effective theories. These
normalisations between 4D and 3D fields have been listed below.

The schematic form of classical Lagrangian density of the effective theory was given in Eq. (4) of the main paper.
The temporal part reads

L(3)
temporal =

1

2
(DrA

a
0)2 +

1

2
m2
DA

a
0A

a
0 +

1

2
(∂rB0)2 +

1

2
m′2DB

2
0 +

1

4
κ1(Aa0A

a
0)2 +

1

4
κ2B

4
0

+
1

4
κ3A

a
0A

a
0B

2
0 + h1φ

†
1φ1A

a
0A

a
0 + h2φ

†
1φ1B

2
0 + h3B0φ

†
1
~A0 · ~τφ1 + h4φ

†
2φ2A

a
0A

a
0

+ h5φ
†
2φ2B

2
0 + h6B0φ

†
2
~A0 · ~τφ2 +

1

2
(∂rC

α
0 )2 +

1

2
m′′2D C

α
0 C

α
0 + ω3C

α
0 C

α
0 φ
†
2φ2. (A1)

Here the covariant derivative of an isospin triplet reads DrA
a
0 = ∂rA

a
0 + g3ε

abcAbrA
c
0, and for the temporal gluon Cα0

ordinary derivative is used instead of covariant derivative as gluons are discarded for only contributing at a higher
order [20].

After the heavy temporal scalars have been integrated out, their effects are encoded by the parameters and fields
of a new theory where the parameters are denoted with a bar as ḡ3, ḡ

′
3, µ̄

2
11,3 etc. In this theory, the phase transition

takes place close to a point where the mass matrix has zero eigenvalue, and then generically in the diagonal basis
the other mass parameter is heavy. By performing a unitary transformation, one can diagonalise the scalar potential.

Denoting Ω ≡
√

(µ̄2
11,3 − µ̄2

22,3)2 + 4µ̄2∗
12,3µ̄

2
12,3, this transformation reads3

(
φ1

φ2

)
≡
(
α β
γ δ

)(
θ
φ

)
, (A2)

where

α ≡ 2√
4 +

∣∣∣ (µ̄2
22,3−µ̄2

11,3)+Ω

µ̄2∗
12,3

∣∣∣2 , β ≡ (µ̄2
11,3 − µ̄2

22,3 − Ω∗)

µ̄2
12,3

√
4 +

∣∣∣ (µ̄2
22,3−µ̄2

11,3)+Ω

µ̄2∗
12,3

∣∣∣2
γ ≡ 2√

4 +
∣∣∣−(µ̄2

22,3−µ̄2
11,3)+Ω

µ̄2∗
12,3

∣∣∣2 , δ ≡ (µ̄2
11,3 − µ̄2

22,3 + Ω∗)

µ̄2
12,3

√
4 +

∣∣∣−(µ̄2
22,3−µ̄2

11,3)+Ω

µ̄2∗
12,3

∣∣∣2 . (A3)

The mass parameters in the diagonal basis read

µ̃2
φ =

1

2
(µ̄2

11,3 + µ̄2
22,3 − Ω), µ̃2

θ =
1

2
(µ̄2

11,3 + µ̄2
22,3 + Ω). (A4)

Generally µ̃2
θ is heavy when µ̃2

φ is light, and therefore the field θ can be integrated out. The scalar self-couplings in

3 Assuming Re µ̄212,3 > 0; otherwise, α and δ change sign.
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the diagonal basis are given by 

λ̃1

λ̃2

λ̃3

λ̃4

λ̃5/2

λ̃6

λ̃7


= M ·


λ̄1,3

λ̄2,3

λ̄3,3

λ̄4,3

λ̄5,3/2
λ̄∗5,3/2

 , (A5)

where

M ≡



|β|4 |δ|4 |β|2|δ|2 |β|2|δ|2 (β∗δ)2 (βδ∗)2

|α|4 |γ|4 |α|2|γ|2 |α|2|γ|2 (α∗γ)2 (αγ∗)2

2|α|2|β|2 2|γ|2|δ|2 |α|2|δ|2 + |β|2|γ|2 2 Re(αβ∗γ∗δ) 2α∗β∗γδ 2αβγ∗δ∗

2|α|2|β|2 2|γ|2|δ|2 2 Re(αβ∗γ∗δ) |α|2|δ|2 + |β|2|γ|2 2α∗β∗γδ 2αβγ∗δ∗

(αβ∗)2 (γδ∗)2 αβ∗γδ∗ αβ∗γδ∗ (β∗γ)2 (αδ∗)2

2|β|2αβ∗ 2|δ|2γδ∗ β∗δ∗(βγ + αδ) β∗δ∗(βγ + αδ) 2β∗γβ∗δ 2αβδ∗δ∗

2|α|2α∗β 2|γ|2γ∗δ α∗γ∗(βγ + αδ) α∗γ∗(βγ + αδ) 2α∗γα∗δ 2αβγ∗γ∗


. (A6)

The scalar potential in the diagonal basis reads

V (φ, θ) = µ̃2
φφ
†φ+ µ̃2

θθ
†θ + λ̃1(φ†φ)2 + λ̃2(θ†θ)2 + λ̃3(φ†φ)(θ†θ) + λ̃4(φ†θ)(θ†φ)

+
λ̃5

2
(φ†θ)2 +

λ̃∗5
2

(θ†φ)2 + λ̃6(φ†φ)(φ†θ) + λ̃∗6(φ†φ)(θ†φ) + λ̃7(θ†θ)(θ†φ) + λ̃∗7(θ†θ)(φ†θ), (A7)

where φ and θ are light and heavy fields, respectively.
When the heavy doublet θ has been integrated out, the final effective theory is same as in that of the SM, as given

in Eq. (6) of the main paper.

2. Matching relations and normalisations of fields

Our calculations are carried out in the MS scheme. We use the following notation:

Nd = 2,

Lb ≡ 2 ln

(
Λ

T

)
− 2[ln(4π)− γ], (A8)

Lf ≡ Lb + 4 ln 2,

c ≡ 1

2

(
ln

(
8π

9

)
+
ζ ′(2)

ζ(2)
− 2γ

)
,

where Λ is the renormalisation scale of the 4D theory and γ is the Euler-Mascheroni constant.
The normalisations relating three- and four-dimensional fields read

A2
3D,0 =

A2
4D,0

T

{
1 +

g2

(4π)2

[
Nd − 26

6
Lb +

1

3
(8 +Nd) +

4Nf
3

(Lf − 1)

]}
,

A2
3D,r =

A2
4D,r

T

[
1 +

g2

(4π)2

(
Nd − 26

6
Lb −

2

3
+

4Nf
3
Lf

)]
,

B2
3D,0 =

B2
4D,0

T

{
1 +

g′2

(4π)2

[
Nd

(
Lb
6

+
1

3

)
+

20Nf
9

(Lf − 1)

]}
,

B2
3D,r =

B2
4D,r

T

[
1 +

g′2

(4π)2

(
Nd

Lb
6

+
20Nf

9
Lf

)]
, (A9)

(
φ†1φ1

)
3D

=

(
φ†1φ1

)
4D

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′

2
)Lb

)]
,
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(
φ†2φ2

)
3D

=

(
φ†2φ2

)
4D

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′

2
)Lb − 3g2

Y Lf

)]
,

(
φ†1φ2

)
3D

=

(
φ†1φ2

)
4D

T

[
1− 1

(4π)2

(
3

4
(3g2 + g′

2
)Lb −

3

2
g2
Y Lf

)]
.

For dimensional reduction, the required ingredients include matching relations between the 4D and 3D theories, one-
loop β functions (to make the matching relations renormalisation scale independent) and finally the relations between
MS-parameters and physical quantities.

We use the tree-level relations, despite the fact that for consistent O(g4) accuracy one should use the one-loop
corrected relations. This would require performing one-loop vacuum renormalisation of the physical quantities. This
is a non-trivial task, and is left for the future. In the special case of the inert doublet model, the one-loop vacuum
renormalisation can be found in Ref. [29]. Below we list all needed matching relations, while β functions and relations
of MS-parameters and physical quantities can be found in Ref. [26] with detailed derivations and explicit, step-by-step
intermediate results.

a. Integration over superheavy scale

A full O(g4)-accurate dimensional reduction requires the evaluation of the mass parameters at two-loop and cou-
plings at one-loop order. The results are listed below.

m2
D = g2T 2

(
4 +Nd

6
+
Nf
3

)
, (A10)

m′2D = g′2T 2

(
Nd
6

+
5Nf

9

)
, (A11)

m′′2D = g2
sT

2

(
1 +

Nf
6

)
, (A12)

g2
3 = g2(Λ)T

[
1 +

g2

(4π)2

(
44−Nd

6
Lb +

2

3
− 4Nf

3
Lf

)]
, (A13)

g′23 = g′2(Λ)T

[
1− g′2

(4π)2

(
Nd
6
Lb +

20Nf
9

Lf

)]
, (A14)

κ1 = T
g4

16π2

16 +Nd − 4Nf
3

, (A15)

κ2 = T
g′4

16π2

(
Nd
3
− 380

81
Nf

)
, (A16)

κ3 = T
g2g′2

16π2

(
2Nd −

8

3
Nf

)
, (A17)

h1 =
g2(Λ)T

4

(
1 +

1

(4π)2

{[
44−Nd

6
Lb +

53

6
− Nd

3
− 4Nf

3
(Lf − 1)

]
g2 +

g′2

2

+ 12λ1 + 2(2λ3 + λ4)

})
, (A18)

h2 =
g′2(Λ)T

4

(
1 +

1

(4π)2

{
3g2

2
+

[
1

2
− Nd

6

(
2 + Lb

)
− 20Nf

9
(Lf − 1)

]
g′2

+ 12λ1 + 2(2λ3 + λ4)

})
, (A19)

h3 =
g(Λ)g′(Λ)T

2

{
1 +

1

(4π)2

[
− 5 +Nd

6
g2 +

3−Nd
6

g′2 + Lb

(
44−Nd

12
g2 − Nd

12
g′2
)

−Nf (Lf − 1)

(
2

3
g2 +

10

9
g′2
)

+ 4λ1 + 2λ4

]}
, (A20)

h4 =
g2(Λ)T

4

(
1 +

1

(4π)2

{[
44−Nd

6
Lb +

53

6
− Nd

3
− 4Nf

3
(Lf − 1)

]
g2 +

g′2

2
− 6g2

Y (A21)
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+ 12λ2 + 2(2λ3 + λ4)

})
, (A22)

h5 =
g′2(Λ)T

4

(
1 +

1

(4π)2

{
3g2

2
+

[
1

2
− Nd

6

(
2 + Lb

)
− 20Nf

9
(Lf − 1)

]
g′2 − 34

3
g2
Y

+ 12λ2 + 2(2λ3 + λ4)

})
, (A23)

h6 =
g(Λ)g′(Λ)T

2

{
1 +

1

(4π)2

[
− 5 +Nd

6
g2 +

3−Nd
6

g′2 + Lb

(
44−Nd

12
g2 − Nd

12
g′2
)

−Nf (Lf − 1)

(
2

3
g2 +

10

9
g′2
)

+ 2g2
Y + 4λ2 + 2λ4

]}
, (A24)

ω3 = − 2T

16π2
g2
sg

2
Y , (A25)

λ1,3 = T

{
λ1(Λ) +

1

(4π)2

[
1

8

(
3g4 + g′

4
+ 2g2g′

2
)

− Lb
(

3

16

(
3g4 + g′

4
+ 2g2g′

2
)

+ λ2
3 + λ3λ4 +

1

2
λ2

4 +
1

2
|λ5|2 −

3

2

(
3g2 + g′

2 − 8λ1

)
λ1

)]}
, (A26)

λ2,3 = T

{
λ2(Λ) +

1

(4π)2

[
1

8

(
3g4 + g′

4
+ 2g2g′

2
)

+ 3Lf

(
g4
Y − 2λ2g

2
Y

)
− Lb

(
3

16

(
3g4 + g′

4
+ 2g2g′

2
)

+ λ2
3 + λ3λ4 +

1

2
λ2

4 +
1

2
|λ5|2 −

3

2

(
3g2 + g′

2 − 8λ2

)
λ2

)]}
, (A27)

λ3,3 = T

{
λ3(Λ) +

1

(4π)2

[
1

4

(
3g4 + g′

4 − 2g2g′
2
)
− 3Lfλ3g

2
Y

− Lb
(

3

8

(
3g4 + g′

4 − 2g2g′
2
)

+ 2(λ1 + λ2)(3λ3 + λ4) + 2λ2
3 + λ2

4 + |λ5|2 −
3

2

(
3g2 + g′

2
)
λ3

)]}
,

(A28)

λ4,3 = T

{
λ4(Λ) +

1

(4π)2

[
g2g′

2 − 3Lfλ4g
2
Y

− Lb
(

3

2
g2g′

2
+ 2(λ1 + λ2)λ4 + 2λ2

4 + 4λ3λ4 + 4|λ5|2 −
3

2

(
3g2 + g′

2
)
λ4

)]}
(A29)

and λ5,3 = T

{
λ5(Λ) +

1

(4π)2

[
− 3Lfλ5g

2
Y − Lb

(
2(λ1 + λ2 + 2λ3 + 3λ4)λ5 −

3

2

(
3g2 + g′

2
)
λ5

)]}
. (A30)

These relations have been calculated previously in Ref. [22], with the restriction of λ5 being real rather than complex.
We have corrected two minor errors in the expressions for λ4,3 and λ5,3 for the terms involving λ5.

In the Standard Model, the O(g4) result for the 3D scalar mass parameter reads:

(
µ2

22,3

)
SM

=µ2
22(Λ) +

T 2

16

(
3g2(Λ) + g′

2
(Λ) + 4g2

Y (Λ) + 8λ2(Λ)
)

+
1

16π2

{
µ2

22

((3

4
(3g2 + g′

2
)− 6λ2

)
Lb − 3g2

Y Lf

)
+ T 2

(
167

96
g4 +

1

288
g′

4 − 3

16
g2g′

2
+

1

4
λ2(3g2 + g′

2
)

+ Lb

(17

16
g4 − 5

48
g′

4 − 3

16
g2g′

2
+

3

4
λ2(3g2 + g′

2
)− 6λ2

2

)
+

1

T 2

(
c+ ln(

3T

Λ3D
)
)(39

16
g4

3 + 12g2
3h4 − 6h2

4 + 9g2
3λ2,3 − 12λ2

2,3
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− 5

16
g′

4
3 −

9

8
g2

3g
′2
3 − 2h2

5 − 3h2
6 + 3g′

2
3λ2,3

)
− g2

Y

( 3

16
g2 +

11

48
g′

2
+ 2g2

s

)
+ (

1

12
g4 +

5

108
g′

4
)Nf

+ Lf

(
g2
Y

( 9

16
g2 +

17

48
g′

2
+ 2g2

s − 3λ2

)
+

3

8
g4
Y − (

1

4
g4 +

5

36
g′

4
)Nf

)
+ ln(2)

(
g2
Y

(
− 21

8
g2 − 47

72
g′

2
+

8

3
g2
s + 9λ2

)
− 3

2
g4
Y + (

3

2
g4 +

5

6
g′

4
)Nf

))}
. (A31)

This result can be found also in Ref. [18], apart from the two-loop contributions involving g′, as in that paper these

were assumed to scale as g′ ∼ g 3
2 .

In the 2HDM, the 3D scalar mass parameters read:(
µ2

22,3

)
2HDM

=
(
µ2

22,3

)
SM

+
T 2

12

(
2λ3(Λ) + λ4(Λ)

)
+

1

16π2

{
µ2

11

(
− Lb(2λ3 + λ4)

)
+ T 2

(
5

48
g4 +

5

144
g′

4
+

1

24
(3g2 + g′

2
)(2λ3 + λ4)

+
1

T 2

(
c+ ln

( 3T

Λ3D

))(
− 1

8
(3g4

3 + g′
4
3) +

1

2
(3g2

3 + g′
2
3)(2λ3,3 + λ4,3)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2
)

+ Lb

(
− 7

32
g4 − 7

96
g′

4 − 1

2
(λ1 + λ2)(2λ3 + λ4)

− 5

6
λ2

3 −
7

12
λ2

4 −
5

6
λ3λ4 −

3

4
|λ5|2 +

1

8
(3g2 + g′

2
)
(
2λ3 + λ4

))
+
(
− 1

4
g2
Y

(
2λ3 + λ4

))
Lf

)}
,

and

µ2
11,3 =µ2

11(Λ) +
T 2

16

(
3g2(Λ) + g′

2
(Λ) + 8λ1(Λ) +

4

3

(
2λ3(Λ) + λ4(Λ)

))
+

1

16π2

{
Lb

((3

4
(3g2 + g′

2
)− 6λ1

)
µ2

11 − (2λ3 + λ4)µ2
22

)
+ T 2

(
59

32
g4 +

11

288
g′

4 − 3

16
g2g′

2
+

1

4
λ1(3g2 + g′

2
) +

1

24
(3g2 + g′

2
)(2λ3 + λ4)

+ Lb

(27

32
g4 − 17

96
g′

4 − 3

16
g2g′

2
+

1

8
(3g2 + g′

2
)(6λ1 + 2λ3 + λ4)− 1

2
(λ1 + λ2)(2λ3 + λ4)

− 6λ2
1 −

5

6
λ2

3 −
5

6
λ3λ4 −

7

12
λ2

4 −
3

4
|λ5|2

)
+

1

T 2

(
c+ ln(

3T

Λ3D
)
)(33

16
g4

3 + 12g2
3h1 − 6h2

1 + 9g2
3λ1,3 − 12λ2

1,3

− 7

16
g′

4
3 −

9

8
g2

3g
′2
3 − 2h2

2 − 3h2
3 + 3g′

2
3λ1,3 +

1

2
(3g2

3 + g′
2
3)(2λ3,3 + λ4,3)

− 2(λ2
3,3 + λ3,3λ4,3 + λ2

4,3)− 3|λ5,3|2
)

+ (
1

12
g4 +

5

108
g′

4
)Nf + Lf

(
− 1

4
g2
Y (2λ3 + λ4)− (

1

4
g4 +

5

36
g′

4
)Nf

)
+ ln(2)

(3

2
g2
Y

(
2λ3 + λ4

)
+ (

3

2
g4 +

5

6
g′

4
)Nf

))}
, (A32)

and finally

µ2
12,3 = µ2

12(Λ) +
1

16π2

{
Lb

((3

4
(3g2 + g′

2
)− λ3 − 2λ4

)
µ2

12 − 3λ5µ
2∗
12

)
− 3

2
g2
Y µ

2
12Lf

}
. (A33)
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We emphasise that all matching relations in the first step of DR are independent of the four-dimensional theory
renormalisation scale Λ to the order we consider here, which can be seen by applying the β functions to the tree-level
terms. This serves as a crosscheck of the correctness of our calculation. In practice, we fix Λ = 4πe−γT ≈ 7T , and
have verified that the choice of Λ has negligible effect on our results.

These relations for the two-loop mass parameters have been calculated previously in Ref. [23], under the assumption
of λ5 being real (see also Ref. [24]). However, in Ref. [23] there are again minor errors propagating from the one-loop
result of Ref. [22].

Note that in the coefficients of c+ ln( 3T
Λ3D

), we have used a higher order result that can be obtained by solving the
running directly in the 3D theory; because the 3D theory is super-renormalisable, this is the exact dependence of the
3D theory renormalisation group scale Λ3D. The mass counterterms in the 3D theory can be found in Ref. [26]. We
have fixed the renormalisation scale of the 3D theory as Λ3D = g2

3 , but it is possible that some other choice would
be more suitable for resumming higher-order corrections, especially when the couplings are allowed to be large. We
leave a quantitative analysis of renormalisation group effects in 3D for future work.

We estimate the validity of the effective theory constructed using the above matching relations by evaluating to

order O(g6) the terms O(6)
A,1 = ΛA,1(φ†1φ1)3

3D and O(6)
A,2 = ΛA,2(φ†2φ2)3

3D, where the coefficients are given by

ΛA,1 =
ζ(3)

3(4π)4

(
30λ3

1 +
1

4
λ3

3 + λ3
+ + λ3

− +
3

32
g6 +

3

64
(g2 + g′

2
)3
)
, (A34)

ΛA,2 =
ζ(3)

3(4π)4

(
30λ3

2 +
1

4
λ3

3 + λ3
+ + λ3

− +
3

32
g6 +

3

64
(g2 + g′

2
)3 − 21

2
g6
Y

)
, (A35)

where λ± ≡ 1
2 (λ3 +λ4±λ5). The last term in the above equation is the contribution from the top quark. Comparing

the magnitude of the other terms to that term yields a rough estimate of the importance of neglected six-dimensional
operators.

b. Integration over heavy scale

Here we list the matching results for the parameters in the simplified 3D effective theories, where the heavy temporal
scalars and the heavy second doublet have been integrated out. The two-loop contributions to mass parameters are
highlighted with subscripts. One could give the coefficients of logarithmic contributions in terms of the running in
the final theory here as well, but we have omitted this for simplicity.

ḡ2
3 =g2

3

(
1− g2

3

24πmD

)
, (A36)

ḡ′23 =g′23 , (A37)

µ̄2
11,3 =µ2

11,3 −
1

4π

(
3h1mD + h2m

′
D

)
+

1

16π2

(
3g2

3h1 − 3h2
1 − h2

2 −
3

2
h2

3

+
(
− 3

4
g4

3 + 12g2
3h1

)
ln
( Λ′3D

2mD

)
− 6h2

1 ln
( Λ′3D

2mD + µ11,3

)
− 2h2

2 ln
( Λ′3D

2m′D + µ11,3

)
− 3h2

3 ln
( Λ′3D

mD +m′D + µ11,3

)
+ 2µ11,3

(
3
h2

1

mD
+

h2
2

m′D

)
+ 2µ22,3

(
3
h1h4

mD
+
h2h5

m′D

))
2-loop

, (A38)

µ̄2
22,3 =µ2

22,3 −
1

4π

(
3h4mD + h5m

′
D + 8ω3m

′′
D

)
+

1

16π2

(
3g2

3h4 − 3h2
4 − h2

5 −
3

2
h2

6

+
(
− 3

4
g4

3 + 12g2
3h4

)
ln
( Λ′3D

2mD

)
− 6h2

4 ln
( Λ′3D

2mD + µ22,3

)
− 2h2

5 ln
( Λ′3D

2m′D + µ22,3

)
− 3h2

6 ln
( Λ′3D

mD +m′D + µ22,3

)
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+ 2µ22,3

(
3
h2

4

mD
+

h2
5

m′D

)
+ 2µ11,3

(
3
h4h1

mD
+
h5h2

m′D

))
2-loop

, (A39)

µ̄2
12,3 =µ2

12,3, (A40)

λ̄1,3 =λ1,3 −
1

8π

( 3h2
1

mD
+

h2
2

m′D
+

h2
3

mD +m′D

)
, (A41)

λ̄2,3 =λ2,3 −
1

8π

( 3h2
4

mD
+

h2
5

m′D
+

h2
6

mD +m′D

)
, (A42)

λ̄3,3 =λ3,3 −
1

4π

(3h1h4

mD
+
h2h5

m′D
+

h3h6

mD +m′D

)
, (A43)

λ̄4,3 =λ4,3 (A44)

and λ̄5,3 =λ5,3. (A45)

The temporal scalars have only a small effect on the running of mass parameters. We therefore fix the renormalisation
group scale in the resulting effective theory as Λ′3D = Λ3D.

When the second doublet is integrated out as a heavy field, the parameters of the final 3D theory read

ĝ2
3 =ḡ2

3

(
1− ḡ2

3

48πµ̃θ

)
, (A46)

ĝ′23 =ḡ′23

(
1− ḡ′23

48πµ̃θ

)
, (A47)

λ̂ =λ̃1 −
1

16π

1

µ̃θ

(
2λ̃2

3 + 2λ̃3λ̃4 + λ̃2
4 + |λ̃5|2 − 48 Re(λ̃6λ̃7) + 48|λ̃6|2

)
, (A48)

µ̂2 =µ̃2
φ −

µ̃θ
4π

(
2λ̃3 + λ̃4

)
+

1

16π2

(
1

8
(3ḡ2

3 + ḡ′23 )(2λ̃3 + λ̃4)− λ̃2
3 − λ̃3λ̃4 − λ̃2

4

+ 3λ̃2(2λ̃3 + λ̃4) + 18 Re(λ̃7λ̃6)− 3|λ̃5|2
(

ln
(Λ′′3D

2µ̃θ

)
+

1

2

)
− 3|λ̃7|2

(
ln
(Λ′′3D

3µ̃θ

)
+ 2
)

− 9|λ̃6|2
(

ln
(Λ′′3D

µ̃θ

)
+

1

2

)
+

1

8

(
− 3ḡ4

3 − ḡ′43 + 4(3ḡ2
3 + ḡ′23 )(2λ̃3 + λ̃4)

− 16(λ̃2
3 + λ̃3λ̃4 + λ̃2

4)
)

ln
(Λ′′3D

2µ̃θ

))
2-loop

. (A49)

An estimate of the validity of this last step of dimensional reduction is obtained by deriving the dimension-six
operator Λ̂6(φ†φ)3

3D omitted from our phase transition analysis. The dominant contribution to it originates from a

tree-level diagram proportional to |λ̃2
6| [38], which we calculate at zero momentum. Performing parameter matching,

we obtain

Λ̂6 =
8

3

|λ̃2
6|

m2
θ

, (A50)

and computing the effective potential with this operator included gives an estimate on its effect on the dynamics of
the effective theory. Details of the calculation are to be found in the companion paper [26].

The renormalisation scale of the final 3D theory is fixed at the light scale as Λ′′3D = ĝ2
3 to match the choice of

Ref. [3]. In regions of the parameter space where the transition is of first order, λ̂ is necessarily small. Consequently,
the effects of running are very mild in the final effective theory. In particular, we have verified that the six-dimensional
estimate of Fig. 3 is not sensitive to the choice of Λ′′3D.
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