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Abstract

We analyse the standard optimal control fisheryraiss model and derive
some novel results on optimal management whensfistks are low. We
show that as long as it is not optimal to let ttoek become extinct and the
marginal benefit of harvesting is bounded belownity for all harvest
levels, there will always be an interval with lowosk sizes where it is
optimal not to harvest. This result does not depemény assumption that
marginal harvesting cost per unit increases wittreising stock size. We
then prove that under weak conditions the shadoee pn the fish stock
always goes to infinity as the stock approache®.z&he results are

generalized to a particular class of age structoredels.

1. Introduction

Clark (1973) and Clark and Munro (1975) presentgdachic fishery models that gave the
theory of renewable resources a proper capitalréiecfoundation. The basic fishery model
entails one control variable, one state varialile; planning horizon is infinite time and the
problem is autonomous. When the profit functionaslinear in the control variable and there
is an optimal path to the steady state, this stehaty should be approached gradually along
two saddle paths, or stable manifolds (see, e.gmiBn and Schwarz 1991). The standard

model has usually applied an ecological lumped mpatar model of the form‘<=G(x)—h
wherex is the size of the fish stock in biomass &nd the harvest rate. It has been recognized
for a long time that optimal extinction in thesedats depends on the relative magnitude of the
interest rate and the intrinsic growth ra@’,(O), in addition to the unit cost of harvesting
(Clark 1973, Cropper 1979). Although this modelvsl understood, some wrinkles remain to

be ironed out. One is the question of harvest eatllow stock levels, where it is has been

known that in some versions of the standard figisemodel it is optimal to set harvest equal to



zero for low stock levels. This is commonly atttid to either the bang-bang nature of
problems that are linear in the control, Clark &tghro (1975) or an assumption that harvest
costs are stock dependent and that the marginabtbarvest becomes infinite when the stock

approaches zero, (Leung and Wang 1976, Lewis ahch&lensee 1977).

In what follows, we show that these assumptions reoe necessary. In order to properly
analyse optimal harvest levels at low stocks, itnscial to examine the behaviour of the
shadow price at low stock levels. We argue belaat #malysing the properties of the shadow
price is equivalent to analysing the stable sagdthl in a phase diagram in stock/shadow price
space. If we interpret the stable saddle path fas@ion that maps the state variable into the
shadow price it is evident that the stable sadaih ps in fact the derivative of the value
function. We then demonstrate that the shadow figerenewable resource goes to infinity if
the growth in the resource is zero at zero stobls Tact has remarkably not been noted in the
literature, except for the case where revenue lisear function of harvest levels, Naevdal
(2016). In his milestone book on natural resourm@nemics Colin Clark stays silent on this.
He draws the basic fishery model phase-diagranmenstock — harvest space, but the saddle
path illustration is not finalized when the harviestomes low Clark (1990, p. 99) and Conrad
and Clark (1987, p. 56). In the well-recognized lbdzy Leonard and Long (1992) on
optimization and dynamic control models, the saduiéh illustrating a schooling fishery is
only indicated for a restricted set of values ie #iock — shadow price space (Leonard and

Long (1992, p. 296) and is not drawn for valuethefstock close to zero.

In Section 2 below, we first formulate and analyse baseline model exemplified by a
schooling fishery where the net harvest benefé mncave function of harvest. In Section 3,
we next apply fast/slow-dynamics and show that mbsults apply to at least some age
structured models. Section 4 concludes the paphrandiscussion of the results and relating
them to the concept of harvest control rules.

! On the other hand, if the marginal benefit of lesting goes to infinity as the harvest rate goegeim,
typically using some type of iso-elastic instantauee utility, then if stocks are strictly positiveis always
optimal with some strictly positive harvest ratesvhari and Mirman (1980). Whether extinguishing fisé
stock is optimal will also in this case depend ba telationship between the discount rate and ritrensic
growth rate.
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2. The canonical fisheries model

The following is the basic version of the fisherig®del where a schooling fishery is
considered. In a schooling fishery there are nokstiependent harvest costs. We assume that

the net instantaneous benefits from harvestingvengby a continuous and strictly concave

function D(h) with D(0) = 0, and wheréD’(h) > 0 over an interval [y Wherehpax < o.

For notational convenience we dendDé(h) as d(h). Note that strict concavity oD(h)

ensures thatl(h) has an inverse defined for all positive valuestefargument. In order to
ensure that our results are not the result of asgumfinite derivatives oD(h), we postulate
that 0 <d(0) < which is a crucial assumption driving our resulise natural growth function

G(x) is taken to be strictly concave and satiG{) = 0, G'(x) >0 over some interval [& )

and G’(x) <0 for x> X. We assume that the intrinsic growth rate excéeatsof the discount
rate, G'(O) > p, which is reasonable for most fish species Ii$® assumed that there is some

numberK > X, denoted carrying capacityuch thaiG(K) = 0. The specification dB(x) is in
line with standard growth functions such as thaslog one, which is used in our numerical

illustrations. The assumptions lead to the follayvaptimization problem:

00

max|D(h)e™dt subjectta=G(x)-h ,and( )0 give, )

h=0

whereh =0 is the harvest anad =0 is the size of the fish stock apd> 0 is the discount rate.
The current value Hamiltonian for this problem is:

H =D(h)+p(G(x)-h). ()
The Hamiltonian is concave irh,(x), so sufficiency theorems such as Theorem 9.14.1 |

Sydseeter et al. (2005) are fulfilled. The necessangitions become:

oH .
E=o|(h)-pso(=o|fh>o) 3)

and
n=(p-G'(x))u. 4
(3) follows from maximising the Hamiltonian witkespect td, whenH is a concave function

of h. Transversality conditions must also be checkgdag&sumption there exist a steady state



and we show below that the optimal path convergelis steady state from ang0)> 0. Itis
straightforward to check thdim, p(t)(y(t)—x(t))e‘pt >0 wherex(t) is the optimal state

variable andy(t) all other admissible functions. Agt), x(t) and p(t) are all finite, this
expression goes to zero. The transversality camdigiven in Theorem 9.11.1 in Sydsaeter et
al. (2005) therefore holds and with the rest of @ssumptions implies that sufficient
conditions for optimality hold. Control conditior8)(implies thatd (0) <p = h = 0 and
condition (3) may be rewritten as:
h=max( O,d‘l(u)). (5)

Inserting Eq. (5) into the natural growth equatyoeids next:

%=G(x)-max( 047 (u)). (6)

We can use Egs. (4) and (6) to obtain a phaseatiagr the X, 1)-space. The isocline fox=
0 may be constructed as follows:
x=G(x)~- max( O,d’l(u)) =0
g (7)
u=0(x)=d(G(x)) O{x:h>0}
Note that$(0) = ¢(K) = d(0) and thathp(x) < d(0) for all x [J(0, K). The isocline fora= 0 is
given by:
i=(p=G'(x))u=0
) (8)
H=0orx=G""(p)
We shall assume that there is a paily] = (X, Uss) that solves the equations=0 and1=0

and hence defines the equilibrium (steady stat®@uoimodel. The isoclines in Eqgs. (7) and (8)

are depicted and discussed in Figure 1.
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Figure 1. Isoclines in a phase diagram in thex( p)-space. The isoclines at = 0,x = K and p = 0 are not
drawn. The black arrows indicates system direction®n the isoclines. The star indicates the steadyase¢
point (Xss Msg that solves the equations xfdt = 0 and du/dt and it follows from the directions of the black
arrows crossing the isoclines that it is a saddlegint as expected. Lines with arrows indicating movwaent
towards the steady state are hypothetical stable ddle paths. For values ofk below the steady state there
are two paths seemingly satisfying directional deviatives for x > 0. One where the stable manifold starts
above thep =d(0) line, and one where the line lies below the= d(0) line for all x > 0. If this last possibility
is the case, the stable manifold must start at thpoint (x, p) = (0, d(0)). Proposition 1 shows that this is

impossible, so the stable manifold must start at see point wherep > d(0).

To complete the phase diagram we need to drawestabhifolds satisfying the directional
derivatives. FOK > X this is a fairly straightforward task. On the otlikand, forx < xg it is

not obvious whethgu along the stable manifold should take values shahp < d(0) for all

X, or | > d(0) if x becomes sufficiently low. We illustrate these tpassibilities in Figure 1
where we draw two hypothetical paths for a stabdmifold for x below its steady state value.
Note that both these paths satisfy directionalvagities forx and p both strictly positive.
However, there can only be one stable manifoldyedave to choose between them. This is
done in Proposition 1, which draws on the obseowaiin Figure 1 that if there exists a stable
saddle path satisfying < d(0) for allx O (0, Xs), then it must originate from the point (1) =

(0, d(0)).

Proposition 1.

Any path originating fromx, i) = (0,d(0)) can not be a stable manifold.
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Proof: The slope of the stable manifold &at|{) = (0,d(0)) is given by:

d(0)(p-G'(9))
G(0)-max( 0d7*( 9)

(/) o) = (/X sppefon o) =

_d(0)(p-G'(0))
G(0)

(9)

This holds under our assumption of an intrinsicwglorate G'(0) that exceeds the rate of
discount, and5(0) = 0. This slope is clearly smaller than the finitepgmf the isocline fok=

0, so a stable manifold would enter into the arelaw the isocline forx= 0, which implies
that the stable manifold cannot go through thedstsate.

Proposition 1 has a powerful implication that wensup in a proposition although the proof is

very simple.

Proposition 2.

There exists a non-empty interval {8] where it is optimal to set = 0.

Proof: It follows from Proposition 1 that there existst@ack levelx* where the downward

sloping stable manifold crosses the Iine d(0), and thereforé = 0 for allx [J[0, x*].

In Neevdal (2016) it was proven that if revenudnsdr in harvest, the shadow price would go
to infinity as the stock approaches zero. The piafothis result hinged on the harvest rate
being zero if stocks are below the steady statel.ld®roposition 2 implies that the proof in
Neaevdal (2016) may be generalized to the case wWiakest costs also are strictly convex and
in this more general case, the shadow price vl glo to infinity as the stock approaches zero.
This is done in Proposition 3. Proposition 3 thilmkghe stable manifold in a slightly unusual
manner. The stable manifold is a continuous mapfiimm x to 4 and it thus makes sense to

think of u as a function ok. We can then use the ratjgx and steady state conditions to

construct a differential equation with boundary ditions (Judd 1998, Ch.10.7).



Proposition 3.

Along the stable manifoldim_ u(0) = holds.

Proof: Let (xs, Hss) be the known steady state level of the optimalgnaged system defined
by problem (1). Over the intervak} xs] one can find the stable manifold by solving the

differential equation:

with the boundary conditiopss = i(Xss). By Proposition 2 there exists &hsuch thatu(x*) =
d(0). One can therefore find the solution fofx) over the interval [0x*] by solving the

following differential equation:

EX:%:(F)_(?#))“’ u(x*):d(O).

Neevdal (2016) showed that this equation has theisnl

u(X)=Mexr{-IGLdn] (10)

G(x) (n)

and thatlim_ p(x) =co . The calculations are reproduced in the Appendix.

Propositions 1, 2 and 3 enable us to draw a marglie phase diagram depicted in Figure 2.
It is worthwhile to note that as the stable mauwifentails the allowable combinationsxond

p along an optimal path, it may also in fact be noteted as a functiop(x) that gives the
derivative of the value function(x) =V’(x) . As the value functioW(x) clearly must satisfy

V(0) = 0, the value function can be demonstratethénphase diagram as the area below the

stable manifold as indicated by the shaded ar&&ure 2.
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Figure 2. Computer generated phase diagram for themodel in Eq. (1). Note thatp along the stable
manifold increases a goes to zero. As proven in Proposition 3 it doea fact go to infinity. It crosses the
line p = d(0) atx*. From Eg. (5) it should be clear thatp = d(0) for x < x* implies that for x < x* we have
that h = 0 . The stable manifold is in fact the derivatig of the value function. AsV(0) = 0, the area under
the stable manifold is therefore the value functionThe shaded area show¥(x*), which is the value of the
fishery at the stock levelx*. Although Propositions 1-3 hold for general growh and cost functions with the
properties stated in the text, the graph is drawn sing a logistic growth functionG(x)=rx(1 —x/K) with K =

10 andr = 1. The benefit functionD(h) = ph - Qh) = 5h —%h? with p = 5 as the fixed fish price andC(h) as

the cost function. The discount rate has been sei p = 0.05.

3. Age structured models

We now examine age structured models in ordereaadfdbe results from above carry over. In
particular, we want to check whether the shadowepgoes to infinity as the stock approaches

zero, and whether this also implies that no hanvgstill occur at low stock levels.

Recent years have seen increased interest in tmomics of age structured models and the
implications of dropping lumped parameter modet¢®(®.g9., Tahvonen 2009, and Skonhoft et
al. 2012). Typically, the cohort length of a fislock is measured in one year as reproduction
usually occurs on an annual basis and fish speifitesr have a life span of many years.
Therefore, to construct a complete age structuredem usually requires several cohorts with
year-class specific contribution to recruitmentvasl as year-class specific natural survival

and harvest rates. Indeed, age structured modalklgbecome analytically intractable. Here
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we analyse two simplified cases. One case wheradhk period is relatively short compared
to the time span of the young fish. This may cqroesl to e.g. wild Atlantic salmorg&gimo
salar) where most of the species’ life history is ire thative river (2-4 years) before it
migrates into the ocean and spends 1-2 year tlegoeeb returning back to spawn in its native
river. After spawning it dies (about 90 %). The@at case we analyse is where the period as a
young is short relative to the time (potentiallpest as an adult. This may correspond to e.g.,
North-East Atlantic codGadus morhua) which becomes old enough to spawn at the age of 3
years and may live to become more than 20 yearslolthese two particular cases we can use
the differences in the time span of cohorts tasdtislow/fast-dynamics in order to simplify the
analysis (see, e.g., Crépin 2007 and Guttormseah 2008).

We explore these two cases within a very simple stgectured model with two cohorts,
young,X, and adulty. Both age classes are measured in number ofdighjt is assumed that
only adult fish are harvested. The growth equafiteryoung fish is first given by:
x=F(x,y)-dx. (11)
Production of young individuals is assumed to deppaositively on the stock of adults, but
survival of young individuals is assumed to be miegly density dependent. Thus, the

recruitment function demandg;, > 0 and F; < 0. Additionally, F(x, 0) = 0 must hold as

production of young individuals requires adults.t&that this impliesF, (x,0) = 0 for allx.

We shall also assume that all double derivativeB(gfy) are less than or equal to zero. A

fractiond enters the stock of adults every unit of time. $toek of adults grow according to:
y=0x-yy-h. (12)

Herey is the fixed natural mortality rate ahds again harvesting. We shall assume that there

exist a pairX, y) = Xmax, Ymax) defining the steady state whiers O. .

We assume that only adults are harvested. Withagidications we have in mind, cod and
salmon, assuming harvest of older classes only sémnly innocuous. It is close to impossible
to harvest salmon in any significant numbers befloey congregate to spawn. That cod should

only be harvested at older age classes seemsyarédiust result, see e.g. Diekettal (2010).



Cod
Here it is assumed thay is the slow variable anxlthat moves instantaneously from steady
state to steady state. Therefore weysetO and obtain from Eq. (11):

X=F(xy)=x=0(y). (13)
From the assumption thk{x, 0) = 0 it follows thath(0) = 0. Implicit differentiation of (13)
yields ¢'(y) =-F, /(F; =) > 0. Definingy(y) = ¢(y) —yy implies that the expression fgr
may be written as:

y=w(y)-h. (14)

Instantaneous benefit from harvesting is giverDigly). It is straight forward to verify that the

problem

00

max|D(h)e™dt subjectty=y(y)-h ,and( JO give (15)

h=0

has exactly the same structure as (1), so allrbyogitions from section 2 apply.

Salmon

Since Atlantic salmon is characterised by a longopleas young before experiencing a short
period as adult and dying after spawning, we caatt as a slow variable ang as fast
variable. The implication oy being a fast variable is thgtmoves very quickly from one
steady state to another relative XoAgain, as a simplification, we model this by ilegt

movement from one steady state to another be iastaous implying thaty= 0 or
y =(1/y)(dx-h) from Eq. (12). Inserting into Eq. (11) gives then:

x=F (x,(6x—h)y‘1)—6x (16)

The management problem may then be written as:

00

max[ D (h)e™dt subject tg=F (x (3x—h)y™)-3x x( P give. (17)

h=0

We now have an optimization problem with a sligtdliferent structure than in problem (1),
so the results from the previous section can nottaken for granted. The Hamiltonian

associated with the problem in (17) is given by:
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H :D(h)+p(F(x,(éx—h)y‘l)—éx) (18)

The Maximum Principle gives the following condit®for optimality:

‘Z—::: (h)-pF, (x.(3x-h)y*)y'<0(=0ifh>0) (19)
and
[ = pu—u(Fx’(x,(éx—h)y‘l)+6Fy’ (x,(éx—h)y’l)y‘l—é) . (20)

Eq. (19) defines optimal harvest as a functiorhef$tock and the shadow price. bét, y) be
the solution to the equatic®H/dh =0. Thenh is defined by:
h=max( 0h(x p)). (21)

We can use these conditions to draw a phase diadgfamever, in order to draw a correct
diagram we must apply some care. We need to drime dhat delineates the state space into
regions wherén > 0 andh = 0. From condition (19) we have that for agyhe lowest value of
i such thah = 0 is given by

d(0)
F' (x, 6xy‘1) vyt

(22) .

One way to interpret (22) is that for a givethe stable manifold lies above the u prescriped
by (22), then optimal harvest is zero. If The stamianifold lies below this u, optimal harvest
is positive. The line defined by (22) is illustrdten Figure 3 as thé = 0 line. The isocline
where X = 0 is constructed in the following manner. Insgrh(x, 1) into Eq. (16) gives:

X = F(x,(éx—h(x,u))y‘l)—6x= 0 (23)
In particular, wherx = 0, we have that:

x=F(0,~1h(0p))= C. (24)

But this is only possible (0, i) = 0 as we have assumed tlirgtx, 0) = 0 . It follows that atx

=0, the curvex = 0 intersects the cunre= 0.

11
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0.5 = -h(z, n) =0 .

Figure 3, Phase diagram for cohort fishery with fasslow dynamics. Atx = x*, the stable manifold crosses
the h = 0 boundary. Thus ifx < x* it is optimal to set harvest levels to zero. Alsgu goes to infinity whenx
goes to zero. The diagram is generated with a veosi of the growth dynamics wherex =ry(1 —x/K) — dx

and y=&x —yy —h. D(h) is again specified aph — ¥h2. Parameter values are given by =1,p=5,K =10, p

=0.05,6 =0.15 andy=0.2.

In order to construct the line fqx = 0, we must acknowledge that the shape of thigecu

depends on whetherh is positive or not. If h(xy) = 0, then p =

pp—u(F 'X(x,éxy‘1)+6F Y (x,6xy‘1)y’1—6). The equationi= 0 then has two solutiong, =

0 andx = % defined byp+6—(F " (%.8%y) +oF 'y(x,axy-l)y-l)z 0 which is a vertical line.
However, when the lin@t lies below thén = 0O line, the isocline is a curve given by:

o= pu—u(F 2 (x,(6x—h(x,p))y‘1) +8F |, (x,(6x—h(x,u))y’l)y‘1—6) (25)

In order to establish a proposition similar to Rrsifions 1 above we note that in principle we
have the same problem. The stable manifold caereititersect th@-axis where the lineg =
0 andh = 0O intersect in which cage> 0 for allx > 0, or it can cross the= 0 line at some*
which implies that = O for allx [J [0, x*]. It is a straight forward exercise to confirmatht is
the latter that is the case by repeating the piod&froposition 1. If the stable manifold starts

where the linesx = 0 andh = 0 intersect, then it dips below the line = 0 which is a

12



contradiction. Proving the existence xf and that lim,o pH(X) = o is done by verbatim

repetition of Propositions 2 and 3.

4. Concluding remarks

In this paper we have examined the basic nonligeatrol variable biomass fishery model
originating from Clark and Munro (1975), and dentosted under what circumstances it is
optimal to stop harvesting when the stock becomég®ently low. The main assumptions in

our model of a schooling fishery are: 1, that thigimsic (maximum) growth rate of the fish

stock exceeds that of the discount rent. 2, Thatgttowth of the fish stock is zero when the
fish stock is zero and 3. That the marginal neteliens finite for all harvest levels, and

particularly for zero harvest

The paper provides 3 Propositions and these enaltie draw a more complete phase diagram
than what is found in, among others, Clark (1996) aeonard and Long (1992). The most
important of these propositions from a managememsgective, is that it always exists a
strictly positive stock level below which it is ap@l with no harvest. This is perhaps not too
surprising. If the value of fish stock grows fasterthe ocean than it does in the bank, we
would prefer to have the fish staying in the oceatil it has grown to the point where the
return in the ocean is equal to returns in the bdhle non-negativity constraint on harvesting
implies that we cannot put fish into the lake. Hoer the fact that optimal harvest levels is
always zero for low stock levels also imply thag 8hadow price of the stock will always go to
infinity as the stock goes to zero. This was prol@rboth the biomass model and for simple

cohort models with fast/slow-dynamics.

In a much cited review article, Jim Wilen (2000)re out that the huge literature studying
optimal harvesting in fishery models has had ndgkgimpact on actual management in
fisheries. He also points out the many reasonstts. However, there have been several
attempts to transform optimized dynamic harvesatsgies into more practical applicable
harvest rules. These harvest control rules (HCR)Xwically represented by feedback control
rules that links the control variable, the catcleffort, to the state variable, the fish stock. For
a review see, e.g., Deroba and Bence (2008). Dapgruh the formulation of the current

benefit function, these HCR can take many formiigiaog the popular proportional harvesting
rule; that is, a fixed fraction of the stock shoblel removed every year. Therefore, this rule

allows for harvesting when the stock is close t@z®ur results indicate that harvesting when

13



the stock is close to zero should not be encouragddhat HCR models that do prescribe it as
optimal to harvest at close to zero stock levelpedd on an assumption of infinite
instantaneous marginal benefit of harvesting fas tb be correct. Another rule initiated by
Engen et al. (1997), is the so-called proportiahaéshold rule. This HCR indicates that a
certain fraction of the fish stock above a certainimum stock level, the threshold, should be
harvested while there should be no harvest at etbvb the threshold. This harvest rule is

accordingly in line with our main finding.
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Appendix — The solution to the differential equatia in Proposition 3.

Dividing the differential equation by and integrating ove[rx, x*) gives:

Inserting forpu(x*)=d(0) and rearranging gives the expressionjf¢x).
d(0)G(x*) ( TP )
p(x)= =L "Lexp —| ——dy
=em 1 Ta)
This solution is only valid over the interval (&]. Note that when the integral in this

expression convergeg(0) is clearly infinite. If the integral does natroverge, the expression

is of the form “0/0” and must be evaluated with L{}tél's rule.

Calculating p(0)
Applying L'H6pital's rule yields

imu(x)=d(0)6(x*) IimG’X(x)
imexol -] 0o |56,
=d(0)G(x*) [“X(;(r(]))() ]G( )

The last line implies that:
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im (49 = g im (9

This can only be true {i(0) = 0 or(0) =. But becausgl <0 in a neighbourhood arourmxd=

0 andG(x) > 0 it must be true that forclose to zerm’(x) =11/x <0, which implies thafi(0)

= 00,
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