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Abstract

In this thesis, quantum mechanics is studied over the p-adic numbers and adeles.
In particular the harmonic oscillator is investigated. There is no Hamiltonian in
the p-adic and adelic case for this model, but an analogous theory is studied.
In addition, expectation values for some operators in the simplest ground state
are calculated. Necessary background information about p-adic numbers, adeles,
topological groups and quantum mechanics is given.
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Sammendrag

Denne oppgaven handler om kvantemekanikk over p-adiske tall og adeler. Hov-
edfokus har vært p̊a den harmoniske oscillatoren. For oscillatoren er det ingen
Hamilton-operator i det p-adiske og adeliske tilfellet, men en analog teori er gjen-
nomg̊att. I tillegg s̊a er forventningsverdier funnet for noen operatorer i den enkleste
grunntilstanden. En gjennomgang av p-adiske tall, adeler, topologiske grupper og
kvantemekanikk er gitt.
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Chapter 1

Introduction

The standard for quantum mechanics is to study wave functions from Rn to C.
A problem with the current model over the real numbers is what happens at the
Planck length, which is approximately 1.6 · 10−35m. This is a very small size, even
compared to a proton which has a diameter which is approximately 1.6 · 10−15m.
The Planck length is the smallest length which is possible to measure. So what hap-
pens under the Planck length? As is discussed by Volovich in his paper ”Number
Theory as the Ultimate Physical Theory” ([14]), the archimedean axiom 1 becomes
questionable when dealing with lengths under the Planck length.

Over the history of physics one has accepted more and more of what can be
considered less intuitive models. That the space we live in can be anything dif-
ferent from Euclidean space was unthinkable a couple of centuries ago. Now it is
standard to work with a four-dimensional manifold as space-time. For a long time
one has taken for granted that the space consists of real numbers. The possibility
of using a p-adic space was first noted by Vladimirov and Volovich in 1983. The
p-adic numbers, denoted by Qp, and the real numbers share the property of being
fields which are completions of the rational numbers. It is convenient to have a
model which is based on Q since all physical results are rational numbers. One can
go further and consider adelic space, such that the real and p-adic numbers are
treated simultaneously. The adeles, denoted by A, are unfortunately just a ring
and not a field, but it is a locally compact abelian group.

There are several paths to go from a real model to a p-adic and adelic model.
In this thesis, I have chosen to follow Weyl’s formulation of quantum mechanics.
In this model the functions go from the adeles or p-adic numbers to the complex
numbers. In the p-adic model, mass, position, time and so on become p-adic, and
similarly these quantities become adelic in the adelic model. A problem is that Qp
is not an ordered field, and one cannot talk about before and after. That the adeles
are not a field makes things even harder to interpret. Another path is for instance

1The archimedean axiom states that if you have a large and a small line segment, then if the
small segment is added enough times, the length will surpass the larger line segment.
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2 CHAPTER 1. INTRODUCTION

to let the time stay real. One can also consider models where the functions are
p-adic valued.

The harmonic oscillator will be the model which is investigated. The harmonic
oscillator appears often and is very important. It is also a simple model such that
the eigenvalues and eigenvectors can be found for the Hamiltonian.

In Chapter 2, p-adic numbers are introduced. Locally compact abelian groups
are studied in Chapter 3. In Chapter 4, the adeles are investigated. The treatment
of integration theory and Fourier transform follows Tate’s thesis [6]. Chapter 5
gives an introduction to quantum mechanics. In particular it contains the mathe-
matical formula of the Feynman path integral given in [13]. The one-dimensional
harmonic oscillator over real numbers, p-adic numbers and adeles is investigated
in Chapter 6. Finally in Chapter 7, one obtains eigenvalues and eigenfunctions for
the evolution operator for the harmonic oscillator, which is analogous to finding
the eigenvalues and eigenvectors for the Hamiltonian. The treatment of the p-adic
harmonic oscillator follows [5], while the treatment of adelic harmonic oscillator
follows [7].

The purpose of this thesis is to go thoroughly through all the necessary back-
ground knowledge needed for p-adic and adelic quantum mechanics, as well as
investigating the work of Vladimirov, Volovich and Zelenov on the p-adic harmonic
oscillator, and the work of Dragovich on the adelic harmonic oscillator.



Chapter 2

The p-adic Numbers

The field of p-adic numbers, denoted by Qp, were first described by Kurt Hensel in
1897. Even though one says the field of p-adic numbers, there are actually several
fields. For each prime p, one gets one field Qp. So for instance if p = 3, one gets
the 3-adic numbers Q3. When we give a statement about Qp, it means that the
statement is true for all primes p. Each Qp is a completion of the rational numbers
Q with respect to a different norm than the usual one.

2.1 Construction of Qp by Analysis

There are several ways to give a construction of Qp. This section will be about the
construction of Qp by analysis.

First it will be necessary to define an absolute value, and then define the p-adic
absolute value which will extend to be an absolute value on Qp.

Definition 2.1.1. (Absolute value) An absolute value on a field, k, is a function
| · | : k −→ R+ which satisfies

(i) |x| = 0 if and only if x = 0

(ii) |xy| = |x||y| ∀x, y ∈ k

(iii) |x+ y| ≤ |x|+ |y| ∀x, y ∈ k.

The absolute value is in addition called non-archimedean if it satisfies

|x+ y| ≤ max{|x|, |y|} ∀x, y ∈ k. (2.1.1)

Definition 2.1.2. (The p-adic absolute value and valuation) Let x = a
b be a

rational number different from zero. One can factorize such that x = pk a
′

b′ with
p - a′b′. Then the p-adic absolute value on Q is

|x|p = p−k (2.1.2)

3



4 CHAPTER 2. THE P -ADIC NUMBERS

and the p-adic valuation on Q is:

vp(x) = k (2.1.3)

For x = 0, vp(x) =∞, and with the usual conventions on handling ∞, |x|p = 0

Here are a few examples of the absolute value.

Example |7|7 = 1
7 , |162|3 = |2 · 34|3 = 3−4, |3−5 · 2−5|5 = 1

It is worth noting that the p-adic absolute value actually is non-archimedean.
The next two lemmas follow easily from the definition.

Lemma 2.1.1. The p-adic valuation satisfies

(i) vp(xy) = vp(x) + vp(y) ∀x, y ∈ k

(ii) vp(x+ y) ≥ min{vp(x), vp(y)} ∀x, y ∈ k.

Lemma 2.1.2. The p-adic absolute value |·|p is a non-archimedean absolute value.

As it is of no interest, the trivial absolute value will often be excluded from the
theorems.

Definition 2.1.3. The trivial absolute value is an absolute value such that |0| = 0
and |x| = 1 for x 6= 0.

The real numbers, R, is the completion of Q with respect to the usual absolute
value, denoted by | · |∞. On the other hand, Qp is obtained by completing Q with
respect to the p-adic absolute value, | · |p. It is worth to note that the completion
actually is necessary since Q is not complete with respect to | · |p.

Lemma 2.1.3. Q is not complete with respect to | · |p.

The proof of the lemma can be found in [1].

The idea for the completion process is to add all the limits which are missing.
This is done by looking at all Cauchy sequences in Q with respect to |·|p, and divide
out all such sequences which are converging to zero. This will be our definition of
Qp.

Definition 2.1.4. Define C as the set of all Cauchy sequences in Q with respect
to | · |p. Define N to be the set of all such sequences which converge to zero.

C will be a ring with pointwise addition and multiplication. It can be shown
that N is a maximal ideal of C. Now we are ready to define Qp.

Definition 2.1.5. (The p-adic numbers) We define Qp to be

Qp = C/N. (2.1.4)
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Note that Q ↪→ Qp, by letting x ∈ Q go to the Cauchy sequence which is
constantly x. The difference between two such different sequences will be a constant
different from zero, and thus it will not tend to zero.

Theorem 2.1.4.

(i) The p-adic absolute value on Q extends to Qp.

(ii) Qp has Q as a dense subset.

(iii) Qp is a complete field.

Proof.
(i) Let x ∈ Qp and let (xn) be a coset representative (which is a Cauchy sequence)
for x. One defines the p-adic absolute value on Qp by

|x|p = lim
n→∞

|xn|p. (2.1.5)

There are a few things that have to be checked. It has to independent of the choice
of coset representative and the limit must exist. Furthermore it clearly coincides
with the absolute value defined on Q. Finally, one has to check that it is a non-
archimedean absolute value.

(ii) Let x ∈ Qp and ε > 0. We want to show that there exists an element in Q
such that the distance to x is less than ε. Choose a Cauchy sequence (xn) which
represents x. Since it is Cauchy there exists an N such that |xn − xm|p < ε/2 for
n,m ≥ N . Let (xN ) be the sequence constantly equal to xN . Then

|x− (xN )|p = lim
n→∞

|xn − xN |p < ε (2.1.6)

which proves the claim.

(iii) Since C is a unital commutative ring and N is maximal ideal in the ring, Qp
is a field. Since Q is not complete, we went to the completion to get Qp. To show
that it actually is complete, let (xn)n be a Cauchy sequence of p-adic numbers.
Since Q is dense in Qp, there exists a sequence of rational numbers (yn)n such that
limn→∞ |xn − yn|p = 0. We have that

|yn − ym| ≤ |yn − xn|p + |xn − xm|p + |xm − ym|p (2.1.7)

by the triangle inequality (the non-archimedean property is not needed here). This
proves that (yn)n is Cauchy since (xn)n is Cauchy and limn→∞ |xn − yn| = 0. But
then (yn)n is an element in Qp, and by the choice of (yn)n, xn → (yn)n (To make
it clear, the sequence in Qp, (xn)n, converges to (yn)n seen as an element in Qp).
This proves that Qp is complete.

The properties in Theorem 2.1.4 are also true for R with the usual absolute
value. This similarity makes some of the analysis on Qp quite similar to the anal-
ysis on R. But as we shall see later, there are many properties which are very
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different.

One could ask why one is looking at these special absolute values. Actually,
the only non-trivial absolute values on Q are, up to equivalence, the usual absolute
value and the p-adic ones. This makes it more natural to study these structures.

Definition 2.1.6. (Equivalence of absolute values) Two absolute values are said
to be equivalent on a field k if they define the same topology on k.

Now Ostrowski’s theorem can be stated. The proof is found in [1].

Theorem 2.1.5. (Ostrowski) Each non-trivial absolute value on Q is either equiv-
alent to | · |p for some p or it is equivalent to the usual absolute value.

It is standard convention to write Q∞ for R and | · |∞ as the usual absolute
value. One can think of Qp as studying Q ”locally around p”, and one thinks of R
as studying Q ”locally around ∞”, and one often refers to the prime ∞.

2.2 Further Properties of Qp

In this section we will establish some important properties of Qp, but also some
results which are meant to illustrate how the numbers behave. Some of the results
will be rather unintuitive at first, but it will be clearer later on.
First we will look at the product formula. This will be the first example of what is
called an adelic formula. There will be more about adeles later.

Theorem 2.2.1. (Product Formula) For every x ∈ Q,∏
p

|x|p = 1, p =∞, 2, 3, 5, 7, ... (2.2.1)

where |x|∞ is the usual absolute value of x.

Proof. We can factorize x as ±pn1
1 pn2

2 · · · p
nk
k . Then the absolute values will all be

1 when p gets large, and hence the product is well defined. Clearly |x|pi = p−ni

and |x|∞ = pn1
1 pn2

2 · · · p
nk
k , and the result follows.

Lemma 2.2.2. Let x,y be elements in Qp. If |x|p 6= |y|p then

|x+ y|p = max{|x|p, |y|p}. (2.2.2)

Proof. Assume |y|p > |x|p. That |x + y|p ≤ |y|p follows immediately from the
non-archimedean property. For the other inequality: |y|p = |y + x − x|p ≤ max
{|y+x|p, |x|p} = |y+x|p where one gets the last equality from the fact that choosing
|x|p as maximum would contradict the assumption first made in the proof. The
proof for |y|p < |x|p is similar.

This lemma is very useful and is seen in many proofs. The next lemma is
important as well.
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Lemma 2.2.3. All triangles in Qp are isosceles.

Proof. First the claim has to be explained. A triangle will be created by three
points, x, y and z, and the length of the sides will be |x− y|p, |x− z|p and |y− z|p.
We know that

|x− y|p = |(x− z) + (z − y)|p. (2.2.3)

If |x− z|p and |z− y|p are equal, we are done. If not, by Lemma 2.2.2, |x− y|p will
be equal to the longest of the two sides, and we are done.

Now we will look at open and closed balls and the topological properties of Qp.

Definition 2.2.1. (Open and closed ball) Let a ∈ Qp, and r be a positive real
number. Then define the open ball around a with radius r to be

B(a, r) = {x ∈ Qp : |x− a|p < r}, (2.2.4)

and the closed ball around a with radius r to be

B̄(a, r) = {x ∈ Qp : |x− a|p ≤ r}. (2.2.5)

Notice that the bar over B(a, r) does not mean closure. It is in fact not true
that the closure of B(a, r) is B̄(a, r). It will be shown later that the open ball is a
closed set.

Lemma 2.2.4. Every point in an open ball is the center of the open ball, i.e. if
b ∈ B(a, r) then

B(a, r) = B(b, r). (2.2.6)

The statement holds true for closed balls as well.

Proof. The proof will only be given for an open ball. Let x ∈ B(a, r). Then

|b− x|p ≤ max{|b− a|p, |a− x|p} < r, (2.2.7)

so B(a, r) ⊂ B(b, r). The reverse inclusion is clear by a similar argument.

Corollary 2.2.5. Two balls are either disjoint or contained in one another. That
is, if r ≤ s are two real numbers, and b and a are two p-adic numbers, then either
B(b, r)∩B(a, s) = ∅ or B(b, r) ⊂ B(a, s). The statement holds true for closed balls
as well.

Proof. The proof will only be given for an open ball. If they are not disjoint, then
take x ∈ B(a, s) ∩B(b, r). Then

B(b, r) = B(x, r) ⊂ B(x, s) = B(a, s). (2.2.8)

The p-adic integers play a special role in this theory, and will be used quite
frequently.
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Definition 2.2.2. (The p-adic integers) The p-adic integers, Zp are defined as

Zp = {x ∈ Qp : |x|p ≤ 1} (2.2.9)

Before the topological properties are stated comes an important theorem about
a representation of the p-adic numbers. This is the way of thinking about these
numbers when doing calculations.

Theorem 2.2.6. Any y in Qp can be represented uniquely on the form:

y = anp
n + an+1p

n+1 + an+2p
n+2 + ... (2.2.10)

where 0 ≤ ai < p and n ∈ Z. If y 6= 0, then one can assume that an is non-zero,
and then we have that |y|p = p−n.

Proof. The proof follows [1]. First we will show that every element in Zp can be
written as

∑∞
i=0 aip

i. Let x ∈ Zp. The idea of the proof will be to show that there
is a Cauchy sequence (αn) converging to x such that |αn+1 − αn|p ≤ p−(n+1) and
0 ≤ αn < pn+1, and that the sequence satisfying these properties is unique. From
this sequence one can show that x has the unique representation that is stated in
the theorem. Choose an integer n ≥ 0. Since Q is dense in Qp there is an element
a/b ∈ Q (written in lowest terms) such that |x− a/b|p ≤ p−(n+1). Since |a/b|p ≤ 1
by the non-archimedean property of the absolute value, p does not divide b. Now
choose a rational integer z such that bz ≡ 1 (mod pn+1). Then

|az − x|p ≤ max{|az − a

b
|p, |

a

b
− x|p} ≤ p−(n+1) (2.2.11)

Now let αn be the unique integer less than pn+1 such that αn ≡ az (mod pn+1).
Then |x−αn|p ≤ p−(n+1). Now 0 ≤ αn < pn+1 and |αn+1−αn|p ≤ p−(n+1) follows
from the non-archimedean property again. The sequence is clearly Cauchy and
converges to x. Now 0 ≤ α0 < p and call this integer a0. Furthermore 0 ≤ α1 < p2

and |α1 − α0|p < p−1. Hence α1 = a1p + a0 where a1 is an integer satisfying
0 ≤ a1 < p. Doing this inductively one gets the desired sum x =

∑∞
i=0 aip

i. Notice
that ai are unique since the αi are unique and that the sum converges since the
partial sums are just the αi which is a Cauchy sequence converging to x. Since
every y ∈ Qp is equal to x/pn for some x ∈ Zp of absolute value 1, and some n ∈ Z,
y can be written as y =

∑∞
i=−n aip

i.

This is certainly easier to work with than the definition. The representation
certainly looks similar to the decimal expansion for the real numbers. The difference
is that the ”carry” goes to the right (higher power of p) and not to the left. Addition
and multiplication are analogous to what is done for Laurent series which are finite
to the left, but with carry. For instance the sum of a0 + a1p + a2p

2 + ... and
b2p

2 + b3p
3 + ... will be c0 + c1p + c2p

2 + c3p
3 + ..., where c0 = a0, c1 = a1,

c2 = a2 + b2 mod p, c3 = ((a3 + b3) + (a2 + b2 − c2)) mod p, and so on. The
product of these two numbers is d0 + d1p+ d2p

2 + d3p
3 + ..., where d0 = 0, d1 = 0,

d2 = a0b2 mod p, d3 = ((a0b3 + a1b2) + (a0b2 − d2)) mod p. Notice the extra
terms a2 + b2 − c2 and a0b2 − d2 which one does not get with Laurent series. Let
us now see how this representation can be useful.
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Example Let x =
∑∞
i=n aip

i and y =
∑∞
i=m bip

i with an and bm non-zero. Now
it is not that hard to show that |x + y|p = max{|x|p, |y|p} if |x|p 6= |y|p. That
|x|p 6= |y|p just means that n 6= m by Theorem 2.2.6. Assume n < m. Since the
carry goes to the right, the first term in x+ y is still anp

n and |x+ y|p = |x|p. The
case m < n is similar. Note that this is just to see it from another point of view.
The first proof of this lemma was the ”right” proof since it also works for arbitrary
fields with a non-archimedean absolute value, and the result is actually used for Q
when one extends the absolute value to Qp.

The next example will be stated as a lemma. It will be important for the
topological properties of Qp.

Lemma 2.2.7. Every open ball is a closed and open set (which is called a clopen
set).

Proof. Let a ∈ Qp, let r be a positive real number and let B(a, r) = {x ∈ Qp :
|x− a|p < r} be the open ball of radius r around a. Notice that since the absolute
value only takes discrete values by Theorem 2.2.6, B(a, r) is just {x ∈ Qp : |x−a|p ≤
p−k} = B̄(a, p−k) where p−k is the biggest power of p that is strictly smaller than
r. This is a closed ball, and hence a closed set.

Example That all points in an open ball is the center of the ball can be hard
to understand. When one uses Theorem 2.2.6 it is easier to see. This example
will follow the notation from Lemma 2.2.7. It is easy to see that B(a, r) consists
of all numbers that have the same coefficients as a up to the pk term, that is
{x ∈ Qp : x− a ∈ pkZp}. To say that two p-adic numbers are equivalent mod pk if
they have the same coefficients up to the pk term is clearly an equivalence relation.
Now it is apparent that the choice of center does not matter, since all elements in
the ball are equivalent with respect to this equivalence relation.

The absolute value is non-archimedean has a huge impact on the topology. We
know that R is a connected Hausdorff space, but we will see that Qp is not only
disconnected, but totally disconnected.

Lemma 2.2.8. Qp is totally disconnected and Hausdorff.

Proof. Since Qp is a metric space, it is Hausdorff. Now assume that a set X
contains two distinct points, x and y in Qp. Their distance is |x−y|p = r. The ball
B(x, r/2) in Qp is also open and closed in the subspace topology when intersected
with X. The complement of this set in X is also open and closed. Both these sets
are non-empty and do not intersect, thus X is disconnected. Hence, the connected
components of Qp must consist of just one point which means that Qp is totally
disconnected.

Now comes a result which will be very important for the integration theory.

Theorem 2.2.9. Zp is compact and Qp is locally compact.
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Proof. That Qp is locally compact means that every point of Qp has a compact
neighborhood. Note that to prove that Qp is locally compact it is enough to prove
that the closed unit ball of 0 is compact (translation is a homeomorphism and
continuous maps take compact sets to compact sets). So what is left to prove
is that Zp is compact. To prove that it is compact, we have to prove that it is
complete and totally bounded. It is a closed subset of Qp which is complete, hence
it is complete. Now to prove that it is totally bounded, let ε > 0, and p−k be the
highest power of p strictly less than ε. Remember that any x ∈ Zp can be written
as

x = a0 + a1p+ a2p
2 + ... (2.2.12)

Also remember that two numbers having distance less than or equal p−k means
that the first k coefficients are the same. There are pk possible combinations for
the first k coefficients. So take pk ε-balls with each of these combinations as center.
This will clearly cover all of Zp and we are done.

2.3 Elementary Functions on Qp

On the real numbers we have the functions sinx, cosx, lnx and ex. We want to
define the p-adic analog of these functions. We will define these functions by power
series, and the power series will look identical to the real ones. To be able to do
this, we first have to develop some results about convergence of p-adic series.

We will start with two lemmas which do not hold in R.

Lemma 2.3.1. A sequence (an) in Qp converges if and only if

lim
n→∞

|an+1 − an|p = 0. (2.3.1)

Proof. We have that for m > n,

|am − an|p ≤ max{|am − am−1|p, ..., |an+1 − an|p}. (2.3.2)

This shows that if equation (2.3.1) holds, then (an) is Cauchy, and hence conver-
gent.

Lemma 2.3.2. The absolute value of the elements in a Cauchy sequence (an) in
Qp, not converging to 0, will eventually be constant.

Proof. Since the sequence is not converging to 0, then there exists an ε > 0 and an
N such that |an|p > ε for n > N . Since it is Cauchy, there exists an M such that
|an − am| < ε for n,m > M . But then if n,m > max{N,M},

|an|p = |an − am + am|p = |am|p (2.3.3)

by Lemma 2.2.2.
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Lemma 2.3.3. Let (an) be a sequence in Qp. Then the infinite series
∑∞
n=0 an

converges if and only if limn→∞ an = 0. Furthermore, in this case we get that

|
∞∑
n=0

an|p ≤ max
n
{|an|p}. (2.3.4)

Proof. That the sum converges follows immediately from the previous lemma. The
inequality follows from the fact that the absolute value of the elements in a se-
quence, not converging to 0, will eventually be constant. This reduces the inequal-
ity to the finite case which follows from induction.

We want to look at functions on the form

f(x) =

∞∑
n=0

anx
n, (2.3.5)

and determine when the series converges. We know that the series converges for
those x which satisfy limn→∞ |anxn|p = 0. The next proposition will be useful to
determine for which x that condition is satisfied. The proof is pretty straightfor-
ward and will be omitted here (it is found in [1]).

Proposition 2.3.4. Let f(x) =
∑∞
n=0 anx

n, and define ρ = (lim sup n
√
|an|p)−1

with the usual convention when dealing with ∞.

(i) If ρ = 0, then the power series converges only for x = 0.

(ii) If ρ =∞, then the power series converges for all x ∈ Qp.

(iii) If 0 < ρ <∞ and limn→∞ |an|pρn = 0, then the power series converges for x
if and only if |x|p ≤ ρ.

(iv) If 0 < ρ <∞ and limn→∞ |an|pρn 6= 0, then the power series converges for x
if and only if |x|p < ρ.

Let us now define the functions. We will first define the logarithm by

ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
. (2.3.6)

After a few calculations we get that n
√
|an|p → 1 as n → ∞, and thus ρ = 1. It

is clear that the power series diverges for |x|p = 1 since |anxn|p = |an|p = | 1n |p, so
the power series defining ln(1 + x) converges if and only if |x|p < 1.

The results about power series in x are of course true for power series in x− α
too. Now we can define the logarithm.

Definition 2.3.1. (Logarithm Function) The p-adic logarithm is defined as

ln(x) =

∞∑
n=1

(−1)n+1 (x− 1)n

n
(2.3.7)

which is defined only for x ∈ Zp such that |x− 1|p < 1.
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We continue to use the power series which are used in R to define the functions.

Definition 2.3.2. (Exponential Function) The p-adic exponential function is de-
fined as

ex =

∞∑
n=0

xn

n!
. (2.3.8)

Definition 2.3.3. (Trigonometric Functions) The p-adic trigonometric functions
are defined as

sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, (2.3.9)

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, (2.3.10)

tanx =
sinx

cosx
. (2.3.11)

Lemma 2.3.5. The region of convergence for sinx, cosx, tanx and ex is {x :

|x|p < p−
1
p−1 }.

Proof. A proof will only be given for ex. Recall that we write |x|p = p−vp(x). We
want to calculate vp(n!). It is easily seen that

vp(n!) =

∞∑
i=1

⌊
n

pi

⌋
≤
∞∑
i=1

n

pi
=

n

p− 1
. (2.3.12)

Then | 1
n! |p ≤ p

n
p−1 so we know that the series for ex converges when |x|p <

p−1/(p−1). To prove divergence when |x|p = p−1/(p−1), we will look at the terms in
the sum when n = pm. Then

vp(n!) = pm−1 + pm−2 + ...+ 1 =
pm − 1

p− 1
, (2.3.13)

and this gives us

vp

( x

pm!

)
=

1

p− 1
. (2.3.14)

The power series for ex clearly diverges, and the result follows.

This is very different from the real numbers, where functions like ex converge
for all x. In the real case | 1

n! | goes to 0 as n goes to infinity. However, in the p-adic
case | 1

n! |p will go to infinity as n goes to infinity, and the region of convergence is
then expected to be much smaller. Also note that the region of convergence for
these functions is {x : |x|p ≤ p−1} for p ≥ 3 since the absolute value does not take

any values between p−1 and p−
1
p−1 (and it is {x : |x|p ≤ p−2} for p = 2).
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Definition 2.3.4. We define Gp to be the additive group where the exponential
function is defined,

Gp =

{
{x ∈ Qp : |x|p ≤ p−1} if p 6= 2,

{x ∈ Qp : |x|p ≤ p−2} if p = 2.
(2.3.15)

Definition 2.3.5. We define Lp to be the multiplicative group where the logarithm
function is defined,

Lp = {x ∈ Qp : 1− x ∈ Gp}. (2.3.16)

It can be shown that ln(ab) = ln(a) + ln(b) and ex+y = exey (x, y ∈ Gp) as we
expect from the logarithm and exponential. The p-adic logarithm is the analog of
the natural logarithm on the real numbers. From [5] we get the next results.

Lemma 2.3.6. The function ex is an isomorphism from Gp to Lp with lnx as the
inverse function.

Lemma 2.3.7.

|ex|p = 1, | sinx|p = |x|p, | cosx|p = 1, x ∈ Gp. (2.3.17)

Proof. For instance, let us prove that | sinx|p = |x|p, or that | sin xx |p = 1. We have
that

sinx

x
= 1− x2

3!
+ ... =

∞∑
n=0

(−1)nx2n

(2n+ 1)!
. (2.3.18)

By using a bit stronger approximation than we did in Lemma 2.3.5, one can show

that |x
n−1

n! |p < 1. Now, by Lemma 2.3.3, the series for sin x
x is 1 minus a p-adic

number of absolute value less than 1, and the result follows.

Definition 2.3.6. (Legendre Symbol) Let p be an odd prime, and a an integer.
Then the Legendre symbol is defined as

(
a

p

)
=


1 if a is a quadratic residue mod p and a 6≡ 0 (mod p)

−1 if a is a quadratic non-residue (mod p)

0 if a ≡ 0 (mod p)

(2.3.19)

It can be shown that an equivalent definition is that
(
a
p

)
≡ a(p−1)/2 (mod p)

where
(
a
p

)
is in the set {−1, 0, 1} . It can also be shown that the Legendre symbol

is multiplicative, that is, (
a

p

)(
b

p

)
=

(
ab

p

)
. (2.3.20)

Lemma 2.3.8. Let a = pγ(a)(a0 + a1p+ ...) be a p-adic number, where 0 ≤ ai < p
and a0 6= 0. Then the equation

x2 = a (2.3.21)

has a solution for p 6= 2 if and only if
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(i) γ(a) is even.

(ii)
(
a0

p

)
= 1,

and a solution for p = 2 if and only if

(i) γ(a) is even.

(ii) a1 = a2 = 0.

Proof. We will prove the lemma for p 6= 2. Let x be on the standard form x =
pγ(x)(x0 + x1p+ ...). Then x2 = a becomes

p2γ(x)(x0 + x1p+ ...)2 = pγ(a)(a0 + a1p+ ...). (2.3.22)

Then we immediately see that γ(a) must be even and that a0 ≡ x2
0 (mod p).

Conversely, assume that γ(a) is even and that (a0

p ) = 1. Then we can choose

γ(x) = 1
2γ(a). Also, there exists an x0 such that x2

0 ≡ a0 (mod p). From the above
equation we also get that

2x0xj +Nj ≡ aj (mod p), (2.3.23)

where Nj is an integer which is only a function of x0, x1, ..., xj−1. The equation
has a unique solution xj for each j. This proves the lemma.

Lemma 2.3.9. The functions

cosx,
sinx

x
, (2.3.24)

are squares of p-adic functions on Gp.

Proof. From the proof in Lemma 2.3.7 we get that γ = 0 and a0 = 1 for sin x
x . The

result follows from Lemma 2.3.8. The proof for cosx is similar.

Definition 2.3.7. (p-adic Units) The p-adic units, Z×p , are defined to be the
invertible elements in Zp, which are

Z×p = {x ∈ Qp : |x|p = 1}. (2.3.25)

The p-adic units form a multiplicative group. The proof of the next lemma is
found in [1].

Lemma 2.3.10. Let V be the set of roots of unity. For all p, V is a subset of
Z×p . For p 6= 2 this is a cyclic group of order p − 1, and for p = 2 this is a cyclic
group of order 2. Furthermore Lp is a subset of Z×p , and we have the isomorphism
Z×p ∼= V × Lp.

The next corollary then follows immediately.
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Corollary 2.3.11. Every p-adic number, z, can be represented uniquely as

z = pγεkea, (2.3.26)

where γ ∈ Z, ε is a generator for the group V , k is in the additive group {0, 1, ..., p−
2} for p 6= 2 and in {0, 1} for p = 2, and a ∈ Gp.

Lemma 2.3.12. The equation x2 = −1 has a solution in Qp if and only if p ≡ 1
(mod 4).

Proof. Obviously |x|p = 1. From Lemma 2.3.8 this reduces to if
(
−1
p

)
= 1. From

the alternative definition of the Legendre symbol, we get that(
−1

p

)
= (−1)(p−1)/2 =

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4)
(2.3.27)

An element that satisfies this equation is sometimes denoted by i as we do in the
real numbers. One should keep in mind the next definition as it will be frequently
used in the integration theory.

Definition 2.3.8. (Fractional Part) The fractional part of a p-adic number, x =∑∞
i=n aip

i, is defined as

{x} =

−1∑
i=n

aip
i (2.3.28)

when |x| > 1 and defined as 0 when |x| ≤ 1.

2.4 A Useful Function

The function, λp, which will be defined here is very useful since it occurs in the
Gaussian integrals which will be defined later.

Let x be a p-adic number different from zero. Recall that it can be written on
the form

x = pγ(a0 + a1p+ a2p
2 + ...), (2.4.1)

where γ ∈ Z and 0 ≤ ai < p (a0 6= 0).
We will also denote the multiplicative group of p-adic numbers by Q∗p. Since

Qp is a field, Q∗p consists of all p-adic numbers except for 0.

Definition 2.4.1. Define the function λp : Q∗p → C as

λ2(a) =

{
1√
2
(1 + (−1)a1i) if γ is even

1+i√
2
ia1(−1)a2 if γ is odd

(2.4.2)
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λp(a) =


1 if γ is even(
a0

p

)
if γ is odd and p ≡ 1 (mod 4)

i

(
a0

p

)
if γ is odd and p ≡ 3 (mod 4)

(2.4.3)

where γ, a0, a1 and a2 are given in equation (2.4.1), and p in equation (2.4.3) is
not equal to 2. Also define the function λ∞ : R∗ → C as

λ∞(a) =
1√
2

(1− sign a), (2.4.4)

where R∗ is the multiplicative group of real numbers.

The next two lemmas are found in [5].

Lemma 2.4.1. Some important properties are

|λp(a)|p = 1, λp(a)λp(−a) = 1, a 6= 0,

λp(ac
2) = λp(a), a, c 6= 0.

(2.4.5)

Proof. Let us prove that λp(a)λp(−a) = 1. If γ is even, it is trivially true. If γ
is odd, then by Lemma 2.3.12, λp(a) = λp(−a) if p ≡ 1 (mod 4), and λp(a) =
−λp(−a) if p ≡ 3 (mod 4).

Lemma 2.4.2.

λp(a)λp(b) = λp(a+ b)λp(
1

a
+

1

b
), a, b, a+ b ∈ Q∗p. (2.4.6)

Lemma 2.4.3. We have the adelic product∏
ν

λν(a) = 1, a ∈ Q∗, (2.4.7)

where ν =∞, 2, 3, 5, ...

Proof. The product converges for all a ∈ Q∗ since λν(a) is eventually 1. Since

λν(a)λν(−a) = 1, λν(ac2) = λν(a) (2.4.8)

it is enough to prove the lemma for a of the form

a = 2αp1p2 · · · pn, (2.4.9)

where α is 0 or 1. We will only prove the lemma for α = 0 since the case α = 1 is
similar, but with longer calculations. So let α = 0. One gets that

λpj (a) =


(∏

k 6=j pk
pj

)
pj ≡ 1 (mod 4)

i

(∏
k 6=j pk
pj

)
pj ≡ 3 (mod 4).

(2.4.10)
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One also gets that λp(a) = 1 if p 6= 2 and p 6= pj , and that λ∞(a) = exp(−iπ4 ). To
calculate λ2(a), let l denote the number of primes in the set {p1, ..., pn} which are
of the form 4N + 3. Note that the product of k primes of the form 4N + 3 is equal
to an integer of the form 4N + 3 if k is odd, and of the form 4N + 1 if k is even.
This gives that λ2(a) = 1√

2
(1 + (−1)li). By the quadratic reciprocity law(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 (2.4.11)

for odd primes p and q, we get that

∏
1≤j≤n

(∏
k 6=j pk

pj

)
=

∏
1≤j≤n

(
pk
pj

)
=

∏
1≤j<k≤n

(
pk
pj

)(
pj
pk

)
=

∏
1≤j<k≤n

(−1)
pk−1

2

pj−1

2 = (−1)
l(l−1)

2 .

(2.4.12)

The last equation follows from the fact that pk−1
2

pj−1
2 is odd only if both pk and pj

are of the form 4N + 3, and this will happen l(l−1)/2 times. Now we can combine
the results to get∏

ν

λν(a) = exp (−iπ
4

)
1√
2

(1 + i(−1)l)il(−1)
l(l−1)

2 = 1 (2.4.13)

by just checking the cases l = 4k, 4k+ 1, 4k+ 2, 4k+ 3. This proves the result.
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Chapter 3

Locally Compact Abelian
Groups

In this chapter we will give an introduction to locally compact abelian groups and
integration on these groups. At the end we will do integration on Qp.

3.1 Locally Compact Abelian Groups and the Haar
Measure

Definition 3.1.1. (Topological Group) A topological group is a group G with a
topology such that x 7→ x−1 is a continuous operation from G to G, and (x, y) 7→ xy
is a continuous operation from G×G to G.

Definition 3.1.2. (Compact Group) A compact group is a topological group whose
topology is compact.

Definition 3.1.3. (Locally Compact Group) A locally compact group is a topo-
logical group whose topology is locally compact.

In this thesis we will assume that all compact and locally compact groups have
a topology which is Hausdorff.

A locally compact abelian group is a locally compact group with an abelian
group operation. These definitions are important because the p-adic numbers and
the adeles are locally compact abelian groups.

Locally compact groups have a measure called the Haar measure. Since Qp is a
locally compact abelian group, it has a Haar measure. This measure will give rise
to an integration theory on Qp.

Definition 3.1.4. (Outer and Inner Regular Measure) Let X be a set and let E
be a Borel subset of X. Let µ be a Borel measure on X. Then µ is called outer
regular on E if

µ(E) = inf{µ(O) : O ⊃ E,O open} (3.1.1)

19
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and called inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E,K compact}. (3.1.2)

Definition 3.1.5. (Radon Measure) A Radon measure on a set X is a Borel
measure, µ, such that that µ is finite on all compact sets, inner regular on all open
sets and outer regular on all Borel sets.

Now the Haar measure can be defined along with a very important theorem
which asserts that every locally compact group has a Haar measure.

Definition 3.1.6. (Haar Measure) Let G be a locally compact group. Also let E
be a Borel set. A Borel measure, µ, on G is left-invariant if µ(xE) = µ(E) for all
x ∈ G. Similarly it is right-invariant if µ(Ex) = µ(E). A left(right) Haar measure
is a non-zero left(right)-invariant Radon measure on G.

An example of a Haar measure is the Lebesgue measure on R restricted to the
Borel sets.

Theorem 3.1.1. Every locally compact group G has a left Haar measure. More-
over, a left Haar measure is unique up to a positive scalar.

The proof of the theorem can be found in [2]. A direct consequence of this is
that Qp has a unique left Haar measure up to a constant. Notice that the left Haar
measure will also be a right Haar measure since Qp is abelian. We will refer to it
as the Haar measure.

3.2 The Pontryagin Dual Group

Definition 3.2.1. (Character) Let G be a locally compact abelian group. A char-
acter on G is a continuous homomorphism from G to T which is the multiplicative
group of complex numbers of absolute value 1.

Definition 3.2.2. (Pontryagin Dual Group) Let G be a group. The set of char-
acters of G under pointwise multiplication is called the Pontryagin dual group and
is denoted by Ĝ. The topology on Ĝ will be the compact-open topology, viewing
Ĝ as a subset of all continuous functions from G to T. This is the topology where
convergence is given as uniform convergence on compact sets.

Lemma 3.2.1. If G is a locally compact abelian group. Then Ĝ is a locally compact
abelian group.

An important class of functions is the class of integrable functions.

Definition 3.2.3. (Integrable Function or L1-function) A measurable function f
is integrable on a locally compact group G if

||f ||1 =

∫
G

|f(g)|dµ(g) <∞. (3.2.1)

The space L1(G) is the set of integrable functions, where one identifies functions
which are equal almost everywhere.
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Definition 3.2.4. (Square-integrable Function or L2-function) Similarly to the
definition of L1(G), we define L2(G) to be the set of measurable functions on G
such that

||f ||22 =

∫
G

|f(g)|2dµ(g) <∞, (3.2.2)

where two functions are the same if they are equal almost everywhere. This is a
Hilbert space with inner product

〈f, h〉 =

∫
G

f(g)h(g)dµ(g), f, h ∈ L2(G). (3.2.3)

The Fourier transform is a very useful tool.

Definition 3.2.5. (Fourier Transform) Let G be a locally compact abelian group,
and let f ∈ L1(G). Then the Fourier transform F takes f to a function Ff on Ĝ
given by

Ff(ξ) =

∫
G

f(g)ξ(g)dµ(g), ξ ∈ Ĝ. (3.2.4)

We will often write f̂ instead of Ff .

Theorem 3.2.2. (Plancherel) The Fourier transform on L1(G) ∩ L2(G) extends
uniquely to a unitary isomorphism from L2(G) to L2(G).

The above theorem is found in [3].

Proposition 3.2.3. Let G be a compact group and let µ be its Haar measure
normalized such that µ(G) = 1. Then Ĝ form an orthonormal basis in L2(G).

Proof. Let χ ∈ Ĝ. We know that
∫
G
χ(g)χ(g)dµ(g) = 1 since χ(g)χ(g) = 1.

Now let η ∈ Ĝ be different from χ. Then there exists an element h such that
χη−1(h) 6= 1. Then∫

G

χη(g)dµ(g) =

∫
G

χη−1(g)dµ(g)

= χη−1(h)

∫
G

χη−1(g − h)dµ(g).

(3.2.5)

We will make the substitution g′ = g − h. By the invariance of the Haar measure
we get that the integral equals

χη−1(h)

∫
G

χη−1(g′)dµ(g′). (3.2.6)

Since χη−1(h) 6= 1, we get that
∫
G
χη−1(g)dµ(g) = 0, which proves that the

characters form an orthonormal set. Now, let f ∈ L2(G). If∫
G

f(g)χ(g)dµ(g) = f̂(χ) = 0 (3.2.7)

for all χ ∈ Ĝ, then we get that f = 0 by Theorem 3.2.2. This proves the proposition.
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Proposition 3.2.4. If G is compact, then Ĝ is discrete.

The proof is found in [3].
Finally we will state a big theorem called the Pontryagin duality theorem. We

will not need it, but it is included here for completeness. A proof is given in [3].

Theorem 3.2.5. (Pontryagin Duality Theorem) Let G be a locally compact abelian
group. Define Φx to be the element in the double dual of G acting as

Φx(ξ) = ξ(x). (3.2.8)

Then Φ : G→ ˆ̂
G, x 7→ Φx, is a topological and algebraic isomorphism.

3.3 Integration on Qp

All functions on the p-adic numbers will be complex valued.

The Haar measure is unique up to a scalar. Then the Haar measure µ which
satisfies µ(Zp) = 1 is unique, and this is the Haar measure which will be used. By
Lebesgue theory this gives a p-adic integral. So with this measure we have∫

Zp
dµ(x) = 1 (3.3.1)

Then it is possible to find the volume of balls of radius pk which we will denote
by Bk. Note that Bk = p−kZp. A p-adic integer x can be written as x = a0+a1p+...
. For 0 ≤ a, b < p − 1, let A = {x ∈ Zp : a0 = a} and B = {x ∈ Zp : a0 = b}. By
translation invariance, µ(A) = µ(B). This gives that µ(A) = µ(pZp) = 1/p. Doing
this inductively one gets that

µ(B−k) = p−k, (3.3.2)

where B−k is the ball of radius p−k and k is a positive integer. One can do this in
the same way for balls of radius pk, with k a positive integer, by noticing that all
numbers on the form a−1p

−1 +a0 +a1p+ ..., with a−1 fixed, differ from a0 +a1p+ ...
by a constant a−1p

−1. Again by induction one gets

µ(Bk) = pk. (3.3.3)

To sum it up, µ(Bk) = pk for k ∈ Z. By translation invariance, the result extends
to balls around an arbitrary element. Since two balls are either disjoint or contained
in one another, an open set is a disjoint union of open balls. Since every open set
is a disjoint union of balls, we know the measure of open sets. Finally, the Haar
measure on Borel sets is determined by outer regularity of the Haar measure.

Lemma 3.3.1. The measure µc given by µc(X) = µ(cX) for a Borel set X in Qp
is also a Haar measure on Qp. Furthermore we have that

µc(X) = µ(cX) = |c|pµ(X). (3.3.4)
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Proof. We see that for a, c ∈ Qp and X ⊂ Qp

µc(a+X) = µ(ca+ cX) = µ(cX) = µc(X) (3.3.5)

so it is a (left) Haar measure. From Theorem 3.1.1 the Haar measure is unique up
to a constant so µc(X) = f(c)µ(X). Let the p-adic number c have absolute value
p−n. Since c can be written uniquely as upn, |u|p = 1 and uZp = Zp we get that

µc(Zp) = µ(cZp) = µ(pnuZp) = µ(pnZp) = |c|pµ(Zp). (3.3.6)

Hence, f(c) = |c|p and
µc(X) = µ(cX) = |c|pµ(X) (3.3.7)

which was what we wanted.

To know the integral over a ”circle” in Qp will be useful. By defining Sk = {x ∈
Qp : |x| = pk} one gets that ∫

Sk

dµ(x) = pk − pk−1 (3.3.8)

by noticing that Sk is the difference between Bk and Bk−1.

Lemma 3.3.2. The dual group of Qp is Qp.

Proof. In this proof we will follow [3]. The main goal of the proof is to show that
every character on Qp can be written as

χu(x) = e2πi{ux} (3.3.9)

with u ∈ Qp. In particular we define

χp(x) = e2πi{x}. (3.3.10)

Recall that {a−np−n + a−n+1p
−n+1 + ... + a−1p

−1 + a0 + a1p + ...} = a−np
−n +

a−n+1p
−n+1 + ...+ a−1p

−1. The isomorphism (topological and algebraic) from Qp
to Q̂p is then given by u 7→ χu. One can show that {x + y} = {x} + {y} − N
where N is 1 or 0. Using this, it is not hard to show that χu(x) = e2πi{ux} is a
character on Qp as an additive group, and that the map u 7→ e2πi{ux} is a group
homomorphism. It is also clear that the map is injective.

Now we will prove that all characters are of the form χu(x) = e2πi{ux}. Let χ
be a character. Since a character is continuous and maps 0 to 1, there exists a ball
Bk such that χ maps Bk into {z ∈ T : |z − 1| < 1}. Since Bk is a subgroup of Qp,
{z ∈ T : |z−1| < 1} must be a subgroup of T, and hence is the set {1}. This shows
that there exists a ball Bk such that χ is equal to 1 on this ball.

Since χ is a homomorphism, if one knows the values it takes on the numbers
{pk} where k ∈ Z, then one knows how it acts on finite sums like akp

k + ...+anp
n.
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Since it is continuous, one also knows its values on infinite sums, and hence all
p-adic numbers, namely as

χ( lim
n→∞

n∑
i=k

aip
i) = lim

n→∞
χ(

n∑
i=k

aip
i). (3.3.11)

Let χ̃ be a character which is 1 on pk for k ≥ 0, but is not equal to 1 on p−1

(such a character exists, for instance e2πi{x}). We want to prove that there is a
sequence (cn)∞0 where cn ∈ {0, 1, ..., p− 1} for n > 0 and c0 ∈ {1, 2, ..., p− 1} such

that χ̃(p−k) = e2πi
∑k
j=1 ck−jp

−j
for k > 0. One has that

χ̃(p−(k+1))p = χ̃(p−k). (3.3.12)

With k = 0, we get that
χ̃(p−1)p = 1, (3.3.13)

so χ̃(p−1) is a pth root of unity, and thus χ̃(p−1) = e2πic0p
−1

for some c0 ∈
{1, 2, ..., p−1}. Proceeding inductively, by equation (3.3.12), one gets that χ̃(p−k) =

e2πi
∑k
j=1 ck−jp

−j
for some sequence (cn) which satisfies what we claimed. Now we

want to show that there exists a u ∈ Qp, with |u|p = 1, such that χ̃ = χu with χu
as in equation (3.3.9). Define u =

∑∞
j=0 cjp

j . Then |u|p = 1 and for k > 0

χ̃(p−k) = e2πi
∑k
j=1 ck−jp

−j
= e2πi

∑−1
j=−k ck+jp

j

= χp(

∞∑
j=−k

ck+jp
j) = χp(p

−ku) = χu(p−k).
(3.3.14)

So to finally prove that all characters are on the form χu(x) = e2πi{ux}, let ξ be an
arbitrary character different from 1. Then there is an integer k such that ξ(pj) = 1
for j ≥ k and ξ(pk−1) 6= 1. Let η(x) = ξ(pkx). Then η(x) = χy(x) for some y ∈ Qp
with |y|p = 1. But then

ξ(x) = η(p−kx) = χy(p−kx) = χp−ky(x), (3.3.15)

which proves that all characters are on the given form.

Finally we must show that u 7→ e2πi{ux} is a homeomorphism. A neighbourhood
base for 0 in Qp is the set {Bk} with k ∈ Z. A neighbourhood base for 1 in Q̂p is
the set

Ñ(K,U) = {χ ∈ Q̂p : χ(K) ⊂ U}, (3.3.16)

where K is a compact set and U is a neighbourhood of 1. Since all compact sets
are contained in a ball Bk which also is compact, we can use the set

N(j, k) = {χ ∈ Q̂p : |χ(x)− 1| < j−1 for |x| ≤ pk}, (3.3.17)

where j runs through the positive integers and k ∈ Z. Note that it is enough to
look at neighbourhoods around the identities since translation is a homeomorphism
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in a topological group. χp(Bk) is equal to {1} if k ≤ 0, and equal to the set of pkth
roots of unity if k > 0. Thus, the image of Bk is contained in {z ∈ T : |z−1| < j−1}
if and only if k ≤ 0. Similarly one gets that χu(Bk) is equal to {1} if |u|p ≤ p−k,
and equal to the set of pl−kth roots of unity if |u|p = pl > pk. Thus, χu ∈ N(j, k)
if and only if |u|p ≤ p−k, and this proves that the map is a homeomorphism.

Lemma 3.3.3. The integral
∫
Sk
e2πi{x}dµ(x) is equal to −1 for k = 1 and equal

to 0 when k > 1.

Proof. The integral will first be calculated for k = 1. Here b−1 will be the notation
for the p−1 coefficient for a p-adic number. The notation b−1 = a−1 in the integral
means that the integration goes over all p-adic numbers of absolute value p−1 where
the p−1 coefficient is a−1.

∫
S1

e2πi{x}dµ(x) =

p−1∑
a−1=1

∫
b−1=a−1

e2πia−1/pdµ(x)

=

p−1∑
a−1=1

e2πia−1/p = −1

by using the fact that it is a geometric series.

For k > 1 one gets by a similar argument∫
Sk

e2πi{x}dµ(x) =
∑

b−1,...,b−k

e2πib−1p
−1+...+b−kp

−k
= 0, (3.3.18)

where the sum is a sum over all p-adic numbers of absolute value pk and where
b−i varies from 0 to p− 1 (b−k is of course bigger than 0). The sum becomes zero
because if one fixes b−2, ... , b−k and sums over b−1 it becomes zero.

Definition 3.3.1. (Tate-Gel’fand-Graev p-adic Gamma Function) The p-adic gamma
function [4] (also called the Tate-Gel’fand-Graev p-adic gamma function) is defined
as

Γ(s) =

∫
Qp
χp(x)|x|s−1

p dµ(x) (3.3.19)

where χp(x) = e2πi{x}, and s is a complex number.

By |x|s−1
p , we mean e(s−1) ln(|x|p), where ln is the real logarithm. This can

be written in terms of elementary functions. We will now calculate this integral
to show an example of how integration is done over the p-adic numbers. It is
convenient to calculate the integral over Zp and Qp \Zp separately. This is because
χp is equal to 1 in Zp. Also notice that |x|p is constant on each Sk (by definition
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of Sk). So ∫
Zp
χp(x)|x|s−1

p dµ(x) =

∞∑
k=0

∫
S−k

|x|s−1
p dµ(x)

=

∞∑
k=0

p−k(s−1)

∫
S−k

dµ(x)

Now by using equation (3.3.8) we get

∞∑
k=0

p−k(s−1)

∫
S−k

dµ(x) =

∞∑
k=0

p−k(s−1)(p−k − p−k−1) =
p− 1

p

∞∑
k=0

p−sk

=
p− 1

p

1

1− p−s

if Re s > 0. The other part of the integral becomes by similar reasoning∫
Qp\Zp

χp(x)|x|s−1
p dµ(x) =

∞∑
k=1

pk(s−1)

∫
Sk

e2πi{x}dµ(x). (3.3.20)

This sum is equal to −ps−1 by Lemma 3.3.3.
By adding up all the parts one gets if Re s > 0,

Γ(s) =

∫
Qp
χp(x)|x|s−1

p dµ(x) =
p− 1

p

1

1− p−s − ps−1

=
1− ps−1

1− p−s
. (3.3.21)

It is very important to know how to compute the Gaussian integrals. These
integrals are time consuming to calculate, but they are done in detail in [5].

Theorem 3.3.4. For a 6= 0 and p 6= 2,∫
Bγ

χp(ax
2 + bx)dµ(x) =

{
pγΩ(pγ |b|p), |a|pp2γ ≤ 1,

λp(a)|a|−1/2
p χp(− b2

4a )Ω(p−γ | b2a |p), |a|pp
2γ > 1,

(3.3.22)
where Ω(|x|) = 1 if |x|p ≤ 1 and Ω(|x|) = 0 if |x|p > 1.

Theorem 3.3.5. For a 6= 0,

∫
Bγ

χ2(ax2 + bx)dµ(x) =


2γΩ(2γ |b|2), |a|222γ ≤ 1,

λ2(a)|2a|−1/2
2 χ2(− b2

4a )δ(|b|2 − 21−γ), |a|222γ = 2,

λ2(a)|2a|−1/2
2 χ2(− b2

4a )Ω(2γ |b|2), |a|222γ = 4,

λ2(a)|2a|−1/2
2 χ2(− b2

4a )Ω(2−γ | b2a |2), |a|222γ ≥ 8,

(3.3.23)
where δ(0) = 1 and δ is zero otherwise.
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Letting γ →∞, one gets the next theorem.

Theorem 3.3.6. For all p,∫
Qp
χp(ax

2 + bx)dµ(x) = λp(a)|2a|−1/2
p χp(−

b2

4a
), a 6= 0. (3.3.24)

3.4 The Fourier Transform on Qp

First comes the definition of a test function. These are functions which have a
well defined Fourier transform, and the set of test functions is invariant under
the Fourier transform. This is the analog of the Schwartz functions on the real
numbers.

Definition 3.4.1. (Test Function or Schwartz-Bruhat Function) A test function,
φ, on Qp is a function which is locally constant with compact support. To be locally
constant means that there is an m ∈ Z such that for each x ∈ Qp, φ(x+ t) = φ(x)
if |t| ≤ pm. This is also called a Schwartz-Bruhat function. The space of test
functions is denoted by D(Qp)

To have compact support on Qp is equivalent to there being an n ∈ Z such that
φ(x) = 0 if |x|p ≥ pn. This is the same since a set is compact in Qp if and only if
it is closed and bounded in Qp. The proof of this is found in [5].

Definition 3.4.2. (Fourier Transform) The Fourier transform of an integrable
function φ is defined as

φ̂(u) =

∫
Qp
χu(x)φ(x)dµ(x), u ∈ Qp (3.4.1)

where χu is as given in equation (3.3.9).

Notice here that we have used the identification between Qp and Q̂p given as
u 7→ χu.

Lemma 3.4.1. The Fourier transform of a p-adic test function is again a p-adic
test function.

Proof. Let φ(x) be zero when |x|p ≥ pn and φ(x+ t) = φ(x) for |t| ≤ pm. To prove

that φ̂(x) is compactly supported we call the integration variable for y, and do the
substitution y = x+ t where |t|p = pm to obtain

φ̂(u) = χu(t)

∫
Qp
χu(x)φ(x)dµ(x) = χu(t)φ̂(u). (3.4.2)

If |u|p > p−m then χu(t) 6= 1 so that φ̂(u) = 0.
Since φ(x) = 0 for |x|p ≥ pn

φ̂p(u) =

∫
|x|p<pn

χu(x)φ(x)dµ(x). (3.4.3)
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Then

φ̂p(u+ t) =

∫
|x|p<pn

χt(x)χu(x)φ(x)dµ(x) (3.4.4)

which is equal to φ̂(u) for |t|p ≤ p−n because then χt(x) is constantly equal to 1.
This proves the lemma.

It can be shown that the space of test functions is dense in the Hilbert space
L2(Qp) in the L2-norm. The inner product on L2(Qp) is of course given by

〈φ, ψ〉 =

∫
Qp
φ(x)ψ(x)dµ(x), φ, ψ ∈ L2(Qp). (3.4.5)

We know from Theorem 3.2.2 that the Fourier transform extends to L2(Qp).
The Fourier transform on L2(Qp) is given by

φ̂(u) = lim
γ→∞

∫
Bγ

φ(x)χu(x)dµ(x), (3.4.6)

where φ ∈ L2(Qp) and the limit is in the L2-sense.



Chapter 4

The Adeles

In this chapter we will look at the adeles. The adeles are in some sense the product
of all Qp where p ranges over all primes and ∞, and Q∞ = R. This will be a way
to look at all the completions of Q at the same time, such that no Qp is special.
The notation will be as follows: When indexing with p, it will denote all primes,
and not include ∞. Indexing with ν will give all primes and ∞.

4.1 Introduction to the Adeles

Definition 4.1.1. (Restricted Direct Product) Let Λ be an indexing set, and let
{Gλ} be a family of locally compact abelian groups, where λ ∈ Λ. For all but a
finite number of λ let Hλ be an subgroup of Gλ which is open and compact. Call
the subset of Λ where there is no Hλ for Λ′. Let G be the group consisting of all
sequences (gλ)λ where gλ ∈ Gλ for all λ and gλ ∈ Hλ for all but a finite number of
λ. We get the topology of G by letting the basis of the topology be

∏
λ Uλ where

Uλ is an open set in Gλ for each λ and Uλ = Hλ for all but a finite number of λ.
With this topology, G is called the restricted direct product of (Gλ)λ with respect
to (Hλ)λ. The restricted direct product will be written as

G =

′∏
λ

Gλ. (4.1.1)

Lemma 4.1.1. Let S be a finite subset of Λ where Λ′ ⊂ S. Define GS to be

GS =
∏
λ∈S

Gλ ×
∏
λ/∈S

Hλ. (4.1.2)

Then GS is an open subset of X (it is in the basis of the topology).

The product topology on G is different from the topology that it was given.
The subspace topology on GS however, is the same as the product topology on
GS . A set in the standard basis for the product topology is a product of open sets

29
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(some are in a Hλ, and some are in a Gλ) where all but a finite number of sets are
Hλ. A basic open set in the subspace topology is a basic open set in G intersected
with GS . This set will be a product of open sets where all but a finite numbers is
equal to Hλ. Now it is easily seen that these two topologies coincide.

Lemma 4.1.2. If all Gλ are locally compact abelian groups and all Hλ are compact
and open, then the restricted product of (Gλ)λ with respect to (Hλ)λ is a locally
compact abelian group.

Proof. Let S be a finite subset of Λ containing Λ′. Then the infinite product in
GS (

∏
λ/∈S Hλ) is compact by Tychonoff’s theorem. Hence GS is locally compact

because it is a finite product of locally compact sets. Since G =
⋃
S GS and each

GS is open, G is locally compact. What is left to prove is that the group operations
are continuous. We will prove that addition is continuous, and then the proof of
continuity of inversion will be similar. First we want to prove that addition is
continuous on GS . Let xα and yβ be nets in GS . We want to prove that if xα → x
and yβ → y, then xα + yβ → x+ y. Since GS has the product topology, one needs
to show that xλα + yλβ → xλ + yλ for each λ. But this is true since each Gλ is a
topological group. Define the function φ : G×G→ G by φ(a, b) = a+b. This is the
function we want to prove is continuous. To prove that it is continuous, take an open
set O in G. Clearly G×G =

⋃
S,T GS ×GT , and since GS ×GT ⊂ GS∪T ×GS∪T ,

G × G =
⋃
S GS × GS . Then we have that φ−1(O) =

⋃
S [φ−1(O) ∩ (GS × GS)].

Finally since φ−1(O) ∩ (GS × GS) = φ−1(O ∩ GS) ∩ (GS × GS), we have that
φ−1(O) =

⋃
S [φ−1(O ∩GS)∩ (GS ×GS)]. Since φ−1(O ∩GS)∩ (GS ×GS) is open

in GS ×GS , and hence in G×G, φ is continuous.

Definition 4.1.2. (Adeles) Let (Gλ)λ consist of the additive groups R and Qp for
all primes p. Furthermore, let Hλ be Zp for all primes p (remember that Zp is
a compact and open set). The adeles are then defined to be the restricted direct
product of (Gλ)λ with respect to (Hλ)λ and are denoted by A. In other words, x
is an adele if it is an element of R×Q2 ×Q3 ×Q5 × ...

x = (x∞, x2, ..., xp, ...) (4.1.3)

where x∞ ∈ R and xp ∈ Qp for each p, and |xp|p ≤ 1 for all but a finite number of
xp.

The adeles form a ring with pointwise addition and multiplication, and it is
called the adele ring. It is not a field because not every element has an inverse (for
instance if one component is 0).

Definition 4.1.3. (Principal Adeles) There is an inclusion

Q ↪→ A, r 7→ (r, r, r, ...). (4.1.4)

The element (r, r, r, ...) is an adele since eventually |r|p = 1. The image of this
inclusion is called the ring of principal adeles. It can be shown that Q is discrete
in A.
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By Theorem 2.2.1 we see that for every principal adele r 6= 0 we have

|r|A = 1, (4.1.5)

where |r|A =
∏
ν |r|ν .

An additive character on the adeles is a continuous homomorphism to the unit
circle in C. The character which will be used here is given by

χA(x) =
∏
ν

χν(xν) =
∏
ν

exp (2πi{xν}ν) (4.1.6)

Here {x∞}∞ means −x∞ such that exp (2πi{x∞}∞) will be exp (−2πix∞). Again,
all the factors except for a finite number will be one since {x} = 0 for x ∈ Zp, and
the product converges. We will show that this additive character is continuous. We
know that each exp (2πi{xν}ν) is continuous on Qν , and then it will be continuous
on each GS in the product topology, and hence in the subspace topology. The
product of all these functions will be a continuous function on GS since all but
a finite number of functions are constantly equal to 1, and a finite product of
continuous functions is a continuous function. Since it is continuous on each GS in
the subspace topology and GS are open sets, it is continuous on the whole space
G.

Lemma 4.1.3. For a principal adele r = (r, r, ....), the additive character χA is
equal to 1. In other words we have the adelic relation

χA(r) =
∏
ν

exp (2πi{r}ν) = 1 (4.1.7)

Proof. The rational number r can be written as r = Np−α1
1 p−α2

2 · · · p−αkk where N
is an integer and αi are positive integers. Now r can be written in the form

r =
N1

pα1
+
N2

pα2
+ ...+

Nk
pαk

+M (4.1.8)

where M is an integer and 1 ≤ Ni < pαi for i = 1...k. Since {r}p = Ni
pαi for p = pi

and 0 otherwise, ∑
p

{r}p = r −M. (4.1.9)

Since {r}∞ = −r by the definition above,
∑
ν{r}ν = −M , and the result follows.

Let S be a finite set such that it contains the coordinate for Q∞ in the restricted
direct product. Define AS to be

AS =
∏
ν∈S

Qν ×
∏
ν /∈S

Zν . (4.1.10)

A useful result is that a sequence of adeles an converges to a ∈ AS if and only if it
converges component-wise and that an eventually is in AS .
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4.2 The Haar Measure on A
The additive structure of the adele ring is a locally compact group, and thus it has
a Haar measure. The restriction that |xp|p ≤ 1 for all but a finite number of xp
was used to make the space locally compact.

It would be nice if the Haar measure would be (with the right scaling) just
µ =

∏
ν µν where each µν is the Haar measure on Qν . This is not the case, but it

will be the product of the measures in some sense. For the next theorem about the
Haar measure on A we will need two results from the section on Radon measures
in [2].

Theorem 4.2.1. If X and Y are second countable spaces and µ and ν are Radon
measures on X and Y respectively, then µ× ν is a Radon measure on X × Y .

Theorem 4.2.2. Let (Xα)α∈A be a collection of compact Hausdorff spaces, and for
each α let µα be a Radon measure on Xα such that µα(Xα) = 1. For α1, ..., αn ∈ A,
let π(α1,...,αn) be the projection π(α1,...,αn)(x) = (xα1

, ..., xαn). Then there is a
unique Radon measure µ on X =

∏
αXα such that for any α1, ..., αn ∈ A and any

Borel set E in
∏n
i=1Xαi , we have that

µ ◦ π−1
(α1,...,αn)(E) = (µα1 × · · · × µαn)(E).1 (4.2.1)

Theorem 4.2.3. Let S be a finite set such that it contains the coordinate for Q∞
in the restricted direct product. Define AS to be

AS =
∏
ν∈S

Qν ×
∏
ν /∈S

Zν . (4.2.2)

Then the Haar measure on A restricted to AS, denoted by µS, is equal to the
product of the measures µν where the measures are scaled such that µp(Zp) = 1 and
µ∞([0, 1]) = 1.

Proof. We will look at AS as a finite product of the compact group
∏
ν /∈S Zν and

the groups Qν for ν ∈ S. Then we can use Theorem 4.2.2 to get a Radon measure
on
∏
ν /∈S Zν , and then use Theorem 4.2.1 to get a Radon measure µ′S on AS . Since

the measures µν are left invariant, so is µ′S , and hence it is a left Haar measure
on AS . Let µ̃ be a Haar measure on A, and denote the restriction of µ̃ to AS by
µ̃S . Since the two measures are both Haar measures on AS , the two measures only
differ by a scalar. Then choose the measure µ on A such that the restriction of µ
to AS is equal to µ′. Call the restricted measure µS . The question now is if µ is
independent of the choice of the set S. We will show that it is. So let T be a finite
set such that S ⊂ T . By the same procedure for the set T as we did for S, we get

1In Folland’s book, the symbol ×̂ is used instead of × because the product is actually a Radon
product(which is different in the general case), but in our case all the spaces are second countable
and the measures are σ-finite, and then the Radon product coincides with the normal product.
For more, see chapter 7.4 in the book.
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a measure µT . Now we will define AT in a similar fashion as for AS . So define it
as

AT =
∏
ν∈T

Qν ×
∏
ν /∈T

Zν , (4.2.3)

and then we can see that AS is a subgroup of AT . The restriction of µT to AS
is again a Haar measure, and it is easily seen that it must be equal to µS (just
evaluate them on [0, 1]×

∏
ν Zν). Hence the measure µ is the same for the bigger

set T . Then let U be another finite set that contains the index for Q∞. By what
we have just seen, we will choose the same measure µ for the sets S and S ∪ U to
get the product of the measures. Restricting µS∪U to AU gives the product of the
measures, and hence the choice of µ is independent of the set S.

Because of this result one often writes

µ = µ∞µ2µ3 · · · . (4.2.4)

or µ =
∏
ν µν . We will use this measure in the next sections, and we will keep the

scaling that µp(Zp) = 1 and µ∞([0, 1]) = 1.

4.3 Integration on the Adeles

All the functions defined over the adeles will be complex valued unless something
else is explicitly stated. We will look at integration of special types of function on
the form f(a) =

∏
ν fν(aν) where a is an adele. We can then make use of Theorem

4.2.3.

Lemma 4.3.1. For a function f(a) on A we have that if f is a real non-negative
measurable function or is in L1(A), then∫

A
f(a)dµ(a) = lim

S

∫
AS
f(a)dµ(a) (4.3.1)

where the limit is taken over larger and larger finite sets of indices S(it is a limit
of the net where inclusion of sets is the binary relation). In the case of a real
non-negative measurable function, the integrals are allowed to take the value ∞.

Proof. We know that for such functions,∫
A
f(a)dµ(a) = lim

K

∫
K

f(a)dµ(a) (4.3.2)

where the limit is taken over larger and larger compact sets K in A. Since every
compact set is contained in some AS (since the sets AT are open sets covering A),
we have that

lim
K

∫
K

f(a)dµ(a) ≤ lim
S

∫
AS
f(a)dµ(a) (4.3.3)
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when f is a positive measurable function. The other inequality (when f is a positive
measurable function) comes from the fact that

lim
S

∫
AS
f(a)dµ(a) ≤

∫
A
f(a)dµ(a). (4.3.4)

If f is in L1(A), then one can write it as f = f1 − f2 + if3 − if4 where fi is a
positive measurable function for each i, and the result follows.

Lemma 4.3.2. Let S be a finite set of indices containing the index for Q∞. For
each ν define a continuous function fν ∈ L1(Qν) such that for ν /∈ S, fν(aν) = 1
on Zν . Define the function f on A to be f(a) =

∏
ν fν(aν). Then

(i) The function f is continuous on A.

(ii) We have ∫
AS
f(a)dµ(a) =

∏
ν∈S

[ ∫
Qν
fν(aν)dµν(aν)

]
. (4.3.5)

Proof.
(i) The proof is similar to the proof that the characteristic function χA is contin-
uous. It comes from the fact that f is a finite product of continuous functions on
each AT where T contains the index for Q∞.

(ii) We have that∫
AS
f(a)dµ(a) =

∫
AS
f(a)dµS(a)

=
∏
ν∈S

[ ∫
Qν
fν(aν)dµν(aν)

] ∏
ν /∈S

[ ∫
Zν
fν(aν)dµν(aν)

]
=
∏
ν∈S

[ ∫
Qν
fν(aν)dµν(aν)

] (4.3.6)

since f(a) =
∏
ν fν(aν) and µ =

∏
ν µν . One gets the last line from the fact that

all the integrals when ν /∈ S are equal to 1.

Theorem 4.3.3. Let the notation be as in the preceding lemma and define∏
ν

[ ∫
Qν
|fν(aν)|dµν(aν)

]
= lim

S

{∏
ν∈S

[ ∫
Qν
|fν(aν)|dµν(aν)

]}
. (4.3.7)

If ∏
ν

[ ∫
Qν
|fν(aν)|dµν(aν)

]
<∞, (4.3.8)

then f ∈ L1(A) and ∫
A
f(a)dµ(a) =

∏
ν

[ ∫
Qν
fν(aν)dµν(aν)

]
. (4.3.9)
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Proof. Since f is a continuous function, it is measurable, and hence |f | is measur-
able. Since |f(a)| and |fν(aν)| satisfy the conditions of the two preceding lemmas,∫

A
|f(a)|dµ(a) = lim

S

∫
AS
|f(a)|dµ(a)

= lim
S

{∏
ν∈S

[ ∫
Qν
|fν(aν)|dµν(aν)

]}
<∞.

(4.3.10)

Applying the two lemmas again (but now using the other condition in Lemma
4.3.1) on the function f(a) itself gives the result.

4.4 Fourier Transform on the Adeles

Lemma 4.4.1. Let G be the restricted direct product of locally compact abelian
groups Gλ with respect to the subgroups Hλ. Then Ĝ is isomorphic, topologically
and algebraically, to the restricted direct product of the Ĝλ’s, that is

Ĝ ∼=
′∏
λ

Ĝλ. (4.4.1)

Here the product is with respect to H⊥λ ⊂ Ĝλ(λ /∈ Λ) where H⊥λ is the subgroup

consisting of all characters in Ĝλ that are equal to 1 on Hλ. The subgroups H⊥λ
are open and compact such that they satisfy the conditions for the restricted direct
product.

The proof is found in [6].

Lemma 4.4.2. A is self-dual. That is, Â ∼= A as groups and topological spaces.

Proof. From Lemma 4.4.1 we have that Â ∼=
∏′
ν Q̂ν with respect to Z⊥ν for ν 6=∞.

From Lemma 3.3.2 we have an isomorphism from Qp to Q̂p given by ξ 7→ ψp(ξ),
where [ψp(ξ)](x) = exp (2πi{ξx}). We also know that an isomorphism from R to

R̂ is given by ξ 7→ ψ∞(ξ), where [ψ∞(ξ)](x) = exp (−2πiξx). Then for an adele

a = (aν)ν we have the isomorphism from A to Â, namely

a 7→ (ψν(aν))ν . (4.4.2)

It is easy to see that it is an algebraic isomorphism. To see that it is a topological
isomorphism, one just has to note that ψp(Zp) = Z⊥p and ψ−1

p (Z⊥p ) = Zp. This is
because an element in the base of the topology of A is of the form

∏
ν Oν where Oν

are open for all ν and equal to Zp for all but a finite number number of p, and an

element in the base of the topology of Â is of the form
∏
ν Oν where Oν are open

for all ν and equal to Z⊥p for all but a finite number number of p.

Next comes a class of functions called Schwartz-Bruhat functions. This space
is in many ways analogous to the Schwartz functions.
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Definition 4.4.1. (Schwartz-Bruhat functions) The Schwartz-Bruhat functions
on A are the functions which are finite linear combinations of functions ΦA which
satisfy

1. ΦA(x) =
∏
ν φν(xν)

2. φ∞(x∞) is function on R which is infinitely differentiable and such that the
function and all its derivatives decrease faster than any power of |x∞| as
|x∞| → ∞. This is called a Schwartz function.

3. φp(xp) is a Schwartz-Bruhat function on Qp. In other words, it is a p-adic
test function.

4. φp(xp) = Ω(|xp|p) for all but a finite number of p.

The functions ΦA(x) are called elementary functions. The space of Schwartz-Bruhat
functions is often denoted by S(A).

The last condition will make the product in the first condition converge. We
want to define the Fourier transform on the group of adeles.

Definition 4.4.2. (Fourier Transform on the Adeles) The adelic Fourier transform
of a function f ∈ L1(A) is defined to be

f̂(u) =

∫
A
χA(ux)f(x)dµ(x), u ∈ A. (4.4.3)

Lemma 4.4.3. Let S be a finite set of indices containing the index for Q∞. For
each ν define a continuous function fν ∈ L1(Qν) such that for ν /∈ S, fν(ap) =
Ω(|ap|p). Define the function f on A to be f(a) =

∏
ν fν(aν). Then

f̂(u) =
∏
ν

f̂ν(uν). (4.4.4)

Proof. Note that all fν(xν) exp (2πi{uνxν}ν) satisfy the conditions in Theorem

4.3.3 and that proves the equation f̂(u) =
∏
ν f̂ν(uν).

The Fourier transform acts extra nicely on Schwartz-Bruhat functions.

Lemma 4.4.4. The Fourier transform of a Schwartz-Bruhat function is a Schwartz-
Bruhat function.

Proof. By the linearity of the integral, it suffices to show that the Fourier transform
of an elementary function is an elementary function. Let f(x) be an elementary
function. Then

f̂(u) =
∏
ν

f̂ν(uν). (4.4.5)

such that it satisfies the first condition.
We will now show that the Fourier transform of Ω(|xp|p) is Ω(|xp|p). Since Ω(|xp|p)
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is zero outside of Zp we just integrate over Zp. Let up be a p-adic number where
|up| = pn. Then by the substitution y = upx we get

γ̂p(up) = p−n
∫
p−nZp

χ(y)dµ(y). (4.4.6)

If |up|p ≤ 1, then χ is constantly equal to 1 so the integral is pn. If |up|p > 1, then
the integral is zero by Lemma 3.3.3.
That the Fourier transform of f∞ will be a Schwartz function is known from Fourier
analysis on the real line.
Finally, from Lemma 3.4.1, the set of p-adic test functions is invariant under the
Fourier transform. This proves the lemma.

Theorem 4.4.5. (Fourier Inversion Theorem) Let G be a locally compact abelian
group, and let χ be the character in the Fourier transform. There exists a Haar
measure on Ĝ, denoted by µ̂, such that for all f ∈ L1(G) such that f̂ ∈ L1(Ĝ), we
have for almost all x in G

f(x) =

∫
Ĝ

χ(ux)f̂(u)dµ̂(u). (4.4.7)

If f is continuous, it holds for all x ∈ G.

The proof of this theorem is found in [3]. The measure µ̂ on Ĝ is called the
dual measure of µ.

If µ is the Haar measure on the adeles, we have that µ is self dual (µ̂ = µ). To
see this, we will first prove that the measure on each Qp is self dual.

Lemma 4.4.6. The measure µp on Qp, scaled such that µp(Zp) = 1, is self dual

with respect to the isomorphism from Qp to Q̂p given by [ψp(ξ)](x) = exp (2πi{ξx}).

Proof. Let f(x) = Ω(|xp|p) . The dual measure is a positive constant cp times µp.
Then by the inversion theorem used on f , we get

f(x) = cp

∫
Zp

exp (−2πi{ux})dµ(x). (4.4.8)

For x ∈ Zp, the left hand side is 1, and the right hand side is cp. For |x| > 1 both
sides are 0 by Lemma 3.3.3. Hence cp must be equal to 1.

Lemma 4.4.7. The Haar measure µ on A is self dual with respect to the isomor-
phism in Lemma 4.4.2.

Proof. We know that µ̂ = cµ for some scalar positive c since A is self dual. Let f be
a non-zero Schwartz-Bruhat function, f =

∏
ν fν(xν). By the inversion theorem,

f(x) = c

∫
A
χA(ux)f̂(u)dµ(u). (4.4.9)
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Then by Lemma 4.4.3,∫
A
χA(ux)f̂(u)dµ(u) =

∏
ν

∫
Qν
χν(uνxν)f̂ν(uν)dµν(uν). (4.4.10)

By the inversion theorem on each Qν this becomes∏
ν

∫
Qν
χν(uνxν)f̂ν(uν)dµν(uν) =

∏
ν

fν(xν) (4.4.11)

since each µν is self dual. We are then left with the equation

f(x) = c
∏
ν

fν(xν), (4.4.12)

so c = 1 since f is non-zero.

Then we have that the inverse Fourier transform is given by

f(x) =

∫
A
χA(ux)f̂(u)dµ(u), x ∈ A. (4.4.13)

It can be shown that the space of Schwartz-Bruhat functions is dense in the
Hilbert space L2(A) in the L2-norm. The inner product on L2(A) is of course given
by

〈f, g〉 =

∫
A
f(x)g(x)dµ(x), f, g ∈ L2(A). (4.4.14)

The Fourier transform extends to L2(A) by Theorem 3.2.2.

4.5 Orthonormal Basis for L2(A)
We will look at how an orthonormal basis for the Hilbert space L2(A) looks like.
This is done by showing that L2(A) is an infinite tensor product of the Hilbert
spaces L2(Qν). In this section we will follow [12].

We begin by defining an infinite tensor product of Hilbert spaces.

Definition 4.5.1. (Stabilizing Sequence) Let (Hn)n∈N be a sequence of Hilbert
spaces. A sequence (en)n∈N where en ∈ Hn is called a stabilizing sequence if
||en|| = 1 for all n ∈ N.

Now, let (Hn)n∈N be a sequence of separable Hilbert spaces with a stabilizing
sequence (en), and with orthonormal bases (enk )k∈N such that en1 = en. Let α =
(αn)n∈N be a sequence of positive integer, and let Λ be the set of all α such that
αn eventually is equal to 1. Then define the formal product

eα = e1
α1
⊗ e2

α2
⊗ · · · , (4.5.1)
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where α ∈ Λ. Notice that since αn eventually is one, enαn is eventually en1 = en.
The infinite tensor product of the Hilbert spaces (Hn) with respect to the

stabilizing sequence (en), denoted by
⊗

e,nHn, is defined to be the Hilbert space
which has the set {eα}α∈Λ as an orthonormal basis by definition. All elements in⊗

e,nHn are thus of the form

f =
∑
α∈Λ

fαeα, (4.5.2)

where (fα) is a sequence of complex numbers such that
∑
α∈Λ |fα|2 < ∞. The

inner product of two elements f =
∑
α∈Λ fαeα and g =

∑
α∈Λ gαeα is

〈f, g〉 =
∑
α∈Λ

fαgα. (4.5.3)

Let Xn be a closed subspace of Hn, and let (enk )k∈Z be an orthonormal basis
for Hn such that (enk )k∈N is an orthonormal basis for Xn, and en1 = en such that
the stabilizing sequence (en) lies in (Xn). Define the spaces

He =
⊗
e,n

Hn, (4.5.4)

and

Hle =

l⊗
n=1

Hn ⊗
⊗
e,n>l

Xn = H1 ⊗H2 ⊗ · · · ⊗ Hl ⊗Xl+1 ⊗Xl+2 ⊗ · · · . (4.5.5)

Lemma 4.5.1. The spaces He and Hle satisfy

He =
⋃
l≥1

Hle (4.5.6)

Proof. Since Hle ⊂ He for all l, we have that He ⊃
⋃
l≥1Hle. For the converse, we

see that the element

eα = e1
α1
⊗ e2

α2
⊗ · · · ⊗ ekαk ⊗ e

k+1 ⊗ ek+2 ⊗ · · · (4.5.7)

in He is also in Hke . It follows that He ⊂
⋃
l≥1Hle which proves the lemma.

Our goal is to show that L2(A) =
⊗

e,ν L
2(Qν) for some stabilizing sequence

(en). The measures on the spaces we work with will be the measures obtained in
Section 4.2. Remember that to define the integral for Schwartz-Bruhat functions
we first did it for the set AS =

∏
ν∈S Qν ×

∏
ν /∈S Zν . We will use a similar strategy

here. Define
An = R×

∏
p≤pn

Qp ×
∏
p>pn

Zp, (4.5.8)

where pn is the nth prime.
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Theorem 4.5.2. We have that⊗
e,p

L2(Zp) ∼= L2(
∏
p

Zp), (4.5.9)

where ep(x) = Ω(|x|p) = 1 for all primes p.

From this theorem we get the next corollary.

Corollary 4.5.3. We have that

L2(R)⊗
⊗
p≤pn

L2(Qp)⊗
⊗
e,p>pn

L2(Zp) ∼= L2(An), (4.5.10)

where ep = Ω(|x|p) = 1 for all primes p > pn.

Theorem 4.5.4. The space L2(A) is isomorphic to the infinite tensor product of
L2(Qν), that is

L2(A) ∼=
⊗
e,ν

L2(Qν), (4.5.11)

where the elements in the stabilizing sequence (ep) are given as ep(x) = Ω(|x|p),
and e∞ is any element in the orthonormal basis for L2(R).

Proof. By Lemma 4.5.1 and Corollary 4.5.3, we get that⊗
e,ν

L2(Qν) ∼=
⋃
n

L2(An). (4.5.12)

What is left to show is that
⋃
n L

2(An) = L2(A). The inclusion
⋃
n L

2(An) ⊂ L2(A)
is obvious. For the converse, since the Schwartz-Bruhat functions are dense in
L2(A) an element f ∈ L2(A) is a limit of Schwartz-Bruhat functions fi. Each fi
is an element in L2(An) for some n. Hence the limit must be in

⋃
n L

2(An), and

thus
⋃
n L

2(An) ⊃ L2(A). This proves the theorem.

Now for each L2(Qν) fix an orthonormal basis (eνk)k∈N such that (eν1)ν is the sta-
bilizing sequence in Theorem 4.5.4. Then the orthonormal basis for L2(A) consists
of elements

eα = e∞α∞ ⊗ e
2
α2
⊗ · · · , (4.5.13)

where α = (αn) ranges over all sequences of positive integers which eventually
become 1. So all elements are of the form

eα = e∞α∞ ⊗ e
2
α2
⊗ e3

α3
⊗ · · · ⊗ ekαpk ⊗ e

pk+1 ⊗ epk+2 ⊗ · · · , (4.5.14)

where ep(x) = Ω(|x|p). It is evaluated on an adele x = (x∞, x2, ...) by

eα(x) = e∞α∞(x∞)e2
α2

(x2) · · · epkαpk (xk)Ω(|xk+1|p)Ω(|xk+2|p) · · · . (4.5.15)

Notice that it is a finite product.



Chapter 5

Quantum Mechanics

5.1 Some Classical Mechanics

Before one enters the world of quantum mechanics, one needs to understand some
basic facts from classical mechanics. One can say that the main contributor to
classical mechanics was Sir Isaac Newton. After Newton we have had two major
reformulations, the Lagrangian formulation after Joseph Louis Lagrange, and the
Hamiltonian formulation after William Rowan Hamilton.

The position of a particle is denoted by q, and the momentum of a particle with
mass m is given by p = mv. The total energy of a particle moving in a potential
V (which is only a function of the position), considered as a function of position
and momentum, is called the Hamiltonian and is given by

H(q,p) =
p2

2m
+ V (q). (5.1.1)

Here T = p2

2m is the kinetic energy of the particle.

Generally, the position q is a point on a manifold M , and the momentum is
a cotangent vector in the cotangent space T ∗qM . We will simplify this, and let
M = Rn. The space of all possible positions of a particle is called the configuration
space. According to Newtonian mechanics, if one knows all the forces acting on
a particle, then the motion of the particle is completely determined by the mo-
mentum and position at an initial time. Having the position and momentum at a
certain time gives us the state of the particle. The space of all possible pairs of
position and momentum (Rn ×Rn) is thus called the state space (or phase space).
We will later refer to this as the classical state space or classical phase space.

The Lagrangian of a particle is the function

L(q,v) = mv2 −H(q,mv) =
mv2

2
− V (q) = T (v)− V (q). (5.1.2)

41
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Let γ(t) be a smooth path in the configuration space, parametrized by the time
t, such that γ(t0) = q0 and γ(t1) = q1. Then the action functional S is defined as

S(γ) =

∫ t1

t0

L(γ(t), γ′(t))dt. (5.1.3)

An important principle in classical mechanics is the principle of least action.
It states that a path γ(t) describes the motion of the particle if and only if it is
a critical point of the action functional S. A critical point is where the action
is stationary to first order. Note that the name principle of least action is a bit
unfortunate as the action does not need to be a minimum. We will later see a
quantum mechanical analog to the action integral called the Feynman path integral.

5.2 Introduction

In this section a few terms from quantum mechanics will be introduced, and the
theory will be given for a particle moving in Rn. As we will see, quantum mechanics
is quite different from classical mechanics. It explains how small particles behave,
that is, systems on an atomic scale. There are three concepts which are very im-
portant in quantum mechanics, and those are observables, states and the dynamics
of a system. In quantum mechanics a particle in the space Rn is described by a
complex valued wave function ψ(q, t), where q ∈ Rn and t ∈ R is the time. For
a fixed time t, |ψ(q, t)|2 can be interpreted as the probability density function for
the position of the particle at time t, so the integral of this function is 1. This
probabilistic view of the particle is at the heart of quantum mechanics, and is quite
different from classical mechanics where a particle is at a given place at a given
time. Position is something we can measure, or in other words, something we can
observe. Thus, measurable quantities will be called observables.

The state space, or phase space, for a particle is a complex separable Hilbert
space H, and the possible states of the quantum system are represented by unit
vectors in H. The state of a quantum system at a given time is described by a wave
function. From the probabilistic nature of the observables, we want to be able take
their expectations. An observable will correspond to an operator on H.

Definition 5.2.1. (Expectation of an Observable) The expectation of an observ-
able which corresponds to the operator A in the state ψ is given as

Eψ[A] = 〈Aψ,ψ〉. (5.2.1)

Physicists often prefer the inner product to be linear in the second argument,
but we will not follow this convention. The operators corresponding to position
and momentum are important. We will not show the derivation of these operators.
Qj is the position operator for the jth coordinate and is densely defined on L2(Rn)
by

Qjψ(q) = qjψ(q), (5.2.2)
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and Pj is the momentum operator for the jth coordinate and is defined densely on
L2(Rn) by

Pjψ(q) = −i~ ∂

∂qj
ψ(q). (5.2.3)

These operators correspond to classical position and momentum. Now we can
for instance calculate the expectation of the jth coordinate of a particle with wave
function ψ. The expectation at time t becomes

Eψ[Qj ] =

∫
Rn
qj |ψ(q, t)|2dnq. (5.2.4)

With the wave function, we can also find the probability of finding a particle inside
a region in space. The probability of finding a particle in the state ψ(q, t), in a
region S, is ∫

S

|ψ(q, t)|2dnq (5.2.5)

Another important concept is the momentum space. The momentum space
is Rn just as the configuration space, except that the space now consists of all
possible momenta and not positions. The two spaces are closely related by the
Fourier transform. Define the Fourier transform on L2(Rn) as

Fψ(p) = ψ̂(p) = (2π~)−n/2
∫
Rn
e−

i
~p·qψ(q)dnq, (5.2.6)

which is understood in the L2-sense. It is a unitary operator with inverse

F−1ψ̂(q) = (2π~)−n/2
∫
Rn
e
i
~p·qψ(p)dnp, (5.2.7)

and the Parseval formula is∫
Rn
|ψ̂(p)|dnp =

∫
Rn
|ψ(q)|dnq. (5.2.8)

Then from integration by parts,

FPjψ(p) = (2π~)−n/2
~
i

∫
Rn
e−

i
~p·q ∂

∂qj
ψ(q)dnq = pjFψ(p). (5.2.9)

We can then define P̂j = FPjF−1 which acts as multiplication by pj , and this
is analogous with Qj acting as multiplication by qj in the configuration space.

Similarly Q̂j = FQjF−1 acts as i~ ∂
∂qj

. If the wave function in configuration space

is ψ, then ψ̂ is the wave function in the momentum space. There is no new physics
in this, it is just a different representation of the same physical system. As an
example, the probability that the momentum of a particle in a state ψ is in the set
S at time t is ∫

S

|ψ̂(p, t)|2dnp. (5.2.10)
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We can not expect all the operators to be bounded. For instance the position
operator is not bounded. Since the operators are unbounded, they will be defined
on a smaller space. Let D(A) denote the domain of the operator A. D(A) is a
linear subspace of H, and since it is convenient for the operator to be defined for
most states, D(A) will also be assumed to be dense in H.

Definition 5.2.2. (Adjoint Operator) Let A be an operator on the Hilbert space
H with dense domain D(A). The domain of the adjoint of A is the set of all ψ ∈ H
such that the map φ 7→ 〈ψ,Aφ〉 (φ ∈ D(A)) extends to a bounded linear functional
on all of H. Let ψ̃ be the element corresponding to the functional such that
〈ψ̃, φ〉 = 〈ψ,Aφ〉. The adjoint of A, A∗, is the operator which satisfies A∗ψ = ψ̃.

Note that A∗ is well defined since D(A) is dense.

Definition 5.2.3. (Symmetric Operator) Let A be an operator on the Hilbert
space H with dense domain D(A). Then it is called symmetric (or Hermitian) if

〈ψ,Aφ〉 = 〈Aψ, φ〉 (5.2.11)

for all φ, ψ ∈ D(A).

For a symmetric operator, clearly D(A) ⊂ D(A∗).

Definition 5.2.4. (Self-Adjoint Operator) Let A be a symmetric operator on H.
A is called a self-adjoint operator if D(A∗) = D(A).

Since the operator is symmetric, A and A∗ will also coincide on their domain.
We then write A = A∗. Another important class of operators are the essentially
self-adjoint operators.

Definition 5.2.5. (Essentially Self-Adjoint Operator) Let A be a symmetric op-
erator on H. A is called an essentially self-adjoint operator if it has a unique
self-adjoint extension.

Now that we are done with general definitions, let us go back to operators asso-
ciated with an observable. When doing measurements one wants results from the
real numbers. Hence, it is convenient to assume that our operators are symmetric
so they satisfy

〈ψ,Aψ〉 = 〈Aψ,ψ〉, (5.2.12)

which is the expectation of A in the state ψ. We will not go into deeper detail, but
we will require the operators corresponding to an observable to be self-adjoint.

We can of course also calculate the variance of the observables.

Definition 5.2.6. (Mean Square Deviation of an Observable) The mean square
deviation of an observable corresponding to the operator A, in the state ψ, is

∆ψ(A)2 = Eψ[A2]− Eψ[A]2 = ||(A− Eψ[A])ψ||2. (5.2.13)
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Note that ∆ψ(A)2 = 0 if and only if ψ is an eigenvector of A and Eψ[A] is the
corresponding eigenvalue. When doing measurements of an observable, one can
only obtain the eigenvalues of the operator corresponding to the observable. This
is a reason why finding the eigenvalues is very important. If the set of eigenvalues
is discrete, the observable can only obtain discrete value. This can for instance
happen for the energy operator which is another surprising and unintuitive result
in quantum mechanics.

Let us now turn to the dynamics of a quantum system. We want to know how
the system changes over time. A state ψ(q, t) will change as

ψ(q, t) = U(t)ψ(q, 0). (5.2.14)

There are certain properties U(t) should have, based on the mathematical frame-
work and on physical experiments. Since it should take states to states,

||U(t)ψ|| = ||ψ||. (5.2.15)

Moreover, it is reasonable to assume that it is linear and continuous in the strong
operator topology. Now we again need to state a few definitions.

Definition 5.2.7. (Unitary Representation) A unitary representation of a locally
compact group G on a Hilbert space H is a homomorphism G 7→ U(H), where
U(H) is the set of unitary operators on H.

Definition 5.2.8. (Strongly Continuous Unitary Representation) A strongly con-
tinuous unitary representation is unitary representation such that x 7→ U(x)f is
continuous for all f ∈ H.

Definition 5.2.9. (Strongly Continuous One-Parameter Unitary Group) Let U
be strongly continuous unitary representation of G. Then the family of operators
U(x), x ∈ G is called a strongly continuous one-parameter unitary group.

We require U to be a strongly continuous unitary representation of G = R on
H. We call U (or U(t)) the evolution operator or time evolution.

The Hamilton operator H should also be mentioned. The Hamilton operator is
the self-adjoint operator which corresponds to the energy of the system. In quan-
tum mechanics we will look at Hamiltonians of the form H = 1

2mP2 +V (Q), where
P2 = P 2

1 + ...+ P 2
n , Q = (Q1, ..., Qn), V is the potential and m is the mass of the

particle. In classical mechanics in the case where a particle is moving in space with

no potential (V = 0), H = T = p2

2m . In quantum mechanics, H = 1
2mP2. In both

classical physics and quantum mechanics, this is called a free particle.

An important equation in quantum mechanics is the (time dependent) Schrödinger
equation

i~
∂

∂t
ψ(q, t) = Hψ(q, t), (5.2.16)
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where ~ = h
2π with h being Planck’s constant1. This differential equation describes

how the state of the system changes with time.

One can ask what the connection is between U(t) and H. Equation (5.2.14) is
the (weak) solution of equation (5.2.16) with U(t) = e−iHt/~ (we will look closer at
this in Section 5.4). A theorem of Stone [9] gives the relation between self-adjoint
operators and strongly continuous one-parameter unitary groups.

Theorem 5.2.1. (Stone) Let U(t) be a strongly continuous one-parameter unitary
group. Then there exists a unique self-adjoint operator A such that

U(t) = e−itA. (5.2.17)

Conversely, let A be a self-adjoint operator. Then {U(t) = e−itA} is a strongly
continuous one-parameter unitary group.

Another important concept in quantum mechanics is Heisenberg’s uncertainty
principle. First define [A,B] = AB −BA.

Theorem 5.2.2. (Heisenberg’s Uncertainty Principle) Let A and B be two sym-
metric operators. Then

∆ψ(A)∆ψ(B) ≥ 1

2
|Eψ([A,B])| (5.2.18)

for all ψ ∈ D(AB) ∩D(BA).

As a corollary, we get that

∆ψ(Pj)∆ψ(Qj) ≥
1

2
~ (5.2.19)

for all ψ ∈ D(PjQj) ∩ D(QjPj). So, if one measures the position of a particle
very well, one knows little about its momentum, and conversely, if one knows the
momentum very well, one knows little about the position. The error is not due to
bad measurement equipment, but due to the nature of quantum mechanics.

5.3 Weyl System

An equivalent way to describe quantum mechanics, is to describe it by a Weyl sys-
tem which is Hermann Weyl’s formulation of quantum mechanics. In the previous
section, we saw Heisenberg’s uncertainty relation, which comes from the fact that

[Qj , Pj ] = i~. (5.3.1)

We would like to describe this relation in another way. In this section we
will work in one dimension and denote by Q and P the position and momentum
operator. Define

U(x) = e−ixQ, V (ξ) = e−iξP , (5.3.2)

1h is approximately equal to 6.63 · 10−34 Js (joule seconds).
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where x, ξ ∈ R. U and V are strongly continuous unitary representations.

These operators will act in the following way.

(U(x)f)(t) = e−itxφ(t), (V (ξ)f)(t) = φ(t− ~ξ). (5.3.3)

The operators satisfy

U(x)V (y) = ei~xyV (y)U(x), x, y ∈ R. (5.3.4)

Under suitable conditions on P and Q this equation is equivalent to Heisenberg’s
commutation relation. The pair (U, V ) form what is called a Weyl system.

Definition 5.3.1. (Weyl System, first definition) Let G be a locally compact
abelian group. Let R be a strongly continuous unitary representation of G, and S
a strongly continuous unitary representation of Ĝ. The pair (R,S) is called a Weyl
system if it satisfies

R(x)S(χ) = χ(x)−1S(χ)R(x), x ∈ G, y ∈ Ĝ. (5.3.5)

Notice that in equation (5.3.4), the pair becomes a Weyl system from the fact

that R is isomorphic to R̂.

Furthermore we can define W on R× R as

W (x, y) = e−(i~/2)xyU(x)V (y), (5.3.6)

It satisfies the equation

W (x, y)W (x′, y′) = ei~/2(xy′−x′y)W (x+ x′, y + y′), (5.3.7)

where x, y, x′, y′ ∈ R. Now we will give a second definition of a Weyl system, using
W instead of U and V .

Definition 5.3.2. (Weyl System, second definition) Let G be a separable locally
compact abelian group. A Weyl system on G × Ĝ is a pair (H,W ) where H is a
Hilbert space and W is a strongly continuous function from G× Ĝ to the unitary
operators on H such that

W (x)W (y) = m(x, y)W (x+ y), (5.3.8)

where m is a Borel function on G × Ĝ to the complex numbers of absolute value
one, and it is called the multiplier of W .

The above equation is called the Weyl relation. Notice here that W is not a
representation if m 6= 1, but it is instead called a projective representation.
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5.4 Feynman Path Integral

Feynman’s path integral formulation is another equivalent way to describe quan-
tum mechanics. It is the quantum mechanical analog of the action principle in
classical mechanics.

It can be shown that when the Hamiltonian is of the form H = P2

2m +V (Q) and
V is bounded on compact subsets of Rn and bounded from below, then ψ(q′, t) =
U(t)ψ(q) is a weak solution of time-dependent Schrödinger equation, and the time
evolution U(t) is on the form

ψ(q′, t) = U(t)ψ(q) =

∫
Rn
Kt(q′,q)ψ(q)dnq, (5.4.1)

where ψ ∈ L2(Rn). K(∞)
t is called the kernel or propagator, and is in general

a distribution with initial condition K(∞)
0 = δ(q − q′) where δ is Dirac’s delta

function. The equation also has to be understood in the L2-sense. That is,

U(t)ψ(q) = lim
R→∞

∫
|q|≤R

Kt(q′,q)ψ(q)dnq, (5.4.2)

where the limit is in the L2-norm. Also note that U(t) has been extended to act
on distributions.

Since U(t′ + t) = U(t′)U(t), we get that

ψ(q′, t′) = U(t′ − t)ψ(q, t) =

∫
Rn
Kt′−t(q′,q)ψ(q, t)dnq. (5.4.3)

The physical interpretation of |Kt′−t(q′,q)|2 is that it gives the probability density
for the probability of a particle being at position q′ at time t′ given that it was at
position q at time t.

The kernel is obtained for a free particle by solving the Schrödinger equation
in the momentum space, which is

i~
∂

∂t
ψ̂(p, t) =

1

2m
p2 ˆψ(p, t), ψ̂(p, 0) = ψ̂(p). (5.4.4)

The solution is

ψ̂(p, t) = exp (− ip2

2m~
t)ψ̂(p). (5.4.5)

In the configuration space this becomes

ψ(q′, t′) = (2π~)−n/2
∫
Rn

exp
( i
~

(q′ · p− 1

2m
p2)(t′ − t)

)
ψ̂(p, t)dnp. (5.4.6)

One obtains the kernel

Kt′−t(q′,q) =
1

(2π~)n

∫
Rn
e
i
~ (p(q′−q)− p2

2m (t′−t))dnp. (5.4.7)
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By the Fresnel integral (Lemma 5.4.1), one gets

Kt′−t(q′,q) =
( m

2πi~(t′ − t)

)n/2
e

im
2~(t′−t) (q′−q)2

, (5.4.8)

where in/2 = e−
iπn
4 and T > 0.

Lemma 5.4.1. (Fresnel Integral) For a real number a 6= 0,∫ ∞
−∞

eiax
2

= e
πi sgn(a)

4

√
π

|a|
. (5.4.9)

where the left side has to be interpreted as the principal value of the integral.

The lemma can be proved by contour integration.

Further on we will assume the space to be one dimensional (R). Now that the
kernel is found for a free particle, one could hope that the kernel for a Hamiltonian
H = H0 +V , where H0 is the Hamiltonian for a free particle and V is the potential,
is obtained by using e−

i
~ tH = e−

i
~ tH0e−

i
~ tV . This is however not the case since

H0 and V do not commute. Fortunately we have the Lie-Kato-Trotter product
formula.

Theorem 5.4.2. (Lie-Kato-Trotter product formula) Let A and B be two self-
adjoint operators on H such that A+B is essentially self-adjoint on D(A)∩D(B).
Then

ei(A+B)ψ = lim
n→∞

(e
i
nAe

i
nB)nψ (5.4.10)

for all ψ ∈ H.

We will assume that the Hamiltonian is essentially self-adjoint onD(H0)∩D(V ),
so the Lie-Kato-Trotter product formula can be used. Denote the time difference
t′ − t by T , and let ∆t = T/n. Then

e−
i
~TH = lim

n→∞
(e−

i∆t
~ H0e−

i∆t
~ V )n. (5.4.11)

in the strong operator topology. From the kernel for e−
i∆t
~ H0 , the kernel for

e−
i∆t
~ H0e−

i∆t
~ V then becomes

Kt′−t(q′, q) =

√( m

2πi~∆t

)
e
i
~ ( m

2∆t (q′−q)2−V (q)∆t). (5.4.12)

Note that

e−
i(t2−t1)

~ H0e−
i(t2−t1)

~ V e−
i(t1−t0)

~ H0e−
i(t1−t0)

~ V ψ(q, t)

=

∫
R
Kt2−t1(q2, q1)

∫
R
Kt1−t0(q1, q0)ψ(q0, t0)dqdq1

=

∫
R

∫
R
Kt2−t1(q2, q1)Kt1−t0(q1, q0)dq1ψ(q0, t0)dq0

(5.4.13)
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where Fubini is used for the last equality. The kernel for (e−
i∆t
~ H0e−

i∆t
~ V )2 is then∫

R
Kt2−t1(q2, q1)Kt1−t0(q1, q0)dq1. (5.4.14)

Continuing inductively one obtains the kernel for (e−
i∆t
~ H0e−

i∆t
~ V )n which is∫

Rn−1

n−1∏
k=0

K∆t(qk+1, qk)

n−1∏
k=1

dqk, (5.4.15)

where q0 = q (obtained at time t) and qn = q′ (obtained at time t′).
Finally the kernel for U(t′ − t) is obtained by taking the limit,

Kt′−t(q′, q) = lim
n→∞

( m

2πi~∆t

)n/2
·
∫
Rn−1

exp
( i
~

n−1∑
k=0

[m
2

(qk+1 − qk
∆t

)2

− V (qk)
]
∆t
) n−1∏
k=1

dqk

(5.4.16)

The convergence is in the distributional sense, such that the integral
∫
Rn−1 is to be

understood as n− 1 integrals of the form limR→∞
∫
|qk|≤R where the limit is in the

L2-norm.
Now we will look at the physical interpretation and see why it is called a path

integral. If there is a smooth path γ(t) such that γ(tk) = q(tk) = qk, then we get
that,

lim
n→∞

n−1∑
k=0

[m
2

(qk+1 − qk
∆t

)2

− V (qk)
]
∆t = S(γ), (5.4.17)

where

S(γ) =

∫ t′

t

1

2
mq̇2(τ)− V (q(τ))dτ =

∫ t′

t

L(q(τ), q̇(τ))dτ (5.4.18)

is the classical action.
The integral can then be interpreted as integration over all smooth paths which

start in q at time t and end in q′ at time t′. We then write the kernel as a Feynman
path integral

Kt′−t(q′, q) =

∫
P (R)q

′,t′
q,t

e
i
~S(γ)Dq, (5.4.19)

where P (R)q
′,t′

q,t denotes the set of all smooth paths which start in q at time t and
end in q′ at time t′. Notice the difference between classical mechanics where the
particle follows a path, and quantum mechanics where one takes a weighted sum
over all possible paths. This is in accordance with the fact that one deals with
randomness and uncertainty in quantum mechanics. The ”measure” Dq given by

Dq = lim
n→∞

(
m

2πi~∆t
)n/2

n−1∏
k=1

dqk (5.4.20)
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is not measure; because if it were, it would be a complex measure, but with a
total variation which diverges, and this is impossible. The mathematical meaning
of the path integral is equation (5.4.16). Notice that the integrand has absolute
value 1, so one only gets convergence if the phases cancel each other out. When
the classical action S is almost constant, the phases will almost be the same, and
will not cancel. Because we divide by a small number ~, the phase oscillates very
fast when S changes, and the phases will tend to cancel each other out. Recall the
principle of least action from classical mechanics which states that a path describes
the motion of the particle if and only if it is a critical point of the action functional
S. Thus, the main contribution to the integral will be the paths which are close to
the classical path. Later we will find the kernel for U(t) for the harmonic oscillator
in one dimension.
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Chapter 6

One-Dimensional Harmonic
Oscillator

We will look at the harmonic oscillator over the real numbers, p-adic numbers
and adeles. Most of the results in the section about the oscillator over the real
numbers will not be proved since they are well known and because it only is meant
as motivation for the p-adic and adelic oscillator.

6.1 Introduction to the Classical Harmonic Oscil-
lator

In this section we will give a brief introduction to the harmonic oscillator in one di-
mension. In classical mechanics, the harmonic oscillator is characterized by some-
thing which oscillates around an equilibrium. It could for instance be a simple
pendulum. We will describe the harmonic oscillator by the Hamiltonian. For the
harmonic oscillator (in one dimension), the Hamiltonian for a particle becomes

H =
1

2

p2

m
+

1

2
mωq2, (6.1.1)

where ω is the angular frequency and q is the displacement from the equilibrium.
One can see that the first term is the kinetic energy, while the second term is the
potential energy. One wants to know how the system changes over time. The
equations of motion are given as

p(t) = mq′(t), p′(t) = −mω2q(t), (6.1.2)

with initial conditions q(0) = q and p(0) = p.
By differentiating the left equation and putting it in the right equation one gets

q′′(t) + ω2q(t) = 0. (6.1.3)

53
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This is easily solved, and with the initial conditions one obtains(
q(t)
p(t)

)
= Tt

(
q
p

)
, (6.1.4)

where

Tt =

(
cosωt (mω)−1 sinωt

−mω sinωt cosωt

)
. (6.1.5)

This can be referred to as the time evolution in the phase space. Even though
this was done in R, the equations (6.1.4) and (6.1.5) are also true in Qp but in the
p-adic case, all the quantities are p-adic. That is, p,m, q, ω and t are p-adic and
cos and sin are the p-adic cosine and sine functions. Note that in the p-adic case
ωt ∈ Gp so the sine and cosine functions are well defined. An important relation
which is easy to show is that TtTt′ = Tt+t′ .

6.2 Real Quantum Oscillator

As already mentioned, the Hamiltonian is the operator which corresponds to the
total energy of the system. The Hamiltonian in this case is the operator H given
by

H =
1

2

P 2

m
+

1

2
mωQ2. (6.2.1)

We wish to find the eigenvectors and eigenvalues of the operator. The equation

Hψ(q) = Eψ(q), (6.2.2)

where E is the (energy) eigenvalue, becomes

~2

2m

d2

dq2
ψ(q) + (E − mω2

2
)ψ(q) = 0. (6.2.3)

This equation is the (time independent) Schrödinger equation for the harmonic
oscillator. We will simplify by setting m = ω = h = 1. Then we get

d2

dq2
ψ(q) + (E − 1

2
)ψ(q) = 0. (6.2.4)

The equation has a non-trivial solution if and only if E = En, where

En =
1

2π
(n+ 1/2), (6.2.5)

and the solution for E = En is then

ψn(q) =
21/4

2nn!
e−πq

2

Hn(q
√

2π), (6.2.6)

where Hn are the Hermite polynomials given by

Hn(q) = (−1)neq
2 dn

dqn
e−q

2

. (6.2.7)
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Earlier we saw that we can describe quantum mechanics by using a Weyl system.
An equivalent formulation of quantum mechanics is given by the triple

(L2(R),W (z), U(t)). (6.2.8)

Here W is the projective unitary representation of R× R acting on L2(R) by

W (z)ψ(x) = χ∞(kq/2 + kq)ψ(x+ q), (6.2.9)

where z = (q, p) ∈ R × R is a point in the classical phase space. Notice here that
we used a different scaling for W compared to what we did in the section on Weyl
systems. It satisfies the Weyl relation

W (z)W (z′) = χ∞

(
1

2
B(z, z′)

)
W (z + z′), (6.2.10)

where z = (q, p), z′ = (q′, p′) ∈ R × R and B(z, z′) = −pq′ + qp′. In other words,
(L2(R),W (z)) defines a Weyl system.

U is the time evolution operator from R to U(L2(R)) (the unitary operators on
L2(R)) and is defined as

U(t)ψ(x) =

∫
R
Kt(x, y)ψ(y)dy. (6.2.11)

We wish to find the kernel Kt(x, y) by using the Feynman path integral. The
important step in finding it is the next proposition taken from [13].

Proposition 6.2.1. Let A be real symmetric non-degenerate n× n matrix. Then∫
Rn
e
i
2 (Aq)·q+ip·qdnq = exp

(πin
4

)√ (2π)n

detA
exp

( i
2

(A−1p) · p
)
,

where the integral is understood in the distributional sense as limR→∞
∫
|q|≤R.

Remember the notation T = t′ − t and ∆t = T/n. For this proposition we will
not use m = ω = h = 1.

Proposition 6.2.2. The kernel K for the harmonic oscillator is given as

KT (q′, q) =

√
mω

2π~ sinωT
exp

( imω

2~ sinωT
((q2 + q′2) cosωT − 2qq′)

)
,

for πν
ω = Tν < T < Tn+1 = π(ν+1)

ω , ν ∈ N. In the limit T → Tν the kernel is

e−
πiν
2 δ(q − q′) for even ν and e−

πiν
2 δ(q + q′) for odd ν.

Proof. We want to use Proposition 6.2.1 on equation (5.4.16). Starting with the

expression in equation (5.4.16) with V = mωQ2

2 and by the substitution q̃k =
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√
m
~∆tqk we get

KT (q′, q)

=
( m

2πi~∆t

)n/2 ∫
Rn−1

exp
( i
~

n−1∑
k=0

[m
2

(qk+1 − qk
∆t

)2

− mωq2
k

2

]
∆t
) n−1∏
k=1

dqk

=

√
m

(2πi)n~∆t

∫
Rn−1

exp
( i

2

n−1∑
k=0

(
q̃k+1 − q̃k

)2

− εq̃2
k

) n−1∏
k=1

dq̃k,

where ε = ω∆t.
With the tridiagonal (n− 1)× (n− 1) matrix

An−1 =



2− ε2 −1 0 · · · 0 0
−1 2− ε2 −1 · · · 0 0
0 −1 2− ε2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2− ε2 −1
0 0 0 · · · −1 2− ε2


, (6.2.12)

one gets that

n−1∑
k=0

((q̃k+1 − q̃k)2 − ε2q̃2
k) = (An−1q) · q + 2p · q + q̃0

2 − ε2q̃0
2 + q̃2

n, (6.2.13)

where q = (q̃1, q̃2, ..., q̃n−1) and p = (−q̃0, 0, ..., 0,−q̃n) are n − 1 dimensional vec-
tors.

Then by Proposition 6.2.1,√
m

(2πi)n~∆t

∫
Rn−1

exp
( i

2

n−1∑
k=0

(
q̃k+1 − q̃k

)2

− εq̃2
k

) n−1∏
k=1

dq̃k

=

√
m

2πi~∆tdetAn−1
exp

( im

2~∆t
(q2 − ε2q2 + q′2 − (A−1

n−1p) · p)
)
.

(6.2.14)

We will not go into detail on how to do the rest of the calculations (see [13]). For
large n one obtains

detAn−1 =
sinωT

ω∆t
(1 +O(n−1)), (6.2.15)

and also that An−1 has ν negative eigenvalues when Tν < T < Tν+1. Furthermore
one sees that the corner elements in A−1

n−1 are just given by determinants of An−1

and An−2. One gets the kernel√
mω

2πi~ sinωT
exp

( imω

2~ sinωT

[
(q2 + q′2) cosωT − 2qq′

])
. (6.2.16)

When Tν < T < Tν+1, we get what we wanted.
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The result for T → Tν is obtained by

lim
t→0

1√
2πt

e
i(x−y)2

2t = e
πi
4 δ(x− y). (6.2.17)

When m = ω = h = 1,

KT (q′, q) =

√
1

sinωT
exp

( iπ

sinT
((q2 + q′2) cosT − 2qq′)

)
. (6.2.18)

It can be shown that

U(t)W (z) = W (Ttz)U(t) (6.2.19)

which shows a relation between quantum and classical time evolution.
It can also be shown that

U(t)ψn(x) = χ∞(Ent)ψn(x), (6.2.20)

where En = 1
2π (n + 1/2) as in equation (6.2.5) and ψn(q) = 21/4

2nn!e
−πq2

Hn(q
√

2π)
as in equation (6.2.6). We have found the same eigenvalues as we get in the
Schrödinger equation by using a Weyl system. The strategy to find eigenvalues in
the p-adic and adelic case will then be to formulate quantum mechanics by Weyl’s
formulation.

The states corresponding to the 0 eigenvalue are called ground states. The
ground state is given by

ψ0(q) = 21/4e−πq
2

, (6.2.21)

and it is invariant under the Fourier transform.
The expectation of an observable A in the state ψ0 will be denoted by

〈A〉 = 〈Aψ0, ψ0〉. (6.2.22)

When an expectation is taken of an expression in q, it means that it is the
expectation of the operator which acts as multiplication with that expression in q.
Then for instance the expectation of the position operator is written 〈q〉, and the
expectation is

∫
R q|ψ0(q)|2dq. Similarly an expression in p means multiplication

with that expression in the momentum space. Since the ground state is invariant
under the Fourier transform, we can use our results from the configuration space.
Now we will do some calculations. By symmetry

〈q〉 = 〈p〉 = 0. (6.2.23)

For Re s > −1 one gets by a simple substitution,

〈|q|s〉 = 〈|p|s〉 =
√

2Γ

(
s+ 1

2

)
(2π)−(s+1)/2, (6.2.24)
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where Γ is the regular complex gamma function given by

Γ(z) =

∫ ∞
0

e−ttz−1dt, Re z > 0. (6.2.25)

Then we get that

∆q = ∆p = 〈q2〉1/2 = (
√

2Γ(−3/2)(2π)−3/2)1/2

= (
√

2

√
π

2
(2π)−3/2)1/2 =

1

2
√
π
,

(6.2.26)

and by similar calculations,

∆|p| = ∆|q| = 1

2
√
π

(1− 2

π
)1/2. (6.2.27)

6.3 p-adic Quantum Oscillator

For simplicity, we will continue to use m = ω = h = 1. As already mentioned,
a Weyl system can be used for other locally compact abelian groups than R. To
define p-adic quantum mechanics we will use the idea of a Weyl system. When one
wants to generalize the harmonic oscillator to the p-adic numbers, one might try

to define it as H = 1
2
P 2

m + 1
2mωQ

2 as in the real case, but where Q is given as
Qψ(x) = xψ(x). When x is a p-adic number and ψ is complex-valued, this makes
no sense. One can instead define Q2 directly as Q2ψ(x) = |x|2ψ(x) which would
be an analog of the operator on the real numbers. As stated above, we will instead
use Weyl systems. p-adic quantum mechanics will be given by the triple

(L2(Qp),W (z), U(t)). (6.3.1)

The projective unitary representation W on L2(Qp) is given by

W (z)ψ(x) = χp(
pq

2
+ px)ψ(x+ q), (6.3.2)

where z = (q, p) is a point in the classical phase space. It satisfies the Weyl relation

W (z)W (z′) = χp(
1

2
B(z, z′))W (z + z′), (6.3.3)

where z = (q, p), z′ = (q′, p′) and B(z, z′) = −pq′ + qp′ just as in the real case.
The p-adic evolution operator U is a function on Gp given as

U(t)ψ(x) =

∫
Qp
Kt(x, y)ψ(y)dµp(y) (6.3.4)

where ψ ∈ L2(Qp) and Kt is the kernel for the harmonic oscillator and is given as

Kt(x, y) = λp(2t)|t|−1/2χp

(
xy

sin t
− x2 + y2

2 tan t

)
t ∈ Gp, t 6= 0 (6.3.5)
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K0(x, y) = δp(x− y) (6.3.6)

where δp is the p-adic Dirac delta function. A derivation of the propagator is given
in [15] by a p-adic analog of the Feynman path integral.

The equation has to be understood in the L2-sense since the integral is generally
not convergent for a L2-function. The process of extending U(t) from L1(Qp) ∩
L2(Qp) to L2(Qp) is similar to what was done for the Fourier transform. Since
U(t) preserves the L2-norm, the extension is unique.

Theorem 6.3.1. U(t) is strongly continuous unitary representation of the group
Gp on the Hilbert space L2(Qp). Moreover, it maps D(Qp) (the space of test func-
tions) into itself.

Proof. We have that

U(t)ψ(x) = χp(−
x2

2 tan t
)
λp(2t)

|t|1/2p

F
[
ψ(y)χp(−

y2

2 tan t
)
]∣∣∣∣

x
sin t

, (6.3.7)

where F is the p-adic Fourier transform. This is a composition of four unitary
operators which map D(Qp) into itself. When t = 0 we get that U(t)ψ(x) = ψ(x).
What is left to prove is

U(t+ t′) = U(t)U(t′). (6.3.8)

We will prove equation (6.3.8) for p ≥ 3. The case p = 2 is similar. We will also
not look at the case where t, t′ or t+ t′ are equal to zero as it will be just a simpler
case. Let ψ ∈ D(Qp) and assume that ψ(x) = 0 for |x| > pN and U(t)ψ(x) = 0 for
|x| > pM . Then

U(t)U(t′)ψ(x)

=

∫
|y|p≤pM

Kt(x, y)

∫
|z|p≤pN

Kt′(y, z)ψ(z)dµp(z)dµp(y)

=

∫
|z|p≤pN

ψ(z)

∫
|y|p≤pM

Kt(x, y)Kt′(y, z)dµp(y)dµp(z)

(6.3.9)

by Fubini’s theorem.

Now by Theorem 3.3.6 we get that∫
|z|p≤pN

ψ(z)

∫
|y|p≤pM

Kt(x, y)Kt′(y, z)dµp(y)dµp(z)

=
λp(2t)λp(2t

′)

|tt′|1/2
χp(−

x2

2 tan t
)

∫
|z|p≤pN

ψ(z)χp(−
z2

2 tan(t′)
)

·
∫
|y|p≤pM

χp(−y2(
1

2 tan t
+

1

2 tan t′
) + y(

x

sin t
+

z

sin t′
))dµp(y)dµp(z)

(6.3.10)

We will first calculate the inner integral. To do this, define

a = − 1

2 tan t
− 1

2 tan t′
, b =

x

sin t
+

z

sin t′
(6.3.11)
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By the fact that tan(α + β) = tan(α)+tan(β)
1−tan(α) tan(β) , | tan(α)|p = |α|p and Lemma 2.2.2,

we get that

|a|p = | tan(t+ t′)(1− tan(t) tan(t′))

tan(t) tan(t′)
|p. (6.3.12)

By similar reasoning

| b
2a
pM |p = p−M |x sin(t′) + z sin(t)

t+ t
|p. (6.3.13)

The left part in equation (6.3.9) will not change if one takes a larger M . Since one
can choose M as big as one wants, we get by choosing M sufficiently big and by
Theorem 3.3.4,∫

|y|p≤pM
χp(−y2(

1

2 tan t
+

1

2 tan t′
) + y(

x

sin t
+

z

sin t′
))dµp(y)

= λp(a)| tt
′

t+ t′
|1/2p χp(−

b2

4a
)

(6.3.14)

It follows from Lemma 2.4.2, λ(αβ2) = λ(α), λp(α)λp(−α) = 1 , and Lemma
2.3.9, that

λp(−
1

2 tan t
− 1

2 tan t′
) = λp(−

tan(t+ t′)(1− tan(t) tan(t′))

2 tan(t) tan(t′)
)

= λp(−
t+ t′

2tt′
) = λp(−

2t+ 2t′

2t2t′
) =

λp(2t+ 2t′)

λp(2t)λp(2t′)

(6.3.15)

We also have that

− b2

4a
= (

x

sin t
+

z

sin t′
)2(

2

tan t
+

2

tan t′
)−1

= − x2 + z2

2 tan(t+ t′)
+

2xz

2 sin(t+ t′)
+

x2

2 tan t
+

z2

2 tan t′

(6.3.16)

by using the equation sin(α+ β) = sin(α) cos(β) + cos(α) sin(β). Then we get the
result

U(t)U(t′)ψ(x)

=
λp(2t+ 2t′)

|t+ t′|1/2p

∫
Qp
χp(−

x2 + z2

2 tan(t+ t′)
+

xz

sin(t+ t′)
)ψ(z)dµp(z)

= U(t+ t′)ψ(x).

(6.3.17)

The result extends to L2-functions.

From this calculation we also get that

Kt+t′(x, y) =

∫
Qp
Kt(x, z)Kt′(z, y)dµp(z). (6.3.18)
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It can be shown that the operators Wp(z) and Up(t) satisfy

U(t)W (z) = W (Ttz)U(t). (6.3.19)

Chapter 7 is devoted to finding the eigenvalues and eigenfunctions of the evo-
lution operator U(t). The only result needed for now is that the simplest ground
state (there are several ground states) is

ψ00(x) = Ω(|x|p). (6.3.20)

Note that it is invariant under the Fourier transform. To avoid confusion x is
position, k is momentum and p is a prime number.

The expectation of an observable A in the state ψ00 will be denoted by

〈A〉 = 〈Aψ00, ψ00〉. (6.3.21)

The mean square deviation is given by

∆A = (〈A2〉 − 〈A〉2)1/2, (6.3.22)

just like in the real case.
Note that 〈x〉 and 〈k〉 are not defined, while 〈|x|p〉 and 〈|k|p〉 are. We get that

〈|x|sp〉 = 〈|k|sp〉 =
1− p−1

1− p−s−1
, Re s > −1, (6.3.23)

by the calculations which were done on the p-adic Γ-function in section 3.3. Fur-
thermore we get that

∆|k|p = ∆|x|p =

(
1− p−1

1− p−3
− (1− p−1)2

(1− p−2)2

)1/2

=

(
1− p−1

1− p−3

)1/2(
1− (1− p−1)(1− p−3)

(1− p−2)2

)1/2

.

(6.3.24)

6.4 Adelic Quantum Oscillator

When we are dealing with real and p-adic functions at the same time, there will
be an extra index p, ∞ or ν to make it clear which functions we are using. To
define an adelic quantum mechanics we will again use a Weyl system. The Hilbert
space will be L2(A). Then we have the projective unitary representation of A×A,
denoted by W , together with the adelic evolution operator U . So we have the triple

(L2(A),W (z), U(t)). (6.4.1)

The operator W (z) is defined as

W (z)ψ(x) = χA(pq/2 + px)ψ(x+ q), (6.4.2)
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where z = (q, p) is in the adelic classical phase space and ψ ∈ L2(A). One often
writes W (z) =

∏
νWν(zν), where W∞ is the W we used in the real case and Wp

is the W we used in the p-adic case, since this is how it acts on Schwartz-Bruhat
functions. It satisfies the Weyl relation

W (z)W (z′) = χA(
1

2
B(z, z′))W (z + z′), (6.4.3)

where z = (q, p) and z′ = (q′, p′) are in the adelic classical phase space and
B(z, z′) = −pq′ + qp′.

The evolution operator U is defined as

U(t)ψ(x) =

∫
A
Kt(x, y)ψ(y)dµ(y), (6.4.4)

where Kt is defined as

Kt(x, y) =
∏
ν

K
(ν)
tν (xν , yν), t 6= 0 (6.4.5)

K0(x, y) = δ(x∞ − y∞)δ2(x2 − y2)δ3(x3 − y3) · · · , (6.4.6)

and K
(ν)
tν are given by equation (6.2.18) and (6.3.5).

It is easily seen that Kt(x, y) makes no sense as a function, even when t 6= 0,
and must be seen as a distribution. The next definition shows how U(t) acts on
elementary functions.

Definition 6.4.1. For an elementary function ψ, U(t) is given as

U(t)ψ(x) =
∏
ν

∫
Qν
K(ν)
t (xν , yν)ψν(yν)dµν(yν). (6.4.7)

One can then write U(t) =
∏
ν Uν(tν), where U∞(t∞) and Up(tp) are the real

and p-adic evolution operators respectively. One of course has to check that the
infinite product converges. Also note that the time t must be in

GA = R×G2 ×G3 × · · · . (6.4.8)

Lemma 6.4.1. For large enough p,∫
Qp
K(p)
tp (xp, yp)ψ

p(yp)dµp(yp) = 1, (6.4.9)

where ψ(y) =
∏
ν ψ

ν(yν) is an elementary function (see section 4.4).

Proof. If tp = 0, then the result is easily shown. So assume that tp 6= 0. Since x
is a fixed adele, |xp|p ≤ 1 for p > N1 for some natural number N1 . We also have
that ψp is the characteristic function on Zp for p > N2 for some natural number
N2 since ψ is an elementary function. Then for p > max{N1, N2} we have
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∫
Qp
K(p)
tp (xp, yp)ψ

p(yp)dµp(yp) =

∫
Zp
K(p)
tp (xp, yp)dµp(yp)

= λp(2tp)|tp|−1/2
p χp(−

x2
p

2 tan tp
)

∫
Zp
χp(−

y2
p

2 tan tp
+
xpyp
sin tp

)dµp(yp)

= λp(2tp)λp(−
1

2 tan tp
)|tp|−1/2

p | − 1

2 tan tp
|−1/2

· χp
(
−

x2
p

2 tan tp

)
χp

(
x2
p tan tp

2(sin tp)2

)
Ω

(
| − xp tan tp

sin tp
|
)
,

(6.4.10)

by Theorem 3.3.4.
First notice that since | sin tp| = |tp|, | cos tp| = 1 and |xp|p ≤ 1, we have that

|tp|−1/2
p | − 1

2 tan tp
|−1/2 = 1, (6.4.11)

Ω

(
| − xp tan tp

sin tp
|
)

= 1 (6.4.12)

Furthermore we have that

λp(2tp)λp(−
1

2 tan tp
) = 1 (6.4.13)

since λp(ac
2) = λ(a) and λ(a)λ(−a) = 1, and by Lemma 2.3.9. Finally we have to

look at

χp

(
−

x2
p

2 tan tp

)
χp

(
x2
p tan tp

2(sin tp)2

)
= χp

(
x2
p

2 sin tp
(

1

cos tp
− cos tp)

)
= χp(x

2
p tan tp/2) = 1,

(6.4.14)

since |xp|p ≤ 1 and | tan tp/2|p < 1. This proves equation (6.4.9).

The lemma proves that the product in Definition 6.4.1 makes sense. Since
U∞(t+ t′) = U∞(t)U∞(t′) and Up(t+ t′) = Up(t)Up(t

′), it follows that

U(t+ t′) = U(t)U(t′). (6.4.15)

Similarly to what is done earlier, U(t) extends uniquely to L2(A). U(t) is a unitary
operator since Uν(tν) are unitary operators. What is left to prove is that it is
strongly continuous. Since

∏
ν Uν(tν)ψν(xν) actually is a finite product when ψ

is an elementary function, and since each Uν(tν) is strongly continuous, U(t) is
strongly continuous on the space of Schwartz-Bruhat functions (S(A)). Let ψ ∈
L2(A). Since S(A) is dense in L2(Qp), there is a function ψ̃ ∈ S(A) such that

||ψ − ψ̃|| < ε/3. Let tn be a sequence of adeles converging to the adele t. There
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exists a positive integer N such that for n > N , ||U(t)ψ̃ − U(tn)ψ̃|| < ε/3. Then
for n > N

||U(t)ψ − U(tn)ψ|| ≤ ||U(t)ψ − U(t)ψ̃||+ ||U(t)ψ̃ − U(tn)ψ̃||
+ ||U(tn)ψ̃ − U(tn)ψ|| < ε/3 + ε/3 + ε/3 = ε

(6.4.16)

since U is a unitary representation. Thus, U is a strongly continuous unitary
representation of GA on L2(A). As in the real and p-adic case, we get that

U(t)W (z) = W (Ttz)U(t), (6.4.17)

where W (Ttz) =
∏
νWν(T νtνzν) and T νt are the real and p-adic Tt from equation

(6.1.5).

The eigenstates and eigenvalues are found in Section 7.4. The simplest ground
state is given by

ψ00(x) = ψ
(∞)
0 (x∞)

∏
p

ψ
(p)
00 (xp) = 21/4e−πx

2
∞
∏
p

Ω(|xp|p), (6.4.18)

which is invariant under the adelic Fourier transform.
The expectation of an observable A in the simplest ground state is denoted by

〈A〉 = 〈Aψ00, ψ00〉 (6.4.19)

Analogously we also define the mean square deviation as

∆A = (〈A2〉 − 〈A〉2)1/2. (6.4.20)

We will use x as position, k as momentum and p as a prime. We want to find
〈|x|s〉 and 〈|k|s〉 where

|x| =
∏
ν

|xν |ν , |k| =
∏
ν

|kν |ν . (6.4.21)

These products do not always converge. Therefore one instead computes 〈|x|s〉
and 〈|k|s〉 as limits of |x|s(pn) and |k|s(pn) which are given as

|x|s(pn) = |x∞|s∞
pn∏
p=2

|xp|sp, |k|s(pn) = |k∞|s∞
pn∏
p=2

|kp|sp, (6.4.22)

where s is a complex number such that Re s > −1 and pn denotes the nth prime.
This does not solve the mathematical problem that the products do not converge,
but it may give an answer which makes sense physically.

By equation (6.3.23) and (6.2.24) we get that

〈|k|s(pn)〉 = 〈|x|s(pn)〉 =
√

2Γ

(
s+ 1

2

)
(2π)−

s+1
2

pn∏
p=2

1− p−1

1− p−s−1
, (6.4.23)
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where Re s > −1. One also gets that

∆|k|(pn) = ∆|x|(pn)

=

(
1

4π

pn∏
p=2

1− p−1

1− p−3

) 1
2
(

1− 2

π

pn∏
p=2

(1− p−1)(1− p−3)

(1− p−2)2

) 1
2

.
(6.4.24)

The limit limn→∞
∏n
k=0

1
1−p−sk

is equal to the Riemann zeta function ζ(s) if

Re s > 1. So for Re s > 0,

lim
n→∞

n∏
k=0

1

1− p−(s+1)
k

= ζ(s+ 1). (6.4.25)

Mertens’ Theorem ([11]) states that

lim
n→∞

1

lnn

∏
pk≤n

1

1− 1
pk

= eγ , (6.4.26)

where γ is the Euler-Mascheroni constant1.
Since the Riemann zeta function is convergent for Re s > 0, we get that

〈|k|s〉 = 〈|x|s〉 = lim
n→∞

∏
pk≤n

1− 1
p

1− 1

p
(s+1)
k

= 0 (6.4.27)

for Re s > 0.
Similarly

∆|k| = ∆|x| = 0. (6.4.28)

An infinite product is said to converge if the sequence of partial products is conver-
gent to a limit not equal to 0. Even though the limit in our case does not satisfy
the condition, we will still interpret the answer as 0.

1γ ≈ 0.5772
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Chapter 7

Spectral Analysis of the
Evolution Operator

As in the real case we want to find the eigenvectors of the p-adic evolution operator
and the corresponding eigenvalues. The problem is not trivial because the propa-
gator is not so easy to deal with. We will begin by finding the eigenvalues, then
the dimensions of the eigenspaces, and finally the eigenvectors. To do this we first
need some theory from harmonic analysis.

7.1 Eigenvalues and Eigenspaces

Let G be a compact abelian group. From Proposition 3.2.4 we know that Ĝ is
discrete. We will enumerate the characters from an index set I, so we can write
the set of characters as Ĝ = {χα, α ∈ I}. We want to split the Hilbert space L2(G)
as an orthogonal sum L2(G) =

⊕
α∈I Hα, and define the projection on each Hα.

The projections are defined as vector-valued integrals, so we will first need some
theory on this subject.

Definition 7.1.1. (Vector-Valued Integral) Let Ξ be a locally convex topological
vector space, and let Ξ∗ be the space of continuous linear functionals on Ξ. Fur-
thermore, let (X,µ) be a measure space. A function F : X → Ξ is called weakly
integrable if φ ◦ F ∈ L1(X,µ) for all φ ∈ Ξ∗. If F is weakly integrable and there
exists an element v in Ξ such that

φ(v) =

∫
φ ◦ F (x)dµ(x) (7.1.1)

for all φ ∈ Ξ∗, then v is called the integral of F and we write

v =

∫
F (x)dµ(x) (7.1.2)

67
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Lemma 7.1.1. Let Ξ and (X,µ) be as in the above definition. Let F : X → Ξ
be weakly integrable, and assume that v =

∫
F (x)dµ(x) exists. Let Ξ′ be another

locally convex topological vector space and let T : Ξ → Ξ′ be a continuous linear
map. Then T ◦ F is weakly integrable and

T

∫
F (x)dµ(x) =

∫
T ◦ F (x)dµ(x). (7.1.3)

Proof. We know that φ ◦ T ∈ Ξ∗ if φ ∈ (Ξ′)∗ which shows that T ◦ F is weakly
integrable. Since we have assumed that

ψ(v) =

∫
ψ ◦ F (x)dµ(x) (7.1.4)

for all ψ ∈ Ξ∗, we get that

φ ◦ T (v) =

∫
φ ◦ T ◦ F (x)dµ(x) (7.1.5)

for all φ ∈ (Ξ′)∗. This proves the lemma.

One wants to know when the element v exists, and if it in this case is unique.
The next lemma is taken from [8].

Lemma 7.1.2. Let Ξ be a locally convex topological vector space. Given two dis-
tinct vectors x, y in Ξ, there exists a continuous linear functional χ such that
χ(x) 6= χ(y).

The next Corollary is a direct consequence of the lemma.

Corollary 7.1.3. If the vector v =
∫
F (x)dµ(x) exists, then it is unique.

Existence is harder to show, and we will need a theorem from [3].

Theorem 7.1.4. Let Ξ be a Banach space and let µ be a Radon measure on the
locally compact Hausdorff space X. If g is a scalar-valued function in L1(X,µ) and
H : X → Ξ is bounded and continuous, then

∫
gH(x)dµ(x) exists and belongs to

the closed linear span of the range of H, and∣∣∣∣∣∣ ∫ gH(x)dµ(x)
∣∣∣∣∣∣ ≤ sup

x∈X
||H(x)||

∫
|g(x)|dµ(x). (7.1.6)

Let U be a strongly continuous unitary representation of the group G, and let
H be the corresponding Hilbert space. The projection operator Pα is defined as

Pα =

∫
G

χα(g)U(g)dµ(g). (7.1.7)

Existence of this integral is not immediate from Theorem 7.1.4 since U only is
assumed to be continuous in the strong operator topology, and B(H) (bounded
linear operators on H) is not a Banach space with this topology. However, we can
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use the theorem to define the integral pointwise. For each v ∈ H, the function
g 7→ U(g)v is a continuous and bounded function from G to H. So equation (7.1.7)
actually means that

Pαv =

∫
G

χα(g)U(g)vdµ(g), ∀v ∈ H. (7.1.8)

Again, by Theorem 7.1.4 we have that

||Pαv|| ≤ sup
g∈G
{||U(g)v||}

∫
G

1dµ(g) = ||v||, (7.1.9)

since U(g) is a unitary operator. Hence, Pα is bounded. We need to show that
P ∗α = Pα and PαPβ = Pαδαβ , where δαβ is the Kronecker delta. We will show that
P ∗α = Pα. By the definition of the vector-valued integral, and by the substitution
h = g−1 we have that

〈v, Pαw〉 = 〈Pαw, v〉 =

∫
G

χα(g)〈U(g)w, v〉dµ(g)

=

∫
G

χα(g)〈U(g)w, v〉dµ(g) =

∫
G

χα(h)〈U(h)v, w〉dµ(h)

= 〈Pαv, w〉

(7.1.10)

It is not hard to show that Pαu = 0 ∀α ∈ I ⇒ u = 0, and we have that

U(h)Pαv =

∫
G

χα(g)U(g + h)vdµ(g)

=

∫
G

χα(g′ − h)U(h′)vdµ(h′)

= χα(h)

∫
G

χα(g′)U(h′)vdµ(h′) = χα(h)Pαv.

(7.1.11)

Then we have that H can we written as the orthogonal sum

H =
⊕
α∈I
Hα, (7.1.12)

where Hα = PαH. Finally we can write

U(g) =
∑
α∈I

χα(g)Pα. (7.1.13)

Our next goal will be to find the dimensions of the spaces Hα for the case when
U is the evolution operator on Gp and where H = L2(G). By what we just showed,
all eigenvalues of U(g) must be of the form χα(g), and they are eigenvalues if the
dimension of Hα is bigger than 0. We need a result from [5] which says that the
characters of Gp are χp(αt) where for p 6= 2

α = 0 or α = p−γ(α0 + α1p+ ...+ αγ−2p
γ−2), (7.1.14)
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where γ = 2, 3, 4, ..., α0 6= 0, 0 ≤ αi < p. For p = 2

α = 0 or α = 2−γ(1 + α12 + ...+ αγ−32γ−3), (7.1.15)

where γ = 3, 4, 5, ... and 0 ≤ αi < 2. The set of these α will for each p be denoted
by Ip.

Notice that adding higher terms of p to α will not change the character. An α
which is in Ip is thus a special choice of α.

We will also use the Haar measure on Qp, so

µp(Gp) =

{
1/p p 6= 2,

1/4 p = 2.
(7.1.16)

The projection must then be normalized, so we define it as

Pα = µp(Gp)
−1

∫
Gp

χ(−αt)U(t)dµ(t). (7.1.17)

For the next proposition, we have to define the trace of an operator.

Definition 7.1.2. (Trace) Let H be a separable Hilbert space, and let {ei} be an
orthonormal basis for H. Then the trace of a bounded linear operator A on H is
defined as

Tr(A) =

∞∑
i=0

〈Aei, ei〉. (7.1.18)

If A is a positive element in the C∗-algebra of bounded linear operators, then
the above sum is independent of the choice of basis, and converges (including ∞).

Proposition 7.1.5. For all α in Ip,

dimHα = TrPα. (7.1.19)

This is seen by choosing a suitable basis. Now we can state the main theorem
of this section.

Theorem 7.1.6. The spaces Hα have the following dimensions: If p ≡ 1 (mod 4),
then dim Hα =∞ for all α ∈ Ip. If p ≡ 3 (mod 4), then

dimHα =


1, α = 0,

p+ 1, |α|p = pγ and γ 6= 0 is even,

0, else.

(7.1.20)

If p = 2, then

dimHα =


2, α = 0 or |α|2 = 23,

4, |α|2 ≥ 24 and α1 = 1,

0, else.

(7.1.21)
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Proof. The proof will only be given for p 6= 2. The case p = 2 is similar. We
will prove the theorem by using Proposition 7.1.5. So the goal will be to calculate
Tr(Pα). It can be shown that if A is a positive operator and (Tn) is a sequence of
positive elements converging strongly to the identity operator, then

lim
n→∞

Tr(TnATn) = Tr(A). (7.1.22)

Define ωn on L2(Qp) by

ωnψ(x) = Ω(p−n|x|p)ψ(x). (7.1.23)

This operator converges strongly to the identity operator, and we get that

lim
n→∞

Tr(ωnPαωn) = Tr(Pα). (7.1.24)

The next goal is then to calculate Tr(ωnPαωn) and to take the limit. By Lemma
7.1.1 it becomes

Tr(ωnPαωn) =
1

µp(Gp)

∫
Gp

χp(−αt) Tr(ωnU(t)ωn)dµp(t). (7.1.25)

Now we will look closer at Tr(ωnU(t)ωn). When K is a compact set, µ is
a measure on K and A is an integral operator on K with kernel K(x, x), then
TrA =

∫
K
K(x, x)dµ(x) if K(x, x) is continuous on K ×K. One then gets

Tr(ωnU(t)ωn) =

∫
|x|p≤pn

Ω(p−n|x|p)K(p)
t (x, x)Ω(p−n|x|p)dµp(x)

=

∫
|x|p≤pn

K(p)
t (x, x)dµp(x) =

λp(2t)

|t|1/2p

∫
|x|p≤pn

χp(tan
( t

2

)
x2)dµp(x).

(7.1.26)

By Theorem 3.3.4 with a = tan
(
t
2

)
we get that

∫
|x|p≤pn

χp(tan
( t

2

)
x2)dµp(x) =

{
pn |a|p ≤ p−2n,

λp(a)|2a|−1/2
p |a|p > p−2n.

(7.1.27)

By Lemma 2.3.7 and 2.3.9 this can be written as∫
|x|p≤pn

χp(tan
( t

2

)
x2)dµp(x) =

{
pn |t|p ≤ p−2n,

λp(2t)|t|−1/2
p |t|p > p−2n.

(7.1.28)

Then we get that

Tr(ωnPαωn) = pn+1

∫
|t|p≤p−2n

λp(2t)

|t|1/2p

χp(−αt)dµp(t)

+ p

∫
|t|p>p−2n

λp(2t)
2

|t|p
χp(−αt)dµp(t)

(7.1.29)
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By some calculations, one gets that the first term becomes

pn+1

∫
|t|p≤p−2n

λp(2t)

|t|1/2p

χp(−αt)dµp(t) = p, (7.1.30)

and that the second term, denoted by J , becomes

J =


(p− 1)(2n− 1) if α = 0, p ≡ 1(mod 4)

(p− 1)(2n−N)− 1 if |α|p = pN , 2 ≤ N ≤ 2n, p ≡ 1(mod 4)

1− p if α = 0, p ≡ 3(mod 4)

(−1)N p+1
2 −

p−1
2 if |α|p = pN , 2 ≤ N ≤ 2n, p ≡ 3(mod 4).

(7.1.31)

Letting n→∞ one gets the desired result.

Corollary 7.1.7. The eigenvalues of the p-adic evolution operator U(t) are of the
form χp(αt) where

α = 0 or α = p−γ(α0 + α1p+ ...+ αγ−2p
γ−2), (7.1.32)

where α0 6= 0, 0 ≤ αi < p and γ = 2, 3, 4, ... for p ≡ 1 (mod 4), γ = 2, 4, 6, ... for
p ≡ 1 (mod 4) . For p = 2

α = 0 or α = 2−γ(1 + α12 + ...+ αγ−32γ−3), (7.1.33)

where 0 ≤ αi < 2, γ = 3, 4, 5, ... and α1 = 1 for |α|p ≥ 24. The set of these α will
for each p be denoted by Jp.

When there are several eigenvectors corresponding to the same eigenvalue, it is
called degeneracy. When this is the case for the Hamiltonian, it is called energy
degeneracy. It means that two or more different states are possible for the same
energy level.

The problem of finding the eigenfunctions for the eigenvalues is done in three
parts. It is done for p = 2, p ≡ 1 (mod 4) and p ≡ 3 (mod 4). We will not look at
the case p = 2.

7.2 The Case p ≡ 1 (mod 4)

By Lemma 2.3.12 there exists an element τ in Qp such that τ2 = −1 when p ≡
1 (mod 4). The analysis of the eigenfunctions will be greatly simplified by the
operator I, which for a p-adic Schwartz-Bruhat function f , is defined as

I[f ](x) =

∫
Qp
χp(τx

2 − τ

2
z2 + 2xz)f(z)dµp(z). (7.2.1)

It extends to L2-functions by the usual process.
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Proposition 7.2.1. I is a unitary operator on L2(Qp) and maps D(Qp) to itself.

Proof. We have that

I[f ](x) = χp(τx
2)F

[
f(z)χp(−

τ

2
z2)
]∣∣∣∣

2x

, (7.2.2)

where F is the p-adic Fourier transform. This is a composition of four unitary
operators which map D(Qp) to itself.

Theorem 7.2.2. For all f ∈ L2(Qp), we have that

U(t)I[f ](x) = I[f(e−τtz)](x), (7.2.3)

where t ∈ Gp and p ≡ 1 (mod 4).

A full proof of this theorem is found in [5]. It mostly consists of the same
calculations and techniques which were used to prove that U is a unitary represen-
tation. This theorem will simplify the problem greatly. Let us begin by finding the
eigenvectors corresponding to the ground state. To solve

U(t)ψ = ψ, (7.2.4)

we use the fact that I is unitary to write ψ = I[f ], and this reduces to

f(e−τtz) = f(z), t ∈ Gp. (7.2.5)

By Lemma 2.3.11, we have that a p-adic number z can be written as z = pγεkea,
so then e−τtz = pγεkea−τt. Thus, we have to solve

f(pγεkea−τt) = f(pγεkea). (7.2.6)

A general solution of this equation is the set of all functions in L2(Qp) which are
on the form f(z) = f(γ, k). Furthermore we see that this is equivalent to f being
on the form f(z) = f(|z|p, z0) where z = p−γ(z0 + z1p+ ...) since |ea− 1|p < 1. We
then get that all eigenvectors corresponding to the ground state are of the form

ψ(x) =

∫
Qp
χp(τx

2 − τ

2
z2 + 2xz)f(|z|p, z0)dµp(z). (7.2.7)

It is not straightforward to find the eigenvectors corresponding to the ground state
explicitly. By using ∫

Qp
χp(τx

2 − τ

2
z2 + 2xz)f(|z|p, z0)dµp(z)

=
∑

−∞<γ<∞

∑
1≤k≤p−1

f(p−γ , k)

·
∫
|z|p=pγ ,z0=k

χp(τx
2 − τ

2
z2 + 2xz)dµp(z),

(7.2.8)
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and ∫
|z|p=pγ ,z0=k

χp(τx
2 − τ

2
z2 + 2xz)dµp(z)

= χp(τx
2 + 2p−γkx)pγ−1Ω(pγ−1|x|p), γ ≤ 0.

(7.2.9)

we can get some eigenvectors corresponding to the ground state. If we choose
f(|z|p, z0) = Ω(|z|p) we get ψ0(x) = Ω(|x|p). If f(|z|p, z0) = δ(pγ − |z|p) (where
γ = 1, 2, ...) we get ψγ = χp(−τx2)δ(pγ − |x|p) (where γ = 1, 2, ...), where δ(0) = 1
and δ(x) = 0 for x 6= 0. Thus, the dimension of the eigenspace is infinite, in accor-
dance with Theorem 7.1.6.

The other eigenfunctions are found from the equation

U(t)ψα(x) = χp(αt)ψα(x), (7.2.10)

where α is a non-zero element in Ip and t ∈ Gp. Again, by using ψα = I[fα], we
get

fα(e−τtz) = χp(αt)fα(z), t ∈ Gp. (7.2.11)

We know that the general solution of equation (7.2.5) is any function in L2(Qp)
such that φ(z) = φ(|z|p, z0). Now write φ(z) = f(z)χp(−ατa). By inserting this
function in equation (7.2.5), we see that φ(z) satisfies equation (7.2.5) if and only
if f(z) satisfies equation (7.2.11). Then f(z) satisfies equation (7.2.11) if and only
if f(z) = φ(|z|p, z0)χp(ατa) where φ ∈ L2(Qp). Thus, the general solution of
equation (7.2.11) is

fα(z) = φα(|z|p, z0)χp(ατa). (7.2.12)

Then we get the excited states

ψα =

∫
Qp
χp(τx

2 − τ

2
z2 + 2xz + ατa)φα(|z|p, z0)dµp(z). (7.2.13)

These are all the eigenvectors, but they are not on a particularly nice form. For
the adelic oscillator, these eigenvectors will be useful, but it will be important to
know whether they are in D(Qp). It turns out that we can pick an orthonormal
basis for Hα consisting of Schwartz-Bruhat functions. From [10], we get the next
theorem.

Theorem 7.2.3. Let H be a separable Hilbert space. Then any dense subspace of
H contains an orthonormal basis for H.

Since the set of p-adic Schwartz-Bruhat functions is a dense subspace of L2(Qp),
the set of Schwartz-Bruhat functions in Hα is a dense subspace of Hα, and we can
thus choose an orthonormal basis for Hα consisting of Schwartz-Bruhat functions.
We will choose an orthonormal basis for L2(Qp) given by ψαpβp where αp is the
eigenvalue and βp corresponds to the energy degeneracy.
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7.3 The Case p ≡ 3 (mod 4)

The case p ≡ 3 (mod 4) is harder than the case p ≡ 1 (mod 4), because there is no
x such that x2 = −1, so we can not use the same trick as we did in the other case.
Instead we will first calculate the eigenvectors for a different Weyl system, and ob-
tain the eigenvectors for the oscillator through a unitary operator. In this section
we will view the classical phase space Qp×Qp as the quadratic extension Qp(

√
−1).

We will write i for
√
−1, and write any element z ∈ Qp(

√
−1) as z = x+ iy, where

x, y ∈ Qp. Continuing the analogy to the complex numbers, we define z = x− iy.
The norm of z is defined as ||z|| = max{|x|p, |y|p}.

Define T = {eit, t ∈ Gp}. We also define the bigger group Y to be {z ∈
Qp(
√
−1) : zz = 1}. The above definitions will be used to get what is called the

polar decomposition of the elements in Qp(
√
−1).

Fix an element ε ∈ Qp(
√
−1) such that εε = −1. Also define Qp+ = {x ∈ Qp :(

x0

p

)
= 1}.

Lemma 7.3.1. For p ≡ 3 (mod 4) all z ∈ Q∗p(
√
−1) can be written on the form

z = rεkcneiτ , (7.3.1)

where r is a non-zero element in Qp+, k ∈ {0, 1}, c is a generator of the cyclic
group of order p+ 1 denoted by Zp+1, n ∈ {0, 1, ..., p} and τ ∈ Gp.

Proof. It can be shown that Y is isomorphic to Zp+1 × T . Let z = x + iy be an
element in Qp(

√
−1). Then zz = x2 + y2 is either a square or −1 times a square.

To see this, first notice that if a number a 6= 0 in the finite field of p elements, Fp,
is not a square, then −1 times a will be a square since −1 is not a square when
p ≡ 3 (mod 4). Then γ in Lemma 2.3.8 must be even, and by the same lemma, we
see that x2 + y2 or −1(x2 + y2) must be a square. Assume that zz is not a square.
Then −zz is a square and define r =

√
−zz, where r is defined to be the square

root which is in Qp+. Then ( z
rε

)( z
rε

)
= 1, (7.3.2)

so that z
rε = cneit. The case where zz is a square is similar.

This decomposition is called the polar decomposition. The next lemma contains
some important properties of r, k and n as functions of z.

Lemma 7.3.2. Let z, z′ ∈ Q∗p(
√
−1) such that ||z|| ≥ p and ||z′|| ≤ 1. Then

(i) |r(z + z′)− r(z)|p ≤ 1.

(ii) k(z + z′) = k(z).

(iii) n(z + z′) = n(z).
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Let δk,n be the Kronecker delta,

δk,n =

{
1 if k = n,

0 if k 6= n.
(7.3.3)

Define δεm(z) = δεm(rεkcneiτ ) = δm,k form = 0, 1, and define δcθ(z) = δcθ(rε
kcneiτ ) =

δθ,n for θ = 0, 1, ..., p. It is easily checked that for a 6= b,

supp δεa(z) ∩ supp δεb(z) = ∅, supp δca(z) ∩ supp δcb(z) = ∅. (7.3.4)

Now we will look at a different Weyl system. The Hilbert space is

Lχ2 = {φ ∈ L2(Qp ×Qp) : φ(z + z′) = χp(B̃(z, z′))φ(z)}, (7.3.5)

where z, z′ ∈ Qp × Qp, ||z′|| ≤ 1, and B̃(x + iy, x′ + iy′) = −yx′ + xy′. We

define the unitary operator W̃ (z) by W̃ (z)φ(w) = χp(B̃(z, w))φ(w − z), where
φ ∈ Lχ2 and z, w ∈ Qp × Qp. This gives us the Weyl system (Lχ2 ,W (z)). An

analog to the evolution operator is Ũ(t) which for t ∈ Gp and φ ∈ Lχ2 is given by

Ũ(t)φ(w) = φ(e−itw). In addition it satisfies Ũ(t)W̃ (z) = W̃ (eitz)Ũ(t). Similarly
to what we did for our original Weyl system, this Weyl system can also be split
into an orthogonal sum of eigenspaces with the same eigenvalues as in the original
Weyl system. We will later see a unitary operator between the Hilbert spaces
which takes eigenvectors corresponding to the eigenvalue χp(αt) to eigenvectors
corresponding to the eigenvalue χp(−αt), and this shows that the eigenspaces for
the two Weyl systems have the same dimensions. We want to find the solution of
Ũ(t)φ = χp(αt)φ, which becomes

φ(e−itz) = χp(αt)φ(z), φ(z + z′) = χp(B̃(z, z′))φ(z), ||z′|| ≤ 1. (7.3.6)

Theorem 7.3.3. The eigenvector corresponding to the ground state for Ũ(t) on
Lχ2 is

φ0(z) = Ω(||z||), (7.3.7)

and the p+ 1 eigenvectors for the eigenvalue χ(αt), α ∈ Jp \ {0}, are given by

φnα(z) = δεm(z)δcn(z)Ω(|r(z)− a|p)χp(−ατ(z)), (7.3.8)

where

m =
1

2
(1 +

(α0

p

)
), a =

√
(−1)m+1α (7.3.9)

and n = 0, 1, ..., p.

Proof. First it is easily seen that φ0 is a solution of equation (7.3.6). So from now
assume that α 6= 0. From equation (7.3.4) it follows that the p + 1 eigenvectors
are orthogonal. Since we know the dimensions of the eigenspaces, it is sufficient to
check if the functions satisfy equation (7.3.6). That φnα satisfy the first equation in
equation (7.3.6) follows from the fact that multiplication with e−it just sends τ to
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τ − t. Also notice that since |α|p ≥ p2 (since α ∈ Jp \ 0), |a|p ≥ p. Putting φnα in
the second equation in equation (7.3.6) yields by Lemma 7.3.2,

δεm(z)δcn(z)Ω(|r(z)− a|p)χp(−ατ(z + z′))

= χp(B̃(z, z′))δεm(z)δcn(z)Ω(|r(z)− a|p)χp(−ατ(z)).
(7.3.10)

This equation is equivalent to

χp(α∆τ + B̃(z, z′)) = 1 (7.3.11)

with z = r(z)εmcneiτ(z), z + z′ = r(z + z′)εmcneiτ(z+z′), |r(z) − a|p ≤ 1 and

∆τ = τ(z + z′) − τ(z). Since |a|p ≥ p, this implies that |r(z)|p = |a|p. Since B̃ is
linear in the second argument and conjugate linear in the first, one gets that

B̃(z, z′) = B̃(z, z + z′)

= r(z)r(z + z′)(ε)m(ε̄)mcnc̄nB̃(eiτ(z), eiτ(z+z′))

= r(z)r(z + z′)(−1)m sin ∆τ,

(7.3.12)

where the last equation follows from sin(α− β) = sinα cosβ − cosα sinβ.
It is important to show that certain expressions are smaller than 1 in absolute

value since then χp of that expression is equal to 1. It is not hard to show that

|a∆τ |p ≤ 1. (7.3.13)

Since |r(z) − a|p ≤ 1, |r(z + z′) − a|p ≤ 1, |a∆τ |p ≤ 1 and |r(z)∆τ |p ≤ 1, we get
that

χp(α∆τ + B̃(z, z′)) = χp(α∆τ + r(z)r(z + z′)(−1)m sin ∆τ)

= χp(α∆τ + a2(−1)m sin ∆τ).
(7.3.14)

One can easily show that | sin ∆τ −∆τ |p ≤ |∆τp |p which together with equation

(7.3.13) gives
χp((α+ (−1)ma2)∆τ) = 1. (7.3.15)

This equation holds for all ∆τ ∈ Gp if the equation

α+ (−1)ma2 = 0 (7.3.16)

is satisfied. Notice that the choice of m makes (−1)m+1α a square. The theorem
is proved.

Theorem 7.3.4. Let ψ0 be the eigenvector corresponding to the ground state for
the Weyl system (L2(Qp),W ). Then the n+1 eigenfunctions for U(t) corresponding
to the eigenvalue χp(−αt) (α 6= 0) are given as

ψnα =

∫
Gp

χp(−αt′)W (aεmcneit
′
)ψ0dµp(t

′), (7.3.17)

and for α = 0, ψ0(x) = Ω(|x|p).
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Proof. Define the operator S : Lχ2 → L2(Qp) by

Sφ =

∫
Qp×Qp

〈φ, W̃ (z)φ0〉W (z)ψ0dz (7.3.18)

which can be shown to be unitary. It can also be shown that

Sφnα = const ·
∫
Gp

χp(−αt′)W (aεmcneit
′
)ψ0dµp(t

′). (7.3.19)

Since U(t)W (z) = W (Ttz)U(t) we get that

U(t)ψnα =

∫
Gp

χp(−αt′)U(t)W (aεmcneit
′
)ψ0dµp(t

′)

=

∫
Gp

χp(−αt′)W (aεmcnTte
it′)U(t)ψ0dµp(t

′).

(7.3.20)

Since Tte
it′ = ei(t

′−t) and U(t)ψ0 = ψ0, from the substitution s = t′ − t, we get
that ∫

Gp

χp(−αt′)W (aεmcnTte
it′)U(t)ψ0dµp(t

′)

=

∫
Gp

χp(−αt′)W (aεmcnei(t
′−t))ψ0dµp(t

′)

=

∫
Gp

χp(−α(s+ t))W (aεmcneis)ψ0dµp(s) = χp(−αt)ψnα.

(7.3.21)

Since ψnα are just a factor times Sφnα, and since S is a unitary operator, we get that
the eigenvectors are p+ 1 different eigenvectors.

It is easily checked that these eigenvectors are Schwartz-Bruhat functions. As
in the previous section we write ψαpβp for the eigenvectors, where αp is the corre-
sponding eigenvalue and βp is the energy degeneracy.

7.4 Eigenvalues and Eigenvectors on the Adeles

To find eigenvalues and eigenvectors of the evolution operator, we will use our
results from the real and p-adic oscillator. Define

ψαβ(x) =
21/4

2nn!
e−πx

2
∞Hn(x∞

√
2π)

∏
p

ψαpβp(xp). (7.4.1)

Here α and β are adelic indices

α = (n, α2, α3, ...), β = (0, β2, β3, ...), (7.4.2)
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with the restriction that ψαpβp = Ω(|x|p) for all but a finite number of p. In the
previous sections we saw that all the p-adic eigenvectors ψαpβp are p-adic Schwartz-
Bruhat functions. This is also the case for p = 2 even though we did not show
it. Thus, ψαβ are adelic Schwartz-Bruhat functions. It is easily seen that these
functions are eigenfunctions of the adelic evolution operator, and one obtains

U(t)ψαβ(x) = χ(Et)ψαβ(x), (7.4.3)

where E is the adele (En, α2, α3, ...). The adele E can be interpreted as the energy
value. The set of eigenvectors form an orthonormal basis for L2(A) by Section 4.5.
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Chapter 8

Concluding Remarks

The first chapters cover p-adic numbers, topological groups, adeles and quantum
mechanics. These chapters should cover the necessary knowledge needed to study
p-adic and adelic quantum mechanics. The last two chapters give an analysis of
the one-dimensional harmonic oscillator in the p-adic and adelic case. One cannot
immediately define a Hamiltonian in these cases, since multiplication of a p-adic
number or an adele with a complex number is not well-defined. There are several
ways to define an analog, and this thesis has used Weyl’s formulation of quantum
mechanics. From this formulation, eigenvalues and eigenvectors are obtained for
the time evolution operator U(t). In contrast to the real case, the eigenvalues are
degenerate, and for p ≡ 1 (mod 4), there is even an infinite degeneration. In the
adelic case, the degeneration is infinite for all eigenvalues.

It is still too early to say if the p-adic or adelic model is the ”correct” model
for the universe. One of the problems with the real model is that it does not work
under the Planck scale. One sees that the uncertainty in an analog of the position
and momentum operator in the simplest ground state is 0 (see equation (6.4.28)),
which may or may not be good news.

In future work one can consider other models than the harmonic oscillator. A
still open problem is to find a good relationship between the p-adic and the real
model. For instance that one can obtain eigenvalues for the real model by knowing
the eigenvalues for all the p-adic numbers. There may be models where the p-adic
cases are simpler such that solving these cases will solve real case. The adelic
model is some sort of relationship between these numbers, but it does not solve
the problem. The methods used in this thesis for the adelic case were based on
knowing the solutions to the real and p-adic cases.
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