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ABSTRACT

We investigate the effect of turbulence on the collisional growth ofmicrometer-sized droplets through high-

resolution numerical simulations with well-resolvedKolmogorov scales, assuming a collision and coalescence

efficiency of unity. The droplet dynamics and collisions are approximated using a superparticle approach.

In the absence of gravity, we show that the time evolution of the shape of the droplet-size distribution due to

turbulence-induced collisions depends strongly on the turbulent energy-dissipation rate «, but only weakly on

the Reynolds number. This can be explained through the « dependence of the mean collision rate described

by the Saffman–Turner collision model. Consistent with the Saffman–Turner collision model and its exten-

sions, the collision rate increases as «1/2 even when coalescence is invoked. The size distribution exhibits

power-law behavior with a slope of 23.7 from a maximum at approximately 10 up to about 40mm. When

gravity is invoked, turbulence is found to dominate the time evolution of an initially monodisperse droplet

distribution at early times. At later times, however, gravity takes over and dominates the collisional growth.

We find that the formation of large droplets is very sensitive to the turbulent energy dissipation rate. This is

because turbulence enhances the collisional growth between similar-sized droplets at the early stage of

raindrop formation. The mean collision rate grows exponentially, which is consistent with the theoretical

prediction of the continuous collisional growth even when turbulence-generated collisions are invoked. This

consistency only reflects the mean effect of turbulence on collisional growth.

1. Introduction

Collisional growth of inertial particles in a turbu-

lent environment plays an important role in many

physical processes (Pumir and Wilkinson 2016; Ohno

and Okuzumi 2017). For instance, collisional growth of

droplets in atmospheric clouds may explain the rapid

warm rain formation (Shaw 2003; Devenish et al. 2012;

Grabowski and Wang 2013). Collisions of dust grains in

circumstellar disks is proposed to be a key step toward

planet formation (Johansen and Lambrechts 2017).

Themost notorious difficulty is how turbulence affects

the collisional growth. This problem has a long history

and was recently reviewed by Shaw (2003), Devenish

et al. (2012), Grabowski and Wang (2013), and Pumir

and Wilkinson (2016). The pioneering work by Saffman

and Turner (1956) proposed a theoretical model for the

collision rate (Saffman–Turner model) of cloud drop-

lets. The key idea of the Saffman–Turner model is that

the collision rate is dominated by small scales of turbu-

lence since the size of cloud droplets (typical size is

10mm in radius) is three orders of magnitude smaller

than the Kolmogorov length (i.e., the smallest scale of

turbulence, which is about 1mm in atmospheric clouds).Corresponding author: Xiang-Yu Li, xiang.yu.li@su.se
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The Saffman–Turner model predicts that the mean

collision rate Rc is proportional to the mean energy

dissipation rate « if there is no intermittency and the

particle inertia is small. Following Saffman and Turner

(1956), Reuter et al. (1988) used a stochastic model to

show that turbulence fluctuations modeled by random

perturbations enhance the collision rate. Grover and

Pruppacher (1985) studied the effect of vertical turbu-

lent fluctuations on the collision between aerosol parti-

cles and cloud droplets using a one-dimensional model.

They inferred that three-dimensional atmospheric

turbulence should cause a substantial enhancement

of the collision rate. The stochastic model developed

by Pinsky and Khain (2004) demonstrated that the

turbulence enhancement can reach a factor of up to 5.

Follow-up studies of Pinsky et al. (2007, 2008) showed

that turbulence has a significant enhancement effect on

the collision rate, especially for small and similar-sized

droplets (radius of a fewmicrometers). However, Koziol

and Leighton (1996) found that, using a stochastic

model, turbulence only has a moderate effect on the

collision rate. This discrepancy between the two sto-

chastic models is either due to the simplified descrip-

tions of the droplet motion or an inaccurate modeling of

turbulence fluctuations (Wang et al. 2005; Grabowski

and Wang 2013).

Because of the rapid advances in computer technol-

ogy, the collision rate has been studied using direct nu-

merical simulations (DNSs). Most of the DNS studies

focused on the collisional growth without coalescence.

Such studies are useful in that they facilitate our un-

derstanding of the physical mechanisms contributing to

the collision rate, such as droplet clustering and relative

velocity. Sundaram and Collins (1997b) constructed the

collision rate using the radial distribution velocity and

the radial distribution function based on the Saffman–

Turner collision rate. Their subsequent work found

that turbulence has a significant effect on droplet clus-

tering and on the relative velocity, which demonstrated

its importance for the collision rate (Shaw et al. 1998;

Collins and Keswani 2004; Chun et al. 2005a; Salazar

et al. 2008; Ireland et al. 2016a,b). The turbulence effect

on the geometrical collisional kernel was investigated

by Franklin et al. (2005), Ayala et al. (2008a), Rosa

et al. (2013), and Chen et al. (2016). Ayala et al. (2008b)

developed a comprehensive parameterization of the

turbulent collision rate and concluded that turbulence

increases the geometrical collision rate by up to

47% with increasing energy dissipation rate. They also

found that the dependence of the collision rate on the

Reynolds number is minor. Rosa et al. (2013) and Chen

et al. (2016) confirmed the secondary dependency of the

collision statistics on the Reynolds number.

Invoking coalescence is computationally and techni-

cally more demanding, but more realistic. Riemer and

Wexler (2005) found that the turbulent collision rate is

several orders of magnitude larger than the gravita-

tional collision rate. However,Wang et al. (2006) argued

that this result is grossly overestimated because their

rms velocity was overestimated by a factor of
ffiffiffi
3

p
and

their treatment of the collision efficiency only in-

cluded gravity but not turbulence. Franklin (2008) in-

vestigated collision–coalescence processes by solving

the Smoluchowski equation together with the Navier–

Stokes equation using DNS and found that the size

distribution of cloud droplets is significantly enhanced

by turbulence. Using a similar approach, Xue et al.

(2008) concluded that even a moderate turbulence en-

hancement of the collision rate can have a significant

effect on the growth of similar-sized droplets, which is

referred to as the autoconversion phase of the growth. A

similar conclusion was reached byWang andGrabowski

(2009), who found that turbulence enhances the colli-

sional growth by a factor of 2. They also found that

in their simulations the dependence on Reynolds

number is uncertain due to its small value. Onishi and

Seifert (2016) updated the collision rate model of

Wang and Grabowski (2009) and performed DNS at

higher Reynolds number. They found that the collisional

growth of cloud droplets depends on the Reynolds

number. However, they did not study the time evolution

of the size distribution nor its dependency on Reynolds

number and energy dissipation rate. Chen et al. (2018)

investigated the time evolution of the size distribution

and its dependence on the energy dissipation rate and

Reynolds number using a Lagrangian collision-detection

method. They concluded that turbulence has a prom-

inent effect on the broadening of the size distribution—

even if the turbulence intensity is small. However, a

comparison between the theoretical predictions of the

« dependence of the collision rate (Saffman and Turner

1956) and the numerical simulations results was not

performed for the case when coalescence was invoked.

Also, the effect of the initial width of the size distribu-

tion on the turbulence enhancement was not discussed.

In fully developed turbulence, droplet collision–

coalescence process results in a wide range of droplet

sizes and thus in a wide range of droplet Stokes numbers

that evolve during the simulation. The Stokes number

is a dimensionless measure of the effect of droplet in-

ertia, which depends on the geometrical droplet size and

the turbulence intensity. In cloud turbulence with

«’ 0:04m2 s23, the Stokes number (St) varies from 1023

(droplet radius of about 1mm) to 10 (about 100mm) and

beyond. Very small cloud droplets (for St � 1) are ad-

vected by turbulent airflow and the collision is caused
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by local turbulent shear (Saffman and Turner 1956;

Andersson et al. 2007). For larger Stokes numbers, on

the other hand, inertial effects become important,

which allow the droplets to detach from the flow. This

may substantially increase the collision rate (Sundaram

and Collins 1997a; Falkovich et al. 2002; Wilkinson et al.

2006). The time-dependent collision rate due to the

dynamical Stokes number cannot be captured with a

predetermined parameterization of the collision rate.

Saito and Gotoh (2018) developed a Lagrangian algo-

rithm to detect collisions without using a parameter-

ized collision kernel. They observed that turbulence

broadens the size distribution of cloud droplets. Since

their work has condensation included, it is unclear if

the broadening of the size distribution results from the

turbulence effect on the collisions or its effect on con-

densation. Such a broadening of the size distribution due

to condensation could result from turbulence-facilitated

supersaturation fluctuations (Sardina et al. 2015).

To quantify the role of small-scale turbulence on the

time evolution of the size distribution and its connec-

tion to the Saffman–Turner collision rate (Saffman and

Turner 1956) when coalescence is included, we investi-

gate the collisional growth of cloud droplets with or

without gravity. We determine the droplet-size distri-

bution directly from numerical simulations, thus avoid-

ing the use of a parameterized kernel. We focus on the

time evolution of the size distribution due to collision–

coalescence processes and how changing the Reynolds

number and the energy dissipation rate affect the size

distribution. We perform high-resolution DNS of tur-

bulence with a well-resolved Kolmogorov viscous scale

(our maximum Taylor–microscale Reynolds number is

158). Droplet and collision dynamics are solved together

using a superparticle approach assuming unit collision

and coalescence efficiency. Unit coalescence efficiency

means that droplets coalesce upon collision. Compared

with the direct Lagrangian collision-detection method,

the superparticle approach is computationally less de-

manding. This can be deduced from a cross comparison

with the Eulerian approach. First, Li et al. (2017) found

that the superparticle is about 10 times faster than an

Eulerian approach where one solves the Smoluchowski

and momentum equations for logarithmically spaced

mass bins. Second, the direct Lagrangian collision-

detection method is more costly than the Eulerian ap-

proach (Chen et al. 2018). Therefore, the superparticle

approach is at least 10 times faster than the direct

Lagrangian collision-detection method. More impor-

tantly, the superparticle approach can easily be ex-

tended to large-eddy simulations with an appropriate

subgrid-scale model (Grabowski and Abade 2017). A

detailed comparison of the present simulation results

and the theoretical prediction of the collision rate

(Saffman and Turner 1956) is conducted. In addition,

we explore how the width of the initial size distribution

alters the turbulence effect on collisional growth of

cloud droplets. In the meteorology community, the

process of collision and coalescence is referred to as

collection, while in the astrophysical community, this

process is referred to as coagulation. Since we assume

unit coalescence efficiency in the present study, we use

the terminology collision. To address the turbulence-

facilitated collision for more general applications (such

as interstellar dust), we will first focus on DNS without

gravity. We will then turn to DNS with both gravity and

turbulence, which is important for the cloud droplet

formation.

2. Numerical setup

Our simulations are conducted using the Pencil Code.

The DNS of the turbulent flow are performed for a

weakly compressible gas, and we adopt a superparticle

algorithm to approximate the droplet dynamics (Zsom

and Dullemond 2008; Shima et al. 2009; Johansen

et al. 2012).

a. DNS of the turbulent airflow

The velocity u of the turbulent airflow is determined

by the Navier–Stokes equation:

›u

›t
1u � =u5 f2 r21=p1 r21= � (2nrS) , (1)

where f is a monochromatic random forcing function

(Brandenburg 2001), n is the kinematic viscosity of

the airflow, Sij 5 (1/2)(›jui 1 ›iuj)2 (1/3)dij= � u is the

traceless rate-of-strain tensor, p is the gas pressure, and

r is the gas density, which in turn obeys the continuity

equation,

›r

›t
1= � (ru)5 0: (2)

We assume that the gas is isothermal with constant

sound speed cs, so that c2s 5gp/r, where g5 cP/cV 5 7/5

is the ratio between specific heats, cP and cV , at constant

pressure and constant volume, respectively. To avoid

global transpose operations associated with calculating

Fourier transforms for solving the nonlocal equation

for the pressure in strictly incompressible calculations,

we solve here instead the compressible Navier–Stokes

equations using high-order finite differences. To simu-

late the nearly incompressible atmospheric airflow, we

set the sound speed to 5m s21, resulting in a Mach

number of 0.06 when the urms 5 0:27m s21. Such a
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configuration with so small Mach number is equiva-

lent to an incompressible flow. Indeed, we quantify the

weak compressibility in our DNS by calculating the di-

mensionless number§5 hj= � uj2i/hj=3 uj2i5 23 1024.

Following Gustavsson and Mehlig (2016b), the parame-

ter §5 23 1024 corresponds to a Stokes number

St5 0:018. The smallest Stokes number in our DNS

is St5 0:05. This implies that the effect of fluid com-

pressibility is much less than the compressibility of the

particle velocity field caused by droplet inertia. There-

fore, the effect of fluid compressibility on the droplets

is also negligible.

To characterize the intensity of turbulence, we use the

Taylor microscale Reynolds number Rel [ u2
rms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5/(3n«)

p
,

where urms is the rms turbulent velocity, and «5 2nTrSijSji

is the mean energy-dissipation rate per unit mass

and Tr denotes the trace. The parameters of all simu-

lations are listed in Table 1. Here th 5 (n/«)1/2 is the

Kolmogorov time and h5 (n3/«)1/4 is the Kolmogorov

length.

b. Superparticle algorithm

The equations governing the dynamics and collision of

droplets in a turbulent flow are solved simultaneously

with the Navier–Stokes equations. We approximate the

droplet dynamics and collisions using a stochasticMonte

Carlo algorithm (Bird 1978, 1981; Jorgensen et al. 1983)

that represents a number of spherical droplets by a su-

perparticle (Zsom and Dullemond 2008; Shima et al.

2009; Johansen et al. 2012; Li et al. 2017). All droplets

in superparticle i are assumed to have the same mate-

rial density rd, radius ri, and velocity yi. Further, each

superparticle is assigned a volume of the grid cell and

thus a droplet number density ni. The position xi of

superparticle i is determined by

dx
i

dt
5V

i
(3)

and

dV
i

dt
5

1

t
i

(u2V
i
)1 g . (4)

Here,

t
i
5 2r

d
r2i / 9rnD(Re

i
)

� �
(5)

is the particle response time attributed to superparticle

i. The correction factor (Schiller and Naumann 1933;

Marchioli et al. 2008)

D(Re
i
)5 11 0:15Re2/3i (6)

models the effect of nonzero particle Reynolds number

Rei 5 2riju2Vij/n. This is a widely used approximation,

although it does not correctly reproduce the small-Rei
correction to Stokes formula (Veysey and Goldenfeld

2007). The dimensionless particle-response time is given

by the Stokes number St5 ti/th. Droplets are randomly

distributed in the simulation domain with zero velocity

initially. The term g in Eq. (4) is included only when

collisions are also driven by gravity, in addition to

turbulence.

Droplet collisions are represented by collisions of

superparticles (Shima et al. 2009; Johansen et al. 2012;

Li et al. 2017). When two superparticles collide, two

droplets in either of the superparticles can collide with

probability pc 5 t21
c Dt, where Dt is the integration time

step. A collision event occurs when pc .hc, where hc is

a random number. If a collision event happens, hc must

lie between zero and one; see appendix A for details on

the collision scheme. A mean-field model is adopted for

the collision time tc:

t21
c 5s

c
n
j
jV

i
2V

j
jE

c
. (7)

Here sc 5p(ri 1 rj)
2 is the geometric collision cross

section between two droplets with radii ri and rj. The

parameter Ec is the collision efficiency (Devenish et al.

2012). It is set to unity in our simulations, and we assume

that droplets coalesce upon collision. The use of a unit

collision efficiency overestimates the collision rate. This

is done to reduce the complexity of the simulation and

enables us to focus only on the collision dynamics.

Adopting unit coalescence efficiency is justified by the

fact that the Weber number is only about 1022 (Perrin

and Jonker 2015). The Weber number is defined as the

ratio of droplet inertia and its surface tension (Perrin

and Jonker 2015). A low Weber number means that the

TABLE 1. Summary of the simulations, with f0 the amplitude of the random forcing (see text) and L the domain size.

Run Np/10
6 Ngrid f0 L (m) urms (m s21) Rel « (m2 s23) h3 1024 (m) th (s)

A 8.4 2563 0.02 0.125 0.17 57 0.039 4 0.016

B 67 5123 0.02 0.25 0.21 94 0.04 4 0.016

C 67 5123 0.02 0.50 0.27 158 0.036 4 0.017

D 67 5123 0.0072 0.44 0.13 98 0.005 7 0.044

E 67 5123 0.01 0.37 0.15 97 0.01 6 0.032

F 67 5123 0.014 0.30 0.18 94 0.02 5 0.022
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colliding droplets always coalesce. It is worth noting

that a cylindrical kernel is used in the present super-

particle scheme as described by Eq. (7). This is in con-

trast to what is done for Lagrangian point particle

simulations (Wang et al. 1998). In those simulations,

a spherical kernel was used, where collisions were not

enabled. The use of a cylindrical kernel in the super-

particle approach is justified because the superparticle

approach treats collisions in a statistical fashion, where

the interacting superparticles are considered to fill the

entire grid cell.

Collisions are enabled at the same time when the

simulation starts with u 5 0. This yields virtually the

same result compared to the case when turbulence is

already fully developed and droplets are mixed (see

appendix B). Since collisions can only happen when

a pair of superparticles resides in the same grid cell,

it is important to have sufficient statistics of initial

Np/Ngrid (Np is the number of superparticles and Ngrid

is the number of grid cells). Furthermore, to obtain

fully developed turbulence, a large number of mesh

points Ngrid (512
3 in the present study) is essential. This

requires a large number of superparticles, which is

computationally expensive even using the modern su-

percomputers. We investigate the statistical conver-

gence with respect to the initial value of Np/Ngrid and

find that it is converged at 0.05 (see appendix C).

Nevertheless, to have sufficient droplet statistics, we

adopt Np/Ngrid 5 0:5, so we have on average one su-

perparticle for every two grid cells. This makes the

computation affordable since the computational cost

scales as N2
p. Droplet growth by condensation is not in-

corporated in our model. We refer to Li et al. (2017)

for a detailed description of our numerical setup and of

the algorithm used to model collision.

The superparticle approach is computationally effi-

cient (Li et al. 2017; Shima et al. 2009; Johansen et al.

2012), but it is an approximation. How accurately it

describes the actual microscopic collision dynamics

depends on several factors. In the limit where the

number of droplets per superparticle tends to infinity,

the algorithm reduces to a full mean-field description

(Zsom and Dullemond 2008; Pruppacher et al. 1998).

In the opposite limit, when the number of droplets

per superparticle is small, the algorithm incorporates

fluctuations in the collision processes that may be im-

portant in the dilute system that we consider here

(Kostinski and Shaw 2005; Wilkinson 2016). Dziekan

and Pawlowska (2017) compared the superparticle ap-

proach with the direct detection of collisions of point

particles and concluded that the superparticle approach

can accurately describe such fluctuations as long as the

number of droplets is below 10 per superparticle. In our

simulations, we assign two droplets per superparticle to

ensure that the algorithm is sufficiently accurate.

In our simulations, we check for collisions at each time

step, which enables us to get the size distribution f (r, t)

at time t and droplet radius r. This distribution not only

determines rain formation in clouds, but also the optical

depth of the cloud (Beals et al. 2015).

c. Initial conditions

As initial condition, we adopt a lognormal droplet-

size distribution (Nenes and Seinfeld 2003; Seinfeld

and Pandis 2016) that is widely used in climate models

and is supported by the in situ atmospheric measure-

ments (Miles et al. 2000),

f (r, 0)5
n
0ffiffiffiffiffiffi

2p
p

s
ini
r
exp

�
2

ln2(r/r
ini
)

2s2
ini

�
. (8)

Here rini 5 10mm and n0 5 n(t5 0) is the initial number

density of droplets.

To speed up the computation by a factor of a hundred,

we adopt n0 5 1010 m23 instead of the typical value in the

atmospheric clouds, nref [ 108 m23 (cf. Li et al. 2017).

We explore the convergence of sini for collision driven

by combined turbulence and gravity. It is found that sini

converges at 0.02 (see appendix D). However, since

gravity-generated collision is very sensitive to the initial

size difference, we employ monodisperse initial distri-

bution (sini 5 0) for the case of combined turbulence

and gravity. For turbulence-generated collision without

gravity, we employ sini 5 0:2.

3. Results and discussion

a. Collisions driven by turbulence

Figure 1a shows the time-averaged turbulent kinetic-

energy spectra for different values of Rel at fixed

«’ 0:04m2 s23. Here, Rel is varied by changing the

domain size L, which in turn changes urms. For larger

Reynolds numbers the spectra extend to smaller wave-

numbers. Since the energy spectrum is compensated by

«22/3k5/3, a flat profile corresponds to Kolmogorov scal-

ing (Pope 2000). For the largest Rel in our simulations

(Rel 5 158), the inertial range extends for about a de-

cade in k space. Figure 1b shows how the energy spectra

depend on «. Here we keep the values of Rel and n fixed,

but vary urms by changing both L and the amplitude of

the forcing (see Table 1 for details). Since the abscissa in

the figures is normalized by kh 5 2p/h, the different

spectra shown in Fig. 1b collapse onto a single curve.

Figure 2a shows the droplet-size distributions ob-

tained in our simulations for different values of Rel, but
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for the same «. This figure demonstrates that the time

evolution of the size distribution depends only weakly

on Rel when « is kept constant. This is consistent with

the notion that the collisional growth is mainly domi-

nated by the Kolmogorov scales (Saffman and Turner

1956; Devenish et al. 2012). The maximum Reynolds

number in our DNS is Rel ’ 158. This value is still two

orders of magnitude smaller than the typical value in

atmospheric clouds (Grabowski and Wang 2013). It

cannot be ruled out that there may be a stronger

Reynolds-number effect on the collisional growth at

higher Reynolds numbers (Shaw 2003; Ireland et al.

2016a; Onishi and Seifert 2016). In the simulations of

Onishi and Seifert (2016), where collisions are detected

directly, the largest value of Rel was 333, which is twice

as large as our largest value. They showed that the tur-

bulence enhancement factor weakly depends on Rel
when the mean radius of the initial distribution is

10mm. This is consistent with our results.

Figure 2b shows how the evolution of the droplet-size

distribution depends on «, for a fixed Rel. We see that

especially the tails of the size distributions depend

FIG. 1. Time-averaged kinetic energy spectra of the turbulence gas flow for (a) different Rel 5 57 (magenta

dashed line), 94 (red solid line), and 158 (cyan dotted line) at fixed «5 0:04m2 s23 (see runs A, B, and C in Table 1

for details) and for (b) different «5 0:005 (blue dotted line), 0.01 (black dashed line), 0.02 (green dash–dotted line),

and 0.04m2 s23 (read solid line) at fixed Rel 5 100 (see runs B, D, E, and F in Table 1 for details).

FIG. 2. Droplet size distribution for the same simulations as in Fig. 1. (a) Different Rel at fixed «. (b) Different « at

fixed Rel. Here b is the standard deviation and 3b is the significance level.
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strongly on «: the larger «, the wider are the tails. The

tails in the droplet size distribution lead to a broad dis-

tribution of Stokes numbers. Also, since St5 ti/th } «1/2,

the St distribution shifts to large Stokes numbers as «

increases (see appendix E).

We now show that the « dependence of the size dis-

tribution is due to the sensitive dependence of the col-

lision rate upon this parameter. Figure 3 shows how

the mean collision rate Rc changes as a function of time.

This rate, which depends implicitly on «, is defined as

R
c
5pn

0
(2r)2jvj , (9)

where v is the relative velocity between two ap-

proaching droplets. This expression is written for

identical droplets with radius r. In bidisperse suspen-

sions with droplets of two different radii ri and rj, 2r is

replaced by ri 1 rj. Collisions of small droplets ad-

vected by turbulence are due to local turbulent shear,

provided that droplet inertia is negligible. Saffman and

Turner (1956) proposed an expression for the resulting

collision rate:

RS-T
c 5

Cn
0
(2r)3

t
h

. (10)

Saffman and Turner (1956) quote the value C5ffiffiffiffiffiffiffiffiffiffiffiffiffi
8p/15

p
’ 1:29 for the prefactor, but this is just an ap-

proximation, even at St5 0 (Voßkuhle et al. 2014).

It turns out that the Saffman–Turner estimate is an up-

per bound (Gustavsson and Mehlig 2016a), because it

counts recollisions that must not be counted when the

droplets coalesce upon collision, as in our simulations.

Here recollision means that one droplet can experience

several collisions since there is no coalescence. DNS of

small droplets in turbulence also count recollisions (no

coalescence) and yield a value of C in good agreement

with the Saffman–Turner estimate (Voßkuhle et al.

2014), in the limit of St/ 0.

In Fig. 3a we normalized the mean collision rate by

dividing with the Saffman–Turner expression in Eq. (10)

for the collision rate, averaging (2r)3 5 (ri 1 rj)
3 over the

initial size distribution. In this way, we obtain the co-

efficient C from the output of the mean collision rate

Rc. Initially, the collision rate is of the same order as

predicted by Eq. (10), but in our simulations the co-

efficient C depends on «. It ranges from C’ 1:57 at

«5 0:005m2 s23 toC’ 2:26 at «5 0:04m2 s23. All values

are larger than the Saffman–Turner prediction in spite

that the Saffman–Turner collision rate is argued to be an

upper bound for advected droplets (Gustavsson et al.

2008a). However, in our simulations the mean Stokes

number ranges from St5 0:05 for «5 0:005m2 s23 to

St5 0:14 for «5 0:04m2 s23. From Fig. 1 of Voßkuhle
et al. (2014) we infer that C5 1:9 for St5 0:05, in rea-

sonable agreement with our simulation results. How-

ever, their C5 5 for St5 0:14, which is about twice as

large as our value (C’ 2:26). This overestimation of

C at St5 0:14 could be due to their recollisions. We

conclude that the collision rate scales initially as pre-

dicted by the Saffman–Turner theory, Rc ;
ffiffiffi
«

p
, with

small corrections due to particle inertia. At later times

these corrections become larger. In recent years, several

works have indicated that the Saffman–Turner model

underestimates the collision rate at larger Stokes

numbers when the effect of droplet inertia becomes

important, so that the droplets can detach from the flow.

Model calculations show that this can substantially en-

hance the collision rate. Two mechanisms have been

proposed.

First, droplet inertia causes identical droplets to

cluster spatially (Maxey 1987; Elperin et al. 1996, 2002;

FIG. 3. Mean collision rate for same simulations as in Fig. 1. (a) Different « at fixedRel. (b) Different Rel at fixed «.

In both panels the data are normalized by dividing by n0h(ri 1 rj)
3iini/th.
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Reade and Collins 2000; Kostinski and Shaw 2001; Bec

2003; Duncan et al. 2005; Elperin et al. 2013; Gustavsson

andMehlig 2016b). At small spatial scales the clustering

of identical droplets is fractal. This enhances the colli-

sion rate of small droplets (Gustavsson et al. 2008a):

Rc 5Cn0(2r)
3
t21
h g(2r). Here g(2r) is the pair correlation

function measuring the degree of fractal clustering of

identical droplets: g(2r) diverges ;r2j as r/ 0 with

j. 0. The exponent j has been computed in DNS and

model calculations (Gustavsson and Mehlig 2016b). It

has a weak dependence on «. However, g(2r) is calcu-

lated based on the particle field with a single Stokes

number, which makes it impossible to attempt a quan-

titative comparison between this theory and our simu-

lation data. More importantly, collision leads to a

distribution of droplet sizes. Droplets of different sizes

cluster onto different fractal attractors. This may reduce

the effect of spatial clustering on the collision rate (Chun

et al. 2005b; Bec et al. 2005; Meibohm et al. 2017).

Second, singularities in the droplet dynamics (caus-

tics) give rise to multivalued droplet velocities, resulting

in large velocity differences between nearby droplets

(Sundaram and Collins 1997a; Falkovich et al. 2002;

Wilkinson et al. 2006; Falkovich and Pumir 2007;

Gustavsson and Mehlig 2014; Voßkuhle et al. 2014).

Most model calculations were performed for identical

droplets. They indicate that the enhancement of the

collision rate due to multivalued droplet velocities

dominates for Stokes numbers larger than unity

(Voßkuhle et al. 2014). In this case, a Kolmogorov-

scaling argument suggests (Mehlig et al. 2007; Gustavsson

et al. 2008b) that Rc ; n0r
2uK

ffiffiffiffiffi
St

p
} «1/2, where uK is the

turbulent velocity at the Kolmogorov scale; this
ffiffiffiffiffi
St

p
dependence was first suggested by Völk et al. (1980)

using a different argument. This expression has the same

« dependence as Eq. (10). We note, however, that the

Kolmogorov-scaling argument leading to this
ffiffiffiffiffi
St

p
de-

pendence rests on the assumption that there is a well-

developed inertial range (Rel /‘). This assumption is

not fulfilled in our simulations. Moreover, at later times

we expect that collisions between droplets of different

sizes make an important contribution (Meibohm et al.

2017). Scaling theory (Mehlig et al. 2007) suggests that

the « scaling remains the same in the limit of Rel /‘.
But, again, this limit is not realized in our simulations.

Also, any theory for the collision rate in bidisperse

suspensions must be averaged over the distribution of

particle sizes and their velocities to allow comparison

with Fig. 3a. This may introduce additional « depen-

dencies. It is therefore plausible that the small-St scal-

ing, Rc ;
ffiffiffi
«

p
, breaks down in our simulations at larger

Stokes numbers, indicating that the increase in themean

collision rate could be an inertial effect. Moreover, since

the Stokes numbers are larger for larger values of «, we

expect the inertial additive corrections of the collision

rate (due to clustering and increased relative particle

velocities) to be larger at larger «. This is consistent

with Fig. 3a. In conclusion, the mean collision rate de-

pends strongly on « (Fig. 3a), as do the size distributions

shown in Fig. 2b.

Figure 3b shows that the mean collision rate depends

only weakly on the Reynolds number. It demonstrates

that the collision rate is somewhat larger for larger

Reynolds numbers. This is consistent with the notion

that particle pairs exploring the inertial range collide

at larger relative velocities when the inertial range is

larger (Gustavsson et al. 2008b). But, as pointed out

above, the inertial range in our simulations is too small

for this mechanism to have a substantial effect.

It is interesting to note that the size distribution ex-

hibits power-law behavior in the range of 10–40mm,

as shown in the third panel of Fig. 2a. A slope of23.7 is

observed. Remarkably, similar power laws have been

observed in several other circumstances, where the

collisional growth is not subjected to gravity. First, the

observed size distribution of interstellar dust grains

shows a power law with a slope of23.3, . . . ,23.6 (Mathis

et al. 1977). The collisional growth of such dust grains

in a turbulent environment is one of the main mecha-

nisms for planet formation (Johansen and Lambrechts

2017). Another example concerns the size distribution

of particles in Saturn’s rings (Brilliantov et al. 2015),

where a slope of 23 is observed. This power-law

size distribution may be universal for turbulence-

generated collisional growth. Therefore, turbulence-

generated collisional growth without or with weak

gravity is relevant to other applications. Next, to un-

derstand the warm rain formation, we compare with the

case where gravity is included.

b. Collisions driven by combined turbulence
and gravity

For cloud droplet growth, gravitational settling is

significant (Woittiez et al. 2009; Grabowski and Wang

2013). Collision driven by gravity is very sensitive to the

initial size difference (see appendix D). To avoid any

bias from the initial size difference, we adopt a mono-

disperse initial distribution, that is, sini 5 0. In Fig. 4,

we compare the evolution of the droplet-size distribu-

tion for the turbulent case and the combined case with

turbulence and gravity. At t 5 1 s, both cases have al-

most the same droplet-size distribution, demonstrat-

ing that turbulence dominates the collisional growth.

When t $ 1 s, gravity dominates the time evolution of

the droplet-size distribution. The tail of the droplet-

size distribution reaches 80mm (drizzle size) for the
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combined turbulence and gravity case at t5 9 s. For the

turbulence case, the tail reaches 48mm after the same

time, which is roughly half the radius obtained for the

combined turbulence and gravity case. Since our ini-

tial number density of cloud droplets is 100 times larger

than the typical value in atmospheric clouds, we can

scale our simulation time by a factor of 100. Thus, a

scaled time of 9 s, for example, corresponds to 900 s

in atmospheric clouds. This rescaling is validated in

appendix F, where the tail of the size distribution is

found to differ by only 5mm in radius for n0 5 1010 and

n0 5 108 m23. We find that collisional growth of cloud

droplets can reach drizzle-sized droplets in about

900 s 5 15min. This is comparable to the time scale for

rapid warm rain formation. This time scale, however, is

expected to change if a turbulence-induced collision

efficiency were to be taken into account. Besides, the

cloud system is about 100 times more dilute in particle

number density, which may also change the time scale.

Next, we check the « dependency for the combined

turbulence and gravity case. As shown in Fig. 5, the tail

of the size distribution broadens with increasing «.

When frini/n0 5 1026 at t5 10 s, the radius resulting from

«5 0:04m2 s23 is about 60mm, while the one resulting

from «5 0:005m2 s23 is about 90mm. The 30-mm dif-

ference means turbulence efficiently enhance the colli-

sional growth when sini 5 0. To quantify the role of

turbulence at different phases during the collisional

growth, we inspect the mass distribution function

(Berry and Reinhardt 1974). We use the same nomen-

clature of the mass distribution as Berry and Reinhardt

(1974), g(lnr, t). The mean mass of liquid water in

terms of the size distribution function f (r, t) is M5
(4/3)prd

Ð ‘
0
f (r, t) dr, which is M5

Ð ‘
0
g(lnr, t) d lnr in

terms of g(lnr, t). Therefore, g(lnr, t)5 (4p/3)rdr
4f (r, t).

Figure 6 shows g(lnr, t) calculated from the same simu-

lations as in Fig. 5, where the collision is driven by

both gravity and turbulence (sini 5 0). At t 5 1 s, tur-

bulence enhances the autoconversion phase as shown

by the first peaks, when 10-mm-sized droplets collide.

The enhancement factor (amplitude of the peaks)

scales almost linearly with «. This enhancement at the

autoconversion phase leads to faster growth of droplet

with increasing « at late times (i.e., t 5 5 and 10 s.).

Therefore, we see a faster growth of large droplets

with increasing « at late times virtually. This is also

consistent with the conclusion from Fig. 4 that turbu-

lence dominates the collisional growth at the early stage

of cloud droplets formation. Additionally, this also im-

plies that the turbulence enhancement effect is the most

efficient when the size of a colliding pairs is comparable,

which is consistent with previous findings (Pinsky et al.

2007; Ayala et al. 2008a; Chen et al. 2018).

When gravity is included, the nondimensional termi-

nal velocity Sv5 yg/uh, charactering the relative drop-

let inertia and gravitational sedimentation, becomes

important (Devenish et al. 2012) [here we adopt Sv

because it contains the information of particle size

compared with the Froude number of particles defined

as Fr5 jgjth/uh (Gustavsson et al. 2014), and Sv can

FIG. 5. Time evolution of the droplet size distribution for dif-

ferent « in combined turbulence and gravity environment and with

Rel 5 100. Droplets are all with size 10mm initially. See runs A–D

in Table 1 for details of the simulations.

FIG. 4. Time evolution of the droplet size distribution. Com-

paring the pure turbulence case (open symbols) with the turbu-

lence and gravity case (filled symbols). The time interval is 2 s,

plotted from 1 to 9 s (from left to right). The mean energy dissi-

pation rate is «5 0:04m2 s23 and Rel 5 100. The droplets are all of

size 10mm initially; see run D in Table 1 for details of the

simulation.

OCTOBER 2018 L I E T AL . 3477



be expressed as Sv5Fr St], where yg 5 tijgj is the ter-

minal fall velocity and uh is the turbulent velocity at

the Kolmogorov scale h. It can also be interpreted as the

ratio of the Kolmogorov eddy turnover time and the

time it takes for a particle to sediment across the eddy.

If the ratio is much larger than unity, the particle will

rapidly sediment through the eddy, thereby leading to

weak particle–eddy interaction. On the other hand,

if Sv is much smaller than unity, sedimentation does not

play a significant role in reducing the time of particle–

eddy interaction (Ayala et al. 2008b). The distribution

of Sv shows the same dependency on « as f (r, t) in our

simulations when sini 5 0, as demonstrated in Fig. 5.

Further inspection of the mean collision rate Rc

(Fig. 7) is consistent with the above observations. More

importantly, the normalizedRc collapse onto each other

and follow exponential growth. The collapse reconciles

our finding that the turbulence enhancement at the

autoconversion phase scales with «. The exponential

growth of Rc can be explained by the following theory

of the continuous collision (Lamb and Verlinde 2011).

Given two droplets of very different sizes that collide

with each other due to gravity, the collision rate given by

Eq. (7) is

R
continuous
c 5p(r

L
1 r

S
)2jV

L
2V

S
j . (11)

Substituting Eq. (6) into Eq. (5), and taking into account

that Rei ;Viri, we obtain ti ; r2i /(Viri)
2/3 5 r4/3i V22/3

i .

When gravity dominates the motion of a droplet, the

droplet velocity is of the order of the terminal fall ve-

locity, Vi 5 tig, so that Vi ; r4/5i . The linear approxima-

tion for the velocity (Lamb and Verlinde 2011) is now

obtained by replacing the exponent 4/5 with unity, such

that Eq. (11) simplifies to

R
continuous
c ; r3L (12)

when rL � rS. The rate of mass increase, dmL/dt, is

proportional to the collision rate. Therefore, Eq. (12)

can also be expressed as

dm
L

dt
; r3L . (13)

Combining Eqs. (12) and (13), we can obtain the expo-

nential growth of Rc,

R
continuous
c ; exp(at) , (14)

where a is a constant.

The excellent agreement of Rc between our simula-

tion and the theory demonstrates that the continuous

growth theory is robust in representing the mean colli-

sion rate. Even in the circumstance that we detect the

collision rate directly by counting each collision event

without any assumptions, such as that of large size dif-

ferences, the linear approximation for the velocity

(Lamb and Verlinde 2011), and the absence of turbu-

lence. When Rc is normalized by th, the curves repre-

senting different « collapse onto each other (see Fig. 7).

This indicates that 1) gravity dominates the collisional

growth, 2) collision time scale is smaller than the

Kolmogorov time scale, 3) turbulence is responsible for

generating few larger droplets so that the gravitational

FIG. 7. Mean collision rate Rc for different «. Same simulations

as in Fig. 5. Here b is the standard deviation and 3b is the sig-

nificance level.

FIG. 6. Time evolution of the mass distribution function g(lnr, t).

Same simulations as in Fig. 5. The values of the peaks at t 5 1 s

are 18.39 («5 0:005m2 s23), 31.92 («5 0:01m2 s23), 61.83 («5
0:005m2 s23), and 124.26 («5 0:005m2 s23).
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collision can be triggered at the initial phase of raindrop

formation, and 4) turbulence transport provides a mean

effect for collision as implicitly indicated in Eq. (10).

The mean collision rate Rc is an averaged description,

which ignores fluctuations. The agreement between

DNS results and the theory of continuous collisions only

suggests the mean effect of turbulence on collisional

growth. Collisional growth due to random fluctuations

in a dilute system (such as cloud system) was proposed

already by Telford (1955). Kostinski and Shaw (2005)

further argued that Poisson fluctuations of the collision

times of settling droplets leads to a broad distribution

of growth times that could potentially explain the rapid

onset of rain formation. This question is further dis-

cussed by Wilkinson (2016). Therefore, quantifying the

role of fluctuations in the collision process by means of

analyzing the DNS data in the framework proposed by

Kostinski and Shaw (2005) and Wilkinson (2016) is de-

sired. Also, since our system is 100 times denser than

the Earth’s atmospheric cloud system, it is interesting

to investigate how the diluteness affects the role of

fluctuations on collisional growth.

In the atmospheric clouds, the size distribution of

cloud droplets has a certain width. To investigate the

collisional growth with a lognormal initial distribution

when there is both turbulence and gravity, we use the

same setup as in Fig. 2b, but with gravity included. As

shown in Fig. 8a, the evolution of the droplet size

distribution depends only weakly on the energy dissi-

pation rate. This again confirms the notion that gravity-

generated collision is more sensitive to the initial size

difference than the turbulence-generated collisions (see

the sini dependency of the size distribution for turbulence-

generated collision in appendix D). To further illustrate

this, we plot the time evolution of the size distribution

with different initial widths (see Fig. 8b). We also com-

pare the present numerical simulations with the ideal-

ized gravity-driven collision. Figure 8a shows that the

tail of the size distribution becomes broadening as «

increases. For the case of «5 0m2 s23, the tail reaches

at about 142mm at t 5 10 s, while for the case of «5
0:04m2 s23 the tail reaches at about 182mm, resulting in

an increase percentage of 28%. Chen et al. (2018) found

that the increasing percentage of the tail is about

(452 30)/305 50% at t 5 6.5min (390 s). Our result

reveals an increasing percentage of (752 62)/62’ 21%

at t 5 5 s (equivalent to 500 s considering that n0 5
1010 m23 is used in our simulations). Since our initial size

distribution and treatment of the collision efficiency

are different from the ones of Chen et al. (2018), we

cannot compare our results with theirs quantitatively.

Nevertheless, our findings are consistent with the

result of Chen et al. (2018) that turbulence enhances the

collisional growth of cloud droplets. We recall that

when sini 5 0, strong dependency of f (r, t) on « is ob-

served (see Fig. 5). This implies that the enhancement

FIG. 8. Same simulations as in Fig. 2, but with gravity invoked. (a) Time evolution of size distribution for different

« with sini 5 0:2; the brown dashed lines represent the size distribution due to gravity-generated collision.

(b) Comparison among sini 5 0, 0.1, and 0.2 with «5 0:04m2 s23.
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effect of turbulence depends on the initial distribution

of cloud droplets.

4. Conclusions

In the present study, we have addressed the problem

of turbulence effects on collisional growth of particles

such as cloud droplets in the case where coalescence is

included. We have investigated this effect using a

superparticle approximation for the droplet dynamics in

combination with high-resolution DNS of fully devel-

oped turbulence. The superparticle approach is about

10 times faster than the direct Lagrangian-detected

collision method at least. In the absence of gravity, we

find that the droplet size distribution depends sensi-

tively on the mean energy dissipation rate « at fixed

Rel, which we have related to the « dependence of

the mean collision rate. We find that this rate increases

as «1/2 (except for the largest values of « simulated). This

is consistent with the Saffman–Turner collision model

and its extensions. A more detailed comparison with

these calculations is not possible at this point, because

there is no prediction for the prefactors in general. The

size distribution due to turbulence-generated collisions

exhibits power-law behavior with a slope of 23.7 in the

size range 10, . . . , 40mm, which is close to the power-law

size distribution of interstellar dust grains. This indicates

that the power-law size distribution may be universal

(Mathis et al. 1977). When gravity is invoked, the tur-

bulence enhancement effect depends on the width of the

initial distribution sini. The enhancement is the stron-

gest when sini 5 0 and weak when sini 5 0:2. For the case

of sini 5 0, turbulence has an efficient effect at the

autoconversion phase, which results in faster growth at

the late stage. In atmospheric clouds, the distribution of

cloud droplets always has a certain width. The role of

turbulence for collisional growth should be handled

with caution. To our knowledge, it is the first time that

such detailed comparison between cases with or without

gravity is investigated when coalescence is invoked.

When collisions are driven by both turbulence and

gravity, we found that turbulence is crucial for driving

the collision so that a few large cloud droplets can be

formed in the initial stage of raindrop formation.

Gravity takes over as the main driver for droplet colli-

sions when the radius of cloud droplets reaches the size

of about 20mm. With combined turbulence and grav-

ity, the time scale for reaching drizzle-sized droplets

is about 900 s, which is close to the time scale of the

rapid warm rain formation. This time scale, however, is

FIG. B1. Comparison of az for different initial conditions: collision is triggered in a randomly distributed superparticle

field and the velocity of the flow is zero (red curve), in awell-mixed particle field and the velocity of the flow is zero(black

curve), and in a well-mixed particle field and the turbulence is well-developed (green curve). Gravity is omitted here, and

L 5 0.25m. The initial size distribution is given by Eq. (8) with rini 5 10mm and sini 5 0:2. The number of mesh grid

points is 1283. Parameter f0 5 0:02 and Np/10
6 5 8:4. These result in Rel 5 100 and « 5 0.03m2 s23.
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expected to be substantially changed when turbulence-

induced collision efficiency is taken into account. The

mean collision rate grows exponentially, which is con-

sistent with the theoretical prediction of the continuous

growth even when turbulence is invoked. The theory of

continuous collisions is built upon the assumptions of

large size differences, a linear drag force, and gravity-

driven collisions. The consistency between our simula-

tions and the theory suggests that the theory is robust in

representing the mean effect of turbulence.

The role of fluctuations for collisional growth (Telford

1955; Kostinski and Shaw 2005; Wilkinson 2016) is not

explicitly analyzed. Therefore, it is interesting to in-

vestigate how the diluteness affects the role of fluctua-

tions on collisional growth. These will be presented in a

separate paper.

Collisional growth of cloud droplets due to turbulence

and gravity is very sensitive to the tail of the initial size

distribution. As already discussed previously (Li et al.

2017), this problem is being alleviated by considering the

combined condensational and collisional growth. Espe-

cially the condensational growth due to supersaturation

fluctuations may result in larger tails of the size distri-

bution (Sardina et al. 2015; Chandrakar et al. 2016). This

is another subject of an ongoing separate study.

In the present paper, the collision efficiency is as-

sumed to be unity for simplicity. In reality, the colli-

sion efficiency is not unity, but it can depend on the

droplet–droplet aerohydrodynamics (Wang et al. 2005,

2007; Wang and Grabowski 2009; Chen et al. 2018).

Using a unit collision efficiency overestimates the col-

lision rate. It would be useful to incorporate the collision

efficiency in turbulence invoking droplet–droplet aero-

hydrodynamics, but this has not yet been done. This will

need to be investigated in a separate study.
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APPENDIX A

Collision Algorithm of the Superparticle Scheme

A detailed study of the superparticle approach is

given in Li et al. (2017), where its evaluation and ad-

vantages over the Eulerian approach are investigated.

Here, we briefly review the collision scheme used in the

present study. When two superparticles i and j residing

in the same grid cell collide with each other, the new

masses of the particles in the two superparticles after

collision obey mass conservation and are given by

~m
i
5m

i
1m

j
,

~m
j
5m

j
. (A1)

We assume nj . ni without loss of generality, where nj
and ni are the number density of droplets in super-

particles i and j, respectively. Their new particle number

densities are

~n
i
5n

i
,

~n
j
5n

j
2 n

i
. (A2)

The momenta of the particles in the two superparticles

after collision are given by

~V
i
~m
i
5V

i
m

i
1V

j
m

j
,

~V
j
~m
j
5V

j
m

j
. (A3)

APPENDIX B

Effect of Initial Condition on Collision in a
Turbulent Environment

The initial conditions are important for the collision.

We tested three different initial conditions. Collision

is triggered 1) in a randomly distributed superparticle field

and the velocity of the flow is zero, 2) in a well-mixed

particle field and the velocity of the flow is zero, and 3) in a

well-mixed particle field and the turbulence is well de-

veloped. To compare the time evolution of the size distri-

bution for these three cases, we first define the normalized

moments of the size distribution (Li et al. 2017),

a
z
5

�ð‘
0

frzdr=
ð‘
0

f dr

�1/z

, (B1)

where z is a positive integer. The mean radius r is given

by a1, the maximum radius is max(r)5 a‘, and the

droplet mass is proportional to the third power of a3.

Parameter az can characterize the size distribution with

simpler diagnostics. Figure B1 shows az for the three

different initial conditions. It is obvious that the time

evolution of az is independent from initial conditions.

This can sufficiently save computational time.

APPENDIX C

Statistical Convergence of the Number of
Superparticles per Grid Cell in a Turbulent

Environment

As discussed in section 2, simulations with a mas-

sive number of superparticles are computationally

FIG. D1. Convergence of sini. Collision is driven solely by turbu-

lence; see run B for simulation details.
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costing. In Li et al. (2017), we found that the initial

Np/Ngrid converges at 4 when the collision is driven

by gravity without turbulence. In the present study,

Ngrid 5 5123. A value of Np/Ngrid 5 4 will result in

Np 5 43 5123 5 536 870 912, which will be very com-

putationally demanding. This motivates us to restudy

the convergence of Np/Ngrid in high-Reynolds-number

turbulence case instead of carrying the convergence

study from pure gravity case to the turbulence case.

As shown in Fig. C1, Np/Ngrid converges at 0.5.

This could be because turbulence transports particles

sufficiently.

APPENDIX D

Convergence of the Initial Width sini in a Turbulent
Environment with Gravity

We first check the convergence of sini when colli-

sions are driven solely by turbulence. As shown in

Fig. D1, the time evolution of the size distribution

almost converges at sini 5 0:1. Compared with the

case where the collision is driven by combined tur-

bulence and gravity as demonstrated in Fig. 8, the tail

of the size distribution is less sensitive to sini. Next,

we investigate the convergence of the width sini

in Eq. (8) in a combined turbulence and gravity

environment. Figure D2 shows that sini converges at

0.02. However, as we have discussed in section 3b, we

choose sini 5 0 for the combined turbulence and

gravity case.

FIG. D2. Convergence of sini. Collision is driven by combined turbulence and gravity; see run B for simulation

details.

FIG. E1. Time evolution of the Stokes number distribution St(r, t)

for different « with fixed Rel. Same simulations as in Fig. 2.
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APPENDIX E

Distribution of the Stokes Number

Figure E1 shows the distribution function of Stokes

numbers for the same simulations as in Fig. 2. Initially,

the distribution of Stokes number shifts to the right with

increasing «, which will trigger stronger collisional

growth. At later times, when « increases from 0.005 to

0.04m2 s23, the tail of the Stokes number distribution

increases by more than an order of magnitude, which

leads to an extension of about three orders of magnitude

at t 5 10 s. This indicates that the collisional growth

rate strongly depends on the Stokes number. In-

creasing « results in a larger range of variations in the

value of the Stokes number, thus enhancing the col-

lisional growth.

APPENDIX F

Rescaling of Time based on the Initial Number
Density

As explained at the end of section 2, simulating the

collision–coalescence process of raindrop formation over

realistic time scales is computationally demanding, so

we adopt an initial number density of n0 5 1010 m23 and

rescale the simulation time to ~t5 t(n0/nref). We check az
for the rescaling in 2D turbulence. As shown in Fig. F1,

larger values of n0 result in smaller values of az. How-

ever, the difference in a24 is only about 5mm at ~t5 250 s.

This means that using n0 5 1010 m23 does reasonably

well represent the collisional growth.
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