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Abstract

The topic of this thesis is GPU accelerated sparse linear algebra for
subsurface reservoir modeling. Numerical techniques for reservoir sim-
ulations are described and we present the open source reservoir simula-
tion software toolbox MRST. We discuss some of the challenges related
to linear algebra and reservoir simulation. Furthermore, we discuss the
possibility GPU-acceleraing the linear algebra for reservoir simulation,
and implement a GPU based CG solver preconditioned with AMG for
MRST, using the open source linear algebra library CUSP.
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Sammendrag

Temaet for denne oppgaven er GPU-akselerert glissen lineær algebra
for undergrunnen reservoarmodellering. Numeriske teknikker for reser-
voarsimulering beskrives og vi presenterer MRST, programvare for reser-
voarsimulering med åpen kildekode. Vi diskuterer noen av utfordrin-
gene knyttet til lineær algebra og reservoarsimulering. Videre diskuterer
vi GPU-akselert lineær algebra for reservoarsimulering, og implementerer
en GPU-basert CG-løser prekondisjonert med AMG for MRST, ved å
bruke CUSP, et åpen kildekode-bibliotek for glissen lineær algebra p̊a
GPUer.
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Chapter 1

Introduction

This thesis deals with the topic of numerical linear algebra for subsurface reser-
voir simulation. Reservoir simulation is an active field of research, which includes
modeling and numerical discretization amongst its topics. When developing nu-
merical software for reservoir simulation, one faces the challenge of solving large,
sparse linear systems. Finding a solution to these may prove to be a bottleneck
computation, where exploiting information about the problem at hand may be
crucial for performance. In this thesis, we will combine algorithms suited to make
use of this information with the processing power of modern graphics processing
units (GPUs) in an attempt to implement an efficient linear solver for reservoir
simulation.

Our thesis will make use of the Matlab Reservoir Simulation Toolbox (MRST),
which is an open source toolbox developed by SINTEF Applied Mathematics [24].
It offers functionality for reservoir simulation and visualization. Intended for pro-
totyping and development of new ideas, MRST provides a framework for reservoir
simulation in a high-level language. Our aim will be to implement a black-box
solver for the MRST. This will serve us a dual purpose; using MRST, we can
readily generate scenarios to test our linear solver, and if our linear solver proves
to be efficient and robust, it can offer a way to speed up computations in MRST
without any effort required from the end-user.

We have chosen to restrict ourselves to only consider the conjugate gradients
method and algebraic multigrid for the algorithms we will base our solvers on.
These are well-known algorithms, that have been proved to be efficient for solving
the large, sparse linear systems of the symmetric, positive definite type, typically
arising in reservoir simulation [25].

Initially developed for 3D graphics rendering, GPUs have become widely used
also for scientific computing over the last decade. With their massive parallelism,
GPUs offer attractive computational capabilities, and have been used to speed up
computations in a wide field of applications [22]. This speed-up comes, however
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2 CHAPTER 1. INTRODUCTION

with the cost of extra programmer effort to map applications onto the parallel ar-
chitecture of GPUs. On the other side, the rise of general purpose GPU computing
has led to the development of several programming frameworks aimed at making
the computing power of GPUs more available.

In our work, we have focused on GPUs produced by Nvidia. Nvidia has devel-
oped CUDA, which provides a programming model for GPU computing, and an
interface based on C/C++. There are several frameworks for sparse linear algebra
on Nvidia GPUs. Two of the alternatives are CUSPARSE, which is featured in
the official CUDA Toolkit, and CULA, a closed source, proprietary library. We
have chosen to use CUSP [5], which is an open source library which implements
both conjugate gradients and an algebraic multigrid preconditioner.

1.1 Research questions

To guide the our thesis, we will pose the following questions:

1. Can we use CUSP to create a GPU-based linear solver for MRST imple-
menting conjugate gradients with algebraic multigrid as preconditioner?

2. Are we able to use GPUs to speed up the solution of linear systems in MRST
compared to existing CPU-based alternatives?

3. Can we propose and implement improvements to CUSP’s linear solver, mak-
ing it better suited for our application in reservoir simulation?

1.2 Organization of thesis

The thesis is organized as follows:

• Chapter 2 gives a brief introduction to reservoir modeling and numerical
methods for discretization of the equations governing the flow in subsurface
reservoirs. We also discuss MRST and some of its functionality.

• Chapter 3 presents the conjugate gradients method and algebraic multigrid.

• In Chapter 4, we discuss GPU computing with CUDA and introduces CUSP.

• In Chapter 5, we introduce MEX-interface, which we will need to use CUSP
with Matlab. Furthermore, we discuss the implementation details of our
linear solver.

• Chapter 6 presents the results of numerical experiments.
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• In Chapter 7, we draw conclusions based on the numerical results and sug-
gests further work.
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Chapter 2

Reservoir Simulation

Simulation is an important part of oil reservoir management. It is used to model
the pressure and flow scenario of a reservoir, and can give valuable information in
the planning of the production process.

Realistic reservoirs have complicated geometry, and some of the quantities in-
fluencing the flow are hard to measure. Furthermore, as the rock properties are
determined by small scale factors such as the size of pores in the rock, exploiting
this information to compute quantities on the scale of a realistic reservoir would
require tremendous computational capabilities.

In this chapter, we will give a brief introduction to reservoir modeling, and
discuss numerical methods used to approximate the solutions of the equations
for flow and pressure. We will also introduce MRST [24], a MATLAB toolkit
for reservoir simulation developed by SINTEF Applied Mathematics. For a more
detailed overview of reservoir modeling, we refer to [1].

2.1 Reservoir modeling

The rock in subsurface reservoirs is a porous medium, which means that even
though the rock is solid, a fraction of the volume occupied by the rock will be
void, allowing fluids to flow in the rock. This is measured using the rock porosity,
φ, defined as the void volume fraction of the rock (implying 0 ≤ φ ≤ 1). Typi-
cally, φ will be a function of spatial coordinates and the pressure p. However, in
simple models, it might be sufficient to only consider spatial dependencies for φ.
Otherwise, it is common to consider a first order linearization in p.

Another important quantity in reservoir modeling is the permeability of the
rock, K, which measures the rock’s ability to transmit a single fluid at certain
conditions. Although it obviously is correlated with the porosity, K is not neces-
sarily proportional to φ. For instance, K also depends on the spatial orientation

5



6 CHAPTER 2. RESERVOIR SIMULATION

of the rock pores, as the rock will be more permeable if pores are interconnected.
This also shows that K is a tensor, since a specific orientation of the rock pores
can cause the rock to be more permeable in one spatial direction. Although K
generally will be dense, it can often be diagonalized through a change of basis,
which can simplify computations. If K can be represented by a scalar function,
the problem is called isotropic, otherwise anisotropic. As real world reservoirs
consist of different rock types with different permeability, K can be discontinuous
and vary with several orders of magnitude.

Whenever more than one phase is present in the reservoir, it is also necessary
to consider the saturation si of each phase, which is defined as the fraction of void
volume occupied by phase i. Because all of the void volume is assumed to be
occupied, ∑

all phases

si = 1. (2.1)

In reservoir management, it is often sufficient to consider at most three phases,
oleic (o), gaseous (g), and aqueous (w). Whenever more than one phase is present,
the permeability for one phase will be different from the absolute permeability,
K. To adjust for this, relative permeability kri is defined. As it adjusts for the
presence of other phases, kri is a function of the saturation of the other phases.
The effective permeability experienced by a phase α is

Kα = krαK. (2.2)

Each phase can consists of several components corresponding to different chemi-
cal compounds. As there might be many different compounds present in the reser-
voir, several compounds with fairly equal fluid properties are typically grouped
together into pseudocomponents and treated as one component. The mass frac-
tion of a component i in phase j is denoted by cij, meaning that

∑
i cij = 1 for all

phases. As the phase of hydrocarbons can change depending on the pressure and
temperature conditions, a component can exist in several phases.

To describe the fluid properties of the phases, we consider the density ρα and
the kinematic viscosity µα of each phase, as these will occur in the equations
governing the flow and pressure in the reservoir. These are in general functions of
the phase pressure pj, and the mass fractions of the different components present
in the phase. Following [1], we will ignore thermodynamic effects on the reservoir.

The flow and pressure will be governed by the principle of mass conservation
and the empirical Darcy’s law. If only one phase is considered, mass conservation
can be stated as

∂(φρ)

∂t
+∇ · (ρv) = q. (2.3)

Here, q is a source term modeling sources and sinks, while v is the fluid velocity.
Equation (2.3) can be simplified if the porosity is constant in time and the fluid is
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incompressible, as the first term vanishes, giving

∇ · v =
q

ρ
. (2.4)

Darcy’s law states that

v = −K

µ
(∇p− ρg∇z), (2.5)

where g the gravitational constant. It is often convenient to consider a pressure
potential on the form u = p− ρgz, meaning that Darcy’s law can be stated as

v = −K

µ
∇u. (2.6)

In the case of more than one phase, the multiphase equivalents of the equations
above must be considered. Conservation must be stated for each component l,
giving the saturation equations,

∂

∂t
(φ
∑
α

clαραsα) +∇ · (
∑
α

clαραvα) =
∑
α

clαqα, α = i, o, w. (2.7)

where sα ∈ [0, 1] is the saturation of each phase. It is assumed that the source
term can be specified for each phase. For multiphase flow, Darcy’s law is stated
for each phase, giving

vα = −K
krα
µα

(∇pα − ραg∇z). (2.8)

To make the models well posed, it is also necessary two specify boundary
conditions for (2.7) and (2.8). Although these in principle are problem dependent,
it should be pointed out that no flow common boundary conditions are common.
Physically, this means that no fluid can leave or enter the reservoir along the
boundaries. Mathematically, this means vα·n = 0 on δΩ, where δΩ is the boundary
of the domain and n is a unit normal vector on the boundary.

Equations (2.7) and (2.8) are the general statements of the equations governing
flow and pressure. However, these can often be simplified by assumptions on the
porosity and the phases and components present. The simplest example of this is
the case of one phase incompressible flow with time constant porosity, which leads
to the system of equations given by (2.4) and (2.6).

2.2 Discretization methods

In general, Eqations (2.7) and (2.8) lead to a nonlinearly coupled system of equa-
tions. There are several possible discretization strategies for solving the full system
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numerically. One possibility, which is common in the industry, is to make a full
implicit discretization of both equations, and solving a discretized nonlinear sys-
tem of equations. However, it is also possible to use a sequential splitting strategy.
This is done by at each time step solve a discretized system for the pressure, using
the saturations from last time step. After computing the corresponding phase ve-
locities, the saturation equations are then solved keeping the velocities constant.
Solving the pressure equations, which becomes elliptic PDEs, are typically the
biggest computational challenge. In the following, we will outline some of the
techniques that are frequently used for solving these. This is the approach used in
MRST [15].

For simplicity, we will derive our numerical schemes for single-phase, incom-
pressible flow. Hence, the equations we seek to discretize are Equations (2.6) and
(2.4). To simplify notation, we will drop the constants ρ and µ, and hence we will
state the equations as

v = −K∇p (2.9)

∇ · v = q. (2.10)

The first step of developing numerical schemes is to discretize the domain. A
natural way of doing this is to create a mesh of polyhedral grid cells. We will
assume that the permeability tensor K can be represented as a cell-wise constant
symmetric, positive definite matrix. For technical reasons, we also require eigen-
values of K to be uniformly bounded from below and above.

2.2.1 Two-point flux approximation

γij

xi

ci xj
cj

ni

nj

xij

Figure 2.1: Two adjacent cells in TPFA
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The most widely used numerical scheme in industry is the two-point flux ap-
proximation (TPFA). This is despite the fact that TPFA puts special requirements
on the grid, which in practical cases often are not met. Given a partitioning of the
domain into polyhedral grid cells, say Ωi, we integrate (2.10) over one grid cell,∫

Ωi

∇ · vdV =

∫
Ωi

qdV. (2.11)

Assuming that v is sufficiently smooth, we use the divergence theorem to obtain∫
δΩi

v · ndν =

∫
Ωi

qdV. (2.12)

The right-hand side of the equation is assumed to be known. Hence, a discretiza-
tion scheme should find an approximation for the flux over the faces of each grid
cell.

Following [2], we will derive an approximation for the flux over cell faces using
a cell centered volume method, where the flux over the face between two adjacent
cells is approximated by a relation to the potentials in the cell centroids of the
respective cells. Figure 2.1 shows this situation for two two-dimensional cells.
There, xi and xj are the respective cell centroids, γij is the face between the cells,
and xij is the midpoint of γij. The vectors pointing from the cell centroids to xij
are denoted ci and cj, and the unit normals pointing out of the cells ni and nj,
respectively. It should be noted that the derivation will hold in both two and three
dimensions, as we makes no assumption on the grid being two-dimensional.

The flux over γij, say vij, is given by integrating v over γij, and substituting
for (2.9), giving

vij =

∫
γij

v · ndν = −
∫
γij

nTK∇udν. (2.13)

Introducing w = Kn, this can be written as

vij = −
∫
γij

w · ∇udν, (2.14)

which shows that vij is the integral over γij of the directional derivative of ∇u
along w. In TPFA, we seek to express a discretization of this expression using
the potentials ui and uj in xi and xj, respectively. To this end, we introduce
the fictious point xij, associated with a potential uij. Since the integrand is the
directional derivative of ∇u along w, it can be discretized consistently using ui
and uij if and only if ci and wi are parallel [2]. In this case, we obtain the
approximation
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w · ∇u ≈ (uij − ui)
‖wi‖
‖ci‖

, (2.15)

and an analogous expression using uj. If we approximate the integrand to be
constant over γij and denote the area of the face as |γij|, this leads to the following
approximations for the flux for the two cells,

vij = |γij|(uij − ui)
‖wi‖
‖ci‖

(2.16)

vji = |γij|(uij − uj)
‖wj‖
‖cj‖

. (2.17)

The second expression follows by symmetry. Since the flux must be continuous,
it follows that vji = −vij. Hence, by summing and eliminating uij, we get the
following formula relating the cell centroid potentials to the flux,

vij = |γij|
(
‖ci‖
‖Kini‖

+
‖cj‖
‖Kjnj‖

)−1

(uj − ui). (2.18)

Writing

tij = |γij|
(
‖ci‖
‖Kini‖

+
‖cj‖
‖Kjnj‖

)−1

, (2.19)

the flux over γij is

vij = tij(uj − ui). (2.20)

Summing over the edges j of Ωi and inserting the corresponding flux approxima-
tions from (2.20) in (2.12), we get

∑
j

tij(uj − ui) =

∫
Ωi

qdV ∀Ωi ⊂ Ω, (2.21)

which can be written as a symmetric, positive definite linear system for the cell
potentials [1].

As mentioned above, TPFA requires that for each grid cell, ci is parallel with
Kini for all faces in the cell. A grid that meets this condition is said to be K-
orthogonal. In practical situation, there is no guarantee that the grid can be
constructed to meet the requirement of K-orthogonality. If the grid is not K-
orthogonal, TPFA can not be expected to converge to the correct solution, and
this is the big drawback of this method.
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2.2.2 Mimetic finite difference methods

The mimetic finite difference (MFD) method represents a different approach to
solving (2.9) and (2.10). In contrast to TPFA, mimetic methods do not require a
K-orthogonal grid. In [7], Brezzi et al proves convergence properties for unstruc-
tured polyhedral meshes. The conditions required on the mesh for the convergence
analysis are very loose, and will almost always be met in practice [7]. Mimetic
methods can be developed by defining inner products on the function spaces of
pressures and velocities, for which the gradient and divergence operator are ad-
joint. A mimetic method can then be derived by defining discrete analogues to the
inner products, function spaces and differential operators such that the discrete
versions have similar properties to the continuous. This is where the name of the
methods come from. However, we will discuss MFD using the approach of [15],
which uses a matrix approach to develop the formulation of the method.

Given a polyhedral grid cell Ωi, we define Ne as the number of faces, |E| as
the cell volume and pi as our approximation of the pressure in the cell centroid.
Furthermore, we let u and π denote vectors containing the fluxes over the cell faces
and the pressures in the cell centroids, respectively. Hence, we have u, π ∈ RNe .
For each face j, we recall that cj is the vector pointing from the cell centroid to
the face centroid. Moreover, nj will now denote the area-weighted normal vector
pointing out of the cell; that is, a normal vector of length equal to the area of the
face. Using these, we define N and C as the matrices where nj and cj are the
jth rows. We will use that N , C ∈ RNe×3 have full rank and that CTN = |E|I,
where I is the Ne ×Ne identity matrix [15].

The mimetic method seeks to find an expression relating flux to the face cen-
troid pressures on the form

Mu = pie− π, (2.22)

where e = (1, . . . , 1)T and M ∈ RNe×Ne is a symmetric, positive definite ma-
trix [15]. This can also be expressed using the transmissibility matrix T = M−1

as

u = T (pie− π). (2.23)

As M is symmetric, positive definite, it is also referred to as an inner product.

MFD methods are required to give exact approximations for linear pressure
fields, i.e

p(x) = a · x+ b, (2.24)

where a ∈ R3 and b ∈ R are constant. We note that (2.24) implies that the
difference between the pressure pi in the cell centroid and the pressure πj at the
jth face centroid, is simply

pi − πj = cTj a. (2.25)
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Combining (2.24) and (2.9) gives a constant fluid velocity,

v = −Ka, (2.26)

which together with (2.13) means that the flux uj over face j is

uj = −nTj Ka. (2.27)

Inserting (2.27) and (2.25) into (2.22) we get

MNKa = Ca. (2.28)

Since the mimetic method is required to be exact for all linear pressure distribu-
tions, this must hold for any a, and we arrive at our consistency requirement for
M ,

MNK = C (2.29)

Using the fact that CTN = |E|I, we post-multiply Equation (2.29) with
K−1CTN to derive

MN =
1

|E|
CK−1CTN . (2.30)

As N has full rank, this implies that a valid choice for M must be on the form

M =
1

|E|
CK−1CT +M2, (2.31)

whereM2 is any matrix such thatM2N = 0 andM is symmetric positive definite.
Since K is symmetric, positive definite, 1

|E|CK−1CT is symmetric, positive semi-
definite, meaning it is clearly necessary that M2 is a symmetric positive semi-
definite matrix which can be expressed as

M2 = Q⊥NSMQ
⊥
N

T
, (2.32)

where Q⊥N is an orthonormal basis for the null space of N and S is a symmet-
ric positive definite matrix. As this implies that M is symmetric positive semi-
definite, we only need to show that it in fact implies positive definiteness for
sufficiency. To show this, we can use the fact that any vector z ∈ Rn can be split
uniquely as z = z1 + z2, z1 ∈ Ran(NT ), z2 ∈ Null(NT ) [21], or equivalently,
z = Nz̃1 + z2, z̃1 ∈ Rn. Using (2.31), (2.32) and CTN = |E|I, we get

zTMz = |E|z̃T1 K−1z̃1 + zT2
1

|E|
CK−1CTz2 + z2Q

⊥
NSMQ

⊥
N

T
z2 > 0 (2.33)
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as at least either the first or last term are positive since K and SM are positive
definite and the middle term is nonnegative as the matrix is positive semi-definite.
To sum up, any inner product M can be written as

M =
1

|E|
CK−1CT +Q⊥NSMQ

⊥
N

T
. (2.34)

A similar calculation for T = M−1 yields

T =
1

|E|
NKNT +Q⊥CSTQ

⊥
C

T
, (2.35)

with ST andQ⊥C analogous to SM andQ⊥N . Hence, MFD gives a class of discretiza-
tion schemes, where a grid and a choice of a symmetric positive definite matrix

gives a specific discretization scheme. One example is ST = 2
|E|P

⊥
C diag(NKNT )P⊥C

T
,

where P⊥C is the projector onto Null(CT ), which will give a method that coincides
with TPFA for K-orthogonal grids [15].

Another inner product is IP_SIMPLE, which is the default inner product in
MRST. It is given by

Q = orth(A−1N )

M =
1

|E|
CK−1CT +

d|E|
6tr(K)

A−1(I −QQT )A−1, (2.36)

where A is a diagonal matrix with the face areas on the diagonal and d = 2, 3 is
the dimension of Rd. For T , the approximate inverse is typically used,

Q = orth(AC)

T =
1

|E|

[
NKNT +

6

d
tr(K)A(I −QQT )A

]
. (2.37)

In addition to (2.22), where M must satisfy (2.34), the flux for each cell must
satisfy (2.12), and for two adjacent cells, the flux over the adjacent face must be
equal, but with opposite sign. Given a global ordering of the cells and faces, this
can be formulated as a linear system on hybrid form, B C D

CT 0 0
DT 0 0

 u
−p
π

 =

 0
q
0

 . (2.38)

Here, B and C are block diagonal matrices where the ith block contains the inner
productMi and the vector ei for cell i, respectively. The columns ofD correspond
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to unique faces and has ones in the rows corresponding to the face in the global
ordering (hence a column corresponding to a face has two nonzero entries for
interior faces and one for boundary faces). The vectors u, p and π contain all
face fluxes, centroid pressures and face pressures respectively, consistently with the
global cell and face ordering. The ith entry of the vector q is the integral

∫
Ωi
qdV .

The hybrid system (2.38) can be rewritten to Schur form using a block wise
Gaussian elimination, which results in the symmetric positive definite system [15]

(DTB−1D − F TL−1F )π = F TL−1q, (2.39)

where F = CTB−1D and L = CTB−1C. Once (2.39) is solved, the fluxes and
centroid pressures can be computed by

Lp = q + Fπ, u = B−1(Cp−Dπ). (2.40)

This suggests that when computing the inner products, instead of computing B
and then inverting it, it is more efficient to compute B−1 directly, using that it is
block diagonal with the transmissibility matrices Ti as blocks. As L is diagonal,
his shows that computing p and u is computationally inexpensive once (2.39) is
solved. This also means that solving (2.39) will dominate the computational cost
of finding a numerical approximation to the flux and pressure.

2.3 Matlab Reservoir Simulation Toolbox

Matlab Reservoir Simulation Toolbox (MRST) [24] is an open source toolbox for
reservoir modeling and simulation in Matlab developed by SINTEF Applied Math-
ematics. MRST contains routines for grid processing, modeling physical quantities
such as rock and fluid properties, numerical discretization and visualization. It is
intended to provide tools for prototyping and testing methods and concepts on
complex grids, and supports one and two phase, incompressible flows.

The grid structure in MRST can handle grids consisting of irregular, polyhedral
cells, by using a general storage format. To this end, MRST contains several
functions for creating and manipulating grids, and functions for reading input from
files. In addition to the grid, setting the fluid and rock properties are necessary to
set up a simulation scenario. These can be generated by MRST, set explicitly by
the user, or read from file. MRST assumes no-flow boundary conditions by default,
but features various routines for adding different boundary conditions, and it uses
a well structure for handling sources and sinks.

As discussed in Section 2.2, a mimetic discretization scheme can be created
using the geometry of the grid and the permeability of the rock. The function
computeMimeticIP creates a matrix using MFD. By default, MRST will solve the
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discretized pressure equations using hybrid form, given by (2.38). As (2.38) can
be solved on Schur form (2.39), computeMimeticIP will output B−1 in (2.39). Al-
though MRST supports other forms than (2.38), this is the form we will use in our
work. The type of inner product can be specified with the option 'InnerProduct'.
If no option is given, the default in MRST is ip simple, using (2.37).

To solve the discretized pressure equations on hybrid form, the function
solveIncompFlow creates the full system (2.38), reduces it to Schur form, and calls
a linear solver to solve (2.39). By default, the linear solver is mldivide, Matlab’s
standard linear solver. However, it is possible to pass another solver as a function
handle using the option 'LinSolve'.

Figure 2.2 shows a minimal MRST program and the plot it produces based on
one of the examples from [15]. The program creates a 20×20×10-cell Cartesian grid
where the permeability is constant. In addition to gravitational forces, constant
pressure is applied on the left hand side on the grid, and in the middle, a column
of sources is inserted.
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1 % Create a 20−by−20−by−10−cell Cartesian grid
2 nx = 20; ny = 20; nz = 10;
3 G = cartGrid([nx, ny, nz]);
4 G = computeGeometry(G);
5

6 % Set rock and fluid properties
7 rock.perm = repmat(100 * milli*darcy, [G.cells.num, 1]);
8 fluid = initSingleFluid('mu', 1*centi*poise, 'rho', ...

1014*kilogram/meterˆ3);
9 gravity reset on

10

11 % Set sources and pressure boundary conditions
12 c = (nx/2*ny+nx/2 : nx*ny : nx*ny*nz) .';
13 src = addSource([], c, ones(size(c)) ./ day());
14 bc = pside([], G, 'LEFT', 10*barsa());
15

16 % Create and solve a
17 S = computeMimeticIP(G, rock, 'Type', 'hybrid', 'InnerProduct', ...

'ip simple');
18 rSol = initResSol(G, 0);
19 rSol = solveIncompFlow(rSol, G, S, fluid,'src', src, 'bc' , bc, ...

'LinSolve', @mldivide);
20

21 % Plot cell pressure
22 clf
23 plotCellData(G, convertTo(rSol.pressure(1:G.cells.num), barsa()), ...
24 'EdgeColor', 'k');
25 title('Cell Pressure [bar]')
26 xlabel('x'), ylabel('y'), zlabel('Depth');
27 view(3); shading faceted; camproj perspective; axis tight;
28 colorbar

(a) Code

(b) Plot produced

Figure 2.2: A minimal MRST program



Chapter 3

Linear Solvers

As seen in chapter 2, when doing numerical reservoir simulation, it is necessary
to solve the symmetric, positive definite system (2.39). In this chapter, we will
describe conjugate gradients and algebraic multigrid, two algorithms for solving
systems of this kind.

Notation

It is convenient to introduce some notation for the sections below. Following
standard notation of linear algebra, uppercase latin letters will denote real-valued
n × n matrices, where n ∈ N. In particular, A will always be used to denote
a symmetric, positive definite matrix. Lowercase latin letters will denote real
valued vectors in Rn, except for i, j, k, l and n, which will denote natural numbers.
Lowercase greek letters will denote real valued scalars.

3.1 Conjugate gradients

The conjugate gradients algorithm (CG) is a well known iterative method for
solving sparse, symmetric, positive definite linear systems. It was first introduced
by Hestenes and Stiefel in 1952 as a direct method [12], but has since become one
of the most popular iterative methods for sparse SPD problems [9]. CG is a Krylov
subspace method, that is, it searches for a solution of the linear system

Ax = b (3.1)

in the k-dimensional Krylov subspace Kk(A, b), defined as

Kk(A, b) = span{b, Ab, . . . , Ak−1b}. (3.2)

17
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CG is characterized by the fact that the solution at step k, say xk minimizes
the A-norm of the error over all vectors in Kk [21], that is

xk = arg min
y∈Kk

‖x∗ − y‖A, (3.3)

where x∗ = A−1b is the exact solution of the linear system, and ‖ · ‖A is the norm
defined by ‖x‖2

A = xTAx.
In the following, we will describe some of the key features of CG. For a more

complete overview, we refer to [9, 21,23].

3.1.1 Algorithm

Algorithm 1 shows CG as presented in [9]. For simplicity, x0 is set to the zero
vector. CG searches for a solution along an A-orthogonal basis {p0, . . . , pk} for
Kk. At each iteration step k, it computes the next update xk+1 such that the next
residual is orthogonal to Kk. This makes the error A-orthogonal to Kk (and hence
minimal), and it also ensures that rk+1 is A-orthogonal to all the pi’s except pk,
which in turn means that only pk needs to be stored to compute pk+1 [23].

Algorithm 1 Conjugate gradients

1: x0 = 0, r0 = p0 = b
2: for k = 0, 1, ... until convergence do
3: yk = Apk
4: αk = (rTk rk)/(y

T
k pk)

5: xk+1 = xk + αkpk
6: rk+1 = rk − αkyk
7: βk = (rTk+1rk+1)/(rTk rk)
8: pk+1 = rk+1 + βkpk
9: end for

3.1.2 Convergence

In exact arithmetic, CG gives the exact solution x∗ = A−1b in at most n steps. In
practice, this may not happen because round off errors are magnified [9]. As the
algorithm still may give good approximations after much fewer than n iterations,
it is the convergence analysis of the iterative version that is of interest.

The convergence analysis of CG is closely related to Chebychev polynomials.
As the the error is related to the residual by rk = −Aek, the definition of Kk
implies that the error at the kth step can be expressed as

ek = pk(A)e0, (3.4)
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where pk is a polynomial of degree k with pk(0) = 1 and e0 is the initial error.
As CG minimizes ‖ek‖A, CG must pick pk to minimize this error over all such
polynomials. Using the optimality properties of the Chebyshev polynomials, it
can be shown that [21]

‖ek‖A ≤ 2

(√
κ− 1√
κ+ 1

)k
‖e0‖A, (3.5)

where κ is the condition number of A.

3.1.3 Preconditioning

The error bound (3.5) in the end of section 3.1.2 illustrates the idea behind pre-
conditioning, as convergence is limited by the condition number of A. In order to
improve the convergence rate, one may attempt to lower the condition number of A
by multiplying with a symmetric, positive definite matrix M−1 that in some sense
approximates A−1. By choosing M−1 such that κ(M−1A) � κ(A) the number of
iterations needed to reach convergence may be significantly reduced. However one
cannot apply CG directly to the system M−1Ax = M−1b, as the resulting matrix
generally is not symmetric [9]. This problem can be overcome, for instance by
formally introducing the linear system

(M−1/2AM−1/2)(M1/2x) = M−1/2b, (3.6)

and performing algorithm 1 on it. As M−1 (and hence M) is assumed to be
symmetric positive definite, M−1/2 is well defined [9]. It should also be noted that
since M−1/2AM−1/2 and M−1A are similar matrices, they have the same condition
number. Performing CG on (3.6) will produce an estimate for M1/2x, which is not
really of interest. However, through a change of variables, it can be shown [9]
that performing CG on (3.6) is mathematically equivalent to algorithm 2, which
produces an estimate for the solution of the original system.

From line 7 of Algorithm 2, we see that an operation on the form M−1v must
be performed for each iteration. As this may mean applying some linear operator
on v or solving the system Mu = v, it is clear that there is a trade off when
choosing the preconditioner between choosing M−1 to be ”close” to A−1 and the
cost of applying M−1.

3.2 Algebraic multigrid

Algebraic multigrid (AMG) represents an approach to solving sparse linear systems
that is fundamentally different from the Krylov subspace approach of CG. AMG
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Algorithm 2 Preconditioned conjugate gradients

1: x0 = 0, r0 = b, p0 = z0 = M−1r0

2: for k = 0, 1, ... until convergence do
3: yk = Apk
4: αk = (rTk zk)/(y

T
k pk)

5: xk+1 = xk + αkpk
6: rk+1 = rk − αkyk
7: zk+1 = M−1rk+1

8: βk = (rTk+1zk+1)/(rTk zk)
9: pk+1 = zk+1 + βkpk

10: end for

was developed as an extension of the ideas of geometric multigrid [21] to handle
problems were the geometric information required by multigrid is unavailable or the
geometry is so complex that multigrid implementations are either very complicated
or not feasible at all. A complete introduction to AMG can be found in [25].

3.2.1 Galerkin formulation

The key idea of AMG is to extend the idea of solving a linear system stemming from
some discretization of a partial differential equations on successively coarser grids
to situations where grids are unavailable, using only the information contained
in the matrix. This is usually done in the formal framework of the Galerkin
formulation, which makes it possible to define analogues to the fine and coarse
grids of geometric multigrid, and analyze the transfer between them.

Following [25], two-level AMG is described using the index sets Ωh and ΩH to
denote the sets of degrees of freedom on the fine and coarse levels, respectively.
Given Ωh = {1, . . . , n}, the fine problem is defined as

Ahx
h = bh ⇐⇒

∑
j∈Ωh

ahijx
h
j = bhj (i ∈ Ωh). (3.7)

To transfer the fine problem to the coarse one, Ωh is split into two disjoint
sets C and F such that Ωh = C ∪ F , where C represents the coarse level, such
that C = ΩH . Corresponding to this splitting, a restriction operator, PH

h , and
interpolation operator, P h

H , mapping between the coarse and fine problem must be
defined. This allows the degrees of freedom in F to be interpolated onto C and
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vice versa. Assuming the operators to be given, the coarse problem is defined as

AHx
H = bH , (3.8)

AH = PH
h AhP

h
H , (3.9)

xH = PH
h x

h, bH = PH
h b

h. (3.10)

The matrix AH is referred to as a Galerkin product. Both the interpolation and
restriction operators must be of full rank. For symmetric positive definite systems,
we also require

P h
H = (PH

h )T . (3.11)

3.2.2 Algorithm

The last missing piece to describe a two-level AMG algorithm is a smoothing
operator on the fine level, say Sh. Sh is typically a simple relaxation scheme, such
as Jacobi or Gauss-Seidel. As for geometric multigrid, the smoothing operator
should reduce ”oscillatory” components of the error, while ”smooth” components
must be dealt with on the coarser level. However, as the notion of smoothness
cannot be related to the geometry of the grid in AMG, a smooth error is defined
as an error components that cannot be resolved efficiently by the smoother, i.e.
She ≈ e, and hence must be treated on the coarser level [25].

With this in place, the two-level AMG algorithm is presented in Algorithm
3 as in [21]. To extend the two-level cycle to the full AMG algorithm, the two-
level is initially called with A from (3.1) as the matrix on the finest level. Then,
assuming that operators for all the coarser levels are defined, the solve in line 4
of Algortihm 3 is replaced with a recursive call to the two-level cycle itself. When
the recursive call reaches the coarsest level, the coarse system is typically solved
using a direct solver such as LU. When the recursive call is done once at each
level, one full cycle of the resulting algorithm is called a V-cycle, refering to how
the algorithm traverses the recursive call stack. There are other possible options,
two recursive calls at each level is for example called a W-cycle. In our numerical
work, we will use the V-cycle algorithm.

Algorithm 3 Two-level AMG cycle

1: xh = Sh(Ah, x
h
0 , b

h) Pre-smooth
2: rh = bh − Ahxh Get residual
3: rH = PH

h r
h Coarsen

4: Solve AHδ
H = rH

5: xh = xh + P h
Hδ

H Correct
6: xh = Sh(Ah, x

h, bh) Post-smooth
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3.2.3 Smoothed aggregation

In contrast to geometric multigrid, the interpolation and restriction operators on
each level cannot be predefined for AMG. Instead, the algorithm has an initial
setup phase, where the operators are constructed together with the matrices for
the coarse level problems. If the levels are numbered from 1 to L, where L is
the coarsest level, the operators on each level l depends on Al−1, the the Galerkin
product on level l − 1.

As the smoothing operation by definition operates inefficiently on smooth error
components, the restriction (and hence the interpolation operator) must be con-
structed in a way that allows the smooth error components to be resolved on the
coarser level. One way to construct an interpolation operator is smoothed aggrega-
tion (SA). SA was introduced by Vaněk [27] and can be considered as modification
on the idea of restriction by aggregation. Following [16], an aggregation method
consists of decomposing Ωh = {1, . . . , n} into disjoint sets Ai, based on the matrix
entries of Ah. A tentative restriction operator P̃H

h is then constructed by

(P̃H
h )ij =

{
1 if ωj ∈ Ai
0 if ωj /∈ Ai.

(3.12)

In SA, the tentative restriction operator is then multiplied with a prolongator
smoother MH , typically weighted Jacobi,

MH = I − ωD−1
h Ah, (3.13)

where Dh is the diagonal of Ah, and ω a weight parameter. This defines the
operator PH

h from Algorithm 3 as

PH
h = MHP̃

H
h . (3.14)

3.2.4 Choosing aggregates for anisotropic problems

As mentioned above, the construction of the restriction operator must ensure that
smooth error components are resolved on the coarser level. For anisotropic prob-
lems, this typically requires coarsening in the direction of strong connections of the
underlying PDE [25]. This can be illustrated by considering the simple anisotropic
equation

uxx + εuyy = 0, (3.15)

discretized with a standard five-point stencil with step size h, illustrated in Fig-
ure 3.1. If 0 < ε� 1, the values of u are very weakly connected in the y-direction.
Heuristically, coarsening in this direction and applying a simple relaxation scheme
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can be viewed as averaging values that are nearly uncorrelated, and hence, good
convergence cannot be expected.

It should be noted that this argument can be equally applied to the case where
the step size h is different in the x- and y-directions. To see this, it suffices to note
that one only need to reinterpret ε in Figure 3.1 as the square of the aspect ratio,
i.e.

ε =

(
h

hy

)2

, (3.16)

where h and hy are the step sizes in the x- and y-directions, respectively.

i

1/h2 1/h2

ε/h2

ε/h2Ni(θ)

Figure 3.1: Ni(θ) for the five-point discretization of (3.15)

The standard way of creating aggregates for anisotropic problems was intro-
duced by Vaněk et. al. [26]. Motivated by the requirement to coarsen only in
the direction of strong connection, a strongly-coupled neighborhood of i ∈ Ωh is
defined as

Ni(θ) =
{
j ∈ Ωh : |ahij| ≥ θ

√
|ahiiahjj|

}
, (3.17)

where 0 < θ < 1 is a user-specified tolerance [26]. This also suggests defining to
degrees of freedom, say i, j ∈ Ωh to be strongly coupled if

|ahij| ≥ θ
√
|ahiiahjj|. (3.18)

To illustrate the idea of a strongly-coupled neighborhood, Figure 3.1 shows the
five-point stencil for the discretization of (3.15) with step-size h at the ith degree
of freedom. The edge weights correspond to off-diagonal matrix entries. The red
dashed line shows Ni(θ) for θ sufficiently large, in particular

ε

2(1 + ε)
< θ ≤ 1

2(1 + ε)
. (3.19)
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Ideally, the aggregates Ai should consist of a disjoint covering of Ωh. How-
ever, this is in practice not always achievable. Instead, Algorithm 4 [26] presents a
greedy algorithm consisting of three phases. The first phase greedily creates aggre-
gates from strongly-coupled neighborhoods that are disjoint from the ones already
added. The second adds the remaing degrees of freedom to aggregates if they are
strongly coupled to any of the degrees of freedom in the aggregates created in the
first phase. If any degrees of freedom are left after the second phase, they are
added to a new aggregate together with any unanggregated degrees of freedom to
which they are strongly coupled.

Algorithm 4 Construction of aggregates

1: Let R = Ωh and j = 0
2: for i ∈ R do
3: if Ni(θ) ⊂ R then
4: Ai ← Ni(θ)
5: R← R \ Ai
6: j ← j + 1
7: end if
8: end for
9:

10: for k = 0 to j do
11: Ãk ← Ak Copy
12: for all i such that Ni(θ)

⋂
Ãk) 6= ∅ do

13: Ai ← Ai
⋃
{i}

14: R← R \ {i}
15: end for
16: end for
17:

18: while R 6= ∅ do
19: Pick i ∈ R
20: Aj+1 ← R

⋂
Ni(θ)

21: R← R \ Aj+1

22: j ← j + 1
23: end while

Using anisotropic aggregation according to Algorithm 4 might, however, not be
sufficient for achieving an efficient V-cycle. This can be explained [10] by consid-
ering the way the coarse level Galerkin products are computed when coarsening is
performed by smoothed aggregation. By substituting Equation (3.14) and Equa-
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tion (3.13) into Equation (3.9), we get,

AH = P̃ T (I −D−1
h Ah)Ah(I −D−1

h Ah)P̃ . (3.20)

If one ignores the scaling by D−1
h , which does not alter the sparsity pattern of AH ,

this can be written as
AH = P̃ T q3(Ah)P̃ , (3.21)

where q3(Ah) is a third degree polynomial in Ah. Hence, even with anisotropic
aggregation, any two aggregates i and j, for which there exists a path of length
three or less in the matrix graph of Ah will result in a non zero entry aij in AH ,
independent of whether the couplings on this path are weak or strong with regard
to θ. Consequently, weak couplings will lead to non zeros in AH even though they
are disregarded in the creation of the tentative prolongator. This may lead to
severe fill-in in the coarse level matrices of the V-cycle.

One way to resolve this problem is proposed by Vaněk et. al. [26]. They suggest
modifying the prolongator smoother defined in Equation (3.13) into

MH = I − ωD−1
h AFh , (3.22)

where AFh is defined as

aFij =

{
aij if j ∈ Ni(θ)

0 if j /∈ Ni(θ)

}
if i 6= j, aFii = aii −

nl∑
j=1,j 6=i

aij − aFij. (3.23)

AFh is refered to as the filtered matrix. The filtered matrix can be viewed of the
matrix consisting only of strong couplings, but with the values of weak couplings
added to their corresponding diagonals. This is done to preserve the row sum from
the unfiltered matrix, and is required to guarantee convergence [10].

3.2.5 AMG as preconditioner

Although AMG was originally introduced as a standalone solver, it can also be
used as a preconditioner for CG or other Krylov subspace methods [25]. When
used as a preconditioner, the coarsening may be done more aggressively than when
used as a standalone server, making a cycle cheaper to run.
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Chapter 4

Heterogeneous Computing

GPUs - graphics processing units - were developed as devices specialized for ren-
dering graphics. To meet the specific needs of graphics rendering, GPUs have
an architecture that differs from conventional CPUs, focusing on massive on-chip
parallelism and high memory bandwidth. Although GPUs were originally devel-
oped for graphics processing, their potential in high-performance and scientific
computing has long been acknowledged, and they are frequently used to speed
up computations in other fields than graphics [11]. Amongst these are numerical
linear algebra, and porting linear algebra applications to GPUs is an active field
of research. In the following chapter, we will give a brief description of GPU com-
puting and present the background for CUDA and CUSP, which will enable us to
use GPUs for performing the numerical methods described in Chapter 3.

4.1 GPU architecture
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Figure 4.1: Schematic illustration of a CPU and GPU. Picture taken from [20].

Figure 4.1 shows a simplified model that demonstrates the most important

27
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architectural differences between CPUs and GPUs. Although the details vary be-
tween different chips, the figure shows how a CPU is built for high single-core per-
formance with a few floating-point units, big caches, and a large portion dedicated
to flow control. GPUs on the other side, dedicate more transistors to floating-point
units, while deemphasizing flow control and sophisticated caches. As a result, a
GPU can perform thousands of structured computations in parallel.

GPUs are built around streaming multiprocessors (SMs). A SM schedules and
executes computations in parallel along several lanes of execution, where each
lane does the same computation. This type of parallelism is typically known as
SIMD (Single Instruction Multiple Data). Although it is possible to perform SIMD
operations on CPUs as well, the SIMD width of the chip, the number of possible
concurrent threads of computation, is typically much lower, meaning that the GPU
is able to perform a much higher number of computations in parallel. Furthermore,
exploiting SIMD on CPUs can be cumbersome as it typically involves writing code
on assembly level using libraries such as SSE, and because the programmer has
to structure the computations after the SIMD width of the chip [8]. This is not
the case for GPUs as the CUDA programming model offers a scalable thread
abstraction to the SIMD lanes.

An important aspect related to the architecture of GPUs is that because the
GPU is a separate chip with its own memory space, any computation done by the
GPU must be preceded with an initial data transfer from the CPU’s memory. This
memory transfer is relatively slow, and should be minimized. As a result, there
is a trade-off between the possible speed-up of doing a computation on the GPU
and the time spent communicating between the CPU and GPU.

4.2 CUDA

CUDA [20] was released in 2006 by Nvidia. CUDA is a parallel computing archi-
tecture designed to enable writing general-purpose applications to Nvidia GPUs.
Because of the architectural differences between GPUs and CPUs, CUDA provides
a programming model designed to take advantage of the strengths of GPUs, cen-
tered around a thread abstraction to the SIMD lanes of the GPU architecture that
makes CUDA programs scalable.

CUDA programs can be implemented in two ways. The first is a low-level driver
API that makes it possible to write programs on assembly level. On a higher level,
it is possible to implement CUDA programs with CUDA C, which consists of a
small set of extensions to C. We will use CUDA C, because it is easier to program,
and because CUSP, which we will use for our linear solver, is implemented with it.
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4.2.1 Programming model

The CUDA programming model assumes that computations are done in a het-
erogenous setting. Specifically, it assumes a host, a CPU, running a sequential C
program. The GPU (or GPUs) is available to the host as a device, on which com-
putations can be done in parallel by invoking calls to parallel functions, or kernels.
The host and device (or devices) are assumed to have separate memory, mean-
ing that data must be transferred physically between them. This is illustrated in
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Figure 4.2: Heterogenous computing with CUDA. Picture taken from [20].

The CUDA programming model is based on the concept of computational
kernels being executed by a hierarchy of threads. A kernel is basically a function
that is executed in parallel, while a thread is the unit of parallelism. A kernel
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is conceptually launched on a grid, divided into thread blocks, where the threads
are laid out. This layout can be done in one or two dimensions. A 2-dimensional
layout is demonstrated in Figure 4.3. The threads then execute the kernel in
parallel, independently from the other threads. Synchronization can be achieved
in form of barriers, either between the threads in a thread block, or through a
global barrier for all threads in a kernel invocation. There is an implicit barrier
between kernels.
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Figure 4.3: Thread block hierarchy of CUDA. Picture taken from [20].

As mentioned above, the device is assumed to have separate memory from the
host. The device memory model is shown schematically in Figure 4.4 from [20].
Every thread has access to a shared global memory space, which is persistent
between kernel calls. In addition, a thread block has a shared memory space to
which all threads in the blocks has access, and each thread has its own memory
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space. This makes it possible for threads within a thread block to cooperate by
sharing data. The shared memory of a thread block is also assumed to be faster
than the global device memory, which gives an example of the fact that to write
efficient code, it is important to keep details in the memory hierarchy in mind.

CUDA is designed to be functionally forgiving in the sense that one does not
have to think about how the programming model is implemented on the hardware
in order to get running code. However, the details of the hardware implementation
is important for the code performance. When a kernel is called, the programming
model is mapped to the physical GPU by assigning each thread block to one
streaming multiprocessor. Each multiprocessor will then schedule and execute
threads in groups, so called warps, that will run until all threads of the warp
complete the kernel. The GPU achieves high performance when the latency of
memory transactions can hidden by always letting a warp do computation. To
achieve this, it important to fit several thread blocks onto the same SM, so that
whenever a warp is waiting for a memory transaction, another can start executing.
This means that the programmer has to think about issues like register count and
shared memory usage, as this is limited for each SM. Another detail is that because
each warp executes sequentially, a kernel with a divergent execution path within a
warp will be slower than a kernel where branch divergence happens between warps.
More details can be found in [19,20].

4.3 Linear algebra on GPUs

In [14], Keutzer and Mattson argue that most problems in computing will follow
certain patterns. These patterns are classified into a pattern language (OPL),
which is intended as a tool for writing efficient parallel software. According to
Keutzer and Mattson, design problems will on the highest level exhibit certain
structural and computational patterns, which will influence design choices such
as strategies for algorithms, implementation and parallel execution. Sparse lin-
ear algebra is one of the 13 computational patterns recognized. The concepts of
Keutzer and Mattson can help motivate why GPUs are appropriate when doing
sparse linear algebra, and in particular Krylov subspace methods such as CG. As a
lot of the computation typically consists of performing the same type of operation
on independent sets of the data, such as dot products and SpMVs, a data-parallel
strategy is often in place. Data-parallel algorithms can often be efficiently handled
using the SIMD execution pattern [14].
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Figure 4.5: Structure of OPL. Picture taken from [14].

4.3.1 Sparse matrix-vector products

The sparse matrix-vector product (SpMV) is an important component in iterative
methods for sparse linear systems. Both algorithms presented in Chapter 3, CG
and AMG, are examples of this; both an iteration of CG and a V-cycle requires
SpMVs. Furthermore, the other operations are either dot-products or axpys (αx+
y, where α is a scalar and x and y are vectors). These are both O(n)-operations
that can be performed efficiently using BLAS [6]. As consequence, the key to good
performance of both the inner loop in CG and the V-cycle, is the implementation
of the SpMV. This is typical for both Krylov subspace methods and multigrid
methods, which CG and AMG are examples of.

Efficient implementations of the SpMV kernel relies on exploiting knowledge of
the matrix. In some cases, it is possible to write highly specialized kernels that are
optimized for a particular application. One example is using an explicit formula
for the matrix entries if the matrix comes from a known discretization scheme. The
obvious drawback of this approach is that the kernel will be application specific.
A more general approach is to use a sparse storage format to represent the matrix.
A sparse matrix format is a data structure for storing the non zeros (and possibly
some zeros) with corresponding indices of a sparse matrix. This can be done both
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implicitly and explicitly.

The non zero structure of the matrix is the determining factor in choosing an
appropriate storage format represent a matrix [4]. A good matrix format should
fit the non zero structure of the matrix. In this context, it is also important to
consider the architecture of the platform the SpMVs are computed on, as it is
desirable that SpMV kernels are memory bound [4], that is the limiting factor
for the running time is the time spent transferring data from slow memory. For
parallel platforms such as GPUs, it is also important to choose a data structure
where the work can be distributed evenly among processors or threads. For GPUs
in particular, it is essential to achieve fine grained parallelism.

Given a n×n-matrix A with nnz non-zero entries, the simplest storage format
is the coordinate format (COO). In COO, A is represented using the three arrays,
values, row indices, and column indices, all of length nnz.

A commonly used matrix format is compressed sparse row format (CSR). It
uses three arrays to store the matrix. Each of the values of the non-zero matrix
entries is stored in an array of length nnz, say values, in row-wise order. The
column index of each entry is stored in the array column indices, in the same
order as the values in values. The row indices are stored implicitly in the array
row offsets, which has length n + 1. The non-zero entries of row i are stored at
index row offsets[i] through row offsets[i+1]− 1 in values. The compressed
sparse column format (CSC) is similar to CSR, but interchanges the roles of the
two arrays for representing the indices of non-zero entries, using row index and
column offset arrays.

The ELLPACK/ITPACK format (ELL) is a format more specialized for ef-
ficient execution of the SpMV kernel, especially for target architecture such as
GPUs. It stores the A using two n× k-arrays, values and column indices, where
k is the maximal number of non-zeros in any of the rows of A. The non-zeros values
of row i are stored in order in row i of values. The corresponding column indices
are stored in column indices. If row i has less than k non-zeros, the remaining
entries are zero-padded.

The ELL format is clearly inappropriate if the maximal number of non-zeros in
a row in A is much greater than the average number of non-zeros per row, as this
will mean most of the values stored are zero-padding. The hybrid format (HYB)
aims to make use of the benefits of ELL, while avoiding this situation by using the
flexibility of the COO format. This is done by letting k be the ”typical” number
of non-zeros per row, and storing the k first non-zeros of any row using ELL. The
remaining non-zeros are stored using COO. In some cases an optimal value for
k can be chosen using knowledge of the matrix, however, it must in general be
determined using heuristics.

In [4], Bell and Garland gives a revision of storage formats for sparse linear
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algebra, with detailed experiments exhibiting the performance differences of the
formats in various test cases. For structured and semistructured matrices, they
show that ELL and the DIA format, which we will not consider because of its
memory consumption, generally is faster than COO and CSR. For unstructured
grids, they conclude that their implementation of HYB is the fastest format for a
large range of matrices. We refer to [4] for more details.

4.3.2 CUSP

CUSP [5] is a sparse linear algebra library for Nvidia GPUs implemented in CUDA.
It provides seven iterative solvers based on Krylov subspace methods, one of which
is CG. In addition, it offers AMG with smoothed aggregation, approximate inverse
and diagonal preconditioners to speed up convergence. To support this, CUSP
comes with data structures for storing vectors and sparse matrices, with function-
ality for converting between different sparse formats and transferring data between
the CPU and GPU. Furthermore, as SpMVs are at the core of both Krylov sub-
space methods and the solve phase of AMG, CUSP has implementations of the
matrix formats described in Section 4.3.1, using techniques laid out in [4]. CUSP
also supports other sparse linear algebra functionality, such as a BLAS imple-
mentation and the possibility to write black-box SpMV to implement matrix-free
versions of the iterative solvers.

CUSP makes extensive use of the template library THRUST [13], both for its
data structures and algorithms. THRUST is a part of the official CUDA toolkit
released by Nvidia. It offers data structures on both host and device and algo-
rithms such as sorting, reductions, and copying. The interface is aimed at being
similar to functionality found in the C++ Standard Template Library’s vector

class and the Boost libraries. This makes parallel data structures and basic algo-
rithms available for the user in a way that abstracts away implementation details.
The data structures for vectors and matrices in CUSP stores their values using
THRUST’s host vector and device vector classes. Hence, we can access these
using THRUST in addition to the algorithms implemented in CUSP.

One of the most attractive features of CUSP for our purposes is it’s parallel
smoothed aggregation-based preconditioner. In the solve phase, the V-cycle is
inherently sequential, however, pre- and post-smoothing, and restriction and in-
terpolation at each level are done using SpMVs, which, as discussed, can be done
efficiently parallel. The setup stage is also sequential in the sense that the levels
in the V-cycle must be constructed in order, as aggregation on level k depends
on the matrix on level k − 1. However, the aggregation procedure described in
Section 3.2.4 does not - with its greedy, sequential approach - exhibit the fine
grained parallelism required for an efficient GPU implementation [3]. It should be
pointed out that Algorithm 4 can be parallelized by splitting up the domain, Ωh, in
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smaller subregions, running the algorithm on each subregion in parallel, and using
a sequential algorithm to resolve the boundaries between subregions. However,
this creates a coarse-grained form of parallelism, and hence it is not suitable for
efficient GPU implementation. Instead, CUSP uses an aggregation strategy based
on distance-2 maximal independent sets (MIS(2)). A MIS(2) is, loosely speaking,
a subset of a graph, such as Ωh, where any two nodes are at least at a distance
2 apart in the graph, and no further nodes can be added to the subset without
violating this property. In [3], Bell. et al. describes how this can be used to create
aggregates that mimics the result from a sequential algorithm, using THRUST.

CUSP’s smoothed aggregation implementation supports anisotropic aggrega-
tion using a filtering parameter, as described in Section 3.2.4. However, θ cannot
vary between levels in the setup phase. Furthermore, using the filtered matrix in
the prolongator smoother, (3.22), is not supported. For more details regarding the
implementation of CUSP’s preconditioner, we refer to [3].



Chapter 5

Implementation

With the theoretical background presented in Chapter 2, 3, and 4, we will now
describe the implementation of our linear solver. We will first, however, describe
MEX-interfaces, which allows us to integrate CUSP code, written in CUDA C,
and MRST, written in Matlab.

5.1 External interfaces in Matlab

Clearly, some parts of a typical MRST program, such as some of the grid processing
routines and the linear solver, will be quite computationally costly and dominate
the running time of the entire program. Although these parts may be easy to
implement in a high level language such as Matlab, it might be difficult to exploit
lower level details, such as the structure of computation or memory management,
which potentially could have given a significant speed-up.

This is obviously not a concern that is specific for MRST, but may occur in
any Matlab application. However, with MEX-files Matlab provides an interface for
implementing functions in C/C++ or Fortran, in order to address this concern.
Using the MEX API, code written in either language can be called as built-in
Matlab functions, making it possible to exploit existing software or speed up parts
of Matlab code.

A C/C++ MEX-file is created by compiling a MEX source file using Matlab’s
mex compile program, which creates a file that is used like a regular Matlab built-
in function. The interaction between the MEX-file and the Matlab environment
is managed using the MEX function library. This consists of functions for com-
municating with the Matlab environment and operate on data. Matlab data are
stored using the data type mxArray, which are created accessed and manipulated
with MEX library functions.

Every MEX source file must have a gateway function. This is a function with
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the signature

void mexFunction( int nlhs, mxArray

*plhs[], int nrhs, const mxArray *prhs[] );

and it is the interface between Matlab and the MEX-file. Whenever a MEX-file is
called from Matlab, mexFunction is invoked. The input parameters nrhs and nlhs

will be the number of input and output arguments in the Matlab function call,
while each entry of prhs and plhs will be a pointer to a mxArray corresponding to
the input and output arguments of the Matlab function. Using the MEX function
library, one can get C pointers to the underlying data in order to do computations.

Figure 5.1 shows some of the basic components of a MEX program. The
example code does a simple vector addition of two real-valued m× 1-vectors.

5.2 General setup

As described in Section 2.3, MRST allows the user to provide a function handle to a
linear solver for the Schur complement system, (2.39) to solveIncompFlow. Hence,
by combining MEX-files with CUDA, it is possible to use GPUs to accelerate the
computation.

MRST expects the solver function, say solver, passed to solveIncompFlow

to have the calling sequence x = solver(A,b). The arguments solveIncompFlow

passes to solver will be the matrix and the right hand side vector in (2.39). Be-
cause this implies that the MEX-file will access the matrix directly, we will store
the matrix in a sparse storage format, and not consider a matrix-free implemen-
tation.

As Matlab uses the CSC (Compressed Sparse Column) format for storing sparse
matrices, we will initially have access to the matrix in this format. However, as
long as the matrix is symmetric, the CSC and CSR (Compressed Sparse Row)
formats are identical, if we only rename the row index array to the column index
array, and vice versa. Since CUSP supports the CSR format and has functionality
for format conversion, we can easily try different matrix storage formats for our
solver letting CUSP do format conversions.

This suggests organizing the solver with a MEX-file which implicitly converts
the matrix to CSR format, passing it, together with the right-hand-side-vector,
to a computational function. This transfers the matrix to the GPU in a desired
storage format using CUSP, and solves the linear system on the GPU. In order to
compile this into a single MEX-file, we compile the MEX source code using the
MEX compile program and the GPU code using NVCC into object files, and link
them together with the MEX compile program.
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1 #include <mex.h>
2

3 void vecAdd(mwSize m, double *x, double *y, double *z)
4 {
5 int i;
6 for (i = 0; i < m; i++)
7 z[i] = x[i]+y[i];
8 }
9

10 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const ...
mxArray *prhs[])

11 {
12 mwSize m;
13 double *x;
14 double *y;
15 double *z;
16

17 m = mxGetM(prhs[0]);
18 plhs[0] = mxCreateDoubleMatrix(m,1,mxREAL);
19

20 z = mxGetPr(plhs[0]);
21 x = mxGetPr(prhs[0]);
22 y = mxGetPr(prhs[1]);
23

24 vecAdd(m,x,y,z);
25

26 }

Figure 5.1: Vector addition MEX-file

5.3 Linear solver using CUSP

As described in Section 4.3.2, CUSP provides iterative Krylov solvers with pre-
conditioners. We will use CUSP’s conjugate gradients with smoothed aggregation
for our linear solvers. Since, as mentioned above, we can use CUSP to transfer the
matrix onto the GPU in different storage formats, we will test different versions
storing the matrix in the CSR, HYB, and ELL formats. Because we expect COO
to be slow, we will not consider this format.

Since the pressure equations, (2.9) and (2.10), may have strongly anisotropic
coefficients in realistic scenarios, we will consider constructing aggregates for the
corresponding discretization matrix as discussed in Section 3.2.4. As described in
Section 4.3.2, this is supported in CUSP, and done by specifying a value for the
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filtering parameter θ in (3.18). The default value for θ is 0.
Based on experience from their numerical expirements, Vaněk et. al. [26] sug-

gest

θ = 0.08

(
1

2

)l−1

, (5.1)

where l = 1, . . . , L are the levels of the AMG V-cycle, but does not give any
guidance on how to systematically choose a good value. As the value in (5.1) is
experimentally determined, we expect it to be dependent on the specifics of the
problem it is chosen for, and not necessarily the best choice for our application.
It does however suggest that θ might be changed between levels, relaxing the
condition for what is considered a strong connection on coarser levels. CUSP
does not support changing θ between levels as in (5.1), however, it is straight
forward to change the source code to allow dividing θ by 2 between levels. We
will consider both constant θ and dividing θ by 2 between levels in our numerical
experiments. We will not consider other of the - infinite - possibilities there are in
varying θ between levels, partly to contain complexity, partly as we do not have
any theoretical guidance to any other specific choices.

Because CUSP does not support using the filtered matrix for the prolongator
smoother, we will have to modify CUSP in order to test the effect of this technique.
However, we can exploit the way CUSP creates anisotropic aggregates to this end.
Given a fine level matrix Ah and a filtering parameter θ, aggregation in CUSP is
implemented by creating a strength matrix C, given by

cij =

{
aij if j ∈ Ni(θ)

0 if j /∈ Ni(θ).
(5.2)

As C is the matrix whose entries are precisely the strong couplings in Ah, aggrega-
tion using C without a filtering parameter will produce the same set of aggregates
as anisotropic aggregation with Ah and θ. C is constructed with fine-grained paral-
lelism using THRUST algorithms [3]. Furthermore, this means detection of strong
connection is separated from the aggregation procedure.

Since i ∈ Ni(θ) by construction, the only difference between C and AFh is that
matrix entries in Ah corresponding to weak couplings are not added to the diagonal
of C as for AFh . In particular, the two matrices have the same sparsity pattern. For
simplicity of implementation, we have used C instead of AFh for the prolongator
smoother. Hence, instead of (3.22), we have used

MH = I − ωD−1
h C. (5.3)

As mentioned in Section 3.2.4, adding weak couplings to the diagonal of AFh
is necessary for guaranteeing convergence of AMG. Hence, there is a concern that
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this will make the convergence properties of the V-cycle deteriorate. As we use
AMG as a preconditioner for CG, this does not mean that convergence of the solver
is not guaranteed, because the convergence analysis of CG is unaffected. However,
recalling from Section 3.1.2 and Section 3.1.3 that the convergence rate depends
of κ(M−1A), where M−1 is the preconditioner, it may affect the convergence rate.
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Chapter 6

Numerical Results

Having described our implementation in Chapter 5, it is time to test our linear
solver. In this chapter, we present and discuss the numerical experiments we have
undertaken.

6.1 Test setup

It is important to decide which parameters to consider for testing and what mea-
sures to use. Ultimately, the most important questions are whether the produced
answer is correct, and how long time it takes to produce. Hence, our measures fall
into to categories; performance and correctness.

6.1.1 Performance

The primary measure for performance will, as mentioned above, be the run-time
of the solvers. This is a natural consequence of our goal of providing a black-box
solver for MRST. It also means that we will use secondary performance measures
mostly in order to analyze our results and suggests improvements.

One secondary measure is the number of CG iterations required to reach con-
vergence. This can give information about the quality of the AMG preconditioner,
as good convergence properties of the preconditioner leads to fewer iterations. An-
other quantity related to the preconditioner is the operator complexity, defined as

c =

∑L
i=2 nnz(Ai)

nnz(A1)
, (6.1)

where A1, . . . , AL are the matrices on the L multigrid levels, and nnz(Ai) is the
number of non-zeros in the matrix on level i. As we recall from Algorithm 3, both
the pre- and post-smoothing steps at each level in a V-cycle requires a SpMV.
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Since the run-time of SpMVs are dependent on the number of non-zeros of the
matrix involved in the product, a higher operator complexity will results in slower
V-cycles.

6.1.2 Correctness

As both the GPU solvers and AGMG are based on iterative methods, it is necessary
provide a stopping criteria for when to finish iteration. Choosing a stopping criteria
is essentially problem specific, where there is a trade off between getting accurate
enough solutions and speed. One of the most common ways is to specify the
stopping criteria as a tolerance for the relative reduction of the residual. In our test
we will use a relative tolerance of 10−9, which admittedly is somewhat arbitrary.

Since the solvers return the solution to (2.39), a natural primary measure for
correctness is the relative norm of the error of the vector π computed. Computing
the error requires the exact answer, we will use the answer from using Matlab’s
standard linear solver mldivide for this purpose. There is of course, strictly
speaking, an error related even to the result from mldivide, as with any linear
solver representing numbers with finite precision. However, as we in general cannot
expect the relative norm of the error to be reduced any more than the relative
norm of the residual, the error of mldivide will be several orders of magnitude
less than the result from the iterative solvers. Consequently, when compared with
the answer produced by the iterative solvers, the answer from mldivide will be
indistinguishable from the true exact answer for practical purposes.

In addition to the norm of the error, an important secondary measure for the
quality of the solution computed is whether the flux-field corresponding to π fulfills
mass conservation. To measure this, we use the maximal cell divergence relative
to the maximal face-flux, that is

maxΩj∈Ω

{
|
∑

i∈Ej
vi|
}

maxΩj∈Ω{maxk∈Ej
{|vk|}}

, (6.2)

where Ω is the entire grid, the Ωj’s are the grid cells and Ej is the set of fluxes
over the faces of Ωj.

6.1.3 Reference solvers

For benchmarking, we use Matlab’s matrix left division operator, mldivide, and
the CPU-based AGMG [17,18] solver as CPU references. Since mldivide is a di-
rect solver, it is based on completely different mathematical principles compared to
the combination of Krylov subspace and AMG techniques in our iterative method.
As such, one can discuss the relevance of comparing the general purpose mldivide
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with our special purpose GPU-accelerated solver. However, it is the default linear
solver used by MRST, meaning that in practice, it is one of the alternatives most
easily available. Furthermore, in a practical setting, it may also be illustrative
to have a direct solver as a reference point when evaluating the performance of
the iterative solvers. Additionally, we will use mldivide to verify correctness, as
discussed above.

AGMG is an implementation of aggregation-based algebraic multigrid written
in Fortran, which can be called from Matlab through a MEX-interface. AGMG
can be used both as standalone algebraic multigrid or as conjugate gradients with
algebraic multigrid as preconditioner. As AGMG implements ”pure” aggregation,
it is not a mathematically equivalent CPU implementation of the smoothed ag-
gregation algorithm which CUSP implements on the GPU.

6.1.4 Test platform

The tests have been performed on a computer with

• 8 GB RAM and 4 GB swap space

• Intel i7-2600 3.40 GHz CPU

• Nvidia GeForce GTX 570 GPU

The operating system is Ubuntu 10.04 LTS. We have been using Matlab R2011b,
Nvidia Toolkit 4.1 with THRUST v1.5.1 and CUSP v0.3.0.

6.2 Test cases

We wish to test both realistic reservoir simulation scenarios and idealized cases
in which we examine how the solvers behave when solving problems with specific
properties. To this end, we have used the grid processing functionality in MRST
to generate test cases.

6.2.1 Box

As our GPU solvers are intended to be used with MRST, we will be interested in
testing how the physical phenomena that typically occur in reservoir simulation
affects the behaviour of the solvers. In order to test this systematically, we will
generate tests based on a box shaped grid. By changing the properties of the grid,
such as the permeability properties of the rock or the aspect ratio of the grid cells,
this allows for isolating the effects of a single phenomena, and then examine how
the solvers perform on the resulting matrices.



46 CHAPTER 6. NUMERICAL RESULTS

As a starting point and reference, our simplest test case will be based on a
cubic domain consisting of n × n × n grid cells. The rock will be heterogeneous
and isotropic, with a scalar permeability of 1 mD in every grid cell. To close the
problem, we will specify pressure boundary conditions giving an exact solution of
the pressure in (2.5) on the form

p(x) = a · x+ b, (6.3)

where a/|a| = −(
√

2/2,
√

2/2, 0)T . We use MFD with IP_SIMPLE to obtain the
discretized hybrid system, (2.38), and its corresponding Schur form, (2.39). Since
MFD is exact for linear pressure fields, (6.3) should be the pressure computed by
the GPU solvers. We will use these boundary conditions for all tests described in
this section, except for the test involving wells. The pressure field for the isotropic
test case is shown in Figure 6.1.

Figure 6.1: Visualization of test case 1.

As described in Section 2.1, the rock in real world reservoirs are described by a
permeability tensor that may be anisotropic and discontinuous, with the numerical
values varying several orders of magnitude. A related effect is the aspect ratio of
the grid cells. Realistic reservoir grid cells may have physical dimensions which
differ with several orders of magnitude in the different spatial directions. This may
have an effect similar to anisotropic permeability. As described in Section 3.2.4,
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anisotropies in the underlying PDE may need special treatment by AMG. We will
discuss this in more detail in Section 6.3.2.

To test the effect of anisotropic permeability, we will use change the perme-
ability tensor from the isotropic case into

K =

 104 0 0
0 104 0
0 0 1

 . (6.4)

In order to generate a test case with heterogeneous permeability, we use MRST’s
function logNormLayers to generate the permeability field. This gives a scalar
permeability field where the permeability for each grid cell is drawn from a log-
normal probability distribution. For the test of cells with large aspect ratio, we use
the homogeneous, isotropic permeability field from the first test case, but change
the physical dimensions of each grid cell to 102 × 101 × 10−1 m. This gives an
aspect ratio on an order of magnitude that may be present in a realistic reservoir
simulation scenario.

Table 6.1: Overview of box test cases.

Number Effect Description

1 Isotropic
Cubic domain, isotropic
and homogeneous permeability

2 Anisotropic Permeability tensor K = diag(1, 1, 104) mD
3 Aspect ratio Physical dimensions of grid cells (104, 102, 1)T m

4 Heterogeneous
Heterogeneous permeability generated
by logNormlayers

5 Fault Fault inserted in the y-direction at x = 0.5

6 Wells
Injection well and production well,
no flow boundary conditions

In addition to the permeability of the rock and aspect ratio of the grid cells, we
will be interested in testing how faults and wells affect the solvers. To test faults,
we will insert a single fault in the z-direction into the first test case, parallel with
the y-axis at x = 0.5. Wells are tested by adding an injection well and a production
well as shown in Figure 6.2. As wells allow fluid to enter and exit the domain, we
impose no flow boundary conditions in this case.

Whenever wells are present, extra couplings are introduced between well cells.
Although it is in principle depending on the specifics of the problem, this generally
results in the number of non zeros in the corresponding row of the linear system to
be much higher than the average number of non zeros per row of the matrix. Since
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Figure 6.2: Visualization of well cells in test case 6.

the ELL sparse matrix format (Section 4.3.1) stores the non zero values in a full,
zero-padded n×k-array, where n is the number of rows and k the maximal number
of non zeros in a single row in the matrix, most of the memory used for storing
the matrix will wasted storing zeros. Hence, the ELL format is inappropriate for
scenarios involving wells, as it may well exhaust the GPU memory. Table 6.1 gives
a summary of the test cases described in this section.

6.2.2 Realistic scenarios

In addition to the idealized test cases described in the previous section, we will also
consider two cases using realistic geometry and physical properties. The first is a
synthetic model created by the SAIGUP project [24], and contains faults, wells,
and anisotropic and heterogeneous permeability. The other is based on a model
with a grid using data from the North Sea. For this model, we add wells and gener-
ate anisotropic and heterogeneous permeability using the functionality of MRST.
The permeability field consists of layers with values drawn from a lognormal dis-
tribution, ranging from 20 to 2000 mD. To make the test scenario anisotropic, the
z-component of the permeability in all cells is scaled by a constant factor of 0.0001.

The SAIGUP model has approximately 78,000 cells, while the North Sea model
has approximately 45,000 cells. However, using MRST, we refine the model by
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splitting each cell into two in the z-direction, doubling the number of cells. This
increases the aspect ratio of the grid cells. A visualization of the two models is
shown in Figure 6.3.

(a) SAIGUP model (b) Model from the North Sea

Figure 6.3: Visualization of grids in realistic models.

6.3 Results

6.3.1 A note on memory consumption and problem size

It is obvious that it is desirable to run the solvers on as large linear systems as
possible. However, given the finite amount of CPU or GPU memory available,
it is also clear that we cannot solve arbitrarily large systems. This is in the end
bound by the hardware, however for an AMG-based solver, not only the dimensions
or number of non-zeros of the matrix, but also the matrix structure affects the
memory consumption of the solver, as it determines the coarse level matrices,
which also need to be stored. Because CUSP require both the matrix itself and
the preconditioner to be stored on the GPU throughout the solve, the GPU solvers
can only handle problems small enough to hold these in memory.

In the context of reservoir simulation, it may be more natural to use the number
of grid cells, rather than matrix dimensions and number of non-zeros, as parameter
for the problem size. For the grid consisting of n × n × n cells described above,
we will use n = 50, meaning 125, 000 cells, for our primary benchmarks. This
is close to the maximal n for which mldivide can solve all test cases with our
hardware. Since the input parameters for the GPU solvers, in particular the
filtering parameter θ, affects the memory consumption as well as the specifics of
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the different problems do, the actual maximal size available for the GPU solver may
vary. We have not been able to establish a priori tests for determining whether a
particular scenario is to large to be solved on the GPU. Hence, we cannot conclude
that the GPU solver is able to solve larger problems than mldivide in general on
our hardware.

It should be pointed out that the above numbers obviously are limited by the
specifics of the hardware used for testing. However, as the GPU we have used has
1280 MB memory as opposed to the 12 GB of CPU memory and swap space -
disregarding resources used by the operating system - it is clear that mldivide,
consumes more memory in absolute terms in the test cases we have considered.

6.3.2 Performance

Matrix format

Figure 6.4 shows a histogram of the running times for the run-times of the test
cases described in Section 6.2.1 with n = 50, i.e. 125,000 cells. As in the previous
section, we show the results for the GPU solver when using different matrix storage
formats. The preconditioner is constructed using θ = 0, and as such, it does not
take features like anisotropy or aspect ratio of grid cells into account.

Figure 6.4: Run times for box test cases, 50× 50× 50 cells.
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Figure 6.5: Run times for box test cases, GPU solver with CSR and AGMG.

One clear trend is that the solver using the CSR storage format is faster than
both the ones using HYB and ELL in all cases except case 3. This illustrates the
trade-off when choosing formats that shows better SpMV performance in tests [4],
such as HYB and ELL, and the time it takes to convert the matrix into these
formats from CSR, in which it is originally stored. The convergence properties of
the preconditioner is obviously important in this context, as better convergence of
the multigrid V-cycle yields fewer iterations of CG, meaning that the performance
difference between storage formats becomes less important relative to the costs
of doing the format conversion. As such, choosing the correct matrix format,
depends on knowing, in advance, how successful the preconditioner will be in
terms of convergence. For our purposes, the results for different storage formats in
Figure 6.4 indicates that performing a format conversion might not be worthwhile.
Although this is not clear for test case 3, it is, as we will see, possible to improve
the convergence properties of the preconditioner using the techniques outlined in
Section 3.2.4. This means fewer iterations will be needed to reach convergence,
hence shifting the balance in favor of not performing a format conversion.

The realistic scenarios exhibits the same behaviour with respect to matrix
format. Figure 6.6 compares the run time of the GPU solver when using CSR
and HYB. As we can see, there is a significant increase in run time for the version
using HYB, indicating that the cost of format conversion outweighs the potential
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gains in the solve phase of the solver.

Figure 6.6: Run times for GPU solver with CSR and HYB matrix formats on
realistic scenarios.

In the following, all results for the GPU solver will be using CSR to store the
matrix.

Anisotropic aggregation

Figure 6.5 shows the results from Figure 6.4 for the GPU solver using CSR and
AGMG. This gives a clearer presentation of how the GPU-solver compares with
a CPU-based implementation of CG preconditioned with AMG. Except from test
case 3, using the GPU gives a speedup of 2.1− 2.6x.

Test case 3 shows significantly worse performance for the GPU solvers, both
when comparing to the other test cases, and with AGMG. This comes from the fact
that the preconditioner is constructed using θ = 0 to determine which couplings
are strong. In other words, every non-zero matrix entry is considered as a strong
coupling between nodes in the corresponding set of degrees of freedom.

As a consequence, the algorithm only considers the sparsity pattern of the
matrix when choosing aggregates for the preconditioner. Hence, the preconditioner
essentially does not take the aspect ratio of the grid cells into account. Since the
sparsity pattern of the matrices in test case 1 and 3 are identical, it should not
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be surprising that the performance is worse in case 3, where the aspect ratio is
different from 1.

This argument also applies to test case 2, however the effect is much less pro-
nounced. Heuristically, this can be viewed in light of Equation (3.16). This shows
that, in the case of a five-point stencil, the isotropic stencil discretized with differ-
ent step sizes in the spatial directions, is equivalent to an anisotropic equation, dis-
cretized with aspect ratio equal to 1. However, ε in the corresponding anisotropic
equation - which for our purposes can be viewed as the permeability in the y-
direction, normalized after the permeability in the x-direction - is the square of
the aspect ratio. Hence, the aspect ratio effects an equivalent permeability which
scales as the square of the aspect ratio.

The same principle applies to the case of MFD. This can most easily be seen
by recalling Equation 2.31, which gives a condition on the inner product M in a
single cell,

M =
1

|E|
CTK−1C +M2.

Recalling that the i row of C, ci, is the vector pointing from the cell centroid to
the centroid of the ith face of the cell, we can use the norm of cj = (c1j, . . . , cNf j),
with j = 1, 2, 3 as generalized step sizes in the three spatial directions. Hence, we
can rewrite Equation 2.31 as

M =
1

E|
C̃Tdiag(‖ci‖2)K−1C̃ +M2, (6.5)

where C̃ = diag(‖cj‖)−1C is the matrix for a cell with aspect ratio equal to 1. By
using K̃−1 = diag(‖ci‖2)K−1 as the effective permeability, we see that the effective
relative permeability changes as the square of the aspect ratio. This might help
explain why the performance in test case 3 is severely worse than test case 2.

As described in Section 3.2.4 and Section 5.3, the standard way to deal with
this issue is letting θ 6= 0. When choosing θ, there is a trade-off between the
convergence of the V-cycle on one side, and the run-time of a single V-cycle, and
the operator complexity of the preconditioner on the other. As θ increases, the
coarsening will tend to go in the direction of strong connections, which should im-
prove the convergence factor of a V-cycle. However, since only degrees of freedoms
that are strongly coupled are allowed to be aggregated together, this also means
that the coarsening process becomes less aggressive, which can give more multigrid
levels with Galerkin products where the sparsity structure of the Galerkin prod-
ucts become more complex [10], something which can be measured using operator
complexity, as defined in Section 6.3.2.

Figure 6.7 illustrates the effect of different values of θ on the run-time of the
CSR GPU solver on test case 3 with n = 25, with θ ranging from 0 to 0.007.
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Higher values for θ exhausts the memory of the GPU, causing the solver to return
without producing an answer. In Figure 6.7a, θ has been kept constant between
levels in the V-cycle of AMG, whereas θ has been reduced by 1/2 for each level in
Figure 6.7b. The values for θ in Figure 6.7b refers to the value at the finest level,
l = 1.

(a) θ kept constant in V-cycle (b) θ reduced by 1/2 for each level in the V-cycle

Figure 6.7: Effect of θ on run-time on test case 3 with 25× 25× 25 cells.

As we can see, it seems possible to gain some speed up through right choice
of θ, at least in principle. However, there are several issues the two tests reveal.
First, the best speed ups in both tests are rather moderate, 1.12x and 1.23x,
respectively. Furthermore, in both cases, different values of θ might both speed
up or slow down the solvers, which suggests thorough testing would be required
to find a value of θ robust to changes in the parameters of the problem, if such a
value can be found at all. The greatest issue, however is related to the memory
consumption of the solver. This is reflected in the spikes in run time for the highest
values of θ in both figures, but can be more easily seen in Figure 6.8. This shows
the operator complexity, as defined in (6.1), for the same tests. As we can see,
the operator complexity increases greatly for bigger values of θ. This means the
matrices on coarser levels become relatively denser, which has the twin effect that
each V-cycle becomes more expensive and that the memory required to store the
preconditioner increases. It also explains the fact that using θ > 0.007 exhausts
GPU memory. Another indication of how the coarsening fails in producing an
efficient preconditioner can be seen from the fact that for θ = 0.007 with θ kept
constant, the preconditioner has 7 levels, with the matrices on the 4 coarsest levels
being full.

As discussed in Section 3.2.4, fill-in is likely to occur on the coarse level ma-
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(a) θ kept constant in V-cycle (b) θ reduced by 1/2 for each level in the V-cycle

Figure 6.8: Operator complexity as function of θ, test case 3 with 25 × 25 × 25
cells.

trices when anisotropic aggregation according to Algorithm 4 is combined with a
prolongator smoother, (3.13), in which the unfiltered fine level matrices are used.
The results above indicate that this is in fact happening for our test case.

Consequently, the setup phase of the preconditioner must be changed to use
the filtered fine level matrices, (3.23), in the prolongator smoother, (3.22). As
discussed in Section 5.3, our implementation is, on each level, really using a matrix
whose off-diagonal elements are equal to that of the filtered matrix, but we do not
add weak couplings in the unfiltered matrix to the diagonal, which is required in
the convergence analysis.

Figure 6.9 shows the run time and operator complexity for test case 3 with
n = 25, and θ reduced by 1/2 for each V-cycle level. In contrast to the test
presented in Figure 6.7 and Figure 6.8, we are able to let θ range up to 0.4.
Because the coarse level matrices are kept sparse, we do not exhaust GPU memory
for higher values for θ as in our previous test. This can be seen in Figure 6.9b,
which shows that the increase in operator complexity is much more modest than
in Figure 6.8. We can also see that the number of CG iterations needed to reach
convergence is significantly reduced. As the run time of each V-cycle depends
on the sparsity of the coarse level matrices, the improved convergence properties
for higher values of θ does not seem to be offset by the cost of the V-cycle as in
Figure 6.7b.

Although Figure 6.8 shows that the convergence properties of the precondi-
tioner are improved by increasing θ, there is still reason to question the overall
quality of the preconditioner. This can be seen from Table 6.2, which compares
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(a) Effect of θ on run-time (b) Operator complexity

Figure 6.9: Test case 3, n = 25, θ reduced by 1/2 for each level in the V-cycle,
filtered matrix in prolongator smoother.

Table 6.2: Preconditioner statistics for test case 3, n = 25.

θ
AGMG

0 0.08 0.3

Operator complexity 1.18 2.73 2.75 1.77
CG iterations 2452 418 281 23

the operator complexity and number of CG iterations for the GPU solver with
AGMG. AGMG converges in less than a tenth of the best number of iterations for
the GPU solver, with a lower operator complexity.

To perform a more comprehensive test of the performance and robustness of
this approach, we need to decide how to determine θ. As described in Section 5.3,
Vaněk et al. [26] suggests

θ = 0.08

(
1

2

)l−1

, l = 1, . . . , L, (6.6)

based on their numerical experiments. From Figure 6.9 and our further experi-
ments, this seems like a reasonable choice. It should be pointed out that there is
nothing special about this value in Figure 6.7, where all values of θ greater than
roughly 0.001 seems to significantly reduce the run time. We have not carried out
comprehensive tests attempting to determine an optimal value for θ.

To illustrate how using (6.6) for anisotropic aggregation and creating filtered
matrices, Figure 6.10 shows the results for the same test cases as Figure 6.5. The
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Figure 6.10: Running times for GPU solver with and without filtered matrix, and
AGMG, all box test cases, n = 50.

GPU solver using θ = 0 and AGMG are shown as references. Note that anisotropic
aggregation does not seem to have a significant effect in other cases than test case
3.

Table 6.3 shows the behaviour of the preconditioner for all test cases. It is
worth noting that anisotropic aggregation seems to have negligible effect on the
convergence properties in test case 2, where the rock permeability is strongly
anisotropic. Furthermore, the number of iterations required by AGMG is less
than one tenth of that of the GPU solver with anisotropic aggregation for test
case 2 and 3.
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Table 6.3: Preconditioner properties all test cases, n = 50.

θ = 0 θ = 0.08 AGMG
Op. comp./Iterations Op. comp./Iterations Op. comp./Iterations

1 1.19/31 1.95/24 2.00/30
2 1.19/406 1.96/405 2.81/40
3 1.19/3760 3.44/735 2.14/65
4 1.19/34 1.20/26 1.99/24
5 1.19/50 1.33/44 1.78/21
6 1.19/39 1.20/33 1.89/30

Preconditioner performance for realistic scenarios

Based on the results for the n × n × n-grid, we have tested the GPU solver on
the realistic scenarios using both θ = 0, and anisotropic aggregation with θ = 0.08
and the filtered matrix in the prolongator smoother. Figure 6.11 shows the run
time for both scenarios compared to AGMG and mldivide.

Figure 6.11: Run time for realistic scenarios.

When considering the run times only, the GPU solver compares well for SAIGUP.
For the North Sea scenario, it is faster than AGMG, however, the fact that
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mldivide is faster should be a concern. When considering the operator com-
plexity and number of iterations to reach convergence, shown in Table 6.4, we see
the same trends as in Table 6.2 and 6.3. In both cases, the convergence properties
are significantly better for AGMG. This is especially true for the North Sea model.

Table 6.4: Preconditioner properties, realistic models.

θ = 0 θ = 0.08 AGMG
Op. comp./Iterations Op. comp./Iterations Op. comp./Iterations

SAIGUP 1.18/391 1.42/387 1.88/177
North Sea 1.19/2801 1.21/2876 2.31/374

6.3.3 Correctness

Table 6.5: 2-norm of relative error ×10−9 for iterative solvers compared to
mldivide for box test cases, n = 50.

Test case
Solver

CSR, θ = 0 CSR, θ = 0.08 ELL HYB AGMG

1 1.051 0.687 1.051 1.051 2.806
2 52.46 52.43 52.46 52.46 6.081
3 1.853 1.404 1.851 1.851 0.236
4 3.524 2.095 3.524 3.524 3.951
5 3.315 1.771 3.315 3.315 0.756
6 0.135 0.068 - 0.135 0.206

Table 6.6: 2-norm of relative error ×10−7 for iterative solvers compared to
mldivide for realistic scenarios.

Test case
Solver

CSR, θ = 0 CSR, θ = 0.08 HYB AGMG

SAIGUP 2.007 1.502 2.007 3.974
North Sea 0.452 1.128 0.456 2.911

The correctness results for the test cases are presented in Table 6.5, Table 6.5,
and Table 6.7. For the GPU solver, we list the results for the different storage
formats discussed in 5.3.
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Table 6.7: Maximal absolute value of relative divergence per cell ×10−7 for box
test cases, n = 50.

Test case
Solver

CSR, θ = 0 CSR, θ = 0.08 ELL HYB AGMG

1 1.455 4.903 1.455 1.455 1.817
2 1.144 1.062 1.144 1.145 0.784
3 0.248 0.752 0.244 0.244 1.374
4 0.742 1.195 0.742 0.742 1.298
5 0.230 0.245 0.230 0.230 0.171

Table 6.5 shows the 2-norm of the relative error of π computed by the solvers.
As the stopping criteria is a relative reduction of the residual of 10−9, the results
seem satisfactory. In Table 6.7, the maximal relative divergence is shown for all
solvers.

It is worth noting that the correctness results for the GPU solver is independent
of the storage format.
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Conclusions and Further Work

In this chapter, we will summarize our work, and discuss our findings.

7.1 Conclusion

In the introduction, we posed the following three questions:

1. Can we use CUSP to create a GPU-based linear solver for MRST imple-
menting conjugate gradients with algebraic multigrid as preconditioner?

2. Are we able to use GPUs to speed up the solution of linear systems in MRST
compared to existing CPU-based alternatives?

3. Can we propose and implement improvements to CUSP’s linear solver, mak-
ing it better suited for our application in reservoir simulation?

The first question is, of course, a prerequisite to the two following. In Chapter 5
we demonstrate how we are able to use CUSP for MRST using MEX-interfaces.
As we have seen in Section 6.3.3, we have verified the correctness of the answers,
and shown that they have the same quality as the CPU-based AGMG. We have
also argued that the GPU solver uses less memory than mldivide, however since
the GPU has a separate memory space from the CPU, the practical outcome of
this is, of course, hardware dependent.

As to our second question, we must consider the results in Section 6.3.2. They
do not, however, give conclusive answers. While most of the idealized test cases
and the SAIGUP model are solved faster using the GPU solver, this is not the case
for the test case with high aspect ratio of grid cells and the North Sea model. The
preconditioner statistics in Table 6.2, 6.3, and 6.4 explains much of this behavior.
As we can see, the quality of CUSP’s preconditioner deteriorates significantly

61
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when the underlying reservoir model has strongly anisotropic permeability or the
grid cells have high aspect ratios. Although the preconditioner of AGMG also is
affected by these phenomena, it is on a completely different scale. For the test cases
with isotropic characteristics, we observe that the preconditioner implemented
in CUSP has convergence properties that are comparable to AGMG. Hence, it
seems reasonable to conclude that the there is significant room for improvement
of the mathematical properties of CUSP’s preconditioner when facing some of
the challenges arising in reservoir simulation. On the other side, it should be
emphasized that CUSP outperforms the CPU based solvers we have used in several
test cases. Furthermore, even in the cases where AGMG is faster, it is clear from
the preconditioner statistics that the GPU-based solver is able to perform PCG
iterations faster than AGMG. This demonstrates the strength of the GPU in terms
of computing power in a practical setting.

This brings us over to a our third question. As it seems like CUSP is able
to make the GPU perform PCG iterations efficiently, we believe the most room
for improvement is found in improving the properties of the AMG preconditioner.
As discussed in Section 3.2.4 and Section 5.3, we have proposed using the filtered
matrix for the prolongator smoother to improve properties of the preconditioner.
Strictly speaking, we have not implemented this, as we have not been able to
modify the diagonal of AFh in accordance with (3.23). Hence, we should not be
to conclusive when evaluating the success of this approach. However, from our
experiments, it seems like although this technique seems to have a significant effect
in the pathological test case 3, it has negligible effect in the other scenarios we
have tested. Since the convergence of the preconditioner may have been negatively
affected by our implementation, we can not rule out that a correct implementation
of the approach described in Section 3.2.4 can give further improvements. However,
when we compare with the preconditioner statistics of AGMG, which uses a type
of AMG preconditioner, it is natural to rise the question whether other approaches
to AMG could be more successful.

7.2 Further work

Given the limitations in time and scope, there are of course topics we have not
dealt with in this thesis. In this section we will point out some of these.

Test run time complexity. An important question when evaluating programs
in numerical linear algebra - and computing in general - is how the run time scales
with the input size. In our tests, we have focused on how the solver handles
properties and effects that frequently arises in reservoir simulation, and we have
not found time to test the run time complexity. For a more complete overview of
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the solver, this is an aspect that should be considered.

Implement a correct version of filtered matrix prolongator smoother.
As discussed, the implementation of the filtered prolongator smoother is not con-
sistent with the definition in Section 3.2.4. A correct implementation should be
feasible using THRUST’s functionality.

Investigate alternative approaches to AMG preconditioning. From a
mathematical point of view, it would make sense to use a preconditioner that aims
specifically to deal efficiently with anisotropic problems. One possible approach
is described in [10], where Gee et al. introduces a new preconditioner which is
designed to perform more efficiently on anisotropic problems. Their approach, ba-
sis shifted smoothed aggregation (BSSA), is based on smoothed aggregation, but
modifies the prolongator from standard smoothed aggregation. In their numerical
experiments, they are able to improve convergence properties without sacrificing
operator complexity compared to the approaches considered in this thesis.

This raises, however, some design and implementation issues. As mentioned
in Section 4.3.2, CUSP performs not only the solve phase of the linear solver, but
even the setup phase on the GPU. This does, however require a version of AMG
that can be constructed with fine-grained parallelism. To our knowledge, it is not
clear whether it is possible to implement the BSSA algorithm efficiently on a GPU.

A more general point can made from this. The design decision to construct
the preconditioner on the GPU makes sense given that it enables CUSP to offer
a complete black box GPU solver, however, this excludes preconditioners that are
not feasible for efficient setup on GPUs. However, given CUSP’s and THRUST’s
functionality for generic data structures and copying between host and device, an
interesting question is whether it is possible to construct the preconditioner on the
CPU and transfer it to the GPU for the solve phase of the algorithm. If so, one
could consider aggregation schemes that have been successfully implemented for
CPUs, such as the ones used in AGMG [17], or even classical AMG [25], possibly
allowing approaches more tailored to anisotropic problems. This requires, however,
that the preconditioner can be constructed in a way that is compatible with the
data structures used in CUSP and allows for efficient V-cycle execution.

We leave the questions raised in this paragraph open.



64 CHAPTER 7. CONCLUSIONS AND FURTHER WORK



Bibliography

[1] Jørg E. Aarnes, Tore Gimse, and Knut-Andreas Lie. An introduction to the
numerics of flow in porous media using Matlab. In Geometric modelling,
numerical simulation, and optimization: applied mathematics at SINTEF,
pages 265–306. Springer, Berlin, 2007.

[2] Ivar Aavatsmark. Bevarelsesmetoder for elliptiske differensialligninger. Fore-
lesningsnotater ved Universitet i Bergen, 2002.

[3] Nathan Bell, Steven Dalton, and Luke Olson. Exposing fine-grained paral-
lelism in algebraic multigrid methods. NVIDIA Technical Report NVR-2011-
002, NVIDIA Corporation, June 2011.

[4] Nathan Bell and Michael Garland. Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors. Proc. Supercomputing ’09,
November 2009.

[5] Nathan Bell and Michael Garland. Cusp: Generic parallel algorithms for
sparse matrix and graph computations, 2011. Version 0.2.0.

[6] L. Susan Blackford and et al. An updated set of basic linear algebra subpro-
grams (BLAS). ACM Trans. Math. Software, 28(2):135–151, 2002.

[7] Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov. Convergence
of the mimetic finite difference method for diffusion problems on polyhedral
meshes. SIAM J. Numer. Anal., 43(5):1872–1896 (electronic), 2005.

[8] Bryan Catanzaro. An introduction to CUDA/OpenCL and manycore graphics
processors. Lecture notes CS 267, UC Berkeley, 2011.

[9] James W. Demmel. Applied numerical linear algebra. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1st edition, 1997.

[10] Michael W. Gee, Jonathan J. Hu, and Raymond S. Tuminaro. A new
smoothed aggregation multigrid method for anisotropic problems. Numer.
Linear Algebra Appl., 16(1):19–37, 2009.

65



66 BIBLIOGRAPHY

[11] gpgpu.org. General-Purpose Computation on Graphics Hardware.

[12] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for
solving linear systems. J. Research Nat. Bur. Standards, 49:409–436 (1953),
1952.

[13] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2012.
Version 1.5.0.

[14] Kurt Keutzer and Tim Mattson. A design pattern language for engineering
(parallel) software.

[15] Knut-Andreas Lie, Stein Krogstad, Ingeborg Ligaarden, Jostein Natvig,
Halvor Nilsen, and B̊ard Skaflestad. Open-source matlab implementation
of consistent discretisations on complex grids. Computational Geosciences,
pages 1–26, 2011. 10.1007/s10596-011-9244-4.

[16] Scott MacLachlan. Improving Robustness in Multiscale Methods. PhD thesis,
University of Colorado, 2004.

[17] Yvan Notay. Aggregation-based algebraic multilevel preconditioning. SIAM
J. Matrix Anal. Appl., 27(4):998–1018 (electronic), 2006.

[18] Yvan Notay. User’s guide to AGMG, 2008.

[19] NVIDIA. CUDA C Best Practices Guide, 2011. Version 4.0.

[20] NVIDIA. NVIDIA CUDA C Programming Guide, 2011. Version 4.0.

[21] Yousef Saad. Iterative methods for sparse linear systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, second edition, 2003.

[22] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction
to General-Purpose GPU Programming. Addison-Wesley Professional, 1st
edition, 2010.

[23] Jonathan Shewchuck. An introduction to the conjugate gradient method
without the agonizing pain. http://www.cs.berkeley.edu/ jrs/jrspapers.html,
August 1994.

[24] SINTEF Applied Mathematics. MATLAB Reservoir Simulation Toolkit, 2011.
Version 2011a.
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