
On the Mapper Algorithm
A study of a new topological method for data

analysis

Roar Bakken Stovner

Master of Science in Physics and Mathematics

Supervisor: Nils A. Baas, MATH

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

Mapper is an algorithm for describing high-dimensional
datasets in terms of simple geometric objects. We give a
new definition of Mapper, with which we are able to prove
that Mapper is a functor and that Mapper is a homotopy
equivalence for certain “nice” input data.

To establish these results we describe the statistical the-
ory of functorial clustering and the topological machinery of
homotopy colimits.

At the end of the document we show, by means of numer-
ical experiments, that the functoriality of Mapper is useful
in applications.

Sammendrag

Mapper er en algoritme for å beskrive høyeredimensjonale
datamengder som enkle geometriske objekter. Vi presenterer
en ny definisjon av Mapper og med denne beviser vi at Map-
per er en funktor samt at Mapper er en homotopiekvivalens
for visse typer “pene” inndata

For å stadfeste disse resultatene beskriver vi teorien for
funktorielle klyngealgoritmer og det topologiske maskineriet
som homotopikogrenser utgjør.

Mot slutten av oppgaven viser vi med numeriske eksperi-
menter at Mappers funktorialitet er nyttig i anvendelser.

i

Preface

I write this master’s thesis in the spring semester of 2012, under guidance
of Professor Nils A. Baas at the Norwegian University of Science and Tech-
nology in Trondheim. This work is my contribution to the course “TMA4900
Masteroppgave i matematikk” and should be equivalent to one regular
semester of full-time studies.

My work with Nils started in the autumn of 2011 when I under his
guidance wrote a summary of the basic theory of persistent homology. This
gave me a foothold in the field of statistical topology and I wanted to continue
along these lines. The field is new and still ripe with unexplored ideas, so
it was hard to choose any one particular topic. I made my decision after
mentioning to Nils that I did not want a thesis wholly devoted to applications,
I would rather use the applications as an incentive to delve into a theoretical
subject. He promptly replied that the “Mapper algorithm” could be regarded
as a certain kind of homotopy colimit and that this was an observation about
which nothing had so far been written. I was soon hard at work, despite a
gentle warning that homotopy colimits is not an easy subject.

In retrospect there is much that could have been done differently. There
are many parts of the document which I know can be improved, but which
I did not get time to attend to, mostly because I in the last weeks be-
fore deadline found out how much work lies behind the writing of proper
mathematical exposition. I content myself with mentioning some possible
improvements: The last section with numerical experiments leaves me feel-
ing unsatisfied, there are so many ways I could have explored the properties
of Mapper which are not included. In the entire document I could have
interspersed more examples to illustrate the theory at hand.

This last year I have been in almost continuous company of Truls Bakke-
jord Ræder, a fellow student and my friend. I thank him for proof-reading
this document, for taking on all too many mathematics courses with me, for
discussing mathematics with me any time I wanted to, and for occasionally
getting me away from mathematics when I needed to.

iii

I thank Nils, my advisor, for the many talks in his office, which have
not all been about mathematics, and after these talks I have every time
felt inspired to get on with my work. His view on mathematics has greatly
shaped mine.

In late January I started working on the thesis and now, in the middle of
June, I am finished. I am finished not just with this thesis, but — at least
for now — with mathematics at university level. The next years I will be
working as a teacher, a teacher of mathematics and science.

I am very grateful for the richness mathematics has added to my life.

Roar Bakken Stovner June 18, 2012

iv

Contents

1. Introduction 1

I. Background 3

2. Persistence and persistence objects 5

3. Homotopy colimits 7
Introduction . 7

3.1. Simplicial objects and the simplex category 9
3.2. Geometric realization . 10
3.3. Simplicial replacement . 12
3.4. Homotopy colimit . 16

4. Covers of topological spaces 21
4.1. An open cover as a diagram of spaces 21
4.2. A category of covered topological spaces, TopCov 21

Functoriality of XU . 23
Continuous maps and TopCov 23

4.3. Nerve of a cover . 23
4.4. Mayer-Vietoris blowup of a cover 25

5. Clustering 29
5.1. Classic cluster analysis . 29

Hierarchical clustering . 30
DBSCAN . 33
k-means clustering . 35

5.2. Some useful categories . 36
An output category for clustering functors 36
Metric space categories . 37

v

Contents

5.3. Functorial clustering . 38

II. Method 45

6. Mapper 47
6.1. Motivating example . 47

7. Explicit description of Mapper 51
7.1. The topological Mapper . 51
7.2. The statistical Mapper . 52
7.3. Filters and parameter spaces 53

8. Categorical description of Mapper 57
8.1. The topological Mapper . 57
8.2. The statistical mapper . 58
8.3. Functoriality . 59

— of the topological Mapper . 59
— of the statistical Mapper . 60

9. Relation to homotopy colimits and the nerve theorem 63
9.1. The nerve theorem and its proof 63
9.2. The “Mapper” theorem and its proof 66

III. Experiments 73

10.The implementation of Mapper 75
The code . 75
Input and initialization . 76
Output . 76
Performance . 77

11.The Fisher-Anderson iris flower data set 79
11.1.Cluster analysis . 80
11.2.Mapper analysis . 85

Analysis with good choice of parameter values 85
Choosing parameter values . 86
Mapper with a non-functorial clustering algorithm 89

vi

Contents

11.3.Conclusions . 94

vii

List of Figures

3.1. The homotopy colimit of the diagram A → B → C consisting of
f : A → B and g : B → C. 18

3.2. The mapping telescope of A → B → C. 19

4.1. Example of the construction XU 22
4.2. Comparison of the nerve of the cover U and the nerve of the

diagram XU . 24
4.3. Mayer-Vietoris blowup of an interval 25
4.4. Mayer-Vietoris blowup of an interval with more overlapping

cover . 26
4.5. Mayer-Vietoris blowup of a circle 27
4.6. Mayer-Vietoris blowup of a triple-intersection 28

5.1. Illustration of linkage distances 31
5.2. Explanation of dendrograms . 32
5.3. A point cloud which is hard to cluster because of a bridge of

connecting points. 33
5.4. An example output of the Dbscan algorithm. 34
5.5. Illustration of the k-means algorithm. 36
5.6. Counter-example showing that complete and average linkage

clustering are not functorial on M mon. 41
5.7. Counter-example showing that Dbscan is not functorial on

M gen. 42

8.1. An illustration of π0 on diagrams of spaces 58

9.1. An illustration of the action of pt on diagrams. We see the
diagram D and the diagram D pt 65

9.2. An annulus X covered by U such that the nerve N (XU) and
the space X have different homotopy types. 66

ix

List of Figures

9.3. Another annulus X covered by U such that the nerve N (XU)
and the space X have different homotopy types. 67

10.1.An explanation of the output from our Mapper implementation 78

11.1.Different 2D-projections of the Fisher-Anderson iris dataset. 82
11.2.Output of four clustering algorithms applied to the Iris data. 83
11.3.Complete linkage clustering of the Iris data with the number

of clusters set to 5. 84
11.4.Mapper output of Iris data with well-chosen parameter values 90
11.5.Mapper output of the iris data for different values of p with

l = 0.3. 91
11.6.Mapper output of the iris data for different values of p with

l = 0.1. 92
11.7.Mapper output of the iris data with 3-means clustering for

different values of p with l = 0.3. 93

x

1. Introduction

Because of the advancements in technology we are collecting information
at an ever faster pace. This creates a need for techniques with which we
can understand all the information collected. A feature which is common for
much of the new information is its high dimensionality. For instance, with
new micro-array gene sequencing technology we can extract a fingerprint
of the genes of possibly cancerous tissue, each such fingerprint consisting
of literally thousands of numbers, making one such fingerprint a point
in a vector space of thousands of dimensions [6]. An important question
is if we can use this data to decide if the tissue is malignant or benign.
This is a statistical problem, but with such high-dimensional data we lose
one of the most potent statistical tools we have — good plots. So even
though classical statistical methods have proved themselves useful, there
are certainly improvements which can be made so that we can better cope
with the new challenges that high-dimensional data present.

Topologists at Stanford, lead by Professor Gunnar Carlsson, have the
last decade developed exciting new techniques which help us understand
high-dimensional data and we point the reader to Carlsson’s survey article
“Topology and Data” [3] to get an overview of the field.

The term we favor for high-dimensional data sets is point clouds, and
we define a point cloud to be nothing but a finite metric space. We think
of the point cloud as being sampled from a manifold, or even a general
topological space, and many questions in statistical topology can be seen as
attempts to recreate the underlying manifold from which the point cloud has
been sampled. This is also the case with Mapper, one of the new algorithms
developed during the last decade, and the algorithm which we study in
this Master’s thesis. The goal of Mapper is to recover a low-dimensional
representation of a point cloud, that is, the goal of Mapper is to create a
good plot. An example is found on the front page of this document; a plot
created by using Mapper on a 2000-dimensional point cloud containing gene
samples from prostate cancer tissue.

1

1. Introduction

This document is divided in three parts: Background material in Part I, a
discussion of Mapper in Part II, and some numerical experiments in Part III.

In Part I we present some topics which we need in order to understand
Mapper. Covers of topological spaces and clustering methods are the main
ingredients of Mapper, and these are presented in Chapter 4 and Chapter 5.
By defining Mapper in a non-standard way one is led to consider homotopy
colimits, which is presented in Chapter 3. We also want to use the term
persistence from time to time, so we define this in Chapter 2.

In Part II Mapper is presented. Chapter 8 and Chapter 9 are the most
important parts of this Master’s thesis and contain all of the new work.
Most of the other material are included in order to understand these two
chapters or to back up the claims made in these two chapters. In Chapter 8
we define Mapper in a new way, making the algorithm a functor almost by
definition. In Chapter 9 we prove an analogue to the classic nerve theorem
which helps explain why Mapper works.

In Part III we present the our computer implementation of the Mapper
algorithm and perform some numerical experiments to show how the algo-
rithm works. We also highlight how the new results in Chapter 8 increase
our understanding also in applications.

2

Part I.

Background

3

2. Persistence and persistence
objects

Persistence is a buzzword in statistical topology and the idea is spreading to
many areas of the field from where it first originated, in persistent homology
[3]. We will not have the opportunity to study persistence thoroughly, but
at the end of this document, when summarizing our ideas and tying our
work together with the rest of the field, we will use the term. Also, the
definition of functorial clustering in Section 5.3 is best stated using the word
“persistence”. So, even though we will have little use of the terminology and
could do without, we feel it is best to use it, if not for any other reason than
to comply with the terminology which has become standard in the field.

Let C be an arbitrary category and let P be a partially ordered set. We
consider the poset P as a category in the usual way. A P-persistence
object in C is a functor P →C . The collection of P-persistence objects in
C form a category in which morphisms between P-persistence objects are
natural transformations between them.

Example 2.0.1. If we choose P to be a totally ordered set, for instance N,
then a P-persistence object in C would be a linear diagram. In the case of
P =N we could display the persistence object as

· · · Cn−1 Cn Cn+1 · · · ,
fn−1 fn

where the Ci and f i are objects and morphisms in C respectively. We have
omitted drawing all the compositions of functions, although they are part of
the persistence object.

So P-persistence objects in C are simply diagrams in C which are shaped
like the poset P.

The idea of persistence is often used when we have a problem of choosing
proper parameter values. Say that we have a method F for producing a

5

2. Persistence and persistence objects

geometric representation of some point cloud. The method F can be, for
instance, persistent homology or Mapper. These methods are initialized
by some parameter p ∈ R and it is important to study how sensitive F is
to changes in p. By establishing that F(−) is an R-persistence object we
have for p0 ≤ p1 an induced map F(p0)→ F(p1) and the existence of such a
map is treated as a kind of stability of F, especially if we can prove some
sort of well-behavedness of the induced map. If some geometric feature
of F(p0), for example nontrivial homology, is also present in F(p1) we say
that the feature persists from p0 to p1. Features which persists through
many parameter choices are considered “true” features of the point cloud,
while features which quickly appear and disappear are considered random
fluctuations or artifacts of the method F.

6

3. Homotopy colimits

We can define the Mapper algorithm of Part II in an abstract way as a
homotopy colimit, and this is beneficial because it makes many of Mapper’s
properties more transparent. Therefore, we will in this chapter give the
definition of the homotopy colimit and derive some of its most basic proper-
ties. Most introductions to the homotopy colimit uses the language of model
categories, which is an interesting subject in itself, but which we shall have
no further use of, so we choose to rather give the definition of the homotopy
colimit in as direct a fashion as possible, and in a way which is easy to
compute.

A problem we had when learning about homotopy colimits was that in
every computation of a homotopy colimit some details seemed to be left out,
except maybe in the simplest possible cases. We have therefore gone to great
lengths to write out every minute detail of at least some of our calculations,
accepting that the notation becomes cumbersome and that one stand in
danger of losing sight of the basic idea behind homotopy colimits.

Our exposition is based on Dugger [7].

Introduction

We need homotopy colimits because the normal colimits do not behave
well under homotopy equivalences. To see this, consider the following two
diagrams of spaces

D2 S1 D2

∗ S1 ∗

where the asterisk ∗ denote a one-point space. The arrows in the upper
diagram are functions including S1 onto the boundary of D2. Since the
spaces occupying the same places in the above two diagrams are homotopy
equivalent (D2 ' ∗ and S1 ' S1), one might think that the colimits of the

7

3. Homotopy colimits

diagrams are homotopy equivalent as well. This is not the case since the
colimit of the upper diagram is equivalent to S2 and the colimit of the lower
diagram is equivalent to ∗. Wee see that in the colimit of the lower diagram
any trace of S1 has been lost — S1 has simply been squashed down to a
point! This illustrates what goes wrong with the normal colimit, it squashes
spaces together a little too much.

This example points out the need for a homotopy-friendly colimit; a colimit
such that component-wise homotopy equivalent diagrams have homotopy
equivalent colimits. In order to achieve this we introduce the idea of “glu-
ing along homotopies” or “gluing along paths”. The normal colimit of the
diagram

A X B
f g

is constructed by taking A
∐

B and identifying the points f (x) and g(x)
of for all x in X , whereas the homotopy colimit is constructed by taking
A

∐
B

∐
(X × [0,1]) and identifying f (x) with (x,0) and g(x) with (x,1) for all

x ∈ X . You can think of this as attaching f (x) to g(x), but with the cylinder
X × [0,1] stuck in the middle, that is, f (x) and g(x) are glued together along
a path.

So in essence the idea is still to glue points to each other, but to allow
enough leeway for homotopy deformations to take place, and this disallows
the squashing that occurred in the above example. This leeway was given
by not gluing two spaces directly together, but rather onto each end of a unit
interval. In general, though, we might have to glue more than two spaces
together and then the unit interval does not suffice as intermediary because
it has got only two ends onto which we can glue. The solution is to use the
standard simplices ∆n as intermediaries; because ∆n has a boundary with
[n+1] parts we can glue n+1 spaces onto ∆n.

Unfortunately, keeping track of how all the spaces of our diagram are
supposed to be glued together is a combinatorial challenge. Therefore, we
first associate a combinatorial device with our diagram D, its simplicial
replacement, a special case of a simplicial object, and then define the
homotopy colimit of D to be the geometric realization of the simplicial
replacement of D. All these notions are discussed in the following few
sections.

It is stated directly above how we plan to construct the homotopy colimit,

8

3.1. Simplicial objects and the simplex category

namely as the geometric realization of the simplicial replacement of a dia-
gram. This construction, however, is only a choice of homotopy colimit and
we could have made other choices. What we mean by this is that the defining
property of homotopy colimits, that component-wise homotopy equivalent
diagrams have homotopy equivalent homotopy colimits, does not define the
homotopy colimit up to homeomorphism type, only up to homotopy type.

Note. For us, the word “homotopy colimit” can be misleading, as we shall
have no opportunity to see the universal property which the homotopy
colimit fulfills. For our purposes, it suffices to think of the homotopy colimit
as a space-level realization of a diagram, enabling us to study properties
of the diagram with homotopical methods. The same sentiment has been
expressed by Hatcher [10, Chapter 4.G]:

[. . .] This has given rise to the rather unfortunate name of
‘hocolim’ for ∆X , short for ‘homotopy colimit’. In preference to
this we have chose the term ‘realization’, both for its intrinsic
merits and because ∆X is closely related to what is called the
geometric realization of a simplicial space. . . .

Unlike Hatcher, we shall use the term homotopy colimit.

3.1. Simplicial objects and the simplex category

The proper category theoretic analogue of ordered simplices is found in the
simplex category ∆ (also called the cosimplicial indexing category).

The category ∆ is defined to be the category of totally ordered finite sets
with (weakly) order preserving maps. Note that all totally ordered finite sets
of cardinality n are isomorphic under a unique isomorphism, so we lose no
generality by choosing to work with the skeletal subcategory of ∆ consisting
of the objects

[n]= {0,1, . . . ,n−1,n},

where the ordering is given in the natural way. We will do this tacitly from
now on. Also, it is not hard to convince oneself that that all morphisms of ∆
can be expressed as the finite composition of two “archetype morphisms”, the
coface maps d i

n : [n−1]→ [n] and the codegeneracy maps si
n : [n+1]→

[n]. The map d i
n “skips” the element i and the map si

n “repeats” the element

9

3. Homotopy colimits

i, that is,

d i
n(k)=

{
k if k < i
k+1 if k ≥ i

si
n+1(k)=

k if k < i
i if k = i or k = i+1
k−1 if k > i+1

.

It is customary to drop the lower index and just write d i and si.
We often think of the simplex category ∆ by its image under the covariant

inclusion of categories ∆ ,→Top which maps [n] to the n-dimensional stan-
dard simplex ∆n and which maps morphisms ϕ : [n] → [k] to the induced
linear map ∆n →∆k which coincide with ϕ on the vertices of ∆n.

The next definition is used to impose the simplicial structure of the
simplex category ∆ on other categories C . A simplicial object in C is
a contravariant functor ∆ → C and a simplicial morphism in C is a
natural transformation between two simplicial objects in C . These objects
and morphisms together define a category. Simplicial objects in Top are
called simplicial spaces and simplicial objects in Set are called simplicial
sets and the corresponding categories are denoted sSpace and sSet.

Note. We often write X• for a simplicial object and take X i to mean X•([i]),
and take di and si to mean X•(d i) and X•(si). The indexes of the morphisms
change place in order to remind us of the contravariance (exactly as for
homology and cohomology).

Simplicial sets are abstractions of simplicial complexes. In order to see
this, think of a simplicial set X• as a collection of n-simplices, one for each
element x of Xn, with the ith face of x being given by the face map dn

i .
The degeneracy maps sn

i are a little more artifical sounding than the face
maps; the ith degeneracy of x, sn

i x, correspond to an n+1-simplex which we
think of as being equal to x, but with an added degenerate ith dimension.
This abstraction is formalized (and generalized to simplicial spaces) in
Section 3.2.

3.2. Geometric realization

Let X• be a simplicial space. The geometric realization of a simplicial
space, which we define shortly, unifies the spaces X i with their simplicial
structure into a topological space |X•|. In the space |X•| the spaces X i

10

3.2. Geometric realization

are glued together along standard simplices in a way dictated by the face
maps X i → X i−1. There is also an action of the geometric realization on
sSpace-morphisms turning |−| into a covariant functor. The first to give
this definition the geometric realization was Milnor [13] and we follow his
notation.

Let X• be a simplicial space and ∆i the i-dimensional standard simplex.
The geometric realization |X•| of X• is the space

∞∐
i=0

X i ×∆i

subject to the following identifications

(dix, t)∼ (x,d i t)

(six, t)∼ (x, si t).

We will denote the equivalence class which (x, t) belongs to by |x, t|.
Note. The above equivalence relation is the same as the one generated by
identifying (ϕx, t)∼ (x,ϕt) for all maps ϕ of ∆, that is, for all order preserving
maps. That these equivalence relations are equal is an easy consequence of
the fact that any order preserving map ϕ is a composition of a number of di
and si.

Note. This definition extends to simplicial sets X• by equipping the sets X i
with the trivial topology.

We think of the identifications (dix, t) ∼ (
x,d i t

)
as “gluing along faces”

and of the identifications (six, t)∼ (
x, si t

)
as “contracting degeneracies”. The

logic of these names hopefully becomes clear with the next example.

Example 3.2.1. To gain a feel for how the geometric realization works, let
us try to construct a simplicial set X• with geometric realization of the same
homotopy type as S2. The idea we will use is to simulate the way S2 is
most often realized as a CW-complex, that is, as a 2-cell whose boundary is
collapsed to a point.

11

3. Homotopy colimits

We need a 0-simplex α ∈ X0 representing the base point and a 2-simplex
β ∈ X2 representing the two-cell. We want no 1-simplex in our geometric
realization, so the set X1 must consist of only one element X1 = {α} because
then this element must be a degeneracy of α ∈ X0 and is hence collapsed
to a point. The identification (siα,∆1) ∼ (α, si∆1) takes care of this. Also,
there should exist a β ∈ X2 which is not a degeneracy of α ∈ X1 because then
{β}×∆2 would be collapsed to a point as well. The simplicial set X• therefore
consists of the following sets

X0 = X1 = {α} and X i = {α,β} for i ≥ 2,

and all the face and degeneracy morphisms map α to α and β to β except
d2

0, d2
1 and d2

2 which map β to α. These three maps identify the three faces
of {β}×∆2 with {α}×∆1 and, as we remember, {α}×∆1 is identified with a
point.

Therefore, the only non-degenerate parts of |X•| are {α}×∆0 and {β}×∆2

and the faces of {β}×∆2 are identified with {α}×∆0. This space is certainly
homotopy equivalent to S2.

A map of simplicial spaces f : X• → Y• induces a map | f | : |X•| → |Y•|
given by |x, t| → | f (x), t|. This assignment of maps respects identities and
composition, so we have a covariant functor |−| : sSpace→Top.

3.3. Simplicial replacement

In the introduction to this chapter we noted that in order to define the
homotopy colimit we need a combinatorial scheme which specifies how
spaces are supposed to be glued onto the boundary of standard simplices.
This scheme is the simplicial replacement of the diagram. Intuitively, the
0-simplices of the simplicial replacement are the spaces of the diagram and
the n-simplices are all n-fold compositions of morphisms of the diagram.
The nth face map “deletes” a morphism, creating an n−1-fold composition,
and the nth degeneracy map inserts an identity morphism, creating an
n+1-simplex.

Note. The simplicial replacement is related to, and is indeed very similar to,
the category theoretic nerve, but whereas the nerve constructs a simplicial
set from a diagram in any small category the simplicial replacement con-
structs a simplicial space from a diagram in Top. The simplicial replacement

12

3.3. Simplicial replacement

and the nerve coincide for diagrams of one-point spaces and we will take
this as the definition of the nerve of a diagram.

Let C be a small category with objects ci. The simplicial replacement
(or simplicial bar construction) of a diagram D : C → Top is denoted
srepD and is the simplicial space which acts on any object [n] in ∆ by

srepD([n])= ∐
c0→c1→...→cn

D(c0). (3.1)

By this we mean a disjoint union which ranges over any n-fold composition
of C -morphisms which starts in c0 (for all choices of c0 ∈Ob(C)). To define
the face and degeneracy maps of srepD we need some notation. We refer to
the D(c0) indexed by

σ=
(
c0

f0−→ c1
f1−→ . . .→ cn−1

fn−1−−−→ cn

)
as D(c0)σ and define “deletions” di(σ) and “repetitions” si(σ) as

di(σ)=

c1

f1−→ c2 → . . .→ cn for i = 0

c0 → . . .→ ci−1
f i−1◦ f i−−−−→ ci+1 → . . .→ cn for 0< i < n

c0 → . . .→ cn−2 → cn−1 for i = n

si(σ)=

c0

id−→ c0
f0−→ c1 → . . .→ cn for i = 0

c0 → . . .→ ci−1
f i−1−−→ ci

id−→ ci
f i−→ ci+1 → . . .→ cn for 0< i < n

c0 → c1 → . . .→ cn
id−→ cn for i = n

.

We also write d∗
i for srepD(di) and s∗i for srepD(si). To define a map on

a disjoint union it is enough to define it on each of its components and
therefore the morphisms d∗

i and s∗i can be specified by

d∗
i

∣∣∣
D(c0)σ

=
D(c0)σ

id−→ D(c0)di(σ) for i > 0

D(c1)σ
f0−→ D(c1)di(σ) for i = 0

s∗i
∣∣∣
D(c0)σ

= D(c0)σ
id−→ D(c0)si(σ).

That this action on the maps of ∆ makes srepD a simplicial space can be
verified easily.

The definition of the simplicial replacement is admittedly hard to come to
grips with, so in order to help the reader we present an example worked out
in full.

13

3. Homotopy colimits

Example 3.3.1. In this example we write out the simplicial replacement of
a diagram D : P →Top where P is the pre-pushout category,

P =
(
1 i←− 2

j−→ 3
)
.

We write D as
(
A

f←− X
g−→ B

)
with A = D(1), f = D(i) and so on. We have

chosen to not write the identity morphisms for typographical reasons. We
list the “0-simplices”

srepD([0])= A
∐

X
∐

B,

and the “1-simplices” (with the convention that X(X→A) means “the copy of
X indexed by the 1-fold composition X → A”)

srepD([1])= X(
X

f−→A
) ∐

X(
X

g−→B
) ∐ A(

A
id−→A

) ∐
B(

B
id−→B

) ∐
X(

X
id−→X

).

and the “2-simplices”

srepD([2])= X(
X

id−→X
f−→A

) ∐
X(

X
f−→A

id−→A
) ∐

X(
X

id−→X
g−→B

) ∐
X(

X
g−→B

id−→B
)

∐
X(

A
id−→A

id−→A
) ∐

X(
X

id−→X
id−→X

) ∐
X(

B
id−→B

id−→B
).

The higher order simplices are constructed in a similar fashion with the
proper amount of identity morphisms added at either the beginning or the
end.

We now turn to the definition of the morphisms srepD(d i
n), which we de-

note with dn
i
∗. We only write out the morphisms restricted to one component

14

3.3. Simplicial replacement

of the coproduct as this is enough to specify them completely.

d1
1
∗ =

(
id : X(

X
f−→A

) → X

)

d1
0
∗ =

(
f : X(

X
f−→A

) → A

)

d2
2
∗ =

(
id : X(

X
f−→A

id−→A
) → X(

X
f−→A

))

d2
1
∗ =

(
id : X(

X
f−→A

id−→A
) → X(

X
f ◦id−−−→A

))= (
id : X(

X
f−→A

id−→A
) → X(

X
f−→A

))

d2
0
∗ =

(
id : X(

X
f−→A→A

) id−→ A(
A

id−→A
)) .

The continuous functions sn
i
∗ are always identity morphisms and their

codomains are always found by composing with an identity morphism (in
the subscript). This makes the sn

i
∗ a little easier to write down, so we choose

to only present two of them:

s1
1
∗ =

(
X(

X
f−→A

) id−→ X(
X

f−→A
id−→A

))

s1
0
∗ =

(
X(

X
f−→A

) id−→ X(
X

id−→X
f−→A

)) .

The simplicial replacement is indeed a functor. Let C : C → Top and
D : C → Top be diagrams and let ϕ : C → D be a map of diagrams. There
is an induced map srep

(
ϕ

)
: srep (C)→ srep (D) given by sending an n-fold

composition of morphisms fn ◦ . . .◦ f1 of C to the n-fold composition of mor-
phisms in D given by ϕ (fn ◦ . . .◦ f1). It is easy to check that this assignment
commutes with face and degeneracy maps, such that srep

(
ϕ

)
is well-defined

map of simplicial spaces, and also that the assignment srep (−) preserves
both composition and identity morphisms.

In summary, we have that srep : [C ,Top]→ sSpace is a covariant functor.
(The symbols [C ,Top] means the category of functors from C to Top.)

15

3. Homotopy colimits

3.4. Homotopy colimit

Let C be any small category.
The homotopy colimit is the covariant functor hocolim: [C ,Top]→Top

defined as the composition of the geometric realization and the simplicial
replacement,

hocolim(−)= |srep (−)|.
We state the following important property of homotopy colimits without

proof. A proof written for this particular construction of the homotopy colimit
can be found in Dugger [7, Proposition 4.7].

Proposition 3.4.1 (The fundamental property of homotopy colimits). Let
X• : C →Top and Y• : C →Top be diagrams and let f : X →Y be a natural
transformation. If all components of f are homotopy equivalences, then the
induced map

hocolim(f) : hocolim(X•)→ hocolim(Y•)

is a homotopy equivalence.

The following example contains a detailed computation of a homotopy
colimit.

Example 3.4.1. We continue Example 3.3.1 where we wrote the simplicial
replacement of the following diagram D of spaces,

D =
(
A

f←− X
g−→ B

)
.

The goal of this example is to write down the space hocolimD, that is, we
want to realize the simplicial space srepD geometrically.

Recall that we in Example 3.2.1 argued that the codomains of degeneracy
maps can be ignored when taking the geometric realization. These are
identified with their domain anyway, and add nothing new to the space
hocolimD. This saves us from considering, say, X(X→X→A), because it is the
codomain of X(X→A) under a degeneracy map. We say that the image of
degeneracy maps are degeneracies.

After pruning away all degenerate direct summands of Example 3.3.1, we
are left with the following non-degenerate direct summands in hocolimD

X
∐

A
∐

B
∐

X(X→A) ×∆1 ∐
X(X→B) ×∆1. (3.2)

16

3.4. Homotopy colimit

and these are glued together according to face relations. The face relations
for X(X→A) are

d1
(
X(X→A)

)×∆0 ∼X ×d1 (
∆0)

d0
(
X(X→A)

)×∆0 ∼X ×d0 (
∆0)

which we evaluate to obtain

X ×∆0 ∼X(X→A) × {1}

f (X)×∆0 ∼X(X→A) × {0} .

This is an X -shaped cylinder with one end glued onto A. The face relations
for X(X→B) provide a similar cylinder with one end glued onto B. We see
that the other ends of these two cylinders are identified with the very same
direct summand X of (3.2). The following conceptual picture shows the
construction, which the reader might recognize as the homotopy pushout
of A ← X → B.

Xf (X) g(X)

A B

Example 3.4.2. With the above calculation of the homotopy pushout, it is
easy to recognize the mapping cone of a continuous function f : X → Y as

17

3. Homotopy colimits

A

B

C

g ◦ f (A)

Figure 3.1.: The homotopy colimit of the diagram A → B → C consisting of
f : A → B and g : B → C.

the homotopy pushout of the diagram

Y
f←− X → pt.

The scheme for calculating the homotopy colimit is clear

1. write out all the disjoint unions of the simplicial replacement like in
(3.1), but ignore the codomain of degeneracy maps

2. write down identifications given by the face maps.

This is a recipe which we shall have the opportunity to reuse many times.

Example 3.4.3. We now find the homotopy colimit of the diagram

A
f−→ B

g−→ C.

18

3.4. Homotopy colimit

A

B

C

Figure 3.2.: The mapping telescope of A → B → C.

The purpose of this example is to show how a non-degenerate 2-simplex,
like A(A→B→C), is treated by the homotopy colimit.

Taking the lead from Example 3.4.1 we know that each of the non-
degenerate 1-simplices

A(A→B) ×∆[1], A(B→C) ×∆[1] and A(
A

g◦ f−−→C
)×∆[1], (3.3)

contribute a cylinder to the homotopy colimit, and that they are attached
like in Figure 3.1.

The homotopy is given by homotopy deforming the cylinder AA→C ×∆1

along AA→B→C ×∆2 and leaving the rest of the space W in place. We call
this space W. To complete the homotopy colimit we must attach the space
AA→B→C ×∆2 to W as specified by the 2-face maps. This results in the
sides of AA→B→C ×∆2 being glued onto the cylinders AA→C ×∆1, AA→B×∆1

and f (A)×∆1 respectively. This is the space hocolim(A → B → C) and it
is homotopy equivalent to the regular mapping telescope of A → B → C,
pictured in Figure 3.2.

Example 3.4.4. We saw in Example 3.4.3 that we got a truncated mapping
telescope from the sequence of maps A → B → C. In the same way we get

19

3. Homotopy colimits

the regular mapping telescope by taking the homotopy colimit of the infinite
chain

. . .→ A i−1 → A i → A i+1 →

This space looks like an infinite extension of the space shown in Figure 3.2.

Our most important example will be a homotopy colimit taken of an open
cover of a topological space, but we will have to wait until the end of the
next chapter before studying it, because we need to discuss open covers first.

20

4. Covers of topological spaces

We define a category TopCov of topological spaces with associated coverings
and then see how some common constructions using open covers are in fact
functors. Covers of topological spaces is the main ingredient of the Mapper
algorithm presented in Part II, so these preliminary remarks will be of great
importance there. In particular, we want to formulate how the Mapper
algorithm is a functor so we construct TopCov to act as input category for
the Mapper-functor.

4.1. An open cover as a diagram of spaces

Let U = {Ua}a∈A be an open cover of the topological space X . For any subset
σ of A we define Uσ to be the intersection

⋂
a∈σUa. We define the category

XU associated to U whose objects are the non-empty Uσ for finite subsets σ
of A, and whose morphisms are the inclusions Uσ ,→Uσ′ for subsets σ and
σ′ of A such that σ′ ⊆σ. This turns XU into a category, because composition
of inclusions are inclusions and identity morphisms are inclusions. We will
often regard XU as a diagram of topological spaces, making XU an object of
the functor category TopCat.

An example of this construction is shown in Figure 4.1.

4.2. A category of covered topological spaces,
TopCov

We construct a category of openly covered spaces. The purpose of defining
this category is to have a device on which the assignment U → XU is a
functor. To have this functor established is important because it ultimately
leads to functoriality of the Mapper algorithm, and, as we will argue for
later, this means that Mapper is stable under certain changes of input data.

21

4. Covers of topological spaces

U1U2

(a) The cover U of X

U1

U1 ∩U2

U2

(b) The diagram XU

Figure 4.1.: Example of the construction XU for the space X =U1 ∪U2 and
cover U = {U1,U2}.

Let X and Y be topological spaces and let U and V be open covers of X
and Y respectively. A map of covers f : (X ,U) → (Y ,V) is a continuous
function f : X → Y such that for all U ∈ U there exists a V ∈ V such that
f (U) is contained in V . Composition of maps of covers f : (X ,U) → (Y ,V)
and g : (Y ,V)→ (Z,W) is defined by g◦ f : (X ,U)→ {Z,W } where g◦ f is the
normal composition of functions. We see that the composition g ◦ f is a map
of covers. The identity morphism id(X ,U) becomes the identity function on X .
Thus, we have a category of topological spaces and coverings and we denote
this category by TopCov.

Note. Our goal was to create a category on which the XU -construction
was a functor and we see in the next section that we with TopCov have
accomplished our goal. However, there are also other natural choices of
categories on which XU is a functor. For instance, we could define the
category TopCov′, which has the same objects as TopCov, but where the
morphisms f : (X ,U) → (Y ,V) are those continuous maps f : X → Y such
that for all V ∈ V we have f −1(V) ∈ U . Also on this category is XU a
functor, so we need to argue why we did not choose TopCov′ over TopCov.
We therefore present a use-case where a morphism which is not found in
TopCov′ naturally appears.

With the Mapper algorithm we want to study a cover U of a point cloud
X . The input of Mapper is the cover U of X , and if the cover U is too
granular, Mapper gives a too disconnected representation of X . We have
ways of obtaining coarser covers U ′ of X , that is, covers U ′ such that U

22

4.3. Nerve of a cover

refines U ′. For such covers, if ι : (X ,U) → (
X ,U ′) is the identity on the

underlying space X , then ι is a morphism of TopCov, but not of TopCov′.
Therefore, with TopCov as input category, we could talk of an induced map
Mapper (ι) : Mapper (U)→Mapper

(
U ′), but with TopCov′ not.

This argument is not the final say in the matter — there might be another
better suited category TopCov′′ — but for our purposes TopCov suffices.

Functoriality of XU

We now show how to make the assignment (X ,U)→ XU into a functor from
TopCov to TopCat.

Let f : (X ,U)→ (Y ,V) be a map of covers for the covers U = {Ua}a∈A and
V = {Vb}b∈B of X and Y respectively. For a subset σ of A such that Uσ is
non-empty we denote by f̂ (σ) the set of all b ∈ B such that f (Uσ)⊆Vb. We
have the inclusion f (Uσ) ⊆ Vf̂ (σ). The map of covers f induces a natural
transformation between the diagrams XU and YV which takes the node
Uσ of XU to the node Vf̂ (σ) of YV and takes the inclusion Uσ ,→Uσ′ to the
inclusion Vf̂ (σ) ,→ Vf̂ (σ′). It is easily checked that this is indeed a natural
transformation.

It is easily checked that identity morphisms in TopCov induce identity
morphisms of TopCat and that compositions is preserved. Thus, we have a
covariant functor D : TopCov→TopCat.

Continuous maps and TopCov

The category TopCov respects continuous functions in the following way:
Let f : X → Y be a map and let V = {Vb}b∈B be a cover of Y . The map f
and the open cover V define a cover f −1 (V)= { f −1 (Vb)}b∈B of X . This cover
is open since f is continuous and we say that f −1 (V) is the open cover
induced by f . We now get a map of covers f :

(
X , f −1 (V)

)→ (Y ,V), which
we say is the map of covers induced by f : X →Y and V .

4.3. Nerve of a cover

The nerve of a cover U = {Ua}a∈A is the abstract simplicial complex N(U)
with vertices A where a subset {a0,a1, . . . ,ak} of A span a k-simplex if
and only if

⋂k
i=0Uai is non-empty. We regard N (U) as a simplicial set

23

4. Covers of topological spaces

U1

U2 U3

N(U) N(XU)
1

2 3

1

2 3

1,2 1,3

2,3

1,2,3

Figure 4.2.: A cover U = {U1,U2,U3} and the realization of the two simplicial
sets N (U) and N (XU). The vertex labeled i corresponds to
Ui, vertex labeled i, j corresponds to Ui ∩U j and the vertex
i, j,k corresponds to Ui ∩U j ∩Uk. We see that N (XU) is the
barycentric subdivision of N (U).

with face maps di ({a0,a1, . . . ,ak})= {a0, . . . , âi, . . . ,ak} and degeneracy maps
si ({a0, . . . ,ai, . . . ,ak})= {a0, . . . ,ai,ai, . . . ,ak}. Note that we need to specify a
total order on each simplex σ ∈ A for these maps to be well-defined.

The nerve N is a functor TopCov→ sSet; that is, there is a map

N (f) : N(U)→ N(V)

given by the simplicial map induced by f̂ . This map sends the simplex of
N(U) spanned by S ⊆ A to the simplex of N(V) spanned by f̂ (S)⊆ B. It is
easily checked that N (f) is a map of simplicial sets, that is, it commutes
with face and degeneracy maps.

In Section 3.3 we defined a functor N on diagrams, also called a nerve.
We will now see that the nerve of the cover U is closely related to the nerve

24

4.4. Mayer-Vietoris blowup of a cover

0 1/2 1

(a) The unit interval

0 1/2 1/2 1

∆1 × {1/2}

(b) Blowup of the interval

Figure 4.3.: The unit interval covered by [0,1/2] (in red) and [1/2,1] (in
blue). In (b) the Mayer-Vietoris blowup of U is depicted. The
intersection of the two covering sets have been “blown up” by a
1-simplex.

of the diagram XU . Let X be a topological space and U = {Ua}a∈A an open
cover of X . The nerve N (U) has one 0-simplex for each open set in U ,
whereas N (XU) in addition has 0-simplices for each non-empty intersection
Ua1∩. . .∩Uak . It is not hard to convince oneself that all the extra n-simplices
added to N (XU) amounts to N (XU) being the barycentric subdivision of
N (U), as is hinted at in Figure 4.2. Therefore, the simplicial sets N (U) and
N (XU) have homotopic geometric realizations,

|N (U)| ' |N (XU)|.

4.4. Mayer-Vietoris blowup of a cover

The homotopy colimit of the diagram XU is called the Mayer-Vietoris
blowup of a cover U of X . The blowup of a cover will play a central role
when studying the Mapper algorithm in Chapter 9, so we present some
examples to gain a feel for how the blowup-construction works.

Example 4.4.1. Let U be the cover
{[

0, 1
2
]
,
[1

2 ,1
]}

of the unit interval. The
diagram XU is the “pre-pushout” diagram

[0,1/2]←- {1/2} ,→ [1/2,1]

and we have already calculated the homotopy colimit of such diagrams in
Example 3.4.1. We show the result in Figure 4.3.

Example 4.4.2. Let X be an interval and U a cover of X consisting of two
subintervals U1 and U2 which overlap in more than their two endpoints.

25

4. Covers of topological spaces

L1

L2

(a) The inter-
val X .

L1

L2

∆1 ×L1,2

(b) The MV-blowup hocolim(U)

Figure 4.4.: Illustration of Example 4.4.3. The circle X , the cover U of X
consisting of the two half-circles U1 and U2 and the Mayer-
Vietoris blowup of U , that is, hocolim(XU).

The diagram XU is once again a “pre-pushout” diagram. We show both the
space X and the blowup of U in Figure 4.4.

Example 4.4.3. Let X be a circle and U a cover of X consisting of two
half-circles U1 and U2 which overlap in their two endpoints. The diagram
XU is also this time a “pre-pushout” diagram. We show both the space X
and the blowup of U in Figure 4.5.

Example 4.4.4. Let the space X be the three lines L1,L2,L3 shown in
Figure 4.6a and let U be the cover {L1,L2,L3} of X . The diagram XU takes
the form

L1

L1,2

L1,2,3 L1,3 L2

L2,3

L3

26

4.4. Mayer-Vietoris blowup of a cover

U1U2

(a) The circle X .

U1U2 ∆1 ×U1,2

(b) The MV-blowup hocolim(U)

Figure 4.5.: Illustration of Example 4.4.3. The circle X , the cover U of X
consisting of the two half-circles U1 and U2 and the Mayer-
Vietoris blowup of U , that is, hocolim(XU).

where the spaces L1,2, L2,3 and L1,2,3 all consist of just the middle point of
the space X .

We calculate hocolim(XU). After throwing away all degeneracies we are
left with the following pieces, which we need to glue together:

L1,2,3 ×∆2 ∐
L1,2 ×∆1 ∐

L2,3 ×∆1 ∐
L1,3 ×∆1 ∐

L1
∐

L2
∐

L3.

The edges of L1, L2 and L3 form the boundary of the 1-simplices L i, j ×∆1,
and the three 1-simplices form the boundary of the 2-simplex. The result of
this gluing is shown in Figure 4.6b.

In all of the above examples the homotopy type of X and hocolim(XU) is
the same. This holds in general and will be an important fact in Chapter 9
where we also construct the homotopy equivalence X ' hocolim(XU).

27

4. Covers of topological spaces

L1

L2

L3

(a) The space X .

∆2 ×L1,2,3

(b) The MV-blowup, hocolim
(
XU

)
.

Figure 4.6.: Illustration of Example 4.4.4. The star-shaped space X , the
cover U of X consisting of the three lines L1 (red), L2 (blue)
and L3 (green), and the Mayer-Vietoris blowup of U , that is,
hocolim(XU).

28

5. Clustering

The goal of clustering is to partition data into blocks such that “similar” data
is found in the same block.

Example 5.0.5. We present one real-life example of a data set where a
cluster analysis seems appropriate. The data set consists of 6 measurements
of 200 Swiss bank notes (width of bank note, height on the left side, height
on the right side, length of lower margin, upper margin, and inner diagonal),
100 of which are forged and 100 of which are authentic. A successful
clustering of these data would cleanly partition the 200 bank notes in two
blocks, one block consisting of authentic bills and one block consisting of
forged bills.

It is, at the outset, not clear why a chapter on statistical cluster analysis
belongs to a master’s thesis on topology. First of all, we need a clustering
algorithm as part of the Mapper algorithm of Part II. Secondly, this master’s
thesis provides two different topological algorithms for data analysis and it is
important to determine how these methods compare to other already existing
methods, and the only statistical methods which are readily comparable to
ours are clustering methods.

We first present clustering methods from the classical statistical point of
view before introducing the newer notion of functorial clustering.

5.1. Classic cluster analysis

It is a striking feature of the statistical subfield of cluster analysis that
almost no theoretical justification for the different clustering methods exists
[12]. This might not have been such a big problem if we had good exper-
imental measures of a clustering algorithm’s effectiveness, but no, even
measuring how good a clustering is, is a difficult task [12]. A practitioner
is therefore urged to “use more than one clustering algorithm” and these

29

5. Clustering

should be “rerun multiple times to find the best possible solution and to test
for stability” [6]. That no theoretically justified scheme exists for how one
are to go about with this stability testing [2] is peculiar; each practitioner
finds his own ad-hoc method for the case at hand. These concerns are re-
flected in how clustering methods are used; clustering is considered a tool
in exploratory analysis of the data, that is, the act of getting to know the
data on a more intuitive level. Proper hypothesis testing and similar statis-
tical tools might then be used afterwards, on similar but distinct data sets,
perhaps on the basis of hypotheses made during the exploratory analysis.

In the following we present some common clustering algorithms to give
the reader a feel for the subject and how non-topologists have thought about
the clustering problem. There are hundreds of clustering algorithms on
the market and since it is impossible to present them all we have chosen
three algorithms which are both frequently used and which we feel are
representative of a great many other algorithms. The hierarchical clustering
algorithms represent the most classic algorithms, the Dbscan algorithm
represents density-based clustering, and k-means clustering represents
algorithms seeking to find the optimizer of some some real-valued function
defined on the set of partitions of the point cloud.

Hierarchical clustering

Hierarchical clustering algorithms construct many clusters which are or-
dered in a hierarchy with the most granular clustering on the bottom and
the clustering consisting of only a single big lump on top. These clustering
algorithms come in two types, the divisive, which start with the single
big lump cluster which is then iteratively divided, and the agglomerative,
which start with lots of one-point clusters which are then iteratively merged.
We will only discuss agglomerative clustering techniques because true divi-
sive algorithms are O (2n), which is too slow for practical purposes, whereas
some agglomerative algorithms can be made to run in O

(
n2)

time.
The hierarchical clustering methods are built around linkage functions

which measures the distance between blocks of a partition of a metric space,
that is, if (M,d) is a metric space and 2M is the power set of M, then a
linkage function is a function 2M ×2M →R+.

Such linkage functions give rise to a family of equivalence relations ∼l,ε
on any partition P of M, and we will now construct these ∼l,ε. Let B and B′

30

5.1. Classic cluster analysis

Figure 5.1.: A discrete metric space partitioned in two. The points of one
partition are filled and the points of the other partition are not.
The lines mark the distance between the partitions as measured
by the single-linkage function (shortest), the average-linkage
function, and the complete-linkage function (longest).

be two blocks of P, and let ε be a positive real number. The blocks B and B′

are equivalent with respect to ∼l,ε if and only if there in P exists a chain of
blocks B1, . . . ,Bn such that B1 = B, Bn = B′ and l (Bi,Bi+1)≤ ε for all the Bi.

We now describe the iterative scheme which defines the agglomerative
methods for any finite metric space M = {x0, . . . , xn} and any linkage function
l. The output of the procedure is a sequence of coarser and coarser partitions
P0,P1, . . . ,Pn and a corresponding sequence of real numbers r0 < r1 < . . .< rn.
Let P0 = {{x0} , . . . , {xn}} be the “discrete” partition of M and let r0 be zero.
Iteratively define r i+1 to be min

{
l
(
B,B′) ∣∣ B,B′ ∈ Pi and B 6= B′}, and define

Pi+1 to be Pi
/∼l,r i+1 . That is, Pi+1 is formed by merging blocks of Pi which

lie r i+1 away from each other as measured by l.
Common choices for the linkage functions l are

• single linkage: l
(
B,B′)=minx∈B miny∈B′ {d (x, y)},

• complete linkage: l
(
B,B′)=maxx∈B maxy∈B′ {d (x, y)},

• average linkage: l
(
B,B′)=∑

x∈B
∑

y∈B′
d(x,y)
#B#B′ , where #B denotes the

number of points in the block B,

which give rise to the algorithms single linkage clustering, complete

31

5. Clustering

14 22 9 13 27 3 10 5 7 12 26 18 21 6 8 16 25 30 29 19 20 4 11 17 24 28 1 15 23 2

0.4

0.6

0.8

1

1.2

1.4

1.6

Labels of points of the point cloud

Va
lu

e
of

lin
ka

ge
fu

nc
ti

on

Figure 5.2.: The output of hierarchical clustering algorithms are visualized
by dendrograms, as the one shown in this figure. The horizontal
line stretching from the mark i to j at height, say r, show that
the points xi and x j are merged when the linkage function takes
the value r. In this particular example it seems clear that the
rightmost four points (x1, x15, x23 and x2) belong to their own
cluster and that the rest of the points are more or less clustered
together.

linkage clustering and average linkage clustering respectively. See
Figure 5.1 for a pictorial explanation of the different linkage functions.

Note that we do not get only one clustering of our point cloud M from
hierarchical clustering algorithms, we get plenty, namely P0, . . . ,Pn. Statis-
ticians have tried to answer the question of which of these clusterings is the
best [?]. Instead of trying to answer this question, we think of all these
P0, . . . ,Pn as informative and “correct”, but each at a different scale, the
partition P0 viewing the space at its most granular, Pn viewing the space at
its lumpiest, and the rest of the Pi containing distinctions in-between these
extremes.

All this information can be visualized by a simple device called a den-
drogram seen in Figure 5.2. In a dendrogram the vertical axis represent
R+ and on this axis the different values r0, . . . , rn have a special meaning
since they denote the “time” at which blocks merge. On the horizontal axis

32

5.1. Classic cluster analysis

Figure 5.3.: A point cloud which is hard to cluster because of a bridge of
connecting points.

the different points x1, . . . , xn are laid out, and if xi and x j merge at time rk,
then this is marked by a horizontal line connecting xi and x j at height rk. A
picture says more than a thousand words, see Figure 5.2.

DBSCAN

The Dbscan algorithm (Density-Based Spatial Clustering of Applications
with Noise) is a clustering algorithm which uses a measure of density to
improve upon linkage clustering. Consider the point cloud in Figure 5.3. It
is hard to say what the correct number of clusters in this point cloud is, but
it is either one or two. Unfortunately, the only clear answer we will get with
linkage clustering is “one”, because the two clusters are linked by a thin
line of points. The Dbscan algorithm would, at least ideally, give the answer
“two” because it does not connect points unless the points are sufficiently
“dense”.

To define the Dbscan clustering algorithm we need an equivalence rela-
tion, which we build by first defining two intermediate relations. Let X be a
point cloud, m a natural number and ε a positive real number. We define
the function cε : X →N to be the function assigning each point x ∈ X to the
number of points of X within a distance ε of x. We say that x is directly
density-reachable (with respect to m and ε) from y if d (x, y) ≤ ε and
cε (y) ≥ m. This is a reflexive relation on X . We say that x is density-

33

5. Clustering

Figure 5.4.: The output of the DBSCAN algorithm used on the point cloud.
The asterisks are one cluster and the squares another. The
circles are one-point clusters.

reachable from y if there is a sequence of points p1, . . . , pn such that y= p1,
x = pn and pi+1 is directly density-reachable from pi. This is a reflexive and
transitive relation on X . Finally, we say that x is density-connected to
y if there is a point z such that both x and y are density-reachable from z.
Density-connectedness is an equivalence relation on X . The Dbscan cluster-
ing of X is then defined to be X quotiented out by the density-connectedness
equivalence relation.

A characteristic property of the Dbscan clustering is that it returns lots
of clusters, most of which contain only a single element. This is so because
points which has got no ε-neighbors x with cε(x)≥ m belong to a single-point
cluster. This can be considered a way of dealing with noisy data: linkage
clustering needs only one point to connect two clusters, whereas Dbscan
would need most likely need several.

Note. DBSCAN can easily be extended to give hierarchical output, simply
note that for increasing values of ε we get coarser and coarser partitions.
This information can then be gathered in a dendrogram, exactly as for
linkage clusterings.

34

5.1. Classic cluster analysis

k-means clustering

We now restrict our attention to Euclidean space. Let k be some fixed
positive integer, let X a point cloud in Rn and let Pk(X) be the family
of partitions which partition X into precisely k blocks. The idea behind
k-means clustering is to find the partition in Pk(X) which minimizes the
squared distance to block centers, that is, it is the partition P ∈Pk (X) which
minimizes the following expression∑

B∈P

∑
x∈B

|x−µB|2 (5.1)

where µB is the centroid of the points in block B.
Note. The centroid of a set of points is normally defined only for points in
Euclidean space, but we have various ways of simulating centroids also for
general metric spaces, and these method extend k-means clustering also to
general metric spaces.

The k-means clustering method has some obvious drawbacks, the biggest
of them being that you have to assign the number of clusters k yourself. To
decide upon a proper value of k the practitioner is urged to run the algorithm
several times for different values of k and either see which answer he likes
best or to use one of the many measures for the “goodness” of the clustering.
Also, k-means clustering favors clusters which are approximately spherical,
since clusters which is very much stretched in some direction give a higher
value in expression (5.1).

We need a way to calculate the k-means clustering. Since there are
prohibitively many partitions in Pk (X), we have no way of actually finding
the true solution to the k-means clustering, but efficient approximate solvers
exist, the following being so ubiquitous that it is simply called the k-means
clustering algorithm:

The algorithm starts by randomly guessing k cluster centers c0
1, . . . , c0

k ∈Rn

and then iteratively improving these cluster centers until they in some sense
correspond to “real” cluster centers. Let ci

1, . . . , ci
k be the cluster centers at

the ith timestep and let V i
1 , . . . ,V i

k ⊆ Rn be the corresponding Voronoi cells
(for their definition, see Section ??). We then define ci+1

l to be the centroid
of the points in X

⋂
V i

l , that is,

ci+1
l = 1

#
(
X

⋂
V i

l

) ∑
x∈V i

l

x,

35

5. Clustering

(a) Step 1 (b) Step 2 (c) Step 3

Figure 5.5.: The same point cloud as in Figure 5.1, but now used to illus-
trate the k-means algorithm for k = 3. The crosses mark the
cluster centroids and the gray lines are the boundaries of the
corresponding Voronoi cells. The algorithm converges after only
three steps.

where #
(
X

⋂
V i

l

)
denote the cardinality of the set X

⋂
V i

l . The algorithm
converges, and most often does so very quickly, but the worst case running
time is exponential.

The algorithm uses random seeds, so running the algorithm several times
might be necessary in order to remove random deviations in the solution.

5.2. Some useful categories

An output category for clustering functors

We want a clustering of a point cloud X to contain multi-scale information,
so we construct a categorical device to contain such information.

Let X be a finite set and let P and Q be two partitions of X . We say that
P refines Q if there for each block p of P is a block q of Q such that p is a
subset of q. By P (X) we will mean the category whose objects are all the
different partitions of X and where we have an arrow P →Q when P refines
Q. It is easy to check that P (X) then becomes a well-defined category, the
category of partitions of X .

We define a persistent set to be a pair (X ,θ) where X is a finite set and θ
is an R+-persistence object in P (X) with the additional property that for all
s in R+ there is a real and positive ε such that θ(s)= θ(s′) for any s′ ∈ [s, s+ε].

36

5.2. Some useful categories

The interpretation is that θ(s) is a clustering of X at scale s, and that this
clustering is stable under slight increases of scale.

Let (X ,θ) and (Y ,η) be persistent sets and f a map X → Y . Note that
a partition P = {Pi}i∈A of the finite set Y induces a partition

{
f −1(Pi)

}
i∈A

of X , and we denote this partition by f −1(P). We say that a function f is
persistence preserving if θ(s) refines f −1 (

η(s)
)

for any scale s.
We can now readily check that we have a category of persistent sets

and persistence preserving maps, which we will denote by P ; indeed,
the identity morphisms are persistence preserving and the composition of
two persistence preserving maps is persistence preserving.

Metric space categories

Our input category for clustering functors should be a category of (finite)
metric spaces. In any category of metric spaces it is obvious what the objects
should be (they should be metric spaces), but we have many different notions
of morphisms to choose between.

Let (M,dM) and (N,dN) be metric spaces. Isometries are functions
f : (M,dM) → (N,dN) such that dM (x, y) = dN (f (x), f (y)) for all x and y in
M. We denote the category of metric spaces with isometries as morphisms
by M iso.

Weak contractions (or distance non-increasing maps) are functions
f : (M,dM) → (N,dN) such that dM(x, y) ≤ dN (f (x), f (y)) for all x and y in
M. Note that isomorphisms in this category are bound to be isometries. We
denote the category of metric spaces with weak contractions as morphisms
by M gen. (We choose the notation M gen only to comply with the notation in
[5]; we do not know what “gen” stands for or why this name is chosen.)

Monic maps are weak contractions which are inclusions on the underly-
ing sets, and we denote the category of metric spaces and monic maps with
M mon.

These categories are related by the following chain of faithful (but not
full) inclusions of categories

M iso ⊆M mon ⊆M gen.

Note. One obvious choice of morphisms for a category M of metric spaces is
continuous functions, but since we are dealing with discrete metric spaces
all functions are continuous and it is too strict to be a functor from such a

37

5. Clustering

category. For example, we should not expect to find a clustering functor C in-
ducing a function C(f) between clusters for a function f which redistributes
the points of our point cloud wildly. We therefore need restrictions on our
choice of morphisms and this disqualifies continuous functions.

5.3. Functorial clustering

We are now ready to define what we mean by functorial clustering. Let
M be either M iso, M gen or M mon. A functorial hierarchical clustering
algorithm is a covariant functor

M →P .

This definition might seem to restrictive because there are so many clus-
tering algorithms which do not output the kind of hierarchical structure
present in persistent sets, but these correspond to the persistent sets with
trivial hierarchical structure. More formally, we say that the persistent set
(X ,θ) is constant if θ(s)= θ(s′) for all scales s and s′. The constant persis-
tent sets form their own category C and we say that a functorial clustering
algorithm M → P is a standard functorial clustering algorithm if it
factors through the inclusion C ,→P :

M P

C
.

Equivalently, we can define a standard functorial clustering algorithm to be
a covariant functor M →C . This being said, in this thesis we will mostly be
discussing hierarchical clustering algorithms.

Note. A functorial clustering algorithm on M gen is also a functorial clus-
tering algorithm on M mon, and a functorial clustering algorithm on M mon

is also a functorial clustering algorithm on M iso, that is, as we allow more
morphisms into the category we disallow some clustering algorithms on the
category. To see this, note that there are many more morphisms in M gen

than in M mon and M iso,

homM iso(X ,Y)⊆ homM mon(X ,Y)⊆ homM gen(X ,Y),

38

5.3. Functorial clustering

so if a clustering algorithm C is functorial on all the morphisms in M gen,
then C is automatically functorial on the morphisms on M mon and M iso.

We now redefine the clustering algorithms of Section 5.1 in terms of
the categories of Section 5.2. That is, we will present how a hierarchical
clustering algorithm in a natural way gives us an assignment of objects and
morphisms M →P .

Let X be a point cloud. Recall that a hierarchical clustering of X is a
sequence of partitions P0, . . . ,Pn of X and a corresponding sequence of posi-
tive real numbers r0, . . . , rn. Define θX :R+ →P (X) to be the R+-persistence
object which assigns s to the partition Pi if r i ≤ s < r i+1. One way to think
of θX (s) is as the single linkage partition of X at scale s. We can now de-
fine a function from Ob(M) to Ob

(
P

)
by X 7→ (X ,θX) and a function from

homM (X ,Y) to homP (X) ((X ,θX), (Y ,θY)) by sending a morphism f : X →Y
to the morphism f̃ : (X ,θX) → (Y ,θY) whose action is to apply f on the
underlying set X of (X ,θX).

This procedure produces an assignment of objects and morphisms for both
the linkage algorithms and Dbscan, but we have not yet made the claim that
this assignment is a functor. It turns out that some clustering algorithms
are not functorial at all, that other clustering algorithms are functorial only
on some categories of metric spaces, and that some clustering algorithms
are functorial on all our categories of metric spaces. We will now describe
whether or not the linkage algorithms and Dbscan are functorial on M iso,
M mon and M gen, but first, we look at k-means clustering.

Example 5.3.1. The k-means clustering algorithm is not functorial in any
of the metric spaces categories since it is dependent on information not
contained in the metric. For instance, k-means clustering uses randomized
seeds and might converge only to a local optimum.

The rest of our algorithms are functorial with respect to M iso by the
following argument: since isometries preserve the metric space structure,
being functorial with respect to these maps only means that the cluster-
ing algorithm does not use any extraneous information when building the
clusters. Therefore, except for k-means clustering, all our algorithms are
M iso-functorial.

Proposition 5.3.1. Complete linkage and average linkage clustering are
not functorial on M mon (and therefore also not on M gen).

39

5. Clustering

Proof. We construct a counter-example showing that complete linkage clus-
tering and average linkage clustering are not functorial on M mon.

Let us call the persistent set built from complete linkage clustering ψX
and the resulting clustering algorithm C. Now consider the two graphs X =
{A,B,C} and Y = {

A′,B′,C′} shown in Figure 5.6 and the graph-morphism
f : X → Y defined by f (A) = A′, f (B) = B′ and f (C) = C′. It is clear how X
and Y can be regarded as metric spaces and f as a metric space morphism.
Directly below the graphs X and Y are the dendrograms given by the
complete linkage clustering ψX and ψY . For C to be functorial ψX (s) must
refine f −1 (

ψY (s)
)

for all s ∈ R+, but this is not the case because ψX (2) =
{{A} , {B,C}} and f −1 (

ψY (2)
)= {{A,C} , {B}}.

The function f also shows that average-linkage fails to be functorial, but
we do not provide the details.

From the counter-example in the proof we extract the following morale:
Let C be any hierarchical clustering algorithm on M iso. If there exists a
space X with points x, y ∈ X such that for a scale s the algorithm C clusters
x and y together, but which for a contraction f does not cluster f (x) and f (y)
together, then we can construct a counter-example as in the preceding proof.

Proposition 5.3.2. DBSCAN clustering is functorial on M mon.

Proof. It is quite easy to check that DBSCAN is functorial on M mon and the
argument is similar to the one found in the proof of Proposition 5.3.4.

Proposition 5.3.3. DBSCAN clustering is not functorial on M gen.

Proof. We give a counter-example showing that DBSCAN is not functorial
on M gen.

Consider the metric spaces X = {A,B,C} and Y = {
A′,B′} and the metric

space morphism f given by f (A) = A′, f (B) = B′ and f (C) = B′. We do
DBSCAN clustering based on the values m = 3 and ε= 1, that is, three points
are in the same cluster if they are within a distance 1 of each other. Hence,
Dbscan(X ,m,ε) = {{A,B,C}}, but Dbscan(Y ,m,ε) = {{

A′} ,
{
B′}} so we see

that Dbscan(X ,m,ε) does not refine f −1 (Dbscan(Y ,m,ε))= {{A} , {B,C}}.

We can extract the following morale from the counter-example in the proof
of Proposition 5.3.2: Density based clustering algorithms C can never be
functorial on M gen since the collapsing of points leads to a less dense metric

40

5.3. Functorial clustering

B

A

C B’

A’

C’
2

6
1000

2

6
1

f

...
1000

...
4
3
2
1

A C B

...
1000

...
4
3
2
1

A C B

Figure 5.6.: Counter-example showing that complete and average linkage
clustering are not functorial on M mon. The graphs are metric
spaces with distances given by the edge weights and f is a mor-
phism in M mon. Directly below are the dendrograms given by
complete linkage clustering. At height 2 the right dendrogram
does not refine the left one and this provides the counterexam-
ple.

41

5. Clustering

A

B

C

1
2

1
2

A′

B′

1
2

f

Figure 5.7.: Counter-example showing that Dbscan is not functorial on
M gen. The Dbscan clustering with parameters m = 3 and ε= 1
of the right metric space is

{{
A′} ,

{
B′}} and of the left metric

space is {{A} , {B} , {C}}.

space, and less dense metric spaces lead to a more granular clustering under
C.

We denote the assignment obtained from single linkage clustering by R.

Proposition 5.3.4. The single linkage clustering R : M gen → P is a
functor on M gen (and hence also on M mon and M iso).

Proof. We need to prove that R produces well-defined objects and well-
defined morphisms, and that the morphisms adhere to the composition rules
and the identity.

The object R(X) = θX is clearly a well-defined object in P since θX (s)
refines θX (s′) when s ≤ s′.

We will need the following observation: θX (s) is nothing more than X
/∼s

where the equivalence relation ∼s is such that two points x and x′ are equal
if and only if there is a chain of points x0, . . . , xk ∈ X such that x0 = x, xk = x′

and dX (xi, xi+1)≤ s.
To show that R(f) : R(X) →R(Y) is a morphism in P we need to show

that θX (s) refines f −1 (θY (s)) and for this to be true it suffices to show that
for a block {x1, . . . , xk} of θX (s) the points f (x1), . . . , f (xk) are contained in the
same block of θY (s). But since the points {x1, . . . , xk} are in the same block
they are equivalent under ∼s, and since f is a weak contraction, the points
f (x1), . . . , f (xk) are also equivalent under ∼s and hence lie in the same block.

42

5.3. Functorial clustering

That this assignment of morphisms is functorial follows immediately.

43

Part II.

Method

45

6. Mapper

The Mapper algorithm is a tool for analyzing high-dimensional data sets or
data sets in arbitrary metric spaces.

The algorithm has recently proved useful in applications; a new geneti-
cally distinct subspecies of breast cancer was identified using Mapper [14],
and folding pathways of proteins have been studied [18].

The inventors of the algorithm have started a firm, Ayasdi, and the
interested reader is urged to visit www.ayasdi.com to see how a group of
researchers at Stanford intend to sell topology on the private market.

We will first motivate and present the main ideas behind the algorithm
before giving details. Afterwards we connect these ideas with standard
topological machinery, functoriality and the homotopy colimit. The reader
only need to read through Chapter 7 before being able to understand some
of the content of the experiments in Part III, and it might then be beneficial
to read ahead some to get a feel for how Mapper is used before delving into
the theoretical considerations of Chapter 8.

There is really only one published article devoted to Mapper, “Topological
Methods for the Analysis of High Dimensional Data Sets and 3D Object
Recognition” by Gurjeet Singh, Facundo Mémoli and Gunnar Carlsson [17],
but Mapper is also briefly described in Carlsson’s survey article “Topology
and data” [3]. My addition to this literature is to write down an account of
how Mapper is a functor and of how Mapper relates to homotopy colimits.

6.1. Motivating example

A common way of studying a topological space X is to examine a continuous
mapping f : X → Z from X to some well-understood topological space Z.
Through characteristics of the space Z and the map f we hope to recover
information about X . This is indeed the strategy we are going to use now;
we want to obtain open covers of X by pulling back open covers of Z with f

47

6. Mapper

and see what information about X we recover from the nerve of these covers.
We will call the function f a filter function and the space Z together with
an open cover a parameter space.

We illustrate the process with an example. Let S1 be the 1-sphere realized
as the circle of radius 1 centered at the origin of R2, and let the parameter
space be the interval [−1,1]. We define the filter function f :S1 → [−1,1] to
be the function projecting S1 onto its y-coordinate. We choose an open cover
I of the parameter space consisting of the intervals

I1 = (0.33,1], I2 = [−1,−0.33), I3 = (−0.5,0.5).

This cover induces a cover U = f −1(I) of S1, consisting of the sets

U1 = f −1 (I1) , U2 = f −1 (I2) , U3 = f −1 (I3) .

The space S1, the cover U and the nerve N(U) is depicted below.

X U1 U2 U3 N(U)

Note that the nerve N (U) does not have the same homotopy type as S1, so,
in our attempt at approximating the space S1 with the nerve of an open
cover, we failed.

We can fix this discrepancy in homotopy type by defining a new cover
U π0 = {

U1,U2,U3,1,U3,2
}

where U3,1 and U3,2 denote the two connected
components of U3. (We choose the superscript π0 to remind us of connected
components.) The new cover is shown in the following picture.

X U1 U2 U3,1 U3,2 N(U π0)

Note that, this time, the homotopy type of N(U π0) and S1 is the same.

48

6.1. Motivating example

We have just gone through all the steps that constitute the Mapper
algorithm. In short, Mapper is nothing more than the observation that a
filter f : X → Z induces covers U whose nerve can be used to study X , but
with the important refinement that one first splits the open sets of U into
its connected components, thereby creating U π0 .

We will mostly be concerned with the analysis of point clouds, and for
point clouds the notion of a “connected component” should be replaced with
“cluster of points. That is, in order to apply Mapper to point cloud data you
must first obtain a cover U induced by some filter function. You then create
U π0 by clustering each set of the cover and then construct N (U π0) from
these clusters. The picture is completely analogous.

N(U π0)

We now turn to the formalization of this process.

49

7. Explicit description of Mapper

The Mapper algorithm comes in both a topological version and in a statistical
version. We saw both flavors in the last section. In the next two sections we
describe these two versions of Mapper and give examples of how they work.

7.1. The topological Mapper

Let X be a topological space, let Z with its open cover U = {Uα}α∈A be a
parameter space, and let f : X → Z be a filter function.

The filter f induces an open cover of X from U , as explained in Chapter 4.
We denote this induced cover on X by f −1(U) and its open sets by U ′

α. Each
of these U ′

α might consist of several connected components, even when all
the Uα consist of only one connected component. Let nα ∈N be the number
of connected components of U ′

α and let U ′
α,1, . . . ,U ′

α,nα
denote the connected

components of U ′
α. We then define the open cover f −1 (U)π0 to be{

U ′
α,i

∣∣∣ for all α ∈ A and i = 1, . . . ,nα
}

.

The nerve N
(
f −1 (U)π0

)
is the output of the Mapper algorithm and we

will say that N
(
f −1 (U)π0

)
is Mapper of X with filter f and cover U .

We write this as Mapper
(
f −1 (U)

)
.

Example 7.1.1. In the introduction we saw Mapper used on the circle S1.
Now, in the same vein, we study S2 realized as the 2-sphere of radius 1 in
R3 centered in the origin. Let f : S2 → [−1,1] be the projection onto one of
the axes and let U be the cover {[−1,−0.33), (−0.5,0.5), (0.33,1]} of [−1,1].
We see that the cover f −1(U) of S2 consists of the upper cap of S2, the
lower cap of S2 and a belt in the middle; and that Mapper

(
f −1(U)

)
is the

simplicial complex . So in this case, Mapper fails to preserve
the homotopy type of the space.

51

7. Explicit description of Mapper

Example 7.1.2. Recall the example given in Section 6.1 with X =S1, Z =
[−1,1], U = [−1,−0.33], [−0.5,0,5], [0.33,1] and f the projection onto the
y-axis. Mapper then produced a graph Γ which was homotopy equivalent to
S1. We now take X to be the torus T realized around the origin in R3, let f
still be the projection onto the y-axis, and take the same cover U of [−1,1].
A little thought shows that Mapper reproduces the same graph Γ. In fact,
the projection down to any axis with similar covers will reproduce the graph
Γ or a graph homotopy equivalent to Γ.

Thus Mapper once again fails to recover the homotopy type of the space.

Example 7.1.3. Let X be any finite metric space and let n be the number
of points of X . No matter what filter f or parameter space (X ,U) we choose,
the output of the topological Mapper will have n connected components and
be totally disconnected. Mapper produces this output because the connected
components of any set U ⊆ X are the points of U itself, therefore U π0 will
be a trivial cover for all covers U of X .

None of these examples are especially interesting, after all, we have much
better methods for studying general topological spaces, but the examples
serve to illustrate how the method works for the case we do not understand
so well, the point cloud case.

7.2. The statistical Mapper

The statistical Mapper is very much analogous to the topological Mapper,
the only difference being that, in the statistical Mapper, the notion of a
connected component is replaced by the notion of a cluster. These notions
are related in the following way; the connected components of a topologi-
cal space X is a partitioning of X , and a clustering of a point cloud Y is
a partitioning of Y , such that, had the point cloud Y been sampled from
the topological space X , the clustering of Y would have corresponded to
the different connected components of X . Even though the statistical and
topological Mapper in this way are very similar, we choose to spell out the
statistical Mapper too. At this stage it does not matter exactly which clus-
tering algorithm we choose, so simply assume that we have some standard
clustering algorithm, and call it C.

52

7.3. Filters and parameter spaces

Let X be a finite metric space, let Z be a topological space and let f : X → Z
be a function. A cover U = {Uα}α∈A of Z induces a cover f −1(U) of X and
we denote the sets of f −1(U) by U ′

α. Each U ′
α consists of many connected

components, in fact, each point of U ′
α is itself a connected component. Thus,

partitioning U ′
α into its connected components, as we would have done with

the topological Mapper, will not help us any further, so at this point we turn
to partitioning by clustering. The clustering algorithm C partitions U ′

α in,
say, nα sets, which we denote by U ′

α,1, . . . ,U ′
α,nα

. Then we define the cover
f −1 (U)C of X to be{

U ′
α,i

∣∣∣ for all α ∈ A and i = 1, . . . ,nα
}

.

The nerve N
(
f −1 (U)C

)
is the output of the statistical Mapper algorithm

and we will say that N
(
f −1 (U)C

)
is Mapper of X with filter f , cover U

and clustering C. We write this as Mapper
(
f −1 (U) ,C

)
.

7.3. Filters and parameter spaces

We describe some filter-functions and the properties we expect them to have
in applications.

Eccentricity

The eccentricity of a point x in a point cloud X is a measure of how close the
point X lies to the “center” of the point cloud. Points lying far away from
the center get high values of eccentricity and vice versa. Point clouds do
not come with a predefined center, so we have to do with an approximate
measure. We define the nth eccentricity of the point x in X to be

ecc n (x)=
(∑

y∈X
d (x, y)n

)1/n

,

where d : X × X →R is the metric of the point cloud X .

Density

The density of a point x of a point cloud X is a measure of how close x are to
surrounding points. Points which lie far away from their closest neighbors

53

7. Explicit description of Mapper

get low density values and vice versa. There are many ways of measuring
density, and the interested reader will find plenty in an appropriate book or
survey article, but we shall describe only one, since density estimation plays
only a very minor role in this document.

The kth nearest neighbor density of a point x of X is

density k (x)= k
|X |dk (x)

where |X | is the number of points in X and dk : X →R is the distance to the
kth nearest neighbor of x.

Mixed filters

Although we have presented only two filter functions (and the original article
[17] there was just one more, the graph Laplacian) we can create some more
through combinations of these.

One way of combining filters is with the tuple (ecc ,density) : X → R2

defined as (ecc ,density) (x) = (ecc (x),density (x)). This is a more sensitive
filter than either ecc or density alone, since points which have the same
eccentricity can have different density and conversely.

Another way is with the ordinary arithmetic operations, one can for ex-
ample get the filter f+ : X → R defined as f+(x) = ecc (x)+density (x), and
similarly for −, · and ÷. With these one can filter on the different combina-
tions of high/low density and high/low eccentricity.

We now turn to some parameter spaces. We restrict ourselves to Rn and
compact subsets Rn, although any topological space X for which we have
some cover U can be used as a parameter space.

A family of covers of an interval [a,b]

We now describe a very useful class of covers of the closed interval [a,b]⊆R.
These covers are made from n intervals of equal length l = b−a

n , where p
percent of an interval overlaps with the subsequent interval. We call this
cover U (n, p).

Example 7.3.1. For the choice of parameters [a,b]= [0,1], n = 2 and p = 1
2

we get the cover {
[0,

2
3

), (
1
3

,1]
}

.

54

7.3. Filters and parameter spaces

The length l of each interval is 2
3 and the length of the overlap is 1

3 , such
that p = 1

2 is the overlap percent, exactly as wanted.

We explain how this cover is used in applications: Choose a filter function
f : X →R on your point cloud X and calculate the filter value of all points
x ∈ X . Set a to be the minimum filter value and set b to be the maximum
filter value. Choose different values for n and p, create the associated cover
U (n, p) of [a,b] and examine the Mapper output,

Mapper
(
f −1 (U (n, p))

)
.

If the Mapper output is too granular or too lumpy, repeat the process for
other choices of p and n. Lower values of p make for less overlapping
covering sets and hence a less connected Mapper output, while lower values
of n make for fewer and bigger covering sets and hence fewer nodes in the
Mapper output.

We can describe a better way of choosing parameters p and n after having
proved that Mapper is a functor, as functoriality opens up for the use of the
ideas of persistence.

A family of covers of n-orthotopes

We have a similar class of covers of
∏N

i=1[ai,bi]⊆RN as we had for [a,b]⊂R.
For i = 1, . . . , N let U i = {

U i
1, . . . ,U i

ni

}
be a cover of [ai,bi] consisting of ni

intervals of the kind described in the previous subsection. We define a cover
of

∏N
i=1[ai,bi] to be{∏

U i
α×U j

β

∣∣ for all i, j = 1, . . . , N, with i 6= j and α= 1, . . . ,ni and β= 1, . . . ,n j

}

55

8. Categorical description of
Mapper

We now want to describe Mapper as an algorithm on diagrams XU . This
description of Mapper makes it easier to formulate and to prove various
properties of the algorithm.

8.1. The topological Mapper

Mapper consists of two “parts”; splitting a cover into connected components
and taking the nerve. We know how to take the nerve of a diagram, so the
only part we need to describe is how to mirror on diagrams XU the process
of going from U to U π0 . That is, we now describe a new diagram π0 (XU)
which corresponds to U π0 . This assignment π0 (−) works on any object of the
functor category TopCat, so we choose to formulate π0 on general diagrams
and not just on diagrams of the form XU for a space X and cover U .

Let D : A → Top be an object of TopCat. We now describe the diagram
π0 (D). The process is illustrated in Figure 8.1. Let Dα be a space of the
diagram D and denote the connected components of Dα by Dα,i where i
is an element of the index set Iα. We define a new diagram π0 (D) : A′ →
Top, where A′ is a partially ordered set with elements (α, i) for α ∈ A and
i ∈ Iα and where we have an A′-morphism (α, i) ≤ (

β, j
)

if we have a map
fα : Dα→ Dβ in D satisfying fα

(
Dα,i

)⊆ Dβ, j. We then define the component
of the natural transformation f at (α, i), the map fα,i : Dα,i → Dβ, j, to be the
restriction of fα to Dα,i.

Let U be a cover of the topological space X . We now define Mapper (U) to
be the composition

|−|◦N ◦π0 ◦D (U) ,

where we remember from Section 4.2 that D was the functor assigning U to
XU .

57

8. Categorical description of Mapper

X U1 U2 U1,2

(a) Space X and cover U = {U1,U2} and intersection U1,2

U1

U1,2

U2

(b) The diagram XU and
its nerve

U1

U
′
1,2 U

′′
1,2

U2

(c) The diagram π0
(
XU

)
and its nerve

Figure 8.1.: A space X , a cover U = {U1,U2} and the diagrams XU and
π0 (XU). In the diagram π0 (XU) the intersection U1,2 has been
split into its connected components U

′
1,2 and U

′′
1,2 and the appro-

priate inclusion morphisms have been added.

8.2. The statistical Mapper

Let M be any of the metric space categories M iso, M mon or M gen and let C
be any standard (not necessarily functorial) clustering algorithm on M .

In the last subsection we built a diagram π0 (D) from some diagram D of
topological spaces. In a completely analogous fashion, we now construct the
diagram C (D) from some diagram D of finite spaces of M .

We define the action of C on an object D : A → Top of M Cat. Denote by
Dα,i the different clusters of C (Dα) where i is an element of an index set Iα.
We define the new diagram C (D) : A′ →M where A′ is a partially ordered
set with with elements (α, i) for α ∈ A and i ∈ Iα and where we have an
A′-morphism (α, i) ≤ (

β, j
)

if we have a map f : Dα → Dβ in D satisfying

58

8.3. Functoriality

f
(
Dα,i

)⊆ Dβ, j. We then define the component of f at (α, i), fα,i : Dα,i → Dβ, j,
to be the restriction of fα to Dα,i.

Let U be a cover of a finite metric space M. We define Mapper (U ,C) to
be the composition

|−|◦N ◦C◦D (M,U) .

8.3. Functoriality of Mapper

As we will show in this section, both the statistical and topological Mapper
algorithms are functors. This functoriality is now quite immediate and
might seem obvious, but we believe that this apparent simplicity is due to
our choice of background material and the way we have defined Mapper in
Chapter 8, which is different from the standard way presented in [17] and
[4] and Chapter 7. At least, to the best of the author’s knowledge, there
is no mention in the literature of Mapper being a functor and none of the
immediate ideas following from functoriality has so far been exploited.

Functoriality of the topological Mapper

To prove that the topological Mapper is a functor we extend the assignment
π0, which so far is an assignment on only the objects of TopCat, to also be
an assignment on morphisms of TopCat. When we have proved that π0 is a
functor we see that Mapper is a functor because Mapper is, by the definition
given in Chapter 8, defined as the composition

TopCov D−→TopCat π0−→TopCat N−→ sSet |−|−−→Top,

and all arrows in this chain are functors.
We now define π0 on TopCat-morphisms. Let f : D → E be a map of dia-

grams and let the index sets of π0 (D) and π0 (E) be A′ and B′ respectively.
We define the index map f̂ : A′ → B′ to be the function mapping (α, i) ∈ A′

to the
(
β, j

) ∈ B′ such that fα
(
Dα,i

)⊆ Eβ, j. For all (α, i) such an index
(
β, j

)
both exists and is unique because continuous functions map a connected
component of the domain to a unique connect of the codomain and fα is con-
tinuous. The definition of the map of diagrams π0 (f) can now be succinctly
stated; it is the map π0 (f) whose component at Dα,i is the map

π0 (f)α,i : Dα,i → E f̂ (α,i)

59

8. Categorical description of Mapper

defined as the restriction of fα to Dα,i.
This assignment of objects and morphisms clearly preserves compositions

and identity morphisms, so π0 is a functor TopCat →TopCat and we see that
it is covariant.

Functoriality of the statistical Mapper

We proceed in a completely analogous fashion with the statistical Mapper,
that is, we establish the following composition of functors

MCov D−→M Cat C−→M Cat N−→ sSet |−|−−→Top.

Let M be any of the categories M gen, M mon or M iso and let C : M →C be
a constant and functorial clustering algorithm.

We define MCov to be the following category of covered metric spaces:
An object of MCov is a pair (M,U) where M is an object of M and U is an
open cover of M. A morphism f : (M,U)→ (N,V) is an M -morphism such
that there for every U of U is a V of V satisfying f (U)⊆V .

We now construct a functor D : MCov→M Cat which is completely anal-
ogous to D : TopCov → TopCat, that is, for an object (M,U) the diagram
D (M,U) consists of all non-empty intersections Uσ of members of U and
of the corresponding inclusion morphisms. (And, of course, all the metric
spaces Uσ of D (M) are equipped with the submetric of M.)

In the last subsection we saw how to get a functor π0 on diagrams of
topological spaces. In this section we see how to get a functor C on diagrams
of metric spaces.

We now define C on M Cat-morphisms: Let f : D → E be a map of dia-
grams and let the index sets of C (D) and C (E) be A′ and B′ respectively. We
define the index map f̂ : A′ → B′ to be the function which maps (α, i) ∈ A′ to
the index

(
β, j

) ∈ B′ satisfying fα
(
Dα,i

) ⊆ Eβ, j. For all (α, i) such an index(
β, j

)
both exists and is unique because C (Dα) refines f −1

α (C (Eα)). The defi-
nition of the map of diagrams C (f) can now be succinctly stated; it is the
map C (f) whose component at (α, i) is the map

C (f)α,i : Dα,i → E f̂ (α,i)

defined as the restriction fα to Dα,i.

60

8.3. Functoriality

It is easy to see that C preserves identities and compositions, so C can be
regarded as a functor M Cat →M Cat and we see that it is covariant.

In Part III we will have the opportunity to see how one might use the
functoriality of Mapper.

61

9. Relation to homotopy colimits
and the nerve theorem

The relation between Mapper and homotopy colimits is well-known, because
Gunnar Carlsson mentions the relation briefly in his video lectures at IMA
[4], but has not yet been written down and published. My account of this
idea stems from Carlsson’s video lectures and my advisor Nils Baas.

We argue that Mapper occurs as a natural idea when considering a certain
modern proof of the nerve theorem which utilizes homotopy colimits. We
therefore give a proof of this theorem. Afterwards we are in a position
to dissect the proof and identify one point where we can make a slight
improvement. This improvement leads directly to Mapper.

9.1. The nerve theorem and its proof

We need two definitions before stating the theorem.
An open cover U = {Uα}α∈A of a topological space X is said to be a good

cover if arbitrary intersections of sets of U are either empty or contractible,
that is, for all S ⊆ A we have that

⋂
s∈S Us is either contractible or empty.

An open cover U is said to be numerable if there exists a partition of
unity subordinate to U .

Theorem 9.1.1 (The nerve theorem). Let X be a topological space and U

an open cover of X. If U is a good and numerable cover, then X is homotopy
equivalent to the nerve of U .

In our proof of the nerve theorem we prove that both maps in the diagram

X hocolim(XU) |N (XU)|π

(9.1)

are homotopy equivalences. This proves the theorem, since the nerves of
the cover U and of the diagram XU are homotopic, as noted in Section 4.3.

63

9. Relation to homotopy colimits and the nerve theorem

Shifting our attention from the nerve of the cover U to the nerve of the
diagram XU is key, since this enables the use of homotopy colimits.

The left map

Before defining the left map π of Equation(9.1) we introduce some notation.
Let U = {Uα}α∈A be a cover of a space X . For σ⊆ A we denote by ∆[σ] the
standard simplex which has the dimension equal to the cardinality of σ,
that is, ∆[σ]=∆|σ|. We saw in Section 4.4 that the homotopy colimit of the
diagram XU can be written as a subspace of X ×∆ [A], namely as the union⋃

;6=σ⊆A Uσ×∆ [σ]. We define π to be the projection onto the first component
of

⋃
;6=σ⊆A Uσ×∆ [σ].

By and large, the following proof that the map π is a homotopy equivalence
is taken from Segal [15], but the proof had to be adapted to our situation
because Segal constructs the space hocolim(XU) in a different way.

Proposition 9.1.2. Let X be topological space and let U be an open cover
of X. If U is numerable, then the canonical projection π : hocolim(XU)→ X
is a homotopy equivalence.

Proof. Denote by π the projection hocolim(XU) → X . In this proof we con-
struct a map Ψ : X → hocolim(XU) with π◦Ψ= idX which embeds X as a
(strict) homotopy retract of hocolim(XU). This proves the proposition.

Fix an open cover U = {Uα}α∈A and a partition of unity
{
ψa : Uα→ [0,1]

}
α∈A

subordinate to U . We define the function Ψ : X → hocolim(XU) to be idX ×ψ
with ψ : X →∆[A] a linear combination of vertices of ∆[A]

ψ(x)=∑
ψα(x)α,

where the sum ranges over those α ∈ A so that x is contained in Uα. Note
that we use the symbol α to denote both the index of an open set Uα and
the corresponding vertex of ∆[A]. This map Ψ is well-defined because
hocolim(XU) is the space

⋃
;6=S⊆A X [S]×∆[S] and a point in the standard

simplex ∆[S] is uniquely specified by a linear combination of the vertices α
of S where the coefficients sum to 1. The map Ψ is also a homeomorphism
onto its image; a regular argument involving the partition of unity shows
continuity and a continuous inverse is given by the projection π restricted
to Ψ (X).

64

9.1. The nerve theorem and its proof

D1

D3

D2

(a) The diagram D

pt

pt

pt

(b) The diagram D pt

Figure 9.1.: An illustration of the action of pt on diagrams. We see the
diagram D and the diagram D pt

The subsetΨ (X)⊆ hocolim(XU) is a strict deformation retract of hocolim(XU).
Indeed, the straight line homotopy F : hocolim(XU)× [0,1]→Ψ(X) given by

F ((x,u) , t)= (
x, (1− t)u+ tψ(x)

)
is such a retract.

The right map

We now define the right map of Equation (9.1).
Let U = {Uα}α∈A be an open cover of a space X . Recall that the nodes of the

diagram XU are the intersections Uσ for subsets σ of A. Let (XU)pt be the
diagram with the same indexing set as XU , but with each node replaced by a
one-point space pt, see Figure 9.1. We define the map of diagrams f : XU →
(XU)pt to be the natural transformation with components fσ : Uσ → ptσ.
This shows that f is a map of diagrams because the needed commutativity
of maps is trivially satisfied.

The space |N (XU)| is the space hocolim
(
(XU)pt) by our definition of the

nerve, so we can define the right map of (9.1) to be the map

hocolim(f) : hocolim(XU)→ hocolim(XU)pt .

The next proposition states that hocolim(f) is a homotopy equivalence.

Proposition 9.1.3. Let U be a cover of a topological space X. If U is a
good cover, then the map hocolim(f) : hocolim(XU)→ hocolim

(
(XU)pt) is a

homotopy equivalence.

65

9. Relation to homotopy colimits and the nerve theorem

X U1 U2 U1,2 N (U)

1

1,2

2

Figure 9.2.: The topological space X , a cover U = {U1,U2} of X , and the
nerve N (XU) of U . The homotopy type of N (U) and X is dif-
ferent, as is allowed by the nerve theorem since the intersection
U1,2 has two connected components and is therefore not con-
tractible.

Proof. All the nodes of the diagram XU are contractible, because U is a
good cover. Therefore, all the components fσ : Uσ → pt of f are homotopy
equivalences. Each of the components of f is then a homotopy equivalence,
so the induced map hocolim(f) a homotopy equivalence, due to Proposi-
tion 3.4.1.

This finishes the proof of the nerve theorem, because Proposition 9.1.3
and Proposition 9.1.2 together with transitivity of homotopy equivalences
give the desired homotopy equivalence X ' |N (U)|.

9.2. The “Mapper” theorem and its proof

We present two examples of covers and their nerves. In both examples the
covers are not good and the nerves do not preserve the homotopy type of
the space they cover. In the first case we are able to fix the difference in
homotopy type by a slight change to the nerve construction and this change
leads us to Mapper and an analogue to the nerve theorem, Theorem 9.2.2,
which holds for Mapper.

Example 9.2.1. Consider Figure 9.2 showing a space X and an open cover
U of X which does not satisfy the assumptions of the nerve theorem, because
the intersection U1,2 has too many connected components.

66

9.2. The “Mapper” theorem and its proof

X U1 U2 U1,2 N (U)

1

1,2

2

Figure 9.3.: The topological space X , a cover U = {U1,U2} of X , and the
nerve N (XU). The homotopy type of N (U) and X is different, as
is allowed by the nerve theorem since the intersection U1,2 has
non-trivial fundamental group and is therefore not contractible.

Example 9.2.2. Consider Figure 9.3 showing a space X and an open cover
U which does not satisfy the assumptions of the nerve theorem because the
intersection U1,2 has non-trivial fundamental group.

We study the first example in some detail. The diagram XU has the form

U1

U1,2

U2

and we see that, because the intersection U1,2 has two connected components,
Proposition 9.1.3 does not guarantee that hocolim(XU)→ hocolim

(
(XU) pt)

is a homotopy equivalence. We therefore construct a diagram in which all
components are contractible and see what conclusions we can draw. Denote
by U

′
1,2 and U

′′
1,2 the two connected components of U1,2. The diagram π0 (XU)

has the form
U1

U
′
1,2 U

′′
1,2

U2

67

9. Relation to homotopy colimits and the nerve theorem

and all spaces in this diagram are contractible. Therefore, the diagram
π0 (XU) is component-wise homotopy equivalent to the diagram

pt

pt pt

pt

which is the diagram π0 (XU) pt.
We summarize this discussion in the following proposition, the proof of

which follows directly from the fundamental property of homotopy colimits,
Proposition 3.4.1.

We call a collection of open subsets U = {Uα}α∈A of a space X is π0-good
if for all σ ⊆ A the intersection Uσ is either empty or has contractible
connected components. All good covers are π0-good, but not vice versa.

Proposition 9.2.1. Let U be an open cover of a topological space X. If the
cover U is π0-good, then we have the following homotopy equivalence

hocolim(π0 (XU))' hocolim
(
π0 (XU) pt) .

Note. The space hocolim
(
π0 (XU)pt) is |N (π0 (XU))| which we recognize as

Mapper of the cover U .

Inspired by the previous discussions, we now aim at proving the following
“Mapper theorem”, an analogy to the previous “nerve theorem”.

Theorem 9.2.2. Let U be an open cover of a topological space X. If the cover
U is both numerable and π0-good, then the space X is homotopy equivalent
to Mapper (XU) .

The proof proceeds by showing that each of the maps of the diagram

X ← hocolim(XU)← hocolim(π0 (XU))→ hocolim
(
π0 (XU)pt)

are homotopy equivalences. The left map is the map of Proposition 9.1.2 and
the right map is the map of Proposition 9.2.1, so the only map we need to
discuss is the middle map, which we now define.

68

9.2. The “Mapper” theorem and its proof

Let the index category of the diagram XU be A and the index category of
π0 (XU) be A′. We recall our usual notation, we have spaces Uσ in XU and
spaces Uσ,a in π0 (XU) Uσ,a is a connected component of Uσ. Here, σ is an
object of A and (σ,a) is an object of A′.

We define the map of diagrams

θ : π0 (XU)→ XU (9.2)

to be the map whose component at (σ,a) is the inclusion Uσ,a ,→Uσ. It is
easily verified that this is a well-defined map of diagrams.

Proposition 9.2.3. Let U be an open cover of a topological space X, and let
θ : π0 (XU)→ XU be the map defined in Equation (9.2) above. The map

hocolim(θ) : hocolim(π0 (XU))→ hocolim(XU)

is a homotopy equivalence.

Note. The proof of this proposition is not particularly enlightening and we
urge the reader to draw the spaces hocolim(π0(XU)) and hocolim(XU) for
some spaces X and covers U , say the ones of Figure 9.2 and Figure 9.3. One
might then come to the same conclusion as the author, that the proposition
is not deep, and that the only challenge with the proof is keeping track of
combinatorics and notation. This is a challenge because we in this proof
have to really dig into the definition of the homotopy colimit — we can not
rely on the property of Proposition 3.4.1 as we have done before.

Proof. We denote by Uσi spaces in the diagram XU . We denote the connected
components of Uσi by Uσi ,a for a ∈ Aσi where Aσi is just an index set. All
the maps of the diagram XU are inclusions and we denote the inclusion
Uσi →Uσ j by fσi .

We write out the definition of both hocolim(π0 (XU)) and hocolim(XU) :

hocolim(XU)=
∐

n

 ∐
fσ0→...→ fσn

Uσ0

×∆n

/
∼,

hocolim(π0 (XU))=
∐

n

 ∐
fσ0 ,a0→...→ fσn ,an

Uσ0,a0

×∆n

/
∼ .

69

9. Relation to homotopy colimits and the nerve theorem

The following series of homeomorphisms show that the two spaces are
homeomorphic before we pass to quotient spaces.

∐
n

 ∐
fσ0→...→ fσn

Uσ0

×∆n

=∐
n

 ∐
fσ0→...→ fσn

 ∐
a∈A′

σ0

Uσ0,a

×∆n

=∐

n

 ∐
fσ0→...→ fσn

 ∐
a∈A′

σ0

Uσ0,a

×∆n

=∐

n

 ∐
fσ0→...→ fσn

 ∐
a∈A′

σ0

Uσ0,a ×∆n

=∐

n

 ∐
fσ0 ,a→...→ fσn ,an

(
Uσ0,a ×∆n) .

The fact that the quotient spaces are homeomorphic follows from the ob-
servation that the points (x, s) and (y, t) in hocolim(π0 (XU)) are equivalent
if and only if the points (θ(x), s) and (θ(y), t) in hocolim(XU) are equivalent.
We now show the forward implication to be true. Let x be a point in Uσi ,a
and y a point in Uσ j ,b. By assumption, (x, s) and (y, t) are equivalent, so
there is a map ϕ of the simplex category ∆ such that ϕ∗(x) equals y and
ϕ∗(t) equals s. (Here, ϕ∗ is the map srep (π0 (XU))

(
ϕ

)
.) This same map ϕ

shows that (θ(x), s) and (θ(y), t) are equal since by commutativity ϕ∗ (θ(x))
equals θ(y) and ϕ∗ (t) equals s as before. (Here, ϕ∗ is the map srep (XU)

(
ϕ

)
.)

A similar argument works for the backward implication.

This completes the proof of the “Mapper” theorem, Theorem 9.2.2.

Afterthoughts

The previous result concerns the topological Mapper only, and we should
ask ourselves what significance the work has for our purpose of studying
point clouds, so we elaborate on this in the next few paragraphs.

We take the point of view that we have, somehow, gotten hold of a cover
U of a topological space X and that we want to make the best possible
study of X using only a computer. We know that hocolim(XU) (or even the
union of members of U) recovers the homotopy type of the space X , but it is

70

9.2. The “Mapper” theorem and its proof

hopelessly difficult to encode the complete topology of a space in a computer,
so we see ourselves forced to reduce the amount of information to a modest
amount of combinatorial data. The normal, or at least the most traditional,
way to do this is to take the nerve of U . This recovers the homotopy type
of X if U is good. In Theorem 9.2.2 we have seen that there is a better
way of reducing X to combinatorial data, namely by taking Mapper of U .
This is better since we recover the homotopy type of X even when U is only
π0-good. We therefore think of Mapper as being a type of nerve construction,
but with one improvement, namely that Mapper comes with a zeroth-order
fix of homotopy type included.

The situation is not quite as easy in applications, because there our cover
U is of a finite metric space M. We imagine that the points of M are sampled
from some topological space X and that our mission is to approximate the
homotopy type of X using only the cover U . We have no theorem stating
whether Mapper(U) or N(U) is most likely to recover the homotopy type of
X , but we have some faith in that the results from the topological Mapper
have relevance also for the statistical situation. We will see if this is the
case in the numerical experiments of Part III.

71

Part III.

Experiments

73

10. The implementation of
Mapper

There is an implementation of Mapper available at [16] written by the
computational topology group at Stanford. Unfortunately, ever since they
founded the firm “Ayasdi” this code has not been developed. The code [16] is
still in a buggy state and is unnecessarily slow, so we therefore modified it
somewhat. The difference in runtime between their Mapper implementation
and ours grew with the size of the point cloud; the most extreme example
is the calculation of an example which we did not have time to include
into this thesis, which with their implementation took six hours and with
ours only two seconds. Both of these calculations was done on the same
machine. We suspect that the reason for this discrepancy is that they for
their computations used Matlab’s class for sparse matrices while we used
the standard and more memory demanding class of matrices.

The code

Our implementation of Mapper is written in the commercial closed source
mathematics software Matlab. We chose Matlab because the original imple-
mentation [16] is written in Matlab, and therefore we could reuse some of
its routines, especially the output routines,

The clustering method we use in our implementation is single-linkage
clustering with a fixed prune value. The method we use to find this prune
value is the same as used in the original implementation and is described in
[17]. We wanted to write an implementation where one can change the clus-
tering algorithm between each run, but, because the interfaces to Matlab’s
clustering-routines vary, it would take too much time to write. However,
with an ad-hoc method, we have been able to run our implementation of
Mapper with k-means clustering as well, see Section 11.2.

The computational part of the program consists only of bookkeeping and

75

10. The implementation of Mapper

there are no algorithmic difficulties to speak of. Therefore, we choose to
make no further comments on the code.

Input and initialization

The input to our program is a finite metric space, a filter function, and two
parameters n and p. The program creates as parameter space the interval
[a,b], where a and b are the maximum and minimum of the filter function on
the metric space, and creates the cover U (n, p) as explained in Section 7.3.
The program calculates Mapper with respect to this cover.

Output

Our implementation of Mapper outputs a dot-file. A dot-file is a text-file
encoding the nodes and edges of a graph. The file can be read by the
open-source software suite Graphviz (Graph Visualization Software) [1] and
Graphviz processes this file and outputs a nicely typeset graph, as seen
in Figure 10.1. The graph encoded in the dot-file is the 1-skeleton of the
simplicial complex that Mapper outputs. We therefore loose all information
encoded in n-cells for n ≥ 2. The reason we do this is simplicity, Graphviz is
a simple solution to plotting graphs, and there exists no equivalent solution
plotting simplicial complexes, or even 2-skeletons of simplicial complexes.
We could have written such a plotting routine ourself, but in order to do this
we would have to meddle with 3D-programming and this goes beyond the
scope of this Master’s thesis. Also, the simplicity of a graph makes the plots
easier to read.

The dot-file created by our Mapper implementation specifies not only the
1-skeleton Γ, but it also specifies a certain size and color of each node N of
Γ, as is explained in Figure 10.1. Let Uσ be the set corresponding to the
node N. The size of N represents the number of points in Uσ. The color of
N represents the mean value of the filter function on Uσ, blue means a low
filter value and red means high. With this information we can read off even
more information directly from the output graph.

Lastly, we can label each node with some text. What we choose this label
to represent will vary from application to application, so we will specify
what it means when we need it.

76

Performance

It is hard to give the computational complexity of the Mapper algorithm. The
runtime depends on the size of the point cloud, the number of bits needed to
specify a point, the number of spaces in the diagram XU , and the complexity
of both the clustering algorithm and the filter function. It is especially hard
to analyze how many spaces there will be in the diagram XU , because we
can construct examples where adding only one point to a point cloud might
more than double the number of spaces. Thus, a deeper analysis is needed
in order to give a good account of Mapper’s runtime, but we try to give a feel
for the runtime with the following unscientific anecdotes.

All our computations were practically instant, with the longest computa-
tion finishing in less than two seconds.

When comparing the runtime of Mapper to the runtime of single-linkage
clustering itself, we find that for most choices of parameter values it is faster
to run Mapper. When increasing the parameter p of U(n, p), that is, when
increasing the overlap percentage of the cover, the diagram XU grows and
the Mapper computation takes more time. At some choice of p single-linkage
clustering and Mapper are equally time-consuming; in our experiments this
happened at p ≈ 90%.

77

10. The implementation of Mapper

159

156

138

112

91

70

27

21

32

20

11

2

5

1

4 3

1

2

2

1

1

1

1

1

1

1

1

1

1

Figure 10.1.: Example of output from our Mapper implementation. The
graph is the 1-skeleton of the simplicial complex output from
Mapper. The size of a node represents the number of points in
that node and the color represents the mean value of the filter
function on that node.

78

11. The Fisher-Anderson iris
flower data set

To present our methods we want a dataset with a known taxonomy which is
easy to visualize while still being non-trivial to cluster. That is, the dataset
should be low-dimensional and the data set’s natural taxonomy should not
correspond neatly to different clusters. For this purpose we have chosen the
classic Fisher-Anderson iris dataset [9].

Anderson was a botanist which in the mid-thirties studied three species of
iris flowers. He gathered 150 flowers, 50 of each species, and measured the
length and width of both petals and sepals. Fisher, the famous statistician
and biologist, used this dataset to showcase his newfound “linear discrimi-
nant model”; he wanted to identify the species of a flower solely on the basis
of Anderson’s measurements. Of the three species — iris setosa, iris versi-
color and iris virginica — iris setosa was easy to distinguish, but versicolor
and virginica was not, even with Fisher’s linear discriminants. Since then,
the dataset has become a classic testbed for taxonomic procedures like, for
instance, clustering.

Let us first get a feel for how the data looks. Since the dataset is four-
dimensional we can not plot it directly, so we choose to plot projections of
the data onto two dimensional planes, as seen in Figure 11.1. In this figure,
we see that the iris setosa (in red) are clearly separated from the other two
species, but the iris virginica (blue) and versicolor (green) are somewhat
intermingled in all of the 12 projections. We can not conclude, however, that
the virginicas and the versicolors are indistinguishable, as the intermingling
of points may be an artifact of the linear projections. What we do conclude
is that at most only a few iris versicolor and virginicas overlap, and that
most of the blue and green points lie in quite different regions of the space.
It is therefore unclear if our clustering algorithms will be able to separate
the species or not, but the Mapper algorithm might be able to reveal this
kind of structure in the data.

79

11. The Fisher-Anderson iris flower data set

11.1. Cluster analysis

We have run all our clustering algorithms on this dataset and plotted the
results in Figure 11.2. The plane shown in the figure is petal length by petal
width, and points of different clusters are marked with different colors and
shapes. In the following paragraphs we comment on the performance of
the clustering algorithms and on what conclusions we can draw based on
the different read-outs. All clustering algorithms managed to partition the
iris setosa correctly, so we will comment only on their ability to distinguish
versicolors from virginicas.

k-means clustering. Consider Figure 11.2a where the result of the k-
means algorithm is plotted. We ran the k-means algorithm with k set to 3
because we know that this is the correct number of clusters. It should be
noted that in most situations we do not know how to choose k and that we
therefore have to set k to some arbitrary value, and that this arbitrary choice
greatly affects the final partitioning. The part of the point cloud containing
versicolors and virginicas is cut in two at approximately the right spot,
causing most points to be partitioned correctly. One might wonder if this is
due to an gap between the versicolors and virginicas or if it happened due to
some artifact of the algorithm. For example, the k-means algorithm tends
to produce approximately (hyper)spherical clusters [11] and it might be this
tendency which forced the cloud to be partitioned more or less correctly, even
if no gap between versicolor and virginicas exists.

Dbscan clustering. We ran the Dbscan algorithm with m = 5 and ε= 0.5
and the result is shown in Figure 11.2b. We chose these parameters with
the automatic procedure proposed in the original article [8] and they worked
quite well in that they produced a reasonable ratio of big clusters to one-
point clusters. However, the Dbscan algorithm does not distinguish between
virginicas and versicolors at all. And further, even by fine-tuning the param-
eter values we could not get Dbscan to distinguish between versicolors and
virginicas. This suggests that there is no space between the versicolors and
virginicas which are “less dense”, because then the Dbscan algorithm would
have partitioned them correctly.

Note. In the Dbscan plot in Figure 11.2b it looks like some of the one-point

80

11.1. Cluster analysis

clusters produced by Dbscan lie almost in the middle of another cluster; this
is an artifact of the projection chosen and it does not show up in many of the
other projections.

Single-linkage clustering We cut the single-linkage dendrogram such that
we obtain three clusters and this clustering is shown in Figure 11.2c.

The single-linkage clustering does not distinguish between the versicol-
ors and virginicas at all. Furthermore, when we cut the single-linkage
dendrogram to get more clusters than three, only one-point and two-point
clusters appear. Thus, as single-linkage clustering clusters only according
to distance, we conclude that the smallest distance between virginicas and
versicolors is smaller than the smallest distances within each cluster.

Complete and average linkage We ran both average linkage and complete
linkage clustering on the point cloud, but the average linkage output is not
shown since it performed almost exactly like complete linkage clustering.
The complete linkage clustering corresponds quite well to the true taxonomy,
but, as with k-means clustering, this is due to us knowing the exact number
of clusters, which we in general do not. In Figure 11.3 the complete linkage
output with 5 clusters is shown and we see that it produces clusters of
reasonable size which are quite compact, as is typical of the method [11].
This feature makes it hard to a priori decide what the correct number k of
clusters is, as many choices of k give reasonable looking clusters.

81

11. The Fisher-Anderson iris flower data set

Sepal.Length

2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5

4
.5

5
.5

6
.5

7
.5

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7

4.5 5.5 6.5 7.5

0.
5

1.
0

1.
5

2.
0

2.
5

1 2 3 4 5 6 7

Petal.Width

Iris Data (red=setosa,green=versicolor,blue=virginica)

Figure 11.1.: The Fisher-Anderson iris dataset is a four-dimensional dataset
consisting of 150 points and each point is determined by four
measurements of an iris flower, petal and sepal width and
length. In the figure the projections onto all the different
planes spanned by pairs of standard basis vectors is shown.
Three different species of iris flowers correspond to the differ-
ent colors in the plots.

82

11.1. Cluster analysis

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

Pe
ta

l.W
id

th

(a) 3-means

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

Pe
ta

l.W
id

th

(b) Dbscan, circles denote one-point clusters

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

Pe
ta

l.W
id

th

(c) Single linkage

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

Pe
ta

l.W
id

th

(d) Complete linkage

Figure 11.2.: Four 2D plots of petal length and petal width of the iris data.
The different plots correspond to different clustering algo-
rithms. The points which lie in different clusters are distin-
guished by their color and shape.

83

11. The Fisher-Anderson iris flower data set

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

Pe
ta

l.W
id

th

Figure 11.3.: Complete linkage clustering of the Iris data with the number
of clusters set to 5.

84

11.2. Mapper analysis

11.2. Mapper analysis

To kick off the presentation of the Mapper analysis, we present an example
where we have tweaked the parameter values until we found an output we
liked. Afterwards, after we have learned how to read the Mapper-output,
we show how we might go about choosing or finding the parameter values in
situations where we do not know the answers beforehand.

Analysis with good choice of parameter values

We start with the analysis where we have cheated by tweaking the parame-
ter values until we find parameters which fit our data. We mean by cheating
that we use information that we would not have available in a normal use-
case. Note that we also cheated during the cluster analysis, by specifying
the correct amount of clusters for some of the clustering algorithms.

Initialization

Let X be the Iris data set regarded as a metric space with the Euclidean
metric. We found that the following choices of filter and parameter space
gave satisfying results: We chose as our filter the function f : X →R given
by f (x)= ecc1(x) ·density4(x), and the range of this filter on X is 0.18 to 0.35
so we define the parameter space to be [a,b] = [0.18,0.35] ⊂ R. We cover
the interval [a,b] with n = 9 intervals U1, . . . ,U9, each of length l = 3

10 (b−a).
Consecutive Ui overlap p = 60%, and this means that three consecutive
intervals; Ui, Ui+1 and Ui+2; have non-empty intersections. Therefore
we potentially have 2-simplices in the Mapper output. There will be no
3-simplices, since every intersection of four Ui will be empty.

Reading the Mapper output

Consider Figure 11.4, where we have plotted the graph Γ=Mapper
(
f −1 (U)

)
.

If Mapper
(
f −1 (U)

)
contains any 2-simplices, then Γ will only its 1-skeleton,

because of the mentioned troubles with plotting higher simplices. The text
in each node tells us how many versicolors, virginicas and setosas which are
contained in that node.

We can extract a clustering of the point cloud by calculating the simplicial
homology H0 (Γ). We see that the figure contains two connected components,

85

11. The Fisher-Anderson iris flower data set

one containing only setosas and one containing only versicolors and virgini-
cas. Thus, if reduced to a clustering algorithm, Mapper with these choices of
parameters gives the same result as single-linkage clustering.

We now see what information can be extracted from the graph’s geometry
and from the nodes’ size and color.

The connected component of Γ containing only setosas, let us call it ΓS,
consists of seven nodes. The majority of the flowers lie in the four big nodes,
while the node to the far left and the two blue nodes to the right might
be considered outliers. The range of filter values on ΓS range from very
high (deep red color) to the quite low (medium blue color). The red nodes
contain eccentric dense points and the blue nodes contain non-eccentric
sparse points. The wide range of colors observed in ΓS shows that the iris
setosa are very heterogeneous, although most of the flowers belong in the
middle nodes which vary little in color and are therefore homogeneous.

The connected component of Γ containing only versicolors and virginicas,
let us call it ΓV , also consists of seven nodes, but the nodes are on average
bigger, so there are more points belonging to ΓV than to ΓS. The majority of
the flowers lie in the five rightmost nodes, but only the node to the far left can
be considered an outlier. The rightmost node contains only versicolors, the
two leftmost nodes contain only virginicas, and the nodes in-between varies
gradually between these extremes, with the node in the middle containing
approximately as many versicolors as virginicas. The range of filter values
on ΓV range from medium high (orange) to very low (dark blue), and it looks
like the filter function f has a lower range over ΓV than over ΓS, possibly
implying that it is less variation between virginicas and versicolors than
there is between setosas.

Choosing parameter values

We present two figures, Figure 11.5 and Figure 11.6, where the Mapper
output of the iris data for many different choices of parameters are shown,
and discuss how we on the basis of these figures can decide if a particular
choice of parameter values are good or not. We will argue that functoriality
is the key ingredient for making parameter choices in this way.

For l < 1 let U (l, p) be the cover of of the interval (b−a) which consists
of intervals of length l(b− a) and overlap percentage p, as explained in
Section 7.3. This means that a value of l = 0.3 gives a cover of (b−a) which

86

11.2. Mapper analysis

consists of intervals of length 0.3(b−a). Denote by Γ (l, p) the graph that
our implementation of Mapper outputs when used on the cover U (l, p).

Mapper output for l = 0.3

In Figure 11.5 the output of Mapper used on the iris data for a fixed value of
l = 0.3(b−a) and for many values of p. In Figure 11.5a the overlap percent-
age p is set to 1%, which means that the cover is almost non-overlapping.
Still, two big clusters are formed, but there are also three smaller clusters.
With p = 4% in Figure 11.5b the smaller clusters have merged into the two
bigger clusters, and we begin to see the basic geometry which is stable under
all the other choices of p, namely that the clusters form two strands. At
p = 75% one of the strands has grown two “horns”, and this feature persists
and becomes clearer with higher values of p.

We have taken care to choose values of l and p such that the cover
U (l, p) refines the next, that is, U (0.3,1%)→U (0.3,4%)→U (0.3,18%)→
U (0.3,30%) → U (0.3,90%). This means that we have the chain of refine-
ments

f −1 (U (0.3,1%))→ f −1 (U (0.3,4%))→···→ f −1 (U (0.3,90%)) ,

and, by functoriality, we have the induced simplicial maps

Γ (0.3,1%)→Γ (0.3,4%)→···→Γ (0.3,90%).

Our implementation of Mapper does not have the capability to calculate
these induced maps, but we can still draw some conclusions from them.
The following argument will be used repeatedly in the following: The
induced maps are continuous, so each connected component of the domain
are mapped to a unique component of the codomain. Therefore, as p grows,
no connected component of Γ (0.3, p) can “split” to form two components. We
see in Figure 11.5 that this holds true.

Mapper output for l = 0.1

In Figure 11.6 the output of Mapper used on the iris-data for a fixed value
of l = 0.1 is shown. We expect these graphs to be more disconnected than
for l = 0.3 because a smaller value of l makes the cover of the parameter

87

11. The Fisher-Anderson iris flower data set

space less overlapping. We also expect these graphs to have more nodes in
them, because a lower value of l leads to more covering sets. Both of these
expectations hold true, there are more connected components in each of the
subfigures of Figure 11.6 and also more nodes. Although the pictures for
l = 0.1 and l = 0.3 are quite different for low values of p we see that for
p = 90% they are more or less equal, but with one more connected component
for l = 0.3.

The argument above, that connected components can not split as p grows,
holds true also for l = 0.1 because also for this value of l we have the
refinements

U (l,1%)→U (l,4%)→···→U (l,90%).

Using persistence to choose parameter values

We come to very different conclusions about the nature of our point cloud
depending on which of the Mapper-outputs we look at. For instance, from
Γ (0.10,1%) in Figure 11.6a we might think that the Iris point cloud is
very disconnected. However, since we in the above saw that we from our
notion of functorial clustering got induced maps between Γ (0.1, p) for p =
1%,4%,18%,30%,75% and 90% we can use the idea of persistence to decide
on proper values for the parameters l and p.

In Figure 11.5a we see that there in Γ (0.30,1%) are five connected com-
ponents, but that these quickly disappear already in Γ (0.30,4%), and we
therefore have little belief in that they represent important features of the
point cloud. However, the two bigger clusters persist through all the values
of p, so we feel confident that they represent an important feature of the
Iris point cloud.

In Figure 11.6 the same general phenomena are present, but the smaller
clusters are more persistent than in Figure 11.5. The most persistent of
these clusters is the deep red one. By examination of the points which are
part of this deep red component we see that it consists of the point which
we in Figure 11.4 speculated was an outlier. That this component persists
over many values of p strengthens this belief.

After these examinations we believe that no single Mapper output gives
us a completely correct picture of our data, but that by examination of one or
more series Γ0 →Γ1 . . .→Γn of Mapper outputs we can get a good impression
of the point cloud.

88

11.2. Mapper analysis

Mapper with a non-functorial clustering algorithm

We noted in the introduction, that in our implementation of Mapper one can
not change the clustering algorithm easily. However, with lots of manual
labor we have managed to run some examples with k-means clustering. We
now present these results. The point of these explorations is to see what
happens when we run Mapper with a non-functorial clustering algorithm.

We ran the 3-means clustering with the parameters of the covering space
being l = 0.3 and the p values the same as before. The result is shown in
Figure 11.7.

We want to highlight the figures Figure 11.7d and Figure 11.7e which
show the two graphs Γ (0.30,30%) and Γ (0.30,75%). Since U (0.30,30%) re-
fines U (0.30,75%) we would with a functorial clustering algorithm have an
induced map Γ (0.39,30%) → Γ (0.30,75%) which prohibits the components
of Γ (0.30,30%) to split and form two components in Γ (0.30,75%). However,
this is exactly what happens when we use 3-means clustering.

Lastly, there are no features of the point cloud which clearly persists
through many parameter values. On the basis of the results in this sub-
section we can not even conclude that there are two clusters in the point
cloud.

We believe that we get such inconclusive results because 3-means cluster-
ing is not functorial.

89

Fi
le

 N
am

e

=
iri

s.
do

t
Fi

lte
r R

an
ge

 =
 [0

.1
8-

0.
35

]
Si

ze
 R

an
ge

=

[1
.0

0-
43

.0
0]

D
at

as
et

 N
am

e:
 F

is
ch

er
 Ir

is
Le

ng
th

 o
f i

nt
er

va
l:

0.
30

O
ve

rla
p

Pe
rc

en
t:

60
.0

0

S
0

V
e

41
V

i 0

S
0

V
e

37
V

i 6

S
1

V
e

0
V

i 0

S
4

V
e

0
V

i 0

S
0

V
e

19
V

i 2
3

S
18

V
e

0
V

i 0
S

0
V

e
3

V
i 3

8

S
36

V
e

0
V

i 0
S

0
V

e
1

V
i 3

6

S
34

V
e

0
V

i 0
S

0
V

e
0

V
i 1

7

S
20

V
e

0
V

i 0
S

0
V

e
0

V
i 2

S
6

V
e

0
V

i 0

Figure 11.4.: Mapper of the Iris data with filter f = ecc ·density and param-
eter space U (9,60). The text in each node says how many
setosas, versicolors and virginicas there are in that node.

11.2. Mapper analysis

41
43

12
36

17
2

1

(a) p = 1%

41

43

10

36

20

6

(b) p = 4%

41

40

5

38

33

17

2

(c) p = 18%

41

43
2

29

45

34

12

6

(d) p = 30%

41

49

41

1

2

44

13

42

21

41

34

41

42

26

34

17

28

7

15

1

6

1

21

(e) p = 75%

41

43

46

49

43

1

1

41

2

38

2

43

4

42

9

44

13

42

14

43

18

41

25

44

29

45

34

41

36

37

41

28

40

27

36

20

34

17

34

12

3110

24

3

20

2 15

1

12

1

7

1

6

5
2

1

1

1

(f) p = 90%

Figure 11.5.: Mapper output of the iris data with the fixed parameter l = 0.3
and different values of p. The output for p = 60% is shown in
Figure 11.4.

91

11. The Fisher-Anderson iris flower data set

5

23

12

13

2
15

16

9

15

14 14

2 7

1

1

1

(a) p = 1%

5

24

12

15

132

19

7

13

17

12

9

6

14

(b) p = 4%

5

21

15

15

10

1 18

1 16

8

12

12

18

10

11

2

1

4

1

1

(c) p = 18%

5

19

15

15

14

10

1

19

1

16

8

12

12

17

10

17

2

9
5

1

1

1

(d) p = 30%

5

10
11

3
20

23

17

16

15

13

16

15

14

12

9

1

1

10

2

10

2

16

1

19

4

16

7

19

11

14

12

15

10

15

12

12

13

14

16

10

20

10

17

6

17

2
14

1
9

8

1

1

4

1

4

1

5

2

1

2

1

1
1

(e) p = 75%
5

4

2

8

11

10

3

11

3

16

19

20

21

23

21

19

17

15

16

16

14

14

14

13

15

16

15

15

15

14

14

14

14

12

10

1

1

8

1

10

1

12

1

10

1

12

1

12

2

10

2

13

2

16

1

18

1

19

1

18

3

15

4

16

5

17

8

18

7

19

8

16

11

14

12

13

12

16

12

15

10

16

10

15

12

12

12

13

14

13

15

15

13

14

13

14

16

10

17

10

19

9

20

10

17

9

15

6

15

5

15

2

17

2

16

1

14

1

13

1

11

2

9

1

10

1

9

1

8

1

7

1

4

1

5

1

4

1

4

1

5

5

4

4

2

1

1

1

1

1

1

1

1

1

1

1

(f) p = 90%

Figure 11.6.: Mapper output of the iris data with the fixed parameter l = 0.1
and different values of p.

92

11.2. Mapper analysis

6 6
17

3

3

39

15
26

33

1

2

1

(a) p = 1%

138
4

47

25
20

34

(b) p = 4%

13

46

8

3

49

15
35

7
2

1

1

1

1

(c) p = 18%

13

4

1

43

8

10
61

28

25
26

(d) p = 30%

6

4

6 4

1

1
1

1

7

4

2

15

3

17

1

25

3

32

3

38

3

38

7

38

7

38

11

33

16

33

16

22

23

11

25

5

27

24

10

1

1

1

1

19

(e) p = 75%

13

1

1

9

86

2

17

3

21

2 1

24

2

1

31

4

1

37

4

1

43

3

45

4

49

4

48

8

54

8

56

9

59

10

61

13

55

13

53

17

45

19

40

24

34

29

33

28

25

32

20

34

13

37

7

34

5

32

28

26

20
10

1

1

1

1
1

10

1

1

8

1

2

1

(f) p = 90%

Figure 11.7.: Mapper output of the iris data using 3-means clustering with
the fixed parameter l = 0.1 and different values of p. Note that
there is one component in Figure 11.7d and two components in
Figure 11.7e. This could not have happened with a functorial
clustering algorithm.

93

11. The Fisher-Anderson iris flower data set

11.3. Conclusions

We have now done an analysis of the Iris data set with different clustering
methods, with a functorial Mapper and with a non-functorial Mapper. We
now summarize our thoughts

The correct taxonomy of the Iris flowers suggest that there are three
clusters in the data, but we saw in the introduction to this chapter that
this is uncertain. Some of the clustering algorithms were able to cluster the
data in three, but this is not surprising since for these methods we had to
specify the amount of clusters beforehand and we set the number of clusters
to three. The functorial Mapper quite consistently suggests that there are
two clusters in the data and gave us little reason to believe that there might
in actuality be three clusters there. From the non-functorial Mapper we can
draw no conclusions at all.

There seems to be a benefit to Mapper that one can run the algorithm with
different parameter values and with different filters. We argued that this
makes Mapper more resistant to spurious behaviour based on a single result,
because one will always rerun the algorithm initialized differently. Only
features which persist through many of the different runs of Mapper should
be considered valid. We argued further that a good scheme for choosing
parameter values is to consider several covers U i of the parameter space for
i ∈N, with the property that U i refines U i+1. With a functorial Mapper the
maps induced from U i →U i+1 suggest that the chains U i is a good place to
search for persistent topological features, and indeed, in the chains of covers
which we studied we found clear and persistent features. These features
disappeared with the non-functorial Mapper, further backing up our claim.

We must be careful, though, and ask ourself : The geometric features
which we found to be persistent, were they persistent because we studied
refining chains of covers? If, for instance, we have a randomly generated
point cloud and run Mapper with respect to each of the covers of a chain
U i →U i+1, would we then observe persistent geometric features? If so, we
must reconsider the way we use functorial clustering.

In doing these experiments we also felt the need for finding a better
parametrized family of covers of an interval than the one presented in
Section 7.3. Our belief was that for a fixed l and for p0 and p1 with p0 ≤ p1
we would have that U (l, p0) refines U (l, p1). This is not the case, as for
example the covers U (0.5,50%) and U (0.5,33%) of the unit interval shows.

94

11.3. Conclusions

We therefore had to throw away many of the old computations we had
done, and calculate some new ones. We found that for l = 0.1 and l = 0.3
the series of overlap percentages p = 1%,4%,18%,30%,75%,90% we do
have that U (l, pi) refines U (l, pi+1), so these are the calculations we have
presented. We therefore need to find a family of covers of an interval which
is parametrized by some real parameter.

95

Afterthoughs

This is the rather abrupt end to the Master’s thesis. We would have liked
to add many more numerical experiments to study various properties of
the Mapper, but we must content ourself with what we managed to include
before the deadline.

We hope, however, that the reader has gotten enough of an impression of
the algorithm to be motivated to study it further, because we find that it fills
a hole in the current catalog of statistical methods. The biggest upside to
Mapper is something which we have not yet said anything about — Mapper
is a fun to use! It is a real delight to load a new dataset and to examine
the resulting plots, and with better software it could have been even more
fun. Our most immediate idea is to have Mapper integrated into a software
suite (like the open-source R) such that one could do classical statistical
methods like hypothesis testing directly in the Mapper software. One could
for instance right-click on a node and get a drop-down menu asking you
if you want to test the points in this node for statistical significance. The
possibilities are endless!

97

Bibliography

[1] Graphviz, an open source graph visualization software. graphviz.org.

[2] Shai Ben-David, Ulrike von Luxburg, and Dávid Pál. A sober look
at clustering stability. In Proceedings of the 19th annual conference
on Learning Theory, COLT’06, pages 5–19, Berlin, Heidelberg, 2006.
Springer-Verlag. ISBN 3-540-35294-5, 978-3-540-35294-5. doi: 10.
1007/11776420_4. URL http://dx.doi.org/10.1007/11776420_4.

[3] Gunnar Carlsson. Topology and data. Bulletin of the American Mathe-
matical Society, 46(2):255–308, 2009.

[4] Gunnar Carlsson. "mapper for mapping", video lecture. http://www.
ima.umn.edu/videos/?id=868, 2009.

[5] Gunnar Carlsson and Facundo Mémoli. Persistent clustering and a
theorem of j. kleinberg, 2008. URL http://comptop.stanford.edu/
preprints/clust-functorial.pdf.

[6] Patrik D’haeseleer. How does gene expression clustering work? Nature
Biotechnology, 23(12):1499–1501, December 2005. ISSN 1087-0156.
URL http://dx.doi.org/10.1038/nbt1205-1499.

[7] Daniel Dugger. A primer on homotopy colimits. http://www.uoregon.
edu/~ddugger/hocolim.pdf, 2008.

[8] Martin Ester, Hans-peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. Computer, 1996(6):226–231. URL http:
//scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:
A+Density-Based+Algorithm+for+Discovering+Clusters+in+
Large+Spatial+Databases+with+Noise#0.

99

Bibliography

[9] R A Fisher. The use of multiple measurements in taxonomic prob-
lems. Annals of Eugenics, 7(2):179–188, 1936. URL http://digital.
library.adelaide.edu.au/dspace/handle/2440/15227.

[10] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
ISBN 9780521795401. URL http://books.google.com/books?id=
BjKs86kosqgC.

[11] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM
Computing Survey, 31(3):264–323, 1999.

[12] Ulrike Von Luxburg and Shai Ben-david. Towards a statistical theory
of clustering. In In PASCAL workshop on Statistics and Optimization
of Clustering, 2005.

[13] John Milnor. The geometric realization of a semi-simplicial complex.
The Annals of Mathematics, 65(2):357–362, 1957. URL http://www.
jstor.org/stable/1969967.

[14] Arnold J. Levine Monica Nicolau and Gunnar Carlsson. Topology based
data analysis identifies a subgroup of breast cancers with a unique
mutational profile and excellent survival. 2011. doi: 10.1073/pnas.
1102826108.

[15] Graeme Segal. Classifying spaces and spectral sequences. Publications
Mathematiques De L Ihes, 34:105–112, 1968. doi: 10.1007/BF02684591.

[16] Gurjeet Singh. Mapper: partial clustering in matlab. http://comptop.
stanford.edu/programs, 2009.

[17] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. Topological
Methods for the Analysis of High Dimensional Data Sets and 3D Object
Recognition. comptop.stanford.edu/preprints/mapperPBG.pdf.

[18] Jian; Huang Xuhui; Bowman Gregory R.; Singh Gurjeet; Lesnick
Michael; Guibas Leonidas J.; Pande Vijay S.; Carlsson Gunnar Yao,
Yuan; Sun. Topological methods for exploring low-density states in
biomolecular folding pathways. Journal of Chemical Physics, 130. doi:
10.1063/1.3103496.

100

	Title Page
	masteroppgave.pdf

