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Abstract

Mooring systems ensure the safety of structures near the shore like floating breakwaters and
aquaculture cages by keeping them in position. Their design has to either provide enough
flexibility to allow large displacements or enough strength to withstand the hydrodynamic
loads while restraining the structural motion. The accurate determination of the motion of
the moored-floating structure and the resulting tension forces in the cables are, therefore, of
high significance to produce a safe and economical design. At the same time, the dynamics
of the cables can be neglected in the early design process due to their minor contribution
to the forces acting on the structure. Hence, an analytical solution for the cables can be
found, which provides a fast solution to the problem. The mooring model is implemented
in the open-source CFD model REEF3D. The solver has been widely used to study various
problems in the field of wave hydrodynamics. It solves the incompressible Reynolds-averaged
Navier-Stokes equations for two-phase flows using a finite-difference method and a level set
method to model the free surface between water and air. Floating structures are represented
by an additional level set function. Its motion is calculated from the Newton and Euler
equations in 6DOF and in a non-inertial coordinate system. The fluid-structure interaction is
solved explicitly using an immersed boundary method based on the ghost cell method. The
application shows the accuracy of the solver and effects of mooring on the motion of a floating
structure.
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1 Introduction

Coupled fluid-structure interaction plays a major role in the fields of coastal and ocean engi-
neering. Most applications require the solution of a two-phase problem as well as an accurate
determination of rigid body dynamics. Some examples are floating breakwater, aquaculture
cages or ship motion prediction. As a first attempt, fluid-structure interaction problems based
on the Navier-Stokes equations have been calculated with Arbitrary Lagrangian-Eulerian
methods (Ramaswamy et al., 1986). In this approach, the interface between solid and fluid is
tied to the numerical mesh for which reason the mesh needs to be adjusted dynamically. The
re-meshing procedure can have a detrimental effect on the numerical accuracy and stability,
especially for more arbitrary solid body movements. A way to avoid constant re-meshing is
the usage of dynamic overset grids. The method consists of an Eulerian mesh for the fluid
and a overset mesh which follows the movement of the solid and overlaps with the base mesh.
A stable scheme for establishing the connections between the overset mesh points and the
underlying grid points in the overlapping region has to be introduced (see e.g. Carrica et al.
(2007)). As an alternative, a direct forcing immersed boundary method was developed for
describing the fluid-structure interaction (Yang and Stern, 2012). This immersed boundary
method requires just one Eulerian grid and the interaction is incorporated by an additional
forcing term in the Navier-Stokes equations. Special attention was also given to the field ex-
tension method (Yang and Balaras, 2006), which accounts for solid cells becoming fluid cells
and vice versa. With the field extension, unphysical values for the pressure and the velocities
are avoided. More recently, Calderer et al. (2014) presented a level set-based two-phase flow
solver for the simulation of floating structures. In this work, an extension of the local direc-
tional immersed boundary method (Berthelsen and Faltinsen, 2008) using the field extension
method is presented. The geometry of the solid is described by a level-set function. Hence,
forces and moments can be calculated without explicitly defining the intersections between
the surface mesh and the grid of the flow domain. Like other immersed boundary methods,
the solid body is immersed into the fluid and re-meshing or overset grids are avoided. The
presented results are all obtained with a weakly coupled scheme. In combination with the ro-
bust two-phase flow solver REEF3D (Bihs et al., 2016), this results in a stable fluid-structure
interaction model. If the motion of the floating structure is large, mooring dynamics can have
a significant impact on the response of the structure. The general solution for the dynam-
ics of mooring systems has to be found numerically due to the underlying non-linear system
of equations. Several discretization methods have been developed, like the finite differences
(Huang, 1994) and finite element based methods (Aamo and Fossen, 2001) or the lumped
mass method (Hall and Goupee, 2015). A general overview of the methods can be found in
Davidson and Ringwood (2017). For structures with small responses in mild environmental
conditions, a quasi-static mooring model is suitable. By neglecting the dynamic effects of
the mooring system, dependencies of mass, damping and fluid acceleration on the system
are omitted. The mooring line shape and tension can then be found analytically as shown
by Faltinsen (1990). It has the advantage of computational efficiency and simplicity of im-
plementation. Therefore, the analytical approach is taken into account in this paper as a
starting point for more advanced models in the further research. In section 2 the CFD model
REEF3D is shortly described. Afterwards, details about the implemented 6DOF algorithm
and mooring model are given in section 2.1 and 2.2. The application of the solver is presented
in section 3. Final remarks and prospects for further developments can be found in section 4.
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2 Numerical Model

The basic equations of the numerical model arise from the conservation law of mass and
momentum for incompressible fluids. Using tensor notation, the resulting equations read for
a whole-domain formulation

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν ·
(
∂ui
∂xj

+
∂uj
∂xi

))
+ gi, (2)

with ui the velocity components, ρ the fluid density, p the pressure, ν the kinematic viscosity
and ~g the gravity acceleration vector. Here, the Reynolds-averaged Navier-Stokes (RANS)
equations are solved by replacing the fluid properties with time-averaged values and add
turbulent viscosity to ν. The additional viscosity is calculated with a modified k-ω model as
given in Bihs et al. (2016).

The spatial domain is discretised by a finite difference method (FDM) on a Cartesian grid.
System (1), (2) is solved on a staggered grid to avoid decoupling of pressure and velocity.
Convection terms are evaluated in a non-conservative form because the violation of the mass
conservation during an explicit solution procedure might cause numerical instabilities in a
conservative formulation (Sussman et al., 1994). For this purpose, the fifth-order accurate
weighted essentially non-oscillatory (WENO) scheme of Jiang and Shu (1996) adapted to non-
conservative terms by Zhang and Jackson (2009) is applied. The discretised system is solved
using Chorin’s projection method for incompressible flows (Chorin, 1968). The pressure is
calculated from a Poisson equation and applying the fully parallelized BiCGStab algorithm
(van der Vorst, 1992). For progressing in time, the third-order accurate Total Variation
Diminishing (TVD) RungeKutta scheme (Shu and Osher, 1988) is employed. Adaptive time
stepping controls the time stepping according to the required CFL condition.

The location of the free water surface is represented implicitly by the zero level set of a
smooth signed distance function Φ(~x, t) which is defined as the closest distance to the interface
(Osher and Sethian, 1988). Its motion can be described by the advection equation

∂Φ

∂t
+ uj

∂Φ

∂xj
= 0. (3)

The convection term in (3) is discretised by the fifth-order accurate Hamilton-Jacobi WENO
method of Jiang and Peng (2000). In order to conserve the signed distance property, the
level set function is reinitialized after each time step. Here, the PDE-based reinitialization
equation of Sussman et al. (1994) is taken into account. The material properties of the two
phases are finally determined for the whole domain in accordance to the continuum surface
force model of Brackbill et al. (1992) (see Bihs et al. (2016) for details).

2.1 6DOF Algorithm

The geometry of the rigid body is described by a primitive triangular surface mesh neglect-
ing connectivity. For this purpose, the intersections of the surface mesh with the underlying
Cartesian grid are determined with the ray-tracing algorithm of Yang and Stern (2014). It
efficiently provides inside-outside information and, for each grid point, the shortest distance
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along the coordinate axis to the body describing triangles. Afterwards, the mentioned reini-
tialization algorithm of Peng et al. (1999) is applied to obtain signed distance properties for a
level set function in the vicinity of the solid body. This has the advantage that the intersec-
tions of the surface mesh with the underlying grid do not have to be calculated explicitly. The
obtained level set function can be used for calculating the six force and moment components
of the fluid on the body as given by Bihs and Kamath (2017).

Any point relating to a rigid body can be described by the location the centre of gravity and
orientation of the body in the inertial coordinate system. Here, the orientation is described
by Euler angles which results in the position vector

~x =
(
x1, x2, x3, x4, x5, x6

)T
, (4)

where the first components are the coordinates of the centre of gravity and the last three
components are the Euler angles φ, θ and ψ. The calculation of the motion of a body in the
inertial system would include several time derivatives of moments which can be avoided by
applying a coordinate transformation to the Euler equations. The rotation components in the
principal coordinate system of the body reads then

~ξ =
(
ξ1, ξ2, ξ3

)T
. (5)

In this paper, it is assumed that the principal axes of the body are known. Thus, the inertia
tensor reduces to the three principal moments of inertia which yields

~I =

Ix 0 0
0 Iy 0
0 0 Iz

 =

mr2x 0 0
0 mr2y 0

0 0 mr2z

 , (6)

with m the mass of the body and rx, ry and rz the distances of a point from the centre of
gravity along the x−,y− and z−direction. Since the fluid flow is calculated in the inertial
system, the acting moments in this system ~M~x have to be transformed to the non-inertial
system by applying the transformation (Fossen, 1994)

~M~ξ
=
(
M

1,~ξ
,M

2,~ξ
,M

3,~ξ

)T
= ~J−11 · ~M~x, (7)

with ~M~ξ
the moments in the system of the body and ~J−11 the rotation matrix (s stands for

sin and c for cos)

~J1 =

cx6cx5 −sx6cx4 + cx6sx5sx4 sx6sx4 + cx6cx4sx5
sx6cx5 cx6cx4 + sx4sx5sx6 −cx6sx4 + sx5sx6cx4
−sx5 cx5sx4 cx5cx4

 . (8)

Hence, the dynamics of the rigid body can described by the three equations of translational
motion ẍ1ẍ2

ẍ3

 =
1

m
·

Fx1,~xFx2,~x
Fx3,~x

 , (9)
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where F~x are the acting forces in the inertial system, and the three Euler equations in the
non-inertial system (Fossen, 1994)

Ixξ̈1 + ξ̇2ξ̇3 · (Iz − Iy) = M
1,~ξ
,

Iy ξ̈2 + ξ̇1ξ̇3 · (Ix − Iz) = M
2,~ξ
,

Iz ξ̈3 + ξ̇1ξ̇2 · (Iy − Ix) = M
3,~ξ
. (10)

The position of the body can be calculated analytically by integrating (9) twice. System (10)
is solved explicitly with the second-order accurate Adams-Bashforth scheme which reads for
a generic variable in the new time step q(n+1)

q̇(n+1) = q̇(n) +
∆t

2
·
(

3q̈(n+1) − q̈(n)
)
, (11)

q(n+1) = q(n) +
∆t

2
·
(

3q̇(n+1) − q̇(n)
)
. (12)

The Euler angles in the body system cannot be calculated from the body angular velocities
due to missing physical interpretation (Fossen, 1994). Instead, the angular velocities are
transformed back using the rotation matrix (s stands for sin, c for cos and t for tan)

~J2 =

1 sx4tx5 cx4 + cx6tx5
0 cx4 −sx4
0 sx4/cx5 cx4/cx5

 . (13)

Afterwards, the necessary Euler angles are calculated from (12) in the inertial frame. It might
be noticed that (13) has a singularity at x5 = ±π

2 . In practice, this angle does not occur for
typical floating structures in ocean engineering.

In this paper, the fluid-structure coupling is arranged in a weak form without sub-
iterations. First, acting forces are calculated from the fluid, and the body position is de-
termined as described above. Afterwards, the fluid properties are updated to the new time
level using the ghost cell immersed boundary method (Berthelsen and Faltinsen, 2008) for
incorporating the boundary conditions of the solid. For both the velocities and the pressure,
these conditions are calculated from the motion of the body with respect to its centre of
gravity (Bihs and Kamath, 2017). Even though the weak coupling has been reported to lead
to numerical stability problems for complex cases (e.g., Carrica et al. (2007) or Calderer et al.
(2014)), the current implementation shows good numerical stability throughout the range of
application. However, pressure oscillations can occur in the vicinity of the solid body because
of solid cells turning into fluid cells. The fresh fluid cells lack physical information about
velocities from previous time steps. It is solved by implementing the field extension method
of Yang and Balaras (2006); Udaykumar et al. (2001) adapted to the ghost cell immersed
boundary method.

2.2 Mooring Model

The mooring systems considered in this paper consist of a number of cables which are attached
to the floating structure at arbitrary points. Their lower ends are anchored at the sea bed. In
order to avoid high vertical forces on the anchor, a part of the cable lies on the bottom, and
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x
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Mooring point

dz
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Figure 1: Definition of a mooring line in two dimensions.

damps the vertical motion of the structure. An illustration of this configuration can be seen
in figure 1. The general equations describing the unsteady motion of a cable are non-linear
and have to be solved numerically. For practical purposes, an analytical solution can be found
if static conditions and no current forces are assumed. Following the derivation of Faltinsen
(1990), a catenary equation, describing the shape of a line, arises as

z(x, y) =
Fh
w

·
(

cosh

(
w

Fh
·
√
x2 + y2

))
, (14)

with Fh the horizontal force, which is constant along the cable, and w the weight per unit
length of the cable in water. The tension forces Ft are calculated as

Ft(z) = Fh + wdz + (z − dz) · (w + ρgA), (15)

where g is the acceleration due to gravity and A is the cross-section area of the cable. The area
is assumed to be constant, i.e., elasticity of the material is neglected. In the current algorithm,
the effect of the mooring lines on the dynamics of the structure is taken into account explicitly
in a weakly coupled manner. For this purpose, the forces of each cable acting on the structure
have to be calculated from the known distance dxy from the time-invariant anchor point to the
current position of the mooring point. The corresponding equation is written as (Faltinsen,
1990)

dxy =
√
dx2 + dy2 = l − dz ·

√
1 + 2 · Fh

wdz
+
Fh
w

cosh−1
(

1 +
wdz

Fh

)
, (16)

which provides a function transcendental in Fh. A solution can be determined using the
Newton-Raphson algorithm

F
(k+1)
h = F

(k)
h −

f(F
(k)
h )

f ′(F
(k)
h )

, k = 1, 2, .... (17)

Once, a converged solution for Fh has been found, the forces at each mooring point X,Y, Z
result from

X = Fh cos

(
tan−1

(
dy

dx

))
, (18)

Y = Fh sin

(
tan−1

(
dy

dx

))
, (19)

Z = Fhdz ·
√

1 +
2Fh
wdz

, (20)
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and moments by multiplication with the appropriate distances to the centre of gravity of the
body.

x

z

20 m
1.93 m 3.87 m

7 m

0
.8
m

Figure 2: Setup for the test case of a 2D barge in waves.

3 Results for a 2D barge in waves

The capability of the presented 6DOF algorithm is presented for a rigid floating barge in two
dimensions under the effect of waves with and without mooring. The results are compared
to the experimental data of Ren et al. (2015). The laboratory experiment was performed
in a wave flume of 20m length, 0.8m height and 0.44m width, which is modelled with the
numerical wave tank of REEF3D (Bihs et al., 2016). The barge is 0.30m long and 0.2m
high. Since the gap between body and flume walls is small, the case can be considered as
2D, with surge, heave and pitch motion. The initial position of the barge is defined by its
centroid at (x, z) = (7.0m, 0.4m). Its density is 500kg/m3. The water depth in the tank is
d = 0.4m. The incoming waves are regular and have a height of 0.04m, a period T = 1.2s
and wavelength of 1.936m. In the calculations these are modelled using a second-order Stokes
wave theory. A numerical beach is applied in order to avoid wave reflections at the outlet.
For the discretisation, a cell size of 0.005m is chosen which equals 640, 000 cells.

3.1 Free-Floating Condition

The results from the free-floating simulation are compared with the experiment for the period
between t/T = 6.36s and t/T = 12s. The wave elevation shown in figure 3a shows a good
agreement with the experimental data, which confirms the chosen wave theory for modelling
the waves. In accordance to the quality of the incoming waves, the distribution of the pitch
motion predicts accurate results for most part of the simulation. Small undershoots are
given which correspond to under-predicted wave troughs at t/T = 9.3 and t/T = 11.3 (see
figure 3b). Also, underresolved damping effects from vortex detaching at the immersed edges
might influence the accuracy of the pitch motion. The frequency of the heave motion follows
the frequency of the experimental data accurately. However, the amplitudes of this motion
are 10% smaller in the simulations. This might be caused by the coupled physics of heave
and pitch motion. In contrast, the surge motion is predicted much better, showing a good
accordance of the drift with the experiments. This drift is mainly caused by inertia effects
driven by the wave motion which is accurately predicted here.

3.2 Moored Condition

The effect of mooring and capability of the presented mooring model is shown for the 2D
barge in waves. For this purpose, two mooring lines are fixed to the body at z = 0.4m. The

7



Martin, T. et al.,

6 7 8 9 10 11 12
t
T
 [-]

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

η d
 [

-]

Numerics

Experiment

(a) Wave elevation at x = 5.5 m.
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(b) Pitch motion.
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(c) Heave motion.
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(d) Surge motion.

Figure 3: Numerical results of the two-dimensional barge in comparison to the experiment
data.

cables are 1.6m long, 0.01m thick and have a weight per unit length of w = 4kg/m in water.
A comparison to the motion from above is ensured by increasing the weight of the free-floating
body resulting in the same draft as initial condition. As results, the heave and surge motions
over time are shown in figure 5. The vertical motion of the structure is significantly damped
by installing the mooring system. Further, surging is prevented almost completely.

4 Conclusion

This paper gives an overview of the implementation of a weakly-coupled 6DOF algorithm in
the open-source CFD code REEF3D. The floating body is represented by the combination of a
surface mesh, a level set function, and the ghost cell immersed boundary method. This results
in a method that does not require re-meshing or overset grids. In addition, a simple mooring
model is presented which provides analytical solutions for the shape and forces of mooring
systems. The application confirms the accuracy of REEF3D in modelling fluid-structure
interactions. The mooring model is able to provide the damping effects on the motion of
floating bodies. However, for more advanced mooring applications, like tension-leg platforms
and extreme weather situations, a dynamic model is preferable.
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Figure 4: Tension force distribution in the mooring cables during a wave trough situation.
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Figure 5: Numerical results of the free-floating and moored-floating two-dimensional barge.
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