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Abstract

An artin algebra Λ over a commutative, local, artinian ring R was fixed, and with
this foundation some topics from representation theory were discussed. A series
of functors of module categories were defined, and almost split sequences were
introduced along with some results. An isomorphism ωδ,X : Dδ∗ → δ∗(DTr(X)) of
Γ-modules for an artin R-algebra Γ was constructed. The isomorphism ωδ,X was
applied to a special case, yielding a deterministic algorithm for computing almost
split sequences in the case that R is a field.



Norsk sammendrag

En artinsk algebra Λ over en kommutativ, lokal ring R ble fiksert, og med dette
som utgangspunkt ble endel emner fra representasjonsteori diskutert. En rekke
funktorer over modulkategorier ble definert, og nesten splitt-eksakte følger ble in-
trodusert sammen med noen resultater. En isomorfi ωδ,X : Dδ∗ → δ∗(DTr(X)) av
Γ-moduler for en artinsk R-algebra Γ ble konstruert. Isomorfien ωδ,X ble anvendt
ved et spesialtilfelle, og dette ga opphav til en deterministisk algoritme for å regne
ut nesten splitt-eksakte følger i tilfellet at R er en kropp.
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Chapter 1

Introduction

The aim of this thesis is to develop a method for computing almost split sequences.
Chapter 2 will serve as an introduction to the theory which will be required for

our work. A series of topics will be discussed, and important result will be stated
and demonstrated.

In Chapter 3 we will embark on the task of designing an algorithm for computing
almost split sequences. Our approach will be divided into two main steps:

In Section 3.1 we will apply a variety of results from Chapter 2 in order to
design an isomorphism which depends on certain parameters.

In Section 3.2 we will fix these parameters. Together with prior results, the iso-
morphism we then get will suggest a connection between identity homomorphisms
and almost split sequences which motivates a deterministic algorithm for comput-
ing the latter. We will complete Chapter 3 with a presentation of this algorithm,
along with a demonstration of its correctness.
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Chapter 2

Background Theory

In this chapter we will traverse a series of topics from representation theory. Section
2.1 will provide a review of basic category theory. In Section 2.2 we will give the
definition of artinian rings, artinian modules and artin algebras, and, at this, set
the framework for this thesis. In the subsequent sections a multitude of functors
will be presented together with a survey of their respective features. A formal
definition along with basic properties of almost split sequences will be presented
in Section 2.9. In section 2.10 we will study a certain algebra arising from prior
investigation, and we will make useful observations regarding its top and socle.

2.1 Category theory

In this thesis we shall mainly focus on modules over artin algebras, but before we
introduce the framework in which we will be working most of the time, we recall
the following concepts from category theory:

Definition 1.

(i) A category C consists of the following:

– a class Ob(C) of objects,

– for X, Y ∈ Ob(C), a set HomC(X,Y ) of morphisms from X to Y ,

– for X, Y , Z ∈ Ob(C), a binary operation

HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z)

(g, f) 7→ gf

such that the following holds:

∗ For all X, Y , Z, W ∈ Ob(C), f ∈ HomC(X,Y ), g ∈ HomC(Y, Z)
and h ∈ HomC(Z,W ), then

(fg)h = f(gh).
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∗ For all X ∈ Ob(C), then there is an identity morphism 1X ∈
HomC(X,X) := EndC(X) such that for all Y ∈ Ob(C), then

f1X = 1X

for all f ∈ HomC(X,Y ), and

1Xf = f

for all f ∈ HomC(Y,X).

For a morphism set HomC(X,Y ) where X, Y ∈ Ob(C), then X is called
the source object of HomC(X,Y ), and Y is called the target object of
HomC(X,Y ).

(ii) An additive category is a category C where

– HomC(X,Y ) is an abelian group for all X, Y ∈ Ob(C), such that the
following holds:

j(f + g)h = jfh+ jgh

for all W , X, Y , Z ∈ Ob(C) and h ∈ HomC(W,X), f , g ∈ HomC(X,Y )
and j ∈ HomC(Y,Z),

– there is a zero object 0 ∈ Ob(C) such that

|HomC(X, 0)| = |HomC(0, X)| = 1

for all X ∈ Ob(C),
– for all X, Y ∈ Ob(C) there is X ⊕ Y ∈ Ob(C) together with ιX ∈

HomC(X,X ⊕ Y ), ιY ∈ HomC(Y,X ⊕ Y ), πX ∈ HomC(X ⊕ Y,X) and
πY ∈ HomC(X ⊕ Y, Y ) such that the following holds:

πXιX = 1X ,

πY ιY = 1Y ,

πY ιX = 0,

πXιY = 0

and
ιXπX + ιY πY = 1X⊕Y .

The ι’s and π’s are called inclusions and projections.

(iii) Let C be an additive category, and letX, Y ∈ Ob(C). Suppose f ∈ HomC(X,Y ).

– A kernel of f is an object Ker(f) ∈ Ob(C) together with a morphism
ιf ∈ HomC(Ker(f), X) such that the following holds:

∗ fιf = 0,
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∗ For all T ∈ Ob(C) and t ∈ HomC(T,X) such that ft = 0, then there
exists unique s ∈ HomC(T,Ker(f)) such that

t = ιfs.

Ker(f) X Y

T

ιf f

ts

– A cokernel of f is an object Cok(f) ∈ Ob(C) together with a morphism
πf ∈ HomC(Y,Cok(f)) such that the following holds:

∗ πff = 0,

∗ For all T ∈ Ob(C) and t ∈ HomC(Y, T ) such that tf = 0, then there
exists unique s ∈ HomC(Cok(f), T ) such that

t = sπf .

X Y Cok(f)

T

f πf

t s

(iv) An abelian category is an additive category C such that for all X, Y ∈ Ob(C)
and f ∈ HomC(X,Y ), then f has a kernel and a cokernel, and moreover,

Cok(ιf ) ' Ker(πf ).

(v) Let C and D be categories. A covariant (contravariant) functor

F : C → D

consists of a map
F : Ob(C)→ Ob(D)

and, for all X, Y ∈ Ob(C), a map

HomC(X,Y )→ HomD(F (X), F (Y ))

(HomC(X,Y )→ HomD(F (Y ), F (X)))

such that the following statements hold:

– F (1X) = 1F (X) for all X ∈ Ob(C),

7



– If X, Y , Z ∈ Ob(C), f ∈ HomC(X,Y ) and g ∈ HomC(Y,Z), then

F (gf) = F (g)F (f)

(F (gf) = F (f)F (g)).

(vi) Let C and D be abelian categories, and let F be a covariant (contravariant)
functor

F : C → D.
Moreover, let

0 A B C 0

be an exact sequence in C. (We assume that the notion of an exact sequence
is familiar to the reader.) We say that F is

– left exact if

0 F (A) F (B) F (C)

0 F (C) F (B) F (A)

( )
is an exact sequence in D,

– right exact if

F (A) F (B) F (C) 0

F (C) F (B) F (A) 0

( )
is an exact sequence in D,

– exact if

0 F (A) F (B) F (C) 0

0 F (C) F (B) F (A) 0

( )
is an exact sequence in D.

(vi) Let C and D be categories, and let F and G be covariant (contravariant)
functors from C to D.

– A natural transformation α : F → G consists of, for all X ∈ Ob(C), a
morphism αX ∈ HomD(F (X), G(X)), such that:

For any X, Y ∈ Ob(C) and f ∈ HomC(X,Y ) then

F (X) G(X)

F (Y ) G(Y )

αX

F (f) G(f)

αY
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F (Y ) G(Y )

F (X) G(X)




αY

F (f) G(f)
αX

commutes. We may denote the natural transformation by {αX}X∈Ob(C)
as well as by α, and we equivalently say that αX is natural in X.

– We say that F and G are naturally isomorphic if there exists a natural
transformation

α : F → G

such that, for all X ∈ Ob(C), then αX is an isomorphism. In this case,
we write

F '
nat.

G.

We often write X ∈ C in stead of X ∈ Ob(C) for an object X of a category C.
The following lemma states that inverses of and compositions of natural transfor-
mations, are in turn natural.

Lemma 2. Let C and D be categories.

(i) Let F and G be functors from C to D, and let

{αX ∈ HomD(F (X), G(X))}X∈C : F → G

be a natural transformation. Moreover, suppose that for any X ∈ C there is
ϕX ∈ HomD(G(X), F (X)) such that

αXϕX = 1G(X)

and

ϕXαX = 1F (X).

Then {ϕX}X∈C is a natural transformation G→ F .

(ii) Let F , G and H be functors from C to D. Let α : F → G and β : G→ H be
natural transformations. Then βα : F → H defined by

(βα)X := βX ◦ αX

is a natural transformation.

Proof.

(i) Suppose F and G are covariant (contravariant) functors. By the definition of
a natural transformation, then {ϕX}X∈C : G→ F is a natural transformation
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if and only if the following diagram commutes:

G(X) F (X)

G(Y ) F (Y )

ϕX

G(f) F (f)

ϕY

G(Y ) F (Y )

G(X) F (X)




ϕY

G(f) F (f)
ϕX

(2.1)

That is, we must show that

F (f)ϕX = ϕYG(f) (2.2)

(F (f)ϕY = ϕXG(f)) (2.3)

for all X ∈ C. Since {αX}X∈C is a natural transformation, then

G(f)αX = αY F (f)

(G(f)αX = αY F (f))

for all X ∈ C. Composing with ϕY (ϕX) from the left and ϕX (ϕY ) from the
right, we get

ϕYG(f)αXϕX = ϕY αY F (f)ϕX

(ϕXG(f)αY ϕY = ϕXαXF (f)ϕY , )

hence (2.2) ((2.3)) holds.

(ii) We assume F , G and H are covariant functors. Let X, Y ∈ C and f ∈
HomC(X,Y ). Then

(βα)Y F (f) = βY αY F (f) = βYG(f)αX = H(f)βXαX = H(f)(βα)X ,

hence the following diagram is commutative:

F (X) F (Y )

G(X) G(Y )

H(X) H(Y )

F (f)

G(f)

H(f)

αX

βX

αY

βY

(βα)X (βα)Y

Thus βα is a natural transformation. The proof is similar if F , G and H are
contravariant.
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We will now look at two important types of functors, namely the covariant and
the contravariant hom functors.

Lemma 3. Let C be a category, and let X ∈ C.

(i) There is a covariant functor

HomC(X,−) : C → Set

defined by
HomC(X,−)(Y ) := HomC(X,Y )

for Y ∈ C, and for any Y , Z ∈ C and f ∈ HomC(Y, Z), then

HomC(X,−)(f) : HomC(X,Y )→ HomC(X,Z)

g 7→ fg.

(ii) There is a contravariant functor

HomC(−, X) : C → Set

defined by
HomC(−, X)(Y ) := HomC(Y,X)

for Y ∈ C, and for any Y , Z ∈ C and f ∈ HomC(Y, Z), then

HomC(−, X)(f) : HomC(Z,X)→ HomC(Y,X)

g 7→ gf.

Proof.

(i) It is evident that HomC(X,Y ) ∈ Set, and that

HomC(X,−)(1Y ) = [g 7→ 1Y g = g] = 1HomC(X,−)(Y )

for all Y ∈ C. For Y , Z and W ∈ C, f1 ∈ HomC(Y,Z) and f2 ∈ HomC(Z,W ),
then

(HomC(X,−)(f2f1))(g) = (f2f1)g

= f2(f1g)

= (HomC(X,−)(f2))(f1g)

= HomC(X,−)(f2) HomC(X,−)(f1)(g)

for all g ∈ HomC(X,Y ), hence

HomC(X,−)(f2f1) = HomC(X,−)(f2) HomC(X,−)(f1).
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(ii) Similar to (i).

We hereby introduce a compact, yet informative way of writing the resulting
morphism when applying a hom functor to a morphism.

Definition 4. Let C be a category, and let X ∈ C. We denote HomC(X,−)(f)
by (f ◦ −)X , since it takes a morphism and composes it with f from the left hand
side. Similarly, we denote HomC(X,−)(f) by (− ◦ f)X , since it takes a morphism
and composes it with f from the right hand side.

We observe that the hom functors are in fact left exact. That is, in the envi-
ronment where left exactness is defined, namely for for abelian categories.

Lemma 5. If C is an abelian category and X ∈ C, then HomC(X,−) and HomC(−, X)
are left exact functors

C → Ab .

Proof. By the very definition of an abelian category, then HomC(X,−) and HomC(−, X)
are functors

C → Ab .

We show the left exactness of HomC(X,−). Let

0 A B C 0
f g

be an exact sequence in C. We need to show that

0 HomC(X,A) HomC(X,B) HomC(X,C)
(f ◦ −)X (g ◦ −)X

is an exact sequence in Ab.
We first show that (f ◦ −)X is a monomorphism. In Ab, this is the same as

being injective. Suppose g ∈ HomC(X,A) such that

(f ◦ −)X(g) = fg = 0.

Then since f is a monomorphism, it follows that g = 0.
For h ∈ HomC(X,B), then

(f ◦ −)X(g ◦ −)X(h) = (f ◦ −)X(gh) = fgh = (fg ◦ −)X(h),

hence
(f ◦ −)X(g ◦ −)X = (fg ◦ −)X .

That is,
Im((f ◦ −)X) ⊆ Ker((g ◦ −)X).

We finally show that

Ker((g ◦ −)X) ⊆ Im((f ◦ −)X .
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Let h ∈ Ker((g ◦ −)X). Then gh = 0, and since f is the kernel of g, then h factors
through f . That is, there is j ∈ HomC(X,A) such that

h = fj = (f ◦ −)X(j),

hence h ∈ Im((f ◦ −)X).
By similar arguments, HomC(−, X) is a left exact functor.

Definition 6. We let

(i) Set := the category of sets, where the morphisms are maps,

(ii) Ab := the category of abelian groups, where the morphisms are abelian group
homomorphisms,

(iii) Mod(S) := the category of left S-modules for a ring S, where the morphisms
are S-module homomorphisms.

Note that the categories of (ii) and (iii) of the above definition are abelian
categories. The abelian group structure on the hom sets originates from the abelian
group structure on the objects themselves; in particular, from that on the target
objects: For example, for X, Y ∈ Ab and f , g ∈ HomC(X,Y ), then

(f + g)(x) := f(x) + g(x)

for all x ∈ X.
Suppose C is an abelian category, and consider the following diagram in C:

0 Ker(f) A B Cok(f) 0

0 Ker(g) C D Cok(g) 0

ιf f πf

ιg g πg

uKer vCoku v

(2.4)

It can be shown that there exist unique C-homomorphisms uKer ∈ HomC(Ker(f),Ker(g))
and vCok ∈ HomC(Cok(f),Cok(g)) such that the above diagram commutes.

Definition 7. The kernel map of u and the cokernel map of v (with respect to
Diagram 2.4) are the C-homomorphisms uKer ∈ HomC(Ker(f),Ker(g)) and vCok ∈
HomC(Cok(f),Cok(g)) making Diagram 2.4 commutative. We will stick to the
subscripts Ker and Cok for kernel maps and cokernel maps throughout this thesis.

The fact that uKer and vCok from Definition 7 are dependent on all of Diagram
2.4 and not only on u and v, respectively, suggests a more clarifying notation for
these morphisms. However, whenever this notation is used it will be clear from the
context which diagram the kernel or cokernel morphism originates from, and we
will omit specifying this explicitly.
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We now turn our attention to module categories. For a ring S then the left
Sop-modules are the right S-modules. Throughout this thesis we will be referring
to the left S-modules as merely S-modules, and to the right S-modules as Sop-
modules. Also, for a homomorphism set HomMod(S)(A,B) where A, B ∈ Mod(S),
we will instead write HomS(A,B).

The hom functors conveniently commute with direct sums, as stated by Lemma
8.

Lemma 8. Let ⊕ni=1Xi be a direct sum in Mod(S) for some ring S, with given
inclusions

νi : Xi → ⊕ni=1Xi

and projections
ρi : ⊕ni=1Xi → Xi

for 1 ≤ i ≤ n. Then the following holds for any Y ∈ Mod(S).

(i) There is an isomorphism of sets

ξ : HomS(⊕ni=1Xi, Y )→ ⊕ni=1 HomS(Xi, Y )

f 7→ {fνi}ni=1,

whose inverse is given by

ξ−1 : ⊕ni=1 HomS(Xi, Y )→ HomS(⊕ni=1Xi, Y )

{fi}ni=1 7→
n∑
i=1

fiρi.

(ii) If either Y = S or Xi = S for 1 ≤ i ≤ n, then the homomorphism sets in
question are Sop-modules, and ξ and ξ−1 are isomorphisms of Sop-modules.

Proof.

(i) Suppose f ∈ HomS(⊕ni=1Xi, Y ). Then

ξ−1ξ(f) = ξ−1({fνi}ni=1) =

n∑
i=1

fνiρi = f

n∑
i=1

νiρi︸ ︷︷ ︸
=1⊕n

i=1
Xi

= f,

hence
ξ−1ξ = 1HomS(⊕ni=1Xi,Y ).

Suppose {fi}ni=1 ∈ ⊕ni=1 HomS(Xi, Y ). Then

ξξ−1({fi}ni=1) = ξ

(
n∑
i=1

fiρi

)
=

{(
n∑
i=1

fiρi

)
νj

}n
j=1

=

{
n∑
i=1

fi(ρiνj)

}n
j=1

.
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Note that ρiνj = 1Xj for i = j and 0 otherwise, hence

n∑
i=1

fi(ρiνj) = fj ,

implying that
ξξ−1 = 1⊕ni=1 HomS(Xi,Y ).

(ii) We leave this as an exercise.

We can identify a module over a ring S with the set of S-module homomor-
phisms from S to the module, because of the following result.

Lemma 9. Let S be a ring, and let M ∈ Mod(S). Then

(i) HomS(S,M) is an S-module with the following multiplication

S ×HomS(S,M)→ HomS(S,M) :

For s ∈ S and f ∈ HomS(S,M), then

(s · f)(a) := f(as)

for a ∈ S.

(ii) The map

ξM : HomS(S,M)→M

f 7→ f(1S)

is an isomorphism of S-modules.

(iii) In the case that M = S, then

ξS : EndS(S)→ Sop

is a ring isomorphism.

Proof.

(i) For s ∈ S, we must check that sf ∈ HomS(S,M). For s′, a, a′ ∈ S, then

(sf)(s′a+ a′) = f((s′a+ a′)s)

= f(s′(as)) + f(a′s)

= s′f(as) + f(a′s)

= s′(sf)(a) + (sf)(a′).
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Let s, s′ ∈ S and f , f ′ ∈ HomS(S,M). It is obvious that

(s+ s′)f = sf + s′f

and
s(f + f ′) = sf + sf ′.

For any a ∈ S, then

((ss′)f)(a) = f(a(ss′)) = f((as)s′) = (s′f)(as) = (s(s′f))(a),

hence
(ss′)f = s(s′f).

(ii) We first show that ξM is an S-module homomorphism. Let s ∈ S and f ,
f ′ ∈ HomS(S,M). Then

ξM (sf + g) = (sf + g)(1S) = sf(1S) + g(1S) = sξM (f) + ξM (g).

We now show that that ξM is bijective. If ξM (f) = 0, then f(1S) = 0,
implying that

f(s) = sf(1S) = 0

for all s ∈ S, hence f = 0. Then ξM is injective.

For any m ∈M , we leave it up to the reader to check that

fm(s) := sm

for s ∈ S defines an S-module homomorphism fm ∈ HomS(S,M). Then

ξM (fm) = fm(1S) = m.

Thus ξM is surjective.

(iii) Let f1, f2 ∈ End(S). Then

ξS(f1f2) = (f1f2)(1S)

= f1(f2(1S))

= f1(f2(1S)1S)

= f2(1S)f1(1S)

= ξS(f2)ξS(f1),

hence ξS is a ring isomorphism.

We finally make a useful observation regarding exactness of sequences in Mod(S)
(for a ring S):
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Lemma 10. Let S be a ring, and let

0 A B C

B′ C ′ D′ 0

f g

α '
u v

β '

be a commutative diagram of exact rows in Mod(S). Then

0 A B C D′ 0
f g vβ

is an exact sequence of S-modules.

Proof. The exactness in A and B follows from the exactness of the given diagram.
Since v and β are epimorphisms then so is the composition vβ, so the sequence is
exact in D′. Since (vβ)g = (vu)α = 0, then Im(g) ⊆ Ker(vβ). We need to show
that Ker(vβ) ⊆ Im(g).

Let c ∈ Ker(vβ), that is, vβ(c) = 0. Then β(c) ∈ Ker(v) = Im(u), so there is
b′ ∈ B′ such that

u(b′) = β(c).

Then α−1(b′) ∈ B such that

βgα−1(b′) = u(b′) = β(c).

Since β is a monomorphism, this implies that

g(α−1(b′)) = c,

hence c ∈ Im(g).

The reader should be familiar with the notions of projective and injective mod-
ules as well as the material traversed in this section. For a definition of these
concepts along with some basic results, we refer to [1, Ch. 5]. Note especially the
relation between projective and injective modules and exactness of hom functors
of Proposition 16.9.

2.2 Our framework

In this thesis we will be studying modules over a fixed R-algebra Λ,1 where R is
a given ring. A lot of the results will depend on certain properties exhibited by
R and Λ, which we will dedicate this section to be familiarized with. First of all,
we shall assume that R is commutative. We now give the definition of the second
condition which we will have on R.

Definition 11. A ring R is local if it has a unique maximal ideal.

1An R-algebra will be defined formally in Definition 16(i).

17



It is well-known that a ring R is local if and only if its non-units form an ideal.
This equivalent definition is used in [2, Ch. 1].

Note that any factor of a local ring is in turn local.

Lemma 12. If R is a local ring then R/J is a local ring for any proper ideal J in
R.

Proof. Let R be a local ring, and suppose J is a proper ideal in R. Let m denote
the maximal ideal in R. Then m/J is an ideal in R/J , and we claim that it is the
unique maximal ideal.

Suppose Y is a non-trivial, proper ideal in R/J . Then Y is of the form

Y = X/J,

where X is an ideal in R such that

J ( X ( R.

Since m is the maximal ideal in R then

X ⊆ m,

hence
Y = X/J ⊆ m/J.

The last condition on our ring R will be that is is an artinian ring. This property
is defined below along with the similar concept of noetherianness.

Definition 13.

(i) A left (right) artinian ring R is a ring such that any descending chain of left
(right) ideals stabilizes. That is, given a descending chain

R = I0 ⊇ I1 ⊇ I2 ⊇ ...

of left (right) ideals in R, then there is N ∈ N such that In = Im for all m,
n ≥ N .

(ii) A left (right) noetherian ring R is a ring such that any ascending chain of
left (right) ideals stabilizes. That is, given an ascending chain

0 = I0 ⊆ I1 ⊆ I2 ⊆ ...

of left (right) ideals in R, then there is N ∈ N such that In = Im for all m,
n ≥ N .

The following definition is analogous to Definition 13, but for R-modules.

Definition 14.
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(i) An artinian R-module M is an R-module M such that any descending chain

M = M0 ⊇M1 ⊇M2 ⊇ ...

of R-sumbodules of M stabilizes. That is, there is N ∈ N such that Mn = Mm

for all m, n ≥ N .

(ii) A noetherian R-module M is an R-module M such that any ascending chain

0 = M0 ⊆M1 ⊆M2 ⊆ ...

of R-sumbodules of M stabilizes. That is, there is N ∈ N such that Mn = Mm

for all m, n ≥ N .

The following lemma is useful in situations where it is desirable to derive ar-
tinianness or noetherianness for an R-module.

Lemma 15. Let

0 A B C 0
f g

be an exact sequence of R-modules. Then the two following statements are equiva-
lent.

(i) B is an artinian (noetherian) R-module.

(ii) A and C are artinian (noetherian) R-modules.

Proof. We will prove the lemma for artinian R-modules. The proof in the case of
noetherian R-modules is similar.

(i)⇒ (ii) : Suppose B is an artinian R-module.

We first show that C is an artinian R-module. Let

C = C0 ⊇ C1 ⊇ C2 ⊇ ... (2.5)

be a descending chain of R-submodules of C. We need to show that (2.5)
stabilizes. Note that (2.5) induces a descending chain

B = g−1(C0) ⊇ g−1(C1) ⊇ g−1(C2) ⊇ ... (2.6)

of R-submodules of B. We claim that if g−1(Cn) = g−1(Cm), then Cn = Cm.
Assume g−1(Cn) = g−1(Cm), and let c ∈ Cn. Since g is onto C, there is b ∈ B
such that g(b) = c. Hence b ∈ g−1(Cn), then by hypothesis b ∈ g−1(Cm).
This means that g(b) ∈ Cm. Thus Cn ⊆ Cm. By symmetry, we conclude that
Cn = Cm.

Since B is an artinian R-module, we know that (2.6) stabilizes. That is, there
is N ∈ N such that g−1(Cn) = g−1(Cm) for all m, n ≥ N . Then by the above
result, Cn = Cm for all m, n ≥ N , thus (2.5) stabilizes.
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We now show that A is an artinian R-module. Let

A = A0 ⊇ A1 ⊇ A2 ⊇ ... (2.7)

be a descending chain of R-submodules of A. We need to show that (2.7)
stabilizes. Note that (2.7) induces a descending chain

B = f(A0) ⊇ f(A1) ⊇ f(A2) ⊇ ... (2.8)

of R-submodules of B. We claim that if f(An) = f(Am), then An = Am.
Assume f(An) = f(Am), and let a ∈ An. Then f(a) ∈ f(An), thus by
hypothesis, f(a) ∈ f(Am). Then there is a′ ∈ Am such that f(a′) = f(a).
Since f is injective, then a = a′, thus a ∈ Am. Then we have shown that
An ⊆ Am, hence, by symmetry, An = Am.

Again, since B is an artinian R-module, we know that (2.8) stabilizes. That
is, there is M ∈ N such that f(An) = f(Am), and thus An = Am, for all
m, n ≥ M . Hence (2.7) stabilizes. Then A and C are proven to be artinian
R-modules.

(ii)⇒ (i): Suppose A and C are artinian R-modules. Let

B = B0 ⊇ B1 ⊇ B2 ⊇ ... (2.9)

be a descending chain of R-submodules of B. We need to show that (2.9)
stabilizes. As in the first part of the proof, we consider the induced descending
chains

C = g(B0) ⊇ g(B1) ⊇ g(B2) ⊇ ... (2.10)

A = f−1(B0) ⊇ f−1(B0) ⊇ f−1(B0) ⊇ (2.11)

of R-submodules of A and C, respectively. Since A and C are artinian, then
(2.10) and (2.11) stabilize; there is N ∈ N such that g(Bn) = g(Bm) and
f−1(Bn) = f−1(Bm) for all m, n ≥ N . We claim that Bn = Bm for all m,
n ≥ N .

Consider some fixed m, n ≥ N , and suppose Bm 6= Bn. Since the Bi’s arise
from a descending chain, it is clear that one of these submodules is contained
in the other. Without loss of generality we assume Bn ⊆ Bm. Suppose
b ∈ Bm\Bn. Then

g(b) ∈ g(Bm) = g(Bn),

thus there is b′ ∈ Bn such that

g(b′) = g(b).

Then
b− b′ ∈ Ker(g) = Im(f), (2.12)

Moreover, b′ ∈ Bn ⊆ Bm, so

b− b′ ∈ Bm. (2.13)
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By (2.12) there is a ∈ A such that f(a) = b− b′, and by (2.13),

a ∈ f−1(Bm) = f−1(Bn).

Then f(a) = b− b′ ∈ Bn, so

b = (b− b′) + b′ ∈ Bn,

contradicting the assumption. We conclude that Bm = Bn for all m, n ≥ N ,
thus (2.9) stabilizes. This completes the proof; B is proven to be an artinian
R-module.

A special case of an artinian R-module is an artin R-algebra. Consider the
following definition.

Definition 16.

(i) An R-algebra Λ is a ring which is also an R-module, such that the following
holds: For all α, β, λ ∈ Λ and r, s ∈ R, then

(rα+ sβ)λ = r(αλ) + s(βλ)

and

α(rβ + sλ) = r(αβ) + s(αλ).

(ii) An artin R-algebra is an R-algebra which is finitely generated as R-module.

Informally, the length of an S-module M (over some ring S) is obtained by
considering all ways of writing descending chains of S-submodules of M where all
containments are proper, and taking the length of the longest such. For a more
technical definition, see [2, Ch. 1].

It can be shown that a module over an artin R-algebra is finitely generated if
and only if it has finite length, and this again occurs if and only if the module is
noetherian. We shall implicitly use this result throughout this thesis, as we from
now on let Λ denote a fixed artin R-algebra. Note that Λop is then also an artin
R-algebra, hence a result involving Λ and Λop is generally still valid if these two
rings are interchanged. Particularly, a functor (with no parameters from Λ or Λop)

mod(Λ)→ mod(Λop)

is also a functor

mod(Λop)→ mod(Λ).

Definition 17. Let S be a ring.

(i) For any M ∈ Mod(S), we let lS(M) denote the length of M as S-module.
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(ii) We let mod(S) be the full subcategory of Mod(S) whose objects are the S-
modules of finite length;

Ob(mod(S)) := {M ∈ Ob(Mod(S)) | lS(M) <∞}.

Note that mod(S) is also an abelian category, because the lengths of the kernel
and the cokernel of a morphism in mod(S) must also be of finite length. Whenever
we apply a hom functor in this thesis, it will be from one of the abelian categories
which we have seen, hence, by Lemma 5, it will always be left exact.

2.2.1 Some useful results

In Lemma 19 we will see that the artin R-algebra Λ is also an artinian ring, but
first we need to establish some relations between modules and homomorphisms of
R and Λ in our current framework.

The next lemma is considered basic knowledge, and will occasionally be applied
without reference. Note that for any ring S, then the identity map

1S : S → S

in HomS(S, S) can be regarded as multiplication by the identity element of S itself,
so we will use the same notation 1S for the identity element of S.

Lemma 18. The following statements are true:

(i) Mod(Λ) ⊆ Mod(R),

(ii) HomΛ(A,B) ⊆ HomR(A,B) for all A, B ∈ Mod(Λ),

(iii) mod(Λ) ⊆ mod(R).

Proof.

(i) Let M ∈ Mod(Λ). Then M is an R-module under the following binary
operation:

R×M →M

(r,m) 7→ (r · 1Λ)︸ ︷︷ ︸
∈Λ

m. (2.14)

(ii) Let A, B ∈ Mod(Λ), and suppose f ∈ HomΛ(A,B). Then for a1, a2 ∈ A and
λ ∈ Λ,

f(λa1 + a2) = λf(a1) + f(a2).

Thus for all r ∈ R, we see that

f(ra1 + a2)
(2.14)

= f((r1Λ)︸ ︷︷ ︸
∈Λ

a1 + a2) = (r1Λ)f(a1) + f(a2)
(2.14)

= rf(a1) + f(a2).
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(iii) If M ∈ mod(Λ), then for some n ∈ N there exists a Λ-module epimorphism

g : Λn → A.

By (ii), g is also an R-module epimorphism.

Recall that Λ is an artin algebra, that is, Λ is finitely generated as an R-
module. Then for some m ∈ N there exists an R-module epimorphism

h : Rm → Λ,

and thus there is an R-module epimorphism

hn : Rmn → Λn.

By composing g with hn we get an R-module homomorphism

ghn : Rmn → A,

thus A is finitely generated as an R-module.

Note that since R is a commutative ring, Lemma 18(i) implies that any Λop-
module is an R-Λ-bimodule. With Lemma 15 and Lemma 18(i) at hand, we are
ready to show that Λ is an artinian ring.

Lemma 19. The artin R-algebra Λ is an artinian ring.

Proof. Note that an R-submodule of R is the same as an ideal in R, so since R
is an artinian ring then R is also an artinian R-module. We will now proceed as
follows.

I) We first show that Rn is an artinian R-module.

II) We use I) to show that Λ is an artinian R-module.

III) Finally we show that II) implies that Λ is an artinian ring.

I) We show that Rn is an artinian R-module by induction on n. Suppose the
statement holds for n = k − 1. Consider the R-module epimorphism

gk : Rk → Rk−1

{ri}ki=1 7→ {ri}ki=2.

We see that Ker(gk) = R, thus

0 R Rk Rk−1 0
gk

is an exact sequence of R-modules. By Lemma 15, since R and Rk−1 are
artinian R-modules, then so is Rk.
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II) Since Λ is a finitely generated R-algebra, we know that Λ can be written as

Λ = Rλ1 +Rλ2 + ...+Rλn (2.15)

for some finite subset {λi}ni=1 ⊆ Λ. We claim that the maps

fλi : R→ Λ

r 7→ rλi.

for i ∈ {1, ..., n} are R-module homomorphisms. For s, r1, r2 ∈ R then

fλi(sr1 + r2) := (sr1 + r2)λi = sr1λi + r2λi = sfλi(r1) + fλi(r2).

Then

[fλ1
, fλ2

, ..., fλn ] : Rn → Λ

is also an R-module homomorphism, and by (2.15) it is onto Λ. Again, by
Lemma 15, then Λ is an artinian R-module.

III) Let

Λ = I0 ⊇ I1 ⊇ I2 ⊇ ...

be a descending chain of ideals in Λ. That is, Ii ∈ Mod(Λ) for all i ≥ 0. Then
by Lemma 18(i), all Ii’s are R-modules, and since Λ is an artinian R-module,
the chain must stabilize.

We often wish to show that some functor F goes from mod(S) to mod(S′) for
rings S and S′. Then in addition to assigning S-module structure to the codomain
of F , we need to show that the resulting S-module is of finite length. For this, the
following two lemmas are useful.

Lemma 20. Let A, B ∈ mod(S) for a ring S, and suppose f ∈ HomS(A,B).
Then Cok(f) ∈ mod(S).

Proof. For some n ∈ N, there is an S-epimorphism

Sn B 0.

Then by composing with the canonical projection from B onto Cok(f), we get an

S-epimorphism
Rn Cok(f) 0.

If a Λ-module is finitely generated as R-module, is is also finitely generated as
Λ-module:

Lemma 21. If M ∈ Mod(Λ) ∩mod(R), then M ∈ mod(Λ).
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Proof. Recall that
rm := (r1Λ)m

defines the R-module structure on M . Suppose

{m1,m2, ...,mn} ⊆M

generates M as R-module. Then any m ∈M can be written as

m =

n∑
i=1

rimi =

n∑
i=1

(ri1Λ)︸ ︷︷ ︸
∈Λ

mi ⊆
n∑
i=1

Λmi,

implying that M is finitely generated as Λ-module.

In addition to being abelian groups, the homomorphism sets (in our current
situation) admit miscellaneous module structures depending on their respective
source and target objects. Here we will give a few examples. It might seem redun-
dant to include both (i) and (ii) of the following lemma, but we find it useful in
order to get a better grasp on how these structures interact.

Lemma 22.

(i) Let M ∈ Mod(Λ), and let N ∈ Mod(R). Then HomR(M,N) is a Λop-module
with multiplication

HomR(M,N)× Λ→ HomR(M,N)

defined by
(hλ)(m) := h(λm) (2.16)

for all m ∈M .

(ii) Let M ∈ Mod(Λop), and let N ∈ Mod(R). Then HomR(M,N) is a Λ-module
with multiplication

Λ×HomR(M,N)→ HomR(M,N)

defined by
(λh)(m) := h(mλ) (2.17)

for all m ∈M .

(iii) Let M , N ∈ Mod(Λ). Then HomΛ(M,N) is an R-module with multiplication

R×HomΛ(M,N)→ HomΛ(M,N)

defined by
(rh)(m) := h(rm) = r(h(m)) (2.18)

for all m ∈M .
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(iv) Let M , N ∈ Mod(R). Then HomR(M,N) is an R-module with multiplication

R×HomR(M,N)→ HomR(M,N)

defined by
(rh)(m) := h(rm) = r(h(m)) (2.19)

for all m ∈M .

(v) Let M , N ∈ Mod(Λ). Then HomΛ(M,N) is an R-submodule of HomR(M,N).

Proof.

(i) We first show that hλ ∈ HomR(M, I) for any h ∈ HomR(M, I) and λ ∈ Λ.
Let r ∈ R and m1, m2 ∈M . Then

(hλ)(rm1 +m2) = h(λ(rm1 +m2))

= h(λ(rm1) + λm2)

= h(r(λm1) + λm2)

= rh(λm1) + h(λm2)

= r(hλ)(m1) + (hλ)(m2).

We now show that
h(λ1λ2) = (hλ1)λ2

for all h ∈ HomR(M, I) and λ1, λ2 ∈ Λ. For any m ∈M , then

(h(λ1λ2))(m) = h((λ1λ2)m)

= h(λ1(λ2m))

= (hλ1)(λ2m)

= ((hλ1)λ2)(m).

We leave it up to the reader to check that the distributive laws hold for this
action of Λ on HomR(M, I).

(ii) Similar to (i). Besides, if M ∈ Mod(Λop) then we can interpret M as a left
Λop-module as well as a right Λ-module, and apply (i). Then if * denotes the
multiplication

Λop ×M →M

and h ∈ HomR(M,N), m ∈M and λ ∈ Λ, we have

(λh)(m) = (h ∗ λ)(m)
(i)
= h(λ ∗m) = h(mλ).

(iii) Let r ∈ R and h ∈ HomΛ(M,N). By Lemma 18(ii) then h ∈ HomR(M,N),
so

h(r ·m) = r · h(m)
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for all m ∈M . For any s ∈ R and m ∈M , then

(rh)(sm) = r(h(sm)) = r(sh(m)) = s(rh(m)) = s(rh)(m),

so rh ∈ HomR(M,N). It is evident that 1R · h = h. For associativity of
multiplication of HomR(M,N) with R, we recall that R is a commutative
ring, and we leave it up to the reader to verify that the following distributive
laws are satisfied:

– (r1 + r2)h = r1h+ r2h for all r1, r2 ∈ R and h ∈ HomR(M,N),

– r(h1 + h2) = rh1 + rh2 for all r ∈ R and h1, h2 ∈ HomR(M,N),

– rh ∈ Hom(M,N) for all r ∈ R and h ∈ HomR(M,N).

(iv) Similar to (iii).

(v) We have from (iii) and (iv) that HomΛ(M,N) and HomR(M,N) are both
R-modules with the same multiplicative structure, and by Lemma 18(ii),
HomΛ(M,N) ⊆ HomR(M,N).

We have seen that given an abelian category C and an object X ∈ C, then
HomC(X,−) and HomC(−, X) are functors

C → Ab .

In light of Lemma 22, it is interesting to ask whether HomC(X,−) and HomC(−, X)
can be regarded as functors to module categories if we let their domain C be some
module category. The answer is yes, there are multiple examples of where this oc-
curs. Unfortunately it is too tedious to go through all of them, but demonstrations
for a few cases will be carried out in the proofs of Proposition 29 and Proposition
40.

There are a series of result which are valid for finitely generated modules. It is
therefore of significant whether a hom set with some module structure is finitely
generated as such.

Lemma 23. Let A, B ∈ mod(R). Then

(i) HomR(A,B) ∈ mod(R).

(ii) HomΛ(A,B) ∈ mod(R).

Proof.

(i) For some n ∈ N, there is an R-module homomorphism from Rn onto A, giving
rise to the following exact sequence of R-modules:

Rn A 0
(2.20)
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We apply HomR(−, B) to (2.20). It follows from Lemma 22(iv) that the
following exact sequence is of R-modules:

0 HomR(A,B) HomR(Rn, B)
(2.21)

Let S = R, Xi = R for i ∈ {1, ..., n}, and Y = B. Then since R is commuta-
tive, by Lemma 8 there is an isomorphism of R-modules

HomR(R,B)n → HomR(Rn, B).

This result together with Lemma 9(ii) now implies that HomR(Rn, B) ' Bn
as R-modules, and since B is finitely generated as an R-module then so is
Bn. Thus Bn is noetherian, and by applying Lemma 15 to (2.21) we see
that Hom(A,B) is a noetherian R-module. By [1, Proposition 10.9, Ch. 3],
all submodules of noetherian R-modules are finitely generated as R-modules,
thus HomR(A,B) ⊆ mod(R).

(ii) By Lemma 22(v), HomΛ(A,B) is an R-submodule of HomR(A,B), thus since
HomR(A,B) is a noetherian R-module, then HomΛ(A,B) is a finitely gener-
ated R-module.

The previous result has the following convenient consequence:

Proposition 24. Let X ∈ mod(Λ). Then

(i) EndΛ(X) is an artin R-algebra.

(ii) If I ∈ EndΛ(X) is an ideal, then EndΛ(X)/I is an artin algebra.

Proof.

(i) Lemma 18 implies that X ∈ mod(R), and then, by Lemma 23(ii), EndΛ(X) is
a finitely generated R-module. Moreover, composition of morphisms defines
an R-algebra structure on EndΛ(X); it is easy to see that the map

EndΛ(X)× EndΛ(X)→ EndΛ(X)

(f, g) 7→ f ◦ g

is R-bilinear. Thus EndΛ(X) is an artin R-algebra.

(ii) Since EndΛ(X) is an artin algebra, then by definition, for some n ∈ N there
is an R-module epimorphism

Rn → EndΛ(X).

By composing thisR-epimorphism with the canonical projection from EndΛ(X)
onto EndΛ(X)/I, we see that EndΛ(X)/I is also an artin R-algebra.
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In Chapter 3 we will fix an element X ∈ mod(Λ), and then we will construct
some isomorphisms with the usage of diagrams in mod(R) obtained from applying
functors – studied in this section – to objects in mod(Λ), mod(Λop) and mod(R),
respectively. As it turns out, the R-modules of greatest interest (namely the do-
mains and codomains of the mentioned isomorphisms) are also endoved with either
Γ-module or Γop-module structure for a factor Γ of EndΛ(X), and, more impor-
tantly, these structures are preserved by the isomorphisms. That is, we will be
constructing isomorphisms of Γ-modules and of Γop-modules. The artinianness of
Γ and Γop will then be a great advantage, since any result which is derived for Λ
in this section is evidently also valid for Γ and Γop. 2

flytte? Moreover, we will see in Section 2.10 that with certain conditions on
X ∈ mod(Λ), then Γ (and similarly Γop) is a local ring whose factor modulo its
radical is a simple Γ-module, a property which will be of great importance for our
work in Section 3.2.2.

2.3 The dual

In this section we will study an important exact hom functor, obtained from a
special injective R-module. Consider the following definition.

Definition 25. Let S be a ring.

(i) Let M , N ∈ Mod(S), and suppose M ⊆ N . We say that N is an essential
extension of M if

X ∩N 6= 0

for all submodules X ⊆M .

(ii) An injective envelope I of N ∈ Mod(S) is an injective S-module I together
with a monomorphism ι of S-modules

ι : M → I,

where I is an essential extension of Im(ι).

For a ring S it can be shown that there exists an injective envelope, unique up
to isomorphism in Mod(S), of any S-module. Since R is a commutative ring, its
localness indicates the existence of a unique maximal ideal, from now denoted by
m. We let I be the injective envelope of the simple R-module given by K := R/m.

Definition 26. The dual is the hom functor

D := HomR(−, I).

2Our only assumption on Λ is that it is an artin R-algebra.
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Note that the above definition is a little imprecise since we have not specified
the domain and codomain of the dual D. This is because we wish to vary these
categories. It turns out that the dual D has an interesting property when regarded
as a functor between certain module categories, namely that of being a duality.

Definition 27. Let C and D be categories. A contravariant functor

F : C → D

is called a duality if there exists a functor

G : D → C

such that

GF '
nat.

1C

and

FG '
nat.

1D.

We shall see that for F := D and for appropriate choices for C and D, then D
is a duality with G = D. In order to prove this we will need the following lemma.

Lemma 28. There is an isomprphism of R-modules

HomK(K, I) ' K.

Proof. Let ν denote the inclusion of K into its injective envelope I, and consider
the exact sequence of R-modules given by

0 K I X 0,
ν µ

where µ is the cokernel of ν. It can be shown that HomK(K,−) is a (left ex-
act) functor from Mod(R) to Mod(R), yielding the following exact sequence of
R-modules.

0 HomR(K,K) HomR(K, I) HomR(K,X).
(ν ◦ −)K (µ ◦ −)K

We claim that (µ ◦−)I = 0. Let f ∈ HomR(K, I). If f = 0, then (µ ◦−)I(f) = µf
is obviously 0. Assume f 6= 0. Then since

Ker(f) ⊆ K

and K is a simple R-module, then Ker(f) = 0, that is, f is injective. Since
Im(f) ⊆ I is a nonzero submodule, and I is an essential extension of Im(ν), then

Im(f) ∩ Im(ν) 6= 0.
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Furthermore, Im(f) and Im(ν) are both simple since they are isomorphic to K,
and since Im(f) ∩ Im(ν) is a nonzero submodule of them both, then

Im(f) = Im(f) ∩ Im(ν) = Im(ν).

Then for any x ∈ K, we have
f(x) = ν(x′)

for some x′ ∈ K, hence
µf(x) = µν(x′) = 0.

Thus the composition
µf = 0

for any f ∈ HomR(K, I), that is, (µ ◦ −)I = 0, implying that

(ν ◦ −)I : HomR(K,K)→ HomR(K, I)

is an isomorphism of R-modules.
We now show that

HomR(K,K) ' K

as R-modules. Consider the canonical R-module epimorphism

R K 0.

We apply the left exact functor HomR(−,K), and get the exact sequence

0 HomR(K,K) HomR(R,K)

of R-modules. By Lemma 9(ii), then

HomR(R,K) ' K.

Since K is simple and HomR(K,K) 6= 0, then the image of the inclusion of
HomR(K,K) into HomR(R,K) must be all of HomR(R,K), hence

HomR(K,K) ' K

as claimed. This completes the proof.

We now have all the results required in order to prove the following convenient
results for the dual D.

Proposition 29.

(i) We can regard D as an exact, contravariant functor

(a) D : mod(R)→ mod(R),

(b) D : mod(Λ)→ mod(Λop).

(ii) For any M ∈ mod(R) then

lR(DM) = lR(M).
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(iii) The functor D is a duality in either of these three cases.

Proof. We know that D is a contravariant, left exact functor to the category of
abelian groups in either of these three cases, and because I is injective then D
is exact. What needs to be proven, is that D is also a functor to the claimed
codomains.

(i) (a) Let M ∈ mod(R). Then by Lemma 23(i), HomR(M, I) ∈ mod(R). We
must check that, for any M , M ′ ∈ mod(R) and h ∈ HomR(M,M ′), then
Dh ∈ HomR(DM ′, DM). Suppose f ′ ∈ DM ′ and r ∈ R. Then

Dh(rf ′)(m) = (− ◦ h)I(rf
′)(m)

= (rf ′h)(m′)

(2.19)
= r(f ′h)(m′)

= r(− ◦ h)I(f
′)(m)

= rDh(f ′)(m)

for all m ∈M , hence
Dh(rf ′) = rDh(f ′).

We leave it up to the reader to check that

Dh(f ′1 + f ′2) = Dh(f ′1) +Dh(f ′2) (2.22)

for all f ′1, f ′2 ∈ DM ′.
(b) Suppose M ∈ mod(Λ). In Lemma 22(i) we saw that HomR(M, I) ∈

Mod(Λop). Also, HomR(M, I) is finitely generated as R-module by
Lemma 23(i), hence by Lemma 21 it follows that HomR(M, I) ∈ mod(Λop).

We must also show that D takes Λ-module homomorphisms to Λop-
module homomorphisms. Let M , M ′ ∈ mod(Λ) and h ∈ HomΛ(M,M ′).
Then for f ′ ∈ DM ′ and λ ∈ Λ, we have

Dh(f ′λ)(m) = (− ◦ h)I(f
′λ)(m)

= (f ′λ)(h(m)︸ ︷︷ ︸
∈M ′

)

= f ′(λh(m))

= f ′(h(λm))

= (− ◦ h)I(f
′)(λm)

= Dh(f ′)︸ ︷︷ ︸
∈HomR(M,I)

(λm)

= (Dh(f ′)λ)(m)

for all m ∈M , hence

Dh(f ′λ) = Dh(f ′)λ.
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By Lemma 18 then 2.22 also holds for f ′1, f ′2 ∈ DM ′ in this case, and
Dh is thus a Λop-module homomorphism.

(ii) Let M ∈ mod(R). We will show that

lR(DM) = lR(M) (2.23)

by induction on lR(M).

Suppose lR(M) = 1. Then M is a simple R-module, and since R is a local
ring, then R has a unique maximal ideal. This implies that R has only one
simple module, thus

M ' K

as R-modules. Then by Lemma (28), we see that

HomR(M, I) 'M

as R-modules. It follows that

lR(DM) = lR(HomR(M, I)) = lR(M) = 1.

Now suppose (2.23) holds for all R-modules M of length n−1 for some n ∈ N,
and let M ′ be an R-module of length n. Then M ′ has a submodule M of
length n − 1, and the cokernel of the inclusion of M into M ′ is simple and
thus isomorphic to K. Hence

0 M M ′ K 0

is an exact sequence R-modules. By applying D, which was shown in to
(i)(a) to be an exact functor mod(R)→ mod(R), we get the following exact
sequence of R-modules:

0 DK DM ′ DM 0.

Then by [2, Proposition 1.3, Ch. 1], we have that

lR(DM ′) = lR(DK)︸ ︷︷ ︸
=1

+ lR(DM)︸ ︷︷ ︸
=n−1

= n.

Thus (2.23) holds when lR(M) = n for all n ∈ N.

(iii) (a) We claim that α : 1mod(R) → D2 defined by

αM : M → HomR(HomR(M, I), I)

m 7→ [f 7→ f(m)]

for M ∈ mod(R) is a natural transformation of functors. Given a fixed
M ∈ mod(R), it is clear that αM (m) ∈ HomR(HomR(M, I), I) for all
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m ∈M : Suppose f1, f2 ∈ HomR(M, I) and r ∈ R, then

αM (m)(rf1 + f2) = (rf1 + f2)(m)

= rf1(m) + f2(m)

= rαM (f)(f1) + αM (m)(f2).

Moreover, for m1, m2 ∈M and r ∈ R, then

αM (rm1 +m2)(f) = f(rm1 +m2)

= rf(m1) + f(m2)

= rαM (m)(f1) + αM (m2)(f)

= (rαM (m1) + αM (m2))(f)

for all f ∈ HomR(M, I), thus

αM (rm1 +m2)(f) = rαM (m1) + αM (m2),

and αM is an R-module homomorphism.

We now show that α is a natural transformation. Let M , M ′ ∈ mod(R),
and let h ∈ HomR(M,M ′). Then

D2(h) = HomR(−, I)(HomR(−, I)(h))

= HomR(−, I)((− ◦ h)I)

= (− ◦ (− ◦ h)I)I .

We must show that

M HomR(HomR(M, I), I)

M ′ HomR(HomR(M ′, I), I)

αM

αM ′

h (− ◦ (− ◦ h)I)I

is a commutative diagram. Suppose m ∈M . Consider Diagram 2.24.

m [f 7→ f(m)]

h(m) [f ′ 7→ f ′h(m)]

?

(2.24)

We must show that

(− ◦ (− ◦ h)I)I([f 7→ f(m)]) = [f ′ 7→ f ′h(m)].
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For f ′ ∈ HomR(HomR(M ′, I), I), then

(− ◦ (− ◦ h)I)I([f 7→ f(m)])(f ′) = [f 7→ f(m)] ◦ (− ◦ h)I(f
′)

= [f 7→ f(m)](f ′h)

= f ′h(m).

Thus α is a natural transformation.

Finally, we show that αM is an isomorphism of R-modules for any M ∈
mod(R).

We begin by demonstrating the injectiveness of αM . Let M ∈ mod(R),
and suppose m ∈M is a nonzero element. We must show that αM (m) 6=
0, that is, that

αM (m)(f) = f(m) 6= 0

for some f ∈ HomR(M, I). Consider the map

f̂ : Rm→ I

rm 7→ r +m.

Note that r + m ∈ R/m = K ⊆ I. We show that f̂ is well-defined: If
rm = r′m, then (r − r′)m = 0, and since m is nonzero this means that
r − r′ is a non-unit in R. Recall that m is the ideal in R generated by
all the non-units. Hence r − r′ ∈ m, implying that r + m = r′ + m. It
is easy to see that f̂ is an R-module homomorphism. Moreover, since
Rm ⊆M is a submodule, then the inclusion

ι : Rm→M

is an R-module monomorphism. Thus by the lifting property of an
injective module, there exists an R-module homomorphism f : M → I
such that

fι = f̂ :

Rm M

I

ι

f̂ ∃f

Then

f(m) = fι(m) = f̂(m) = f̂(1Rm) = 1R +m 6= 0,

and αM is shown to be injective. By (ii) then lR(M) = lR(D2M), hence
by [2, Proposition 1.4, Ch. 1], αM is an isomorphism of R-modules.

35



(b) Let M ∈ mod(Λ), and consider the R-module isomorphism

αM : M → HomR(HomR(M, I), I)

used in the proof of (iii)(a). We claim that αM is also a homomorphism
of Λ-modules.

Let m ∈M and λ ∈ Λ. Then for f ∈ HomR(M, I),

αM (λm)(f) = f(λm) = (fλ)(m)

because of the Λop-module structure on HomR(M, I) of Lemma 22(i).
Moreover, the Λ-module structure on HomR(HomR(M, I)︸ ︷︷ ︸

∈mod(Λop)

, I) (Lemma

22(ii)) now implies that

(λαM (m))(f) = αM (m)(fλ) = (fλ)(m)

for f ∈ HomR(M, I). Hence

αM (λm) = λαM (m).

Also, αM (m1 + m2) is obviously equal to αM (m1) + αM (m2) for all
m1, m2 ∈ M , thus αM is a Λ-module homomorphism. Since αM was
shown to be bijective in the proof of (iii)(a), it follows that αM is an
isomorphism of Λ-modules. It was also shown in (iii)(a) that αM is
natural in M . This completes the proof.

(c) Similar to (iii)(b).

Most of the investigation of Chapter 3 will be carried out without any more
assumptions on R than the ones presented in Section 2.2, 3 but in the very last
section we will add the condition that R be a field. The motivation for making this
restriction is that the finitely generated R-modules then become finite dimensional
R-vector spaces, and by choosing an R-basis of an R-vector space V we have a
method for obtaining a set of elements of the dual space DV – which even turns
out to form an R-basis of DV . This procedure will be explained in this section.
Recall that K denotes the field R/m, where m is the maximal ideal in R.

Lemma 30. In the case that R is a field, then R = K and the functor D of
Definition 27 is given by

D = HomK(−,K),

and it is a functor
mod(K)→ mod(K).

3R is a commutative, local and artinian ring.
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Proof. If R is a field, then the maximal ideal m = 0, thus

R = R/m = K.

Since R is injective as R-module, then R is its own injective envelope, 4 hence

I = R = K

in this case. It now follows from Proposition 29(i)(a) that D is a functor

mod(K)→ mod(K).

Note that when equipped with a K-basis for a K-vector space V , we can im-
mediately obtain elements of DV in the following manner: For an element of the
given basis then the action of extracting the K-coefficient of this particular basis
element from any v ∈ V , forms a K-module homomorphism from V to K. (We
leave it to the reader to check that this is true.)

Definition 31. Let V ∈ mod(K), and let

BV := {v1, v2, ..., vl}

be a K-basis of V . Let

dBV : BV → DV

be the mapping given by

dBV (vi)(vj) :=

{
1 if j = i
0 otherwise

.

(2.25)

We will now see that for a K-vector space V then the dBV (vi)’s of Definition
31 form a K-basis of DV .

Proposition 32. Let V ∈ mod(K), and let

BV := {v1, v2, ..., vl}

be a K-basis of V . Let

dBV := {dBV (v1), dBV (v2), ..., dBV (vl)}.

Then dBV is a K-basis of D(V ).

4Any nonzero submodule of R evidently has nonzero intersection with R.
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Proof. We first show that dBV is linearly independent. Suppose α1, ..., αl ∈ K such
that

∑l
i=1 αidBV (vi) = 0. This means that

∑l
i=1 αidBV (vi)(v) = 0 for all v ∈ V .

In particular,
l∑
i=1

αi dBV (vi)(vj) = 0

for j ∈ {1, ..., l}. Note that
∑l
i=1 αi dBV (vi)(vj) is also equal to αj . Thus dBV is

linearly independent.
We now show that any f ∈ D(V ) can be written as a K-linear combination of

elements of dBV . Note that

dBV (vi)

 l∑
j=1

αjvj

 =

l∑
j=1

αjdBV (vi)(vj) = αi.

For any element v =
∑l
j=1 αjvj in V , then

f(v) = f

 l∑
j=1

αjvj


=

l∑
j=1

αjf(vj)

=

l∑
j=1

dBV (vj)(v)f(vj)

=

l∑
j=1

f(vj)dBV (vj)(v)

=

 l∑
j=1

f(vj)dBV (vj)

 (v),

hence f =
∑l
j=1 f(vj)dBV (vj).

(The K-coefficients of f with respect to the K-basis dBV of D(V ) are thus
obtained by evaluating f in the elements of BV .)

Definition 33. Let V ∈ mod(K), and let

BV := {v1, v2, ..., vl}

be a K-basis of V . The K-basis dBV of D(V ) is called the dual basis of D(V ) (with
respect to BV ).

Given an isomorphism of two vector spaces, then a K-basis for one of the vector
spaces corresponds bijectively to a K-basis for the other through application of the
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isomorphism. Moreover, since D is a functor, D induces an isomorphism of the
respective dual spaces. The following lemma states that we are at liberty to apply
dB (where B is either the K-basis of the one vector space or the other) before or
after applying the appropriate isomorphism, without changing the outcome.

Lemma 34. Let V , W ∈ mod(K), and suppose ξ ∈ HomK(V,W ) is an isomor-
phism. Let

BV := {v1, v2, ..., vl}
be a K-basis of V , and let

ξ(BV ) := {ξ(v1), ξ(v2), ..., ξ(vl)}

denote the corresponding K-basis of W . Then

(Dξ−1)(dBV (vj)) = dξ(BV )(ξ(vj))

for all 1 ≤ j ≤ l.

Proof. Let 1 ≤ j ≤ l, and suppose
∑l
i=1 αiξ(vi) ∈W . Then

(Dξ−1)(dBV (vj))

(
l∑
i=1

αiξ(vi)

)
= dBV (vj) ◦ ξ−1

(
l∑
i=1

αiξ(vi)

)

= dBV (vj)

(
l∑
i=1

αivi

)
= αj

= dξ(BV )(ξ(vj))

(
l∑
i=1

αiξ(vi)

)
,

hence
(Dξ−1)(dBV (vj)) = dξ(BV )(ξ(vj)).

2.4 Projective covers and minimal projective pre-
sentations

In this section we will introduce the notion of a minimal projective presentation.
This is an important topic, as a minimal projective presentation will be the point
of departure for many of the computations in the sequel.

Definition 35.

(i) We let P(Λ) denote the category whose objects are the finitely generated and
projective Λ-modules, and

HomP(Λ)(P, P
′) := HomΛ(P, P ′)

for any P , P ′ ∈ P(Λ).
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(ii) Let A, B ∈ Mod(Λ). An essential epimorphism t ∈ HomΛ(A,B) is a Λ-
module epimorphism such that the following holds. If M ∈ Mod(Λ) and
u ∈ HomΛ(M,A) such that the composition tu is an epimorphism, then u is
also an epimorphism.

(iii) LetX ∈ Mod(Λ). A projective cover of X is a projective Λ-module P together
with an essential epimorphism

t : P → X.

We will be referring to both P and t as the projective cover of X depending
on the situation; it should be clear from the context whether we are referring
to the object or to the morphism.

The existence of projective covers of finitely generated Λ-modules is essential
for our further work. For this, we refer to [2, Theorem 4.2, Ch. 1]. Although
this theorem already states the facts of the following lemma, we include it here for
completeness.

Lemma 36. Let X ∈ mod(Λ).

(i) Suppose P is a projective cover of X. Then P ∈ P(Λ). That is, P is a
finitely generated Λ-module.

(ii) Suppose

P X 0
t

and

P ′ X 0
t′

are projective covers of X. Then there exists an isomorphism h ∈ HomΛ(P, P ′)
such that the following diagram commutes:

P

X

P ′

t

t′
h

Proof.
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(i) There is an essential epimorphism t ∈ HomΛ(P,X), and an epimorphism
u ∈ HomΛ(Λn, X) for some n ∈ N.

Λn

P X 0

0

u∃v
t

Then by the lifting property of the projective Λ-module Λn, there is an epi-
morphism v ∈ HomΛ(Λn, P ) such that

tv = u.

Then tv is an epimorphism, and since t is an essential epimorphism then v is
an epimorphism. Hence P ∈ P(Λ).

(ii) Consider the following diagram:

P

P ′ X 0

0

t

t′

h h′

Because of the lifting property of P and P ′, there exist h ∈ HomΛ(P, P ′) and
h′ ∈ HomΛ(P ′, P ) such that

t′h = t.

and
th′ = t′

Then, since t′ is an essential epimorphism and t′h is an epimorphism, h is an
epimorphism. Moreover,

t′(hh′) = (t′h)h′ = th′ = t′,

and by the same arguments as above, hh′ is an epimorphism. Since lΛ(P ′) <
∞, then hh′ is an isomorphism, implying that h is a monomorphism. Then

h : P ′ → P

is an isomorphism of Λ-modules.
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Recall that any homomorphism of finitely generated Λ-modules has a kernel in
mod(Λ) which is unique up to isomorphism.

Definition 37. (i) For X ∈ mod(Λ), we let P (X) denote the projective cover
of X, and we let ΩΛ(X) denote the kernel of the projective cover map t. That
is, ΩΛ(X) is defined by the exactness of the following sequence:

0 ΩΛ(X) P (X) X 0
ι t

(ii) Let X ∈ mod(Λ). A minimal projective presentation of X is an exact se-
quence

P1 P0 X 0
s t

where

P0 := P (X)

is the projective cover of X and

P1 := P (ΩΛ(X))

is the projective cover of ΩΛ(X), and s is the composition of the inclusion ι
of ΩΛ(X) into P (X) and the projective cover w from P (ΩΛ(X)) onto ΩΛ(X):

P (ΩΛ(X)) P (X) X 0

ΩΛ(X)

s t

w ι

Note that for X ∈ mod(Λ), the existence of a minimal projective presentation
follows directly from the existence of projective covers. We now show that minimal
projective presentations are unique up to isomorphism.

Lemma 38. Let

P1 P0 X 0
s t

and

P ′1 P ′0 X 0
s′ t′

be two minimal projective presentations of X. Then there are isomorphisms h0 ∈
HomΛ(P0, P

′
0) and h1 ∈ HomΛ(P1, P

′
1) such that the following diagram is commu-

tative.
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P1 P0 X 0

P ′1 P ′0 X 0

s t

s′ t′

h1 h0

Proof. Consider the inclusions

ι : Ker(t)→ P0

and
ι′ : Ker(t′)→ P ′0,

and the projections
π : P1 → Im(s) = Ker(t)

and
π′ : P ′1 → Im(s′) = Ker(t′).

P1 P0 X 0

Ker(t)

P ′1 P ′0 X 0

Ker(t′)

P1 P0 X 0

Ker(t)

s t

s′ t′

s t

h0'

h′0'

π ι

π′ ι′

π ι

u'

h1

u′'

h′1

The existence of the isomorphisms h0 ∈ HomΛ(P0, P
′
0) and h′0 ∈ HomΛ(P ′0, P0)
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follows from Lemma 36(ii). By [3, Lemma 3.32 (Five Lemma), Ch. 3], there are
isomorphisms u ∈ HomΛ(Ker(t),Ker(t′)) and u′ ∈ HomΛ(Ker(t′),Ker(t)) such
that

h0ι = ι′u

and
h′0ι
′ = ιu′.

Since π′ is an epimorphism and P1 is projective, there is h1 ∈ HomΛ(P1, P
′
1) such

that
uπ = π′h1.

Moreover, uπ is an epimorphism and π′ is an essential epimorphism, hence h1 is
also an epimorphism. Similarly, there is an epimorphism h′1 ∈ HomΛ(P ′1, P1) such
that

u′π′ = πh′1.

The composition h′1h1 is an epimorphism, and then, since P1 has finite length (by
Lemma 36(i)), h′1h1 is an isomorphism. This again implies that h1 is a monomor-
phism, and therefore an isomorphism.

2.5 The ()∗-functor

In this brief section we will derive some results for HomΛ(−,Λ). Because this
functor will be frequently applied in the next section, we find it practical to assign
to it the following abbreviating notation:

Definition 39. We let the Hom-functor HomΛ(−,Λ) be denoted by ()∗.

We make the following observations about the ()∗-functor.

Proposition 40. We can regard ()∗ as a contravariant, left exact functor

(i) mod(Λ)→ mod(Λop),

(ii) P(Λ)→ P(Λop).

Proof. We have seen that HomΛ(−,Λ) is a contravariant, left exact functor

mod(Λ)→ Ab .

(i) Let M ∈ mod(Λ). By Lemma 23(ii), then HomΛ(M,Λ) ∈ mod(R). We claim
that HomΛ(M,Λ) ∈ Mod(Λop) with the following multiplication

HomΛ(M,Λ)→ HomΛ(M,Λ) :

(fλ)(m) := f(m)λ.

For this we need to verify the following statements:

I) fλ ∈ HomΛ(M,Λ) for all f ∈ HomΛ(M,Λ) and λ ∈ Λ.
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II) The multiplication with Λ is associative.

III) ()∗ takes Λ-module homomorphisms to Λop-module homomorphisms.

In case that this holds, then HomΛ(M,Λ) ∈ Mod(Λop) ∩ mod(R), thus, by
Lemma 21, HomΛ(M,Λ) ∈ mod(Λop). We now show that I) through III)
hold.

I) Let f ∈ HomΛ(M,Λ) and λ ∈ Λ. Then

(fλ)(αm1 +m2) = f(αm1 +m2)λ

= (αf(m1) + f(m2))λ

= αf(m1)λ+ f(m2)λ

= α(fλ)(m1) + (fλ)(m2)

for all m1, m2 ∈ M and α ∈ Λ, thus fλ is indeed an element of
HomΛ(M,Λ).

II) Let f ∈ HomΛ(M,Λ) and λ1, λ2 ∈ Λ. Then

(f(λ1λ2))(m) = f(m)(λ1λ2)

= (f(m)λ1)λ2

= (fλ1)(m)λ2

= ((fλ1)λ2)(m)

for all m ∈M , thus
f(λ1λ2) = (fλ1)λ2.

III) Let M , M ′ ∈ mod(Λ), and suppose h ∈ HomΛ(M,M ′). We need to
show that h∗ ∈ HomΛ(M ′∗,M∗). Let f ′ ∈M ′∗ and λ ∈ Λ. Then

(h∗(f ′λ))(m) = ((f ′λ)h)(m)

= (f ′λ)(h(m))

= f ′(h(m))λ

= (f ′h)(m)λ

= ((f ′h)λ)(m)

= (h∗(f ′)λ)(m)

for all m ∈M , hence
h∗(f ′λ) = h∗(f ′)λ.

We leave it up to the reader to check that

h∗(f ′1 + f ′2) = h∗(f ′1 + f ′2).

(ii) Suppose P is a projective Λ-module. Then there is n ∈ N such that

Λn ' P ⊕ P ′

45



for some projective Λ-module P ′, implying that

HomΛ(Λn,Λ) ' HomΛ(P ⊕ P ′,Λ)

as Λop-modules. Moreover, by Lemma 8(ii) there are Λop-module isomor-
phisms

HomΛ(P ⊕ P ′,Λ) ' HomΛ(P,Λ)⊕HomΛ(P ′,Λ)

and
HomΛ(Λn,Λ) ' HomΛ(Λ,Λ)n.

Then
HomΛ(P,Λ)⊕HomΛ(P ′,Λ) ' HomΛ(Λ,Λ)n.

By Lemma 9(ii),
HomΛ(Λ,Λ)n ' (Λop)n

as Λop-modules, and it follows that HomΛ(P,Λ) = P ∗ is a direct summand
of (Λop)n.

When applying the ()∗-functor to a minimal projective presentation

P1 P0 X 0
s t

of an element X ∈ mod(Λ), we get the exact sequence

0 X∗ P ∗0 P ∗1
t∗ s∗

in mod(Λop). The following lemma states that the cokernel of s∗ is finitely gener-
ated as Λop-module, and independent of choice of minimal projective presentation
of X.

Lemma 41.

(i) Let X ∈ mod(Λ), and let

P1 P0 X 0
s t

be a minimal projective presentation of X. Then the following sequence is an
exact sequence in mod(Λop):

0 X∗ P ∗0 P ∗1 Cok(s∗) 0
t∗ s∗

(ii) If

P1 P0 X 0
s t

and
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P ′1 P ′0 X 0
s′ t′

are two minimal projective presentations of X, then

Cok(s∗) ' Cok(s′∗)

as Λop-modules.

Proof.

(i) Proposition 40(i) implies that

0 X∗ P ∗0 P ∗1
t∗ s∗

is an exact sequence of Λop-modules. Then, by Lemma 20, we know that
Cok(s∗) ∈ mod(Λop).

(ii) By Lemma 38 there are isomorphisms h0 ∈ HomΛ(P0, P
′
0) and h1 ∈ HomΛ(P1, P

′
1)

such that the following diagram commutes:

P1 P0 X 0

P ′1 P ′0 X 0

s t

s′ t′

h1 h0

The functor ()∗ now induces the following commutative diagram:

0 X∗ P ′∗0 P ′∗1 Cok(s′∗) 0

0 X∗ P ∗0 P ∗1 Cok(s∗) 0

t′∗ s′∗

t∗ s∗

h∗0 h∗1 '

By the Five Lemma, it follows that

Cok(s∗) ' Cok(s′∗)

as Λop-modules.

2.6 The transpose

In this section we will define a functor called the transpose, which will serve as a
tool for our investigation throughout Chapter 3.

The results of Lemma 41 bring about a well-defined map from mod(Λ) to
mod(Λop) up to isomorphism in mod(Λop).
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Definition 42. Let
Tr : mod(Λ)→ mod(Λop)

be given by
Tr(X) := Cok(s∗),

where

P1 P0 X 0
s t

is any minimal projective presentation of X.

We wish to investigate if Tr can be regarded also as a functor. What should this
prospective functor return when applied to a morphism? To answer this question,
we will apply the following lemma.

Lemma 43. Consider the following diagram in mod(Λ):

. . . Pn Pn−1 ... P1 P0 X 0

. . . Yn Yn−1 ... Y1 Y0 Y 0

dn+1 dn dn−1 d2 d1 d0

gn+1 gn gn−1 g2 g1 g0

h

(2.26)

Suppose Pi is projective and didi+1 = 0 for all i ≥ 0, and suppose the lower row of
the diagram is exact. Then, for all i ≥ 0, there is hi ∈ HomΛ(Pi, Yi) such that the
resulting diagram is commutative.

Proof. We begin with considering a small part of Diagram 2.26:

P1 P0 X 0

Ker(d0)

Y1 Y0 Y 0

Ker(g0)

d1 d0

g1 g0

h0

Ker(h0)

h1 h

Since P0 is projective and g0 is an epimorphism, there is h0 ∈ HomΛ(P0, Y0) such
that

g0h0 = hd0.
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Then there is a kernel map Ker(h0) ∈ HomΛ(Ker(d0),Ker(g0)) which commutes
with the rest of the diagram. Since the lower row is exact, then Y1 is onto Ker(g0),
thus because P1 is projective there exists h1 ∈ HomΛ(P1, Y1) which commutes with
the rest of the diagram. By continuing in this fashion, we obtain hi ∈ HomΛ(Pi, Yi)
for all i ≥ 0.

Note that hi ∈ HomΛ(Pi, Yi) such that the resulting square right from hi is com-
mutative, is not necessarily unique. Suppose, for instance, that f ∈ HomΛ(P0, Y1)
such that the composition e1f is nonzero. Then (h0 + e1f) ∈ HomΛ(P0, Y0) such
that

eo(h0 + e1f) = e0h0 + (e0e1)︸ ︷︷ ︸
=0

f = hd0.

We now return to the task of finding a procedure for how to obtain, given
some h ∈ HomΛ(X,X ′) (where X, X ′ ∈ mod(Λ)), a suitable morphism in either
HomΛop(Tr(X),Tr(X ′)) or HomΛop(Tr(X ′),Tr(X)).

P1 P0 X 0
s t

(2.27)

and

P ′1 P ′0 X ′ 0
s′ t′

(2.28)

be minimal projective presentations of X and X ′, respectively. Then Lemma 43
yields the following commutative diagram in mod(Λ):

P1 P0 X 0

P ′1 P ′0 X ′ 0

s t

s′ t′

h1 h0 h

(2.29)

By applying ()∗ to Diagram 2.29, we get the following commutative diagram in
mod(Λop):

P ′∗0 P ′∗1 Tr(X ′) 0

P ∗0 P ∗1 Tr(X) 0

s′∗ t̂′

s∗ t̂

h∗0 h∗1 (h∗1)Cok

Now h∗1 gives rise to a cokernel map (h∗1)Cok ∈ HomΛ(Tr(X ′),Tr(X)), which seems
like a good candidate for our Tr(h). However, there is a well-definedness issue
which must be sorted out.

As mentioned above, the Λ-module homomorphisms h0 and h1 of Diagram
2.29 are not uniquely determined. If we were to choose g0 ∈ HomΛ(P0, P

′
0) and

49



g1 ∈ HomΛ(P1, P
′
1) instead of h0 and h1, then this choice would lead to a different

cokernel map (g∗1)Cok ∈ HomΛ(Tr(X ′),Tr(X)). We will solve this problem by
regarding Tr as a functor between appropriate quotient categories of mod(Λ) and
mod(Λop). Consider the following definition.

Definition 44.

(i) For M , N ∈ mod(Λ), we let

PΛ(M,N) := {f ∈ HomΛ(M,N) | f factors through a projective Λ-module},

and we let

HomΛ(M,N) := HomΛ(M,N)/PΛ(M,N).

(ii) We let mod(Λ) be the quotient category of mod(Λ) given by

Ob(mod(Λ)) := Ob(mod(Λ)),

Hommod(Λ)(M,N) := HomΛ(M,N).

(We have the same definition if Λ is replaced by Λop.)

We observe the following for homomorphisms which factor through projective
modules:

Lemma 45. Let M , N ∈ mod(Λ). If f ∈ PΛ(M,N) and P ∈ Mod(Λ) is onto
N , then f factors through P . Particularly, f factors through the projective cover
P (N) of N .

Proof. Consider the following diagram in Mod(Λ):

M

P ′

P N 0

f
∃

If f ∈ PΛ(M,N) then f factors through some projective Λ-module P ′, and because
of the lifting property of P ′ and the fact that P is onto N , the result is obtained.

Recall that when attempting to define the transpose of a morphism, we encoun-
tered a challenge regarding well-definedness. Our problem conveniently vanishes if
we instead consider the transpose to be a functor of quotient categories

mod(Λ)→ mod(Λop).
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Lemma 46. Let X, X ′ ∈ mod(Λ). Then there is a well-defined map

HomΛ(X,X ′)→ HomΛop(Tr(X ′),Tr(X))

which is defined as follows: Choose any representative h for the element of HomΛ(X,X ′)
to which Tr should be applied. Let (2.27) and (2.28) be minimal projective presenta-
tions for X and X ′ respectively, and let h0 ∈ HomΛ(P0, P

′
0) and h1 ∈ HomΛ(P1, P

′
1)

be any choice of Λ-module homomorphisms such that Diagram 2.29 commutes.
Then

Tr(h+ PΛ(X,X ′)) := (h∗1)Cok + PΛop(Tr(X ′),Tr(X)).

Proof. We need to prove that the following two statements are true.

I) If g0 ∈ HomΛ(P0, P
′
0) and g1 ∈ HomΛ(P1, P

′
1) such that Diagram 2.29 com-

mutes when h0 and h1 are replaced by g0 and g1, then

(h∗1)Cok − (g∗1)Cok ∈ PΛop(Tr(X ′),Tr(X)).

That is, (h∗1)Cok and (g∗1)Cok represent the same element of HomΛop(Tr(X ′),Tr(X)).

II) If h ∈ PΛ(X,X ′), then

(h∗1)Cok ∈ PΛop(Tr(X ′),Tr(X)).

That is, one element in HomΛ(X,X ′) maps to the same element of HomΛop(Tr(X ′),Tr(X))
regardless of choice of representative.

I) Consider Diagram 2.30.

P1 P0 X 0

P ′1 P ′0 X ′ 0

Ker(t′)

s t

s′ t′

h1 h0g1 g0 h
u

(2.30)
Since

ht = t′h0 = t′g0

then
t′(h0 − g0) = 0,
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implying that (h0 − g0) factors through Ker(t′). Then since P0 is projective
and there is a canonical projection from P ′1 onto Im(s′) = Ker(t′), it follows
that (g0 − h0) factors through P ′1. That is, there is u ∈ HomΛ(P0, P

′
1) such

that

s′u = g0 − h0. (2.31)

By applying the ()∗-functor, we now get the following diagram in mod(Λop):

P ′∗0 P ′∗1 Tr(X ′) 0

P ∗0 P ∗1 Tr(X) 0

s′∗ t̂′

s∗ t̂

h∗0 g∗0 h∗1 g∗1 (h∗1)Cok (g∗1)Cok
u∗ v

From (2.31) we see that

u∗s′∗ = g∗0 − h∗0.

Then

s∗u∗s′∗ = s∗(g∗0 − h∗0) = (g∗1 − h∗1)s′∗,

hence

(g∗1 − h∗1 − s∗u∗)s′∗ = 0.

Then (g∗1 − h∗1 − s∗u∗) factors through the cokernel of s′∗, namely t̂′. That
is, there is v ∈ Hommod(Λop)(Tr(X ′), P ∗1 ) such that

vt̂′ = g∗1 − h∗1 − s∗u∗. (2.32)

By multiplying t̂ with (2.32) we get

t̂vt̂′ = t̂(g∗1 − h∗1 − s∗u∗) = ((g∗1)Cok − (h∗1)Cok)t̂′,

and since t̂′ is an epimorphism then

t̂v = (g∗1)Cok − (h∗1)Cok.

That is, ((g∗1)Cok − (h∗1)Cok) factors through P ∗1 , hence

((g∗1)Cok − (h∗1)Cok) ∈ PΛop(Tr(X ′),Tr(X)).

II) Consider Diagram 2.33.
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P1 P0 X 0

P ′1 P ′0 X ′ 0

Ker(t′)

s t

s′ t′

h1 h0 h
v u

(2.33)
Suppose h factors through a projective Λ-module P . Then since t′ is an
epimorphism, h also factors through t′: There is u ∈ HomΛ(X,P0) such that

t′u = h.

Consider the Λ-module homomorphism (h0 − ut). By multiplying with t′

from the left, we get

t′(h0 − ut) = t′h0 − t′ut = t′h0 − ht = 0,

hence (h0 − ut) factors through Ker(t′). Then since P0 is projective and
there is a canonical projection from P ′1 onto Im(s′) = Ker(t′), it follows that
(h0 − ut) also factors through P ′1: There is v ∈ HomΛ(P0, P

′
1) such that

s′v = h0 − ut.

By applying ()∗ we get
v∗s′∗ = h∗0 − t∗u∗,

and the following diagram:

0 X ′∗ P ′∗0 P ′∗1 Tr(X ′) 0

0 X∗ P ∗0 P ∗1 Tr(X) 0

t′∗

t∗

h∗

s′∗ t̂′

s∗ t̂

h∗0 h∗1 (h∗1)Cok
v∗u∗ w

We now show that (h∗1 − s∗v∗) factors through Cok(s′∗) = Tr(X ′):

(h∗1 − s∗v∗)s′∗ = h∗s′∗ − s∗v∗s′∗

= h∗1s
′∗ − s∗(h∗0 − t∗u∗)

= h∗1s
′∗ − s∗h∗0 + s∗t∗u∗

= 0.
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Then there is w ∈ HomΛ(Tr(X ′), P ∗1 ) such that

wt̂′ = h∗1 − s∗v∗.

Finally, we see that

t̂wt̂′ = t̂(h∗1 − s∗v∗) = t̂h∗1 = (h∗1)Cokt̂
′,

and since t̂′ is an epimorphism, it follows that

(h∗1)Cok = t̂w.

Thus (h∗1)Cok ∈ PΛop(Tr(X ′),Tr(X)).

Proposition 47.

(i) The transpose constitutes a contravariant functor

Tr : mod(Λ)→ mod(Λop).

(ii) Tr2 = 1mod(Λ).

(iii) Tr(⊕ni=1Mi) ' ⊕ni=1 Tr(Mi)

(iv) Tr(M) = 0⇔M is projective.

(v) Tr2(M) ' the non-projective part of M .

Proof.

(i) We have seen that the map

Tr : Ob(mod(Λ))→ Ob(mod(Λop))

is well-defined, and that given X, X ′ ∈ mod(Λ) then there is a well-defined
map

Tr : HomΛ(X,X ′)→ HomΛop(Tr(X ′),Tr(X)).

However, recall from Definition ??(v) that there are yet two assertions which
must be satisfied, namely that Tr preserves composition of morphisms, and
that Tr preserves the identity.

Let X, Y , Z ∈ mod(Λ), and suppose f ∈ HomΛ(X,Y ) and g ∈ HomΛ(Y,Z).
We want to show that

Tr(gf) = Tr(f) Tr(g).

Let the following commutative diagram in mod(Λ) be what we obtain from
applying Lemma 43 to f and g, when the rows of the diagram represent
minimal projective presentations for X, Y and Z, respectively.
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PX,1 PX,0 X 0

PY,1 PY,0 Y 0

PZ,1 PZ,0 Z 0

sX tX

sY tY

sZ tZ

f1 f0 f

g1 g0 g

(2.34)

Recall from Lemma 46 that when finding the transpose of gf we may choose
any (gf)0 and (gf)1 such that the following diagram is commutative:

PX,1 PX,0 X 0

PZ,1 PZ,0 Z 0

sX tX

sZ tZ

(gf)1 (gf)0 gf

(2.35)

It is easy to see from Diagram 2.34 that Diagram 2.35 is commutative for the
particular choices

(gf)0 := g0f0

and
(gf)1 = g1f1.

The ()∗-functor gives rise to the following diagram in mod(Λop). (We may
also think of Diagram 2.36 as a diagram in mod(Λop), where the morphisms
are any representatives for their corresponding equivalence classes.)

P ∗Z,0 P ∗Z,1 Tr(Z) 0

P ∗Y,0 P ∗Y,1 Tr(Y ) 0

P ∗X,0 P ∗X,1 Tr(X) 0

s∗Z t̂Z

s∗Y t̂Y

s∗X t̂X

g∗0 g∗1 Tr(g)

f∗0 f∗1 Tr(f)

Tr(gf)

(2.36)
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By studying Diagram 2.36, we see that

Tr(gf)t̂Z = t̂X(gf)∗1 = t̂Xf
∗
1 g
∗
1 = Tr(f)t̂Y g

∗
1 = Tr(f) Tr(g)t̂Z ,

and since t̂Z is an epimorphism it follows that

Tr(gf) = Tr(f) Tr(g).

We finally show that
Tr(1X) = 1Tr(X)

for any X ∈ mod(Λ). Consider Diagram 2.29. If X ′ = X, P ′0 = P0, P ′1 = P1,
s′ = s, t′ = t and h = 1X , then by letting

h0 := 1P0

and
h1 := 1P1 ,

the diagram becomes commutative. Then by applying the ()∗-functor, we see
that

Tr(1X) = (1∗P1
)Cok = 1Tr(X).

We leave it to the reader to prove the rest of the proposition.

We complete this section by making some comments regarding notation.

Definition 48. We will use the following notation for the transpose applied to
morphisms: If h̄ ∈ HomΛ(X,X ′), then of course Tr(h̄) is the resulting equivalence
class in HomΛop(Tr(X ′),Tr(X)). If h ∈ HomΛ(X,X ′) is any representative for h̄,
then we let Tr(h) ∈ HomΛop(Tr(X ′),Tr(X)) denote any representative for Tr(h̄)
that we get when following the procedure of Lemma 46. That is, we might write

Tr(h) = (h∗1)Cok (2.37)

for
Tr(h+ PΛ(X,X ′)) = (h∗1)Cok + PΛop(Tr(X ′),Tr(X)).

Whenever we use the notation of (2.37), it should be clear that we are implicitly
saying that we have chosen one representative Tr(h).

2.7 Auslanders defect formula

In this section we consider the exact sequence

0 A B C 0
f g

in mod(Λ). Recall Lemma 23(ii), which states that HomR(M,N) ∈ mod(R) for
any M , N ∈ mod(Λ). Also, recall that the hom functors are left exact.
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Definition 49. Let X ∈ mod(Λ).

(i) We define δ∗(X) by the exactness of the following sequence of R-modules:

0 HomΛ(C,X) HomΛ(B,X) HomΛ(A,X) δ∗(X) 0
(− ◦ g)X (− ◦ f)X

(2.38)

(ii) We define δ∗(X) by the exactness of the following sequence of R-modules:

0 HomΛ(X,A) HomΛ(X,B) HomΛ(X,C) δ∗(X) 0
(f ◦ −)X (g ◦ −)X

(2.39)

The following lemma assigns functorial structure to δ∗ and δ∗ defined above.

Proposition 50. Let X, X ′ ∈ mod(Λ), and let h ∈ HomΛ(X,X ′).

(i) Let
δ∗(h) := The cokernel map of (h ◦ −)A,

as illustrated below:

0 HomΛ(C,X) HomΛ(B,X) HomΛ(A,X) δ∗(X) 0

0 HomΛ(C,X ′) HomΛ(B,X ′) HomΛ(A,X ′) δ∗(X
′) 0

(− ◦ g)X (− ◦ f)X

(− ◦ g)X′ (− ◦ f)X′
(h ◦ −)C (h ◦ −)B (h ◦ −)A δ∗(h)

Then δ∗ constitutes a covariant functor mod(Λ)→ mod(R).

(ii) Correspondingly, let

δ∗(h) := the cokernel map of (− ◦ h)C ,

as illustrated in the following diagram:

0 HomΛ(X ′, A) HomΛ(X ′, B) HomΛ(X ′, C) δ∗(X ′) 0

0 HomΛ(X,A) HomΛ(X,B) HomΛ(X,C) δ∗(X) 0

(f ◦ −)X′ (g ◦ −)X′

(f ◦ −)X (g ◦ −)X

(− ◦ h)A (− ◦ h)B (− ◦ h)C δ∗(h)

Then δ∗ constitutes a contravariant functor mod(Λ)→ mod(R).
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Proof. By Lemma 23, HomΛ(A,X), HomΛ(X,C) ∈ mod(R), and then by Lemma
20, so is δ∗(X) and δ∗(X). It is easy to see that the hom functors take Λ-module
homomorphisms to R-module homomorphisms, and then since δ∗ and δ∗ applied to
morphisms are defined to be cokernel maps of R-module homomorphisms, then it is
clear that δ∗ and δ∗ take Λ-module homomorphisms to R-module homomorphisms.

We now show that δ∗ and δ∗ applied to morphisms have functorial structure.
It is obvious that

δ∗(1X) = 1δ∗(X)

and that

δ∗(1X) = 1δ∗(X).

For the rest of the proof, we let X, X ′, X ′′ ∈ mod(Λ), h ∈ HomΛ(X,X ′) and
h′ ∈ HomΛ(X ′, X ′′).

(i) We need to show that δ∗(h′h) = δ∗(h′)δ∗(h).

HomΛ(A,X) δ∗(X)

HomΛ(A,X ′) δ∗(X ′)

HomΛ(A,X ′′) δ∗(X ′′)

π

π′

π′′

(h ◦ −)A

(h′ ◦ −)A

δ∗(h)

δ∗(h′)

(h′h ◦ −)A δ∗(h′h)

(2.40)

Note that for any u ∈ HomΛ(A,X) then

(h′h ◦ −)A(u) = h′hu = (h′ ◦ −)A(hu) = (h′ ◦ −)A(h ◦ −)A(u),

hence (h′h ◦ −)A = (h′ ◦ −)A(h ◦ −)A. (Note that this also follows from the
fact that HomΛ(A,−) is a covariant functor into Ab. We now take advantage
of the commutativity of the upper, lower and outer squares of Diagram 2.40:

δ∗(h′h)π = π′′(h′h◦−)A = π′′(h′◦−)A(h◦−)A = δ∗(h′)π′(h◦−)A = δ∗(h′)δ∗(h)π,

and since π is an epimorphism this implies that

δ∗(h′h) = δ∗(h′)δ∗(h).
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(ii) We need to show that δ∗(h
′h) = δ∗(h)δ∗(h

′).

HomΛ(X ′′, C) δ∗(X
′′)

HomΛ(X ′, C) δ∗(X
′)

HomΛ(X,C) δ∗(X)

π′′

π′

π

(− ◦ h′)C

(− ◦ h)C

δ∗(h
′)

δ∗(h)

(− ◦ h′h)C δ∗(h
′h)

(2.41)

Similar to in (i),

(− ◦ h′h)C = (− ◦ h)C(− ◦ h′)C .

We now take advantage of the commutativity of the upper, lower and outer
squares of Diagram 2.41:

δ∗(h
′h)π′′ = π(−◦h′h)C = π(−◦h)C(−◦h′)C = δ∗(h)π′(−◦h′)C = δ∗(h)δ∗(h

′)π′′,

and since π′′ is an epimorphism this implies that

δ∗(h
′h) = δ∗(h)δ∗(h

′).

Definition 51. The functor

δ∗ : mod(Λ)→ mod(R)

is called the covariant defect functor, and the functor

δ∗ : mod(Λ)→ mod(R)

is called the contravariant defect functor.

2.8 Tensor products

In this section we will study a construction called the tensor product. Consider the
following definition:
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Definition 52. Let M ∈ Mod(Λop) and N ∈ Mod(Λ), and let A be an abelian
group. A Λ-balanced map τ : M ×N → A is a map such that

τ(m1 +m2, n) = τ(m1, n) + τ(m2, n),

τ(m,n1 + n2) = τ(m,n1) + τ(m,n2),

τ(mλ, n) = τ(m,λn).

Definition 53. Let M ∈ Mod(Λop) and N ∈ Mod(Λ). A tensor product M ⊗ΛN
of M and N over Λ, is an abelian group with a Λ-balanced map τ such that the
following statement holds.

For any abelian group A and Λ-balanced map χ : M×N → A, then there exists
a unique abelian group homomorphism ζ : M ⊗ΛN → A such that ζτ = χ.

M ×N M ⊗ΛN

A

τ

∀χ Λ-balanced ∃! abelian group homomorphism ζ

(2.42)

This characteristic is called the universal property of τ among Λ-balanced maps.
For (m,n) ∈M ×N , we let

τ((m× n)) := m⊗n.

We will employ the following results regarding tensor products from [1, Ch. 5]:

Lemma 54. Suppose M ∈ Mod(Λop) and N ∈ Mod(Λ).

(i) There is a tensor product M ⊗ΛN which is unique up to isomorphism.

(ii) The elements of M ⊗ΛN can be written as sums

k∑
i=1

(mi, ni),

for some k ∈ N, where mi ∈M and ni ∈ N for all 1 ≤ i ≤ k.

(iii) We may define abelian group homomorphisms from a tensor product M ⊗ΛN
merely in terms of what one term m⊗n of an element of M ⊗ΛN is mapped
to, by treating m⊗n as elements of the direct product M ×N and expanding
linearly.

Proof.

(i) By [1, Proposition 19.1 and 19.2, Ch. 5].
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(ii) By [1, Proposition 19.4, Ch. 5]

(iii) By [1, Proposition 19.4, Ch. 5].

From now on the above mentioned facts are considered well-known.

Lemma 55. Let M , M ′ ∈ mod(Λ)op, N , N ′ ∈ Mod(Λ), and let f ∈ HomΛ(M,M ′)
and g ∈ HomΛ(N,N ′). Then there is a unique abelian group homomorphism

f ⊗ g : M ⊗Λ n→M ′⊗ΛN
′

(m⊗n) 7→ f(m)⊗ g(n).

Proof. Consider the map

χ : M ×N →M ′⊗ΛN
′

(m,n) 7→ f(m)⊗ g(n).

We first show that χ is Λ-balanced:

χ(m1 +m2, n) = f(m1 +m2)⊗ g(n)

= [f(m1) + f(m2)]⊗ g(n)

= f(m1)⊗ g(n) + f(m2)⊗ g(n)

= χ(m1, n) + χ(m2, n),

and by the same arguments we get

χ(m,n1 + n2) = χ(m,n1) + χ(m,n2).

Last,

χ(mλ, n) = f(mλ)⊗ g(n)

= f(m)λ⊗ g(n)

= f(m)⊗λg(n)

= f(m)⊗ g(λn)

= χ(m,λn).

Then there exists a unique abelian group homomorphism ζ such that Diagram 2.43
commutes:
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M ×N M ⊗ΛN

M ′⊗ΛN
′

τ

χ ∃!ζ

(2.43)

Since τ(m,n) = m⊗n and χ(m,n) = f(m)⊗ g(n), then ζ(m⊗n) must be equal
to f(m)⊗ g(n). This completes the proof.

In general, tensor products are abelian groups. Not surprisingly, in our en-
vironment the they turn out to have additional structure. Recall that Mod(Λ) ∪
Mod(Λop) ⊆ Mod(R), where multiplying an element of a Λ-module (or Λop-module)
with r ∈ R is defined by multiplying with r1Λ.

Lemma 56. Let M ∈ Mod(Λop), and let N ∈ Mod(Λ). Then M ⊗ΛN is an
R-module with multiplication

R×M ⊗ΛN →M ⊗ΛN

defined in the following manner:

r

k∑
i=1

(mi⊗ni) :=

k∑
i=1

(rmi)⊗ni.

Proof. Since rmi ∈ M for all r ∈ R and 1 ≤ i ≤ k, then
∑k
i=1(rmi)⊗ni is

obviously an element of M ⊗ΛN . We leave it to the reader to check that the
module axioms are satisfied.

For modules over suitable rings then the action of tensoring satisfies the condi-
tion of a functor. Consider the following lemma:

Lemma 57.

(i) For M ∈ Mod(Λop then

M ⊗Λ− : Mod(Λ)→ Mod(R)

is a right exact functor.

(i) For N ∈ Mod(Λ) then

−⊗ΛN : Mod(Λop)→ Mod(R)

is a functor.
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Proof. Consider By [3, Corollary 1.9, Ch. 1]. Replace R by Λ and S by R. Then
M ⊗Λ− and −⊗ΛN are functors

M ⊗Λ− : Mod(Λ)→ Mod(R)

and
−⊗ΛN : Mod(Λop)→ Mod(Rop) = Mod(R).

By [3, Theorem 2.10, Ch. 1], M ⊗Λ− is right exact.

The isomorphism of the following theorem is called the Adjoint Isomorphism.
It will be applied in Section 3.1.3 as a step in the first out of two main tasks in this
thesis, namely to develop an isomorphism of certain modules which we have yet to
study.

Theorem 58. Let M ∈ Mod(Λop), N ∈ Mod(Λ) and L ∈ Mod(R). There is an
abelian group isomorphism

θM,N,L : HomR(M ⊗ΛN,L)→ HomΛ(N,HomR(M,L))

given by
θM,N,L(f) := [n 7→ f(−⊗n)]

for f ∈ HomR(M ⊗ΛN,L). That is,

θM,N,L(f)(n)(m) := f(m⊗n). (2.44)

Moreover, θM,N,L is natural in M , N and L.

Proof. For simplicity we omit the subscripts of θ for the first part of the proof. We
begin by showing that the image of θ is contained in HomΛ(N,HomR(M,L)). We
recall, by Lemma 56 and Lemma 22(ii) respectively, that the R-module structure
on M ⊗ΛN is given by

r(m⊗n) := (rm)⊗n (2.45)

for r ∈ R and m⊗N ∈ M ⊗ΛN , and the Λ-module structure on HomR(M,L) is
given by

(λh)(m) := h(mλ) (2.46)

for λ ∈ Λ and h ∈ HomR(M,L). Let

f ∈ HomR(M ⊗ΛN,L). (2.47)

For any n ∈ N , then given r ∈ R, m1, m2 ∈M , we see that

θ(f)(n)(rm1 +m2)
(2.44)

= f((rm1 +m2)⊗n)

= f((rm1)⊗n+m2⊗n)

(2.45)
= f(r(m1⊗n) +m2⊗n)

(2.47)
= rf(m1⊗n) + f(m2⊗n)

(2.44)
= rθ(f)(n)(m1) + θ(f)(n)(m2),
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thus θ(f)(n) ∈ HomR(M,L) for all n ∈ N .
For λ ∈ Λ, n1, n2 ∈ N and m ∈M , then

θ(f)(λn1 + n2)(m)
(2.44)

= f(m⊗(λn1 + n2))

= f(m⊗λn1 +m⊗n2)

= f(mλ⊗n1 +m⊗n2)

(2.47)
= f(mλ⊗n1) + f(m⊗n2)

(2.44)
= (θ(f)(n1))︸ ︷︷ ︸

∈HomR(M,L)

(mλ) + θ(f)(n2)(m)

(2.46)
= λθ(f)(n1)(m) + θ(f)(n2)(m)

= (λθ(f)(n1) + θ(f)(n2))(m).

Thus
θ(f)(λn1 + n2) = λθ(f)(n1) + θ(f)(n2),

and we have proven that θ(f) ∈ HomΛ(N,HomR(M,L)).
We now show that θ is an abelian group homomorphism. Let f1, f2 ∈ HomR(M,L).

Then

θ(f1 + f2)(n)(m) = (f1 + f2)(m⊗n)

= f1(m⊗n) + f2(m⊗n)

= θ(f1)(n)(m) + θ(f2)(n)(m)

= (θ(f1) + θ(f2))(n)(m)

for any n ∈ N and m ∈M , thus

θ(f1 + f2) = θ(f1) + θ(f2).

To prove that θ is an isomorphism of abelian groups, we will construct an inverse
abelian group homomorphism θ′ of θ. We proceed as follows:

I) We first construct a map θ̂ from HomΛ(N,HomR(M,L)) to the set of maps

M×N → L. We show that θ̂(g) is a Λ-balanced map for all g ∈ HomΛ(N,HomR(M,L)),

thus since L is an abelian group, θ̂(g) gives rise to a unique abelian group
homomorphism

θ′(g) : M ⊗ΛN → L

such that θ′(g)τ = θ̂(g):

M ×N M ⊗ΛN

L

τ

θ̂(g) θ′(g)
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II) We then show that θ′(g) ∈ HomR(M ⊗ΛN,L).

III) Finally, we show that θ′ is the inverse of θ by composing the two homomor-
phisms.

I) Let
g ∈ HomΛ(N,HomR(M,L)). (2.48)

We define
θ̂(g) : M ×N → L

by
θ̂(g)((m,n)) := g(n)(m). (2.49)

Note that
g(n) ∈ HomR(M,L) (2.50)

for all n ∈ N .

For m1, m2 ∈M and n ∈ N , then

θ̂(g)((m1 +m2, n))
(2.49)

= g(n)(m1 +m2)

(2.50)
= g(n)(m1) + g(n)(m2)

(2.49)
= θ̂(g)((m1, n)) + θ̂(g)((m2, n)).

For m ∈M and n1, n2 ∈ N , then

θ̂(g)((m,n1 + n2))
(2.49)

= g(n1 + n2)(m)

(2.48)
= g(n1)(m) + g(n2)(m)

(2.49)
= θ̂(g)((m,n1)) + θ̂(g)((m,n2)).

For m ∈M , n ∈ N and λ ∈ Λ, then

θ̂(g)((mλ, n)) = g(n)(mλ)
(2.50),

=
(2.46)

λg(n)(m)

(2.48)
= g(λn)(m)

(2.49)
= θ̂(g)((m,λn)).

Thus θ̂(g) is Λ-balanced, and there exists an abelian group homomorphism

θ′(g) : M ⊗ΛN → L

given by
θ′(g)(m⊗n) = θ̂((m,n)) = g(n)(m). (2.51)
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II) We know that θ′(g) is an abelian group homomorphism. To show that θ′(g) ∈
HomR(M ⊗ΛN,L), we must see that

θ′(g)(r(m⊗n)) = rθ′(g)(m⊗n)

for all r ∈ R:

θ′(g)(r(m⊗n))
(2.45)

= θ′(g)((rm)⊗n)

(2.49)
= g(n)(rm)

(2.50)
= rg(n)(m)

(2.49)
= rθ′(g)(m⊗n).

III) We will now show that θ′ is the inverse abelian group homomorphism of θ.
First we verify that θ′ is in fact a homomorphism of abelian groups. Let g1,
g2 ∈ HomΛ(N,HomR(M,L)). Then

θ′(g1 + g2)(m⊗n) = (g1 + g2)(n)(m)

= g1(n)(m) + g2(n)(m)

= θ′(g1)(m⊗n) + θ′(g2)(m⊗n)

= (θ′(g1) + θ′(g2))(m⊗n)

for any m⊗n ∈M ⊗ΛN , thus

θ′(g1 + g2) = θ′(g1) + θ′(g2).

We must now show that

θ′θ = 1HomR(M ⊗Λ N,L) (2.52)

and

θθ′ = 1HomΛ(N,HomR(M,L)). (2.53)

We first show (2.52). For this we need to see that

θ′θ(f) = f

for all f ∈ HomR(M ⊗ΛN,L), that is, that

θ′θ(f)(m⊗n) = f(m⊗n)

for all m⊗n ∈M ⊗ΛN . This is easily verified:

θ′(θ(f))(m⊗n)
(2.51)

= θ(f)(n)(m)
(2.44)

= f(m⊗n).

We now show (2.53). We then need to see that

θθ′(g) = g
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for all g ∈ HomΛ(N,HomR(M,L)), that is,

θθ′(g)(n)(m) = g(n)(m)

for all n ∈ N and m ∈M :

θ(θ′(g))(n)(m)
(2.44)

= θ′(g)(m⊗n)
(2.51)

= g(n)(m)

Finally, we prove that θ is natural in M , N and L. For this part, we return to
writing θ with subscripts M , N and L.

Let M and M ′ be to R-Λ-bimodules, and let u : M → M ′. Then u gives rise
to the R-module homomorphism

[− ◦ (u⊗ 1N )]L : Hom(M ′⊗ΛN,L)→ Hom(M ⊗ΛN,L)

and the Λ-module homomorphism

[(− ◦ u)L ◦ −]N : HomΛ(N,HomR(M ′, L))→ HomΛ(N,HomR(M,L)).

The naturality of θM,N,L in M is by definition the commutativity of the following
diagram:

HomR(M ′⊗ΛN,L) HomΛ(N,HomR(M ′, L))

HomR(M ⊗ΛN,L) HomΛ(N,HomR(M,L))

θM ′,N,L

θM,N,L

[− ◦ (u⊗ 1N )]L [(− ◦ u)L ◦ −]N

Let f ∈ HomR(M ′⊗ΛN,L). Then

[(− ◦ u)L ◦ −]N ◦ θM ′,N,L(f) = [(− ◦ u)L ◦ −]N (θM ′,N,L(f))

= [(− ◦ u)L ◦ −]N ([n 7→ f(−⊗n)])

= (− ◦ u)([n 7→ f(−⊗n)])

= [n 7→ f(u(−)⊗n)],

and

θM,N,L ◦ [− ◦ (u⊗ 1N )]L(f) = θM,N,L([− ◦ (u⊗ 1N )]L(f))

= θM,N,L([f ◦ (u⊗ 1N )]L)

= [n 7→ f ◦ u⊗ 1N (−⊗n)]

= [n 7→ f(u(−)⊗n)].

Hence θM,N,L is natural in M .
Let N , N ′ ∈ Mod(Λ), and let v ∈ HomΛ(N,N ′). Then v gives rise to the

R-module homomorphism

[− ◦ (1M ⊗ v)]L : HomR(M ⊗ΛN
′, L)→ HomR(M ⊗ΛN

′, L)
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and the Λ-module homomorphism

(− ◦ v)HomR(M,L) : HomΛ(N ′,HomR(M,L))→ HomΛ(N,HomR(M,L)).

We must show that the following diagram commutes:

HomR(M ⊗ΛN
′, L) HomΛ(N ′,HomR(M,L))

HomR(M ⊗ΛN,L) HomΛ(N,HomR(M,L))

θM,N ′,L

θM,N,L

[− ◦ (1M ⊗ v)]L (− ◦ v)HomR(M,L)

Let f ∈ HomR(M ⊗ΛN
′, L). Then

(− ◦ v)HomR(M,L) ◦ θM,N ′,L(f) = (− ◦ v)HomR(M,L)(θM,N ′,L(f))

= (− ◦ v)HomR(M,L)([n
′ 7→ f(−⊗n′)])

= [n 7→ f(−⊗ v(n))],

and

θM,N,L ◦ [− ◦ (1M ⊗ v)]L(f) = θM,N,L([− ◦ (1M ⊗ v)]L(f))

= θM,N,L(f ◦ (1M ⊗ v))

= [n 7→ f ◦ (1M ⊗ v)(−⊗n)]

= [n 7→ f(−⊗ v(n))].

Hence θM,N,L is natural in N .
Let L, L′ ∈ Mod(R), and let w ∈ HomR(L,L′). Then w gives rise to the

R-module homomorphism

(w ◦ −)M ⊗Λ N : HomR(M ⊗ΛN,L)→ HomR(M ⊗ΛN,L
′)

and the l-module homomorphism

[(w ◦ −)M ◦ −]N : HomΛ(N,HomR(M,L))→ HomΛ(N,HomR(M,L′)).

We must see that the following diagram commutes:

HomR(M ⊗ΛN,L) HomΛ(N,HomR(M,L))

HomR(M ⊗ΛN,L
′) HomΛ(N,HomR(M,L′))

θM,N,L

θM,N,L′

(w ◦ −)M ⊗Λ N [(w ◦ −)M ◦ −]N

Let f ∈ HomR(M ⊗ΛN,L). Then

[(w ◦ −)M ◦ −]N ◦ θM,N,L(f) = [(w ◦ −)M ◦ −]N (θM,N,L(f))

= [(w ◦ −)M ◦ −]N ([n 7→ f(−⊗n)])

= (w ◦ −)M ◦ [n 7→ f(− ◦ n)]

= [n 7→ wf(−⊗n)],
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and

θM,N,L ◦ (w ◦ −)M ⊗Λ N (f) = θM,N,L((w ◦ −)M ⊗Λ N (f))

= θM,N,L(wf)

= [n 7→ wf(−⊗n)].

Hence θM,N,L is natural in L, and the proof is completed.

2.9 Split and almost split sequences

As mentioned in the introduction in Section 1, our primary objective is to compute
almost split sequences. A formal definition is called for, but first, consider the
following result for short exact sequences in mod(Λ):

Lemma 59. For an exact sequence

0 A B C 0
f g

in mod(Λ), the following two statements are equivalent:

(i) There exists f ′ ∈ HomΛ(B,A) such that f ′f = 1A.

(ii) There exists g′ ∈ HomΛ(C,B) such that gg′ = 1C .

Proof. We will demonstrate that (i) implies (ii). The proof of the converse is
similar.

Suppose f ′ ∈ HomΛ(B,A) such that f ′f = 1A. Consider the following diagram
in mod(Λ):

0 A B C 0

0 A B C 0

f g

f g

f ′ g′ 1C

Let
s := 1B − ff ′.

Then
hf = f − (ff ′)f = f − f (f ′f)︸ ︷︷ ︸

=1A

= 0,

so h factors through Cok(f) = C. That is, there is g′ ∈ HomΛ(C,B) such that

g′g = h.

Then
(gg′)g = g(g′g) = gh = g1B − g(ff ′) = g − (gf)︸︷︷︸

=0

f ′ = 1Cg,

69



implying, since g is an epimorphism, that

gg′ = 1C .

We now give the definition of a split epimorphism, a split sequence and an
almost split sequence.

Definition 60.

(i) Let M , N ∈ mod(Λ), and let f ∈ HomΛ(M,N) be an epimorphism. We say
that f is a split epimorphism if there exists f ′ ∈ HomΛ(N,M) such that

ff ′ = 1N .

(ii) Let δ be an exact sequence

0 A B C 0
f g

in mod(Λ).

(a) We say that δ is a split sequence, or that δ splits, if it satisfies the
equivalent conditions of Lemma 59.

(b) We say that δ is an almost split sequence if δ does not split and the
following holds: For any Y ∈ mod(Λ) and any h ∈ HomΛ(Y,C) which
is not a split epimorphism,5 then there is u ∈ HomΛ(Y,B) such that

h = gu.

Y

0 A B C 0
f g

hu

The following proposition states some facts for almost split sequences in mod(Λ).

Proposition 61.

(i) All almost split sequences in mod(Λ) are of the form

0 DTr(X) E X 0
f g

for some E ∈ mod(Λ), where X ∈ mod(Λ) is indecomposable and non-
projective.

5If there were h′ ∈ HomΛ(C,X) such that hh′ = 1C , the existence of u would give a g′ :=
uh′ ∈ HomΛ(C,B) such that gg′ = 1C , but δ does not split.
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(ii) For any non-projective and indecomposable X ∈ mod(Λ), there is an almost
split sequence

0 DTr(X) E X 0
f g

in mod(Λ).

Proof.

(i) If

0 Y E X 0
f g

is an almost split sequence, then by [2, Proposition 1.14, Ch. 5], X is in-
decomposable and Y ' DTr(X). If X were projective, there would be
g′ ∈ HomΛ(X,E) such that gg′ = 1E , and the sequence would split.

(ii) This follows from [2, Theorem 1.15, Ch. 5].

In the following, we will be working with equivalence classes of almost split
sequences. We introduce the following notation:

Definition 62. Let U , V ∈ mod(Λ).

(i) We let

ΥU,V := {Short exact sequences starting in U and ending in V }.

(ii) We let Υ̂U,V ⊆ ΥU,V be given by

Υ̂U,V := {Almost split sequences starting in U and ending in V }.

(iii) We let ∼ denote the following equivalence relation on ΥU,V : Two short exact
sequences

0 U E V 0

and

0 U E′ V 0

are equivalent if there exists e ∈ HomΛ(E,E′) such that the following diagram
commutes:

0 U E V 0

0 U E′ V 0

e

Note that the symmetry of this relation follows from the Five Lemma, while
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its transitivity and reflexivity are obvious. We find it satisfactory to omit
indexing ∼ by U and V , but it should be clear that ∼ only relates short
exact sequences with the same starting points and the same end points.

It can be shown that ΥU,V / ∼ exhibits abelian group structure, and that Υ̂U,V

is a subgroup if one includes the equivalence class of split sequences from U to V .
This topic will be revisited in the end of Section 2.10.

2.10 The artin R-algebra Γ

We now let X ∈ mod(Λ) be non-projective and indecomposable. Recall the factor
EndΛ(X) of EndΛ(X) from Definition 44(ii). By Proposition 24(ii), EndΛ(X)
is an artin R-algebra. In addition this algebra has some features which will be
highly relevant for our further work, as a great part of Chapter 3 will consist of
the development of EndΛ(X)-module isomorphisms. An abbreviating notation is
called for.

Definition 63. Let
Γ := EndΛ(X).

Lemma 64. The artin R-algebra Γ is a local ring.

Proof. By [2, Theorem 2.2, Ch. 2], EndΛ(X) is a local ring. Then Γ is a local ring
by Lemma 12.

Since Γ is a local ring, it has a unique maximal ideal. From now on we let

r := rad(Γ).

Recall the dual D = HomR(−, I) from Section 2.3. By Proposition 29, we know
that D is a functor

D : mod(Γ)→ mod(Γop),

and that
D2(M) 'M

as Γ-modules for all M ∈ mod(Γ). The following lemma states that the dual
preserves zero and simpleness:

Lemma 65.

(i) If M ∈ mod(Γ) is nonzero, then D(M) ∈ mod(Γop) is nonzero.

(ii) If M ∈ mod(Γ) is simple, then D(M) ∈ mod(Γop) is simple.

Proof.

72



(i) Let M ∈ mod(Γ), and suppose m ∈M is a nonzero element. Note that M is
also an R-module, and recall that I is the injective envelope of R/m where

m is the maximal ideal in R. Let f̂ ∈ HomR(Rm, I) be given by

f̂(rm) := r +m

as in the proof of Proposition 29(iii) (a). Then since

ι : Rm→M

is an inclusion and I is injective there is f ∈ HomR(M, I) such that

fι = f̂ ,

and
f(m) = fι(m) = f̂(m) = 1R +m 6= 0.

That is, f ∈ D(M) is nonzero.

(ii) Let M ∈ mod(Γ) be simple. If M = 0 then D(M) = 0, so we assume M 6= 0.
Suppose D(M) is a non-simple Γop-module. Then D(M) has a nonzero,
proper submodule U , and we get the following exact sequence in mod(Γop):

0 U D(M) D(M)/U 0.

By applying D and since D2(M) 'M as Γ-modules, we get

0 D(D(M)/U) M D(U) 0.

in mod(Γ). Note that D(M)/U 6= 0 since U 6= D(M). Then since M is simple
it follows that D(D(M)/U/) ' D2(M), and by the exactness of the above
sequence we see that

D(U) = 0.

Then
U = 0

by (iii), which contradicts the assumption that U is a nonzero submodule of
D(M).

We will now give the definition of the top and the socle of a module.

Definition 66. Let S be an artinian ring, and let M ∈ mod(S). Let r denote the
radical of S.

(i) The top of M (as S-module) is the quotient of M modulo its radical,

TopS(M) := M/rM.
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(ii) The socle of M (as S-module) is the sum of all simple S-submodules of M :

SocS(M) :=
∑
{U | U is a simple S-submodule of M}.

The following result will be of great importance for us, since a consequence will
be that any almost split sequence ending in X is a generator for all such.

Lemma 67. The following holds.

(i) TopΓ(Γ) is a simple Γ-module.

(ii) SocΓ(DΓ) ' DTopΓop(Γ) as Γ-modules.

(iii) SocΓ(DΓ) is a simple Γ-module.

Proof.

(i) By Lemma 9(iii),
EndΓ(Γ) ' Γ

as rings. Then EndΓ(Γ) is a local ring by Lemma 64.

Consider [2, Proposition 4.7, Ch. 1]. Since Γ is an artin R-algebra, then by
Lemma 19, it is also an artinian ring. Moreover, Γ is a projective Γ-module.
It follows that rΓ is the unique maximal submodule of Γ.

We now show that TopΓ(Γ) = Γ/rΓ is a simple Γ-module. Suppose M is a
nonzero submodule of Γ/rΓ. Then M is of the form

M = N/rΓ

for some Γ-module N such that

rΓ ⊆ N ⊆ Γ.

Since M is nonzero then rΓ 6= N , so since rΓ is the maximal submodule of
Γ, then N = Γ. Hence

M = Γ/rΓ.

(ii) Consider the following exact sequence of Γop-modules:

0 r Γ Γ/r 0

By applying D we get the following exact sequence of Γ-modules:

0 D(Γ/r) D(Γ) D(r) 0

By [2, Proposition 3.1, Ch. 1], then Γ/r is a semisimple Γop-module. Thus,
by Lemma 65(ii) and because D commutes with finite direct sums, the sub-
module D(Γ/r) of DΓ is a semisimple Γ-module. That is,

D(Γ/r) ⊆ SocΓ(DΓ).
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By the same argument, it is clear that D SocΓ(DΓ) is a semisimple Γop-
module. Moreover,

SocΓ(DΓ) ⊆ DΓ,

and we get the following exact, commutative diagram in mod(Γ):

0

0 D(Γ/r) DΓ

0 SocΓ(DΓ) DΓ DΓ/SocΓ(DΓ) 0

By applyingD, we get the following commutative, exact diagram in mod(Γop):

0 D(DΓ/ SocΓ(DΓ)) Γ D(SocΓ(DΓ)) 0

0 r Γ Γ/r 0

0

b

a c

de

We know that r is the kernel of c, so we fill this into the diagram and get
an exact bottom row. The composition b1Γa = 0 because r annihilates
the semisimple Γop-modules, thus since Γ/r is the cokernel of a, there is
e ∈ HomΓop(Γ/r,D(SocΓ(DΓ))) such that

ec = b1Γ = b.

Moreover, since b is an epimorphism then so is e. The composition de ∈
EndΓop(Γ/r) is thus an isomorphism ([2, Proposition 1.4, Ch. 1]) since lΓop(Γ/r) <
∞. It follows that e is a monomorphism in addition to being an epimorphism,
that is,

D(SocΓ(DΓ)) ' Γ/r = TopΓop(Γ)

as Γop-modules. Equivalently,

SocΓ(DΓ) ' DTopΓop(Γ) (2.54)

as Γ-modules.

(iii) The result of (i) also holds if we regard Γ as a Γop-module. That is, TopΓop(Γ)
is a simple Γop-module. By Lemma 65(ii) and (2.54) it follows that SocΓ(DΓ)
is a simple Γ-module.
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The following lemma is probably well-known to the reader, but we choose to
include it due to its importance for the final result of this thesis, namely the
algorithm presented in Section 3.2.2.

Lemma 68. For a ring S, then a simple S-module M can be generated by any
nozero element of M .

Proof. If m ∈M\{0}, then m generates a nonzero submodule M ′ of M . Since M
is simple, then M ′ = M .

Recall from Section 2.9 the set ΥU,V / ∼ of equivalence classes of short exact

sequences from U to V , and the subset Υ̂U,V / ∼ of equivalence classes of almost

split sequences. For the purpose of regarding Υ̂U,V / ∼ as a subgroup of ΥU,V / ∼,

we redefine Υ̂U,V / ∼ to also contain the equivalence class of split sequences from
U to V since this represents zero in ΥU,V / ∼. ([3, Corollary 7.20 and Theorem

7.21, Ch. 7].) However, for simplicity we will still refer to Υ̂U,V / ∼ as the set of
equivalence classes of almost exact sequences from U to V , omitting to specify each
time the incorporation of a zero element.

We will now look at a convenient relation between short exact sequences and
Ext functors. For a definition and basic properties of Ext, see [3, Ch. 7]. The
following Proposition allows us to regard Ext1

Λ(X,DTr(X)) as a Γ-module whose
socle can be identified with the set of equivalence classes of almost split sequences
ending in X.

Proposition 69.

(i) Let U , V ∈ mod(Λ). Then ΥU,V / ∼ is an abelian group, and there is an
abelian group isomorphism

Ext1
Λ(V,U) ' (ΥU,V / ∼).

(ii) Let X ∈ mod(Λ) be indecomposable and non-projective. We can assign to
ΥDTr(X),X/ ∼ a Γ-module structure such that the following holds:

(a) (ΥDTr(X),X)/ ∼) ∈ mod(Γ),

(b) SocΓ(ΥDTr(X),X/ ∼) = (Υ̂DTr(X),X/ ∼).

Proof.

(i) By [3, Theorem 7.21, Ch. 7].

(ii) We first observe that if (ΥDTr(X),X/ ∼) ∈ Mod(Γ) then by (i) this brings
about a Γ-module structure on Ext1

Λ(X,DTr(X)) such that the isomorphism
of (i) becomes a Γ-module isomorphism. It can be shown that

Ext1
Λ(X,DTr(X)) ∈ mod(R), 6

6In the proof of Proposition 83 we will see that Ext1
Λ(X,DTr(X)) = δ∗(DTr(X)) for a given

short exact sequence δ, and by Proposition 50, δ∗(DTr(X)) ∈ mod(R).
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hence by Lemma 21 we see that Ext1
Λ(X,DTr(X)), and so also ΥDTr(X),X/ ∼,

is finitely generated as Γ-module.

As for the rest of what was claimed, a complete demonstration will not be
given in this thesis. However, the question of a Γ-module structure on a set of
equivalence classes of short exact sequences will be revisited in Section 3.1.3
as part of the proof of Proposition 79. There a simplified investigation will be
carried out for Ext1

Λ(C,DTr(X)) and ΥDTr(X),C/ ∼ for an indecomposable,
non-projective X ∈ mod(Λ) and an arbitrary C ∈ mod(Λ). We will also show
how to obtain the corresponding element of ΥDTr(X),C/ ∼ given an element
of a subset of Ext1

Λ(C,DTr(X)). In the case that C := X this subset turns
out to be equal to Ext1

Λ(X,DTr(X)) itself.

For more information, see [2, Ch. 5].
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Chapter 3

Computing Almost Split
Sequences

From now on we let X be a fixed, indecomposable and non-projective element of
mod(Λ), and we fix a minimal projective presentation

P1 P0 X 0
s t

of X.
We are interested in generating almost split sequences ending in X. Recall

Proposition 69 of Section 2.10. It turns out that if we consider Ext1
Λ(X,DTr(X))

to be a Γ-module by identifying it with the Γ-module ΥDTr(X),X/ ∼, then there
exists a Γ-module isomorphism

ω̆X : DΓ→ Ext1
Λ(X,DTr(X)). (3.1)

By Lemma 67(iii) then SocΓ(DΓ) is a simple Γ-module, and by applying the iso-
morphism ω̆X restricted to SocΓ(DΓ), we get the following chain of Γ-module
isomorphisms:

SocΓ(DΓ) '
ω̆X |SocΓ(DΓ)

SocΓ(Ext1
Λ(X,DTr(X))) '

Prop. 69(i)
SocΓ(ΥDTr(X),X/ ∼) '

Prop. 69(ii)
Υ̂DTr(X),X/ ∼ .

That is, Υ̂DTr(X),X/ ∼ is a simple Γ-module.
Thus, by Lemma 68, any nonzero element of SocΓ(DΓ) provides, through the

application of ω̆X and the isomorphism of Proposition 69(i), a generator for

(Υ̂DTr(X),X/ ∼) = {Equivalence classes of almost split sequences ending in X}.

This strongly encourages us to find ω̆X . This isomorphism is obtained from
a more general connection between the dual D from Section 2.3 and the defect
functors δ∗ and δ∗ from Section 2.7, given in terms of a Γ-module isomorphism

ωδ,X : Dδ∗(X)→ δ∗(DTr(X))
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whose subscript δ represents a short exact sequence in mod(Λ). We will dedicate
Section 3.1 to constructing this isomorphism ωδ,X . This task will include defining
and composing various maps, endoved with miscellaneous structures which will be
illuminated throughout the process.

Once equipped with ωδ,X , we will define ω̆X in Section 3.2 to be the special
case of ωδ,X when δ is the exact sequence

0 ΩΛ(X) P (X) X 0
ι t

of Definition 37(i), whence we get (3.1).

When restricting R to be a field in Section 3.2.2, the results of the prior inves-
tigation will suggest an algorithm for computing almost split sequences.

3.1 Constructing the isomorphism ωδ,X

The acquisition of ωδ,X will essentially follow from the construction of two im-
portant bijections, named σδ,X and γδ,X . The isomorphism γδ,X will be found in
Section 3.1.3 by means of the Adjoint Isomorphism of Theorem 58. The isomor-
phism σδ,X will be given in terms of an algorithm in Section 3.1.2, obtained from
studying a commutative diagram in mod(R). This diagram will in turn be found
by completing exact sequences in mod(R) of the form

0 HomΛ(X,Y ) HomΛ(P0, Y ) HomΛ(P1, Y )
(− ◦ t)Y (− ◦ s)Y

(3.2)

for Y ∈ mod(Λ), to exact sequences

0 HomΛ(X,Y ) HomΛ(P0, Y ) HomΛ(P1, Y ) Tr(X)⊗Λ Y 0.
(− ◦ t)Y (− ◦ s)Y φY

We thus need to show that Tr(X)⊗Λ Y is the cokernel of (−◦ s)Y , and we are also
interested in describing in detail the projection

φY : HomΛ(P1, Y )→ Tr(X)⊗Λ Y.

In order to find φY , we must first show that

HomΛ(P, Y ) ' HomΛ(P,Λ)⊗Λ Y

as R-modules – and, of course, how this isomorphism is given – for projective P
and any Y in mod(Λ). This will be done in Section 3.1.1. We will then find φY in
Section 3.1.2, by choosing an appropriate P ∈ P(Λ) and composing ϕP,Y with a
suitable R-module homomorphism.
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3.1.1 A relation between homomorphism sets and tensor
products

The aim of this section is to construct an R-module isomorphism

ϕP,Y : HomΛ(P, Y )→ HomΛ(P,Λ)⊗Λ Y

for any Y ∈ mod(Λ) and any P ∈ P(Λ).
We recall from Proposition 40 that HomΛ(P,Λ) ∈ mod(Λop), and then by

Lemma 56 we see that HomΛ(P,Λ)⊗Λ Y exhibits R-module structure as follows:

r · f ⊗ y := (rf)⊗ y.

We also recall from Lemma 22(iii) that

(rf)(p) := r(f(p))

defines R-module structure on HomΛ(P, Y ).
The isomorphism ϕP,Y will later be applied with some specific choices for P

and Y , as one of the stages in developing the desired isomorphism

ωδ,X : δ∗(X)→ Ker(1Tr(X)⊗ f).

It is not easy to construct a map from HomΛ(P, Y ) to HomΛ(P,Λ)⊗Λ Y di-
rectly, since although we can easily obtain an element of Y given an element
of HomΛ(P, Y ), we do not know of an obvious way of obtaining an element of
HomΛ(P,Λ).

What we do have is an R-module homomorphism going in the opposite direction
of what we are interested in, as stated in Lemma 70.

Lemma 70. Let Y ∈ mod(Λ) and P ∈ P(Λ). We define

αP,Y : HomΛ(P,Λ)⊗Λ Y → HomΛ(P, Y )

by
αP,Y (f ⊗ y) := [p 7→ f(p)y].

Then αP,Y is an R-module homomorphism which is natural in P and in Y .

Proof. We first see that [p 7→ f(p)y] ∈ HomΛ(P, Y ) for all f ∈ HomΛ(P,Λ) and
y ∈ Y . This follows from the underlying structure on HomΛ(P,Λ) and Y . That is,

f(p+ λp′)y = f(p)y + λf(p′)y

for any p, p′ ∈ P and λ ∈ Λ.
Let r ∈ R, f ∈ HomΛ(P,Λ) and y ∈ Y . Then

r · αP,Y (f ⊗ y) = r[p 7→ f(p)y]

= [p 7→ r(f(p)y)]

= [p 7→ (rf(p))y]

= [p 7→ (rf)(p)y]

= αP,Y (rf ⊗ y)

= αP,Y (r · f ⊗ y),
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hence α is a homomorphism of R-modules.
We now show that αP,Y is natural in P . Let P , P ′ ∈ P(Λ), and let h ∈

HomΛ(P, P ′). We must show that the following diagram commutes:

HomΛ(P ′,Λ)⊗Λ Y HomΛ(P ′, Y )

HomΛ(P,Λ)⊗Λ Y HomΛ(P, Y )

αP ′,Y

(− ◦ h)Y

αP,Y

(− ◦ h)Λ ⊗ 1Y

(3.3)

Suppose f ⊗ y ∈ HomΛ(P ′,Λ)⊗Λ Y . Then

(− ◦ h)Y ◦ αP ′,Y (f ⊗ y) = (− ◦ h)Y ([p′ 7→ f(p′)y]) = [p 7→ f(h(p))y],

and
αP,Y ◦ [(− ◦ h)Λ⊗ 1Y ](f ⊗ y) = αP,Y (fh⊗ y) = [p 7→ fh(p)y].

We have then seen that

(− ◦ h)Y ◦ αP ′,Y = αP,Y ◦ [(− ◦ h)Λ⊗ 1Y ],

that is, Diagram 3.3 is commutative.
To show that αP,Y is natural in Y , we let Y , Y ′ ∈ mod(Λ) and g ∈ HomΛ(Y, Y ′).

We need to show that the following diagram commutes:

HomΛ(P,Λ)⊗Λ Y HomΛ(P, Y )

HomΛ(P,Λ)⊗Λ Y
′ HomΛ(P, Y ′)

αP,Y

(g ◦ −)P

αP,Y ′

1HomΛ(P,Λ) ⊗ g

(3.4)

Let f ⊗ y ∈ HomΛ(P,Λ)⊗Y . Then

(g ◦ −)P ◦ αP,Y (f ⊗ y) = (g ◦ −)P ([p 7→ f(p) · y]) = [p 7→ g(f(p) · y)],

and

αP,Y ′ ◦ [1HomΛ(P,Λ)⊗ g](f ⊗ y) = αP,Y ′(f ⊗ g(y)) = [p 7→ f(p) · g(y)].

Since f(p) ∈ Λ for any p ∈ P and g is a Λ-module homomorphism, we see that

g(f(p) · y) = f(p) · g(y).

Then
(g ◦ −)P ◦ αP,Y = αP,Y ′ ◦ [1HomΛ(P,Λ)⊗ g],

hence Diagram 3.4 is commutative.
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Note that naturality of αP,Y in P really means that with Y ∈ mod(Λ) fixed then
{αP }P∈P(Λ) is a natural transformation of the contravariant functors HomΛ(−,Λ)⊗Λ Y
and HomΛ(−, Y ) from P(Λ) to mod(R). Analogously, naturality of αP,Y in Y
means that with P ∈ P(Λ) fixed then {αY }Y ∈mod(Λ) is a natural transformation of
the covariant functors HomΛ(P,Λ)⊗Λ− and HomΛ(P,−) from mod(Λ) to mod(R).

Our hope is that αP,Y is an isomorphism of R-modules, because then its inverse
will be the isomorphism that we seek. (We will see that this holds in the end of
this section.)

As discussed above, we cannot see immediately what a such inverse would be.
However, in the special case that P = Λ, we can take advantage of already having
an element of HomΛ(Λ,Λ) readily at hand, namely 1Λ. This allows us to construct
a map from HomΛ(Λ, Y ) to HomΛ(Λ,Λ)⊗Λ Y , which conveniently turns out to be
the inverse R-module homomorphism of αΛ,Y .

We will thus proceed as follows. First we construct the R-module homomor-
phism inverse

ϕΛ,Y : HomΛ(Λ, Y )→ HomΛ(Λ,Λ)⊗Λ Y

of αΛ,Y . We then use ϕΛ,Y to construct an R-module homomorphism

ϕΛn,Y : HomΛ(Λn, Y )→ HomΛ(Λn,Λ)⊗Λ Y,

for any power Λn of Λ. Finally we take advantage of the fact that for some n ∈ N
then P ∈ P(Λ) is isomorphic to a direct summand of Λn, and we construct ϕP,Y
with the use of ϕΛn,Y .

Lemma 71. The map

ϕΛ,Y : HomΛ(Λ, Y )→ HomΛ(Λ,Λ)⊗Λ Y

given by
ϕΛ,Y (g) := 1Λ⊗ g(1Λ)

is an R-module inverse of αΛ,Y .

Proof. It is obvious that 1Λ⊗ g(1Λ) is an element of HomΛ(Λ,Λ)⊗Λ Y . We begin
by showing that ϕΛ,Y is a homomorphism of R-modules. Let r ∈ R and g ∈
HomΛ(Λ, Y ). Then

ϕΛ,Y (rg) = 1Λ⊗(rg)(1Λ)

= 1Λ⊗(r1Λ)(g(1Λ))

= (r1Λ)⊗(g(1Λ))

= r · 1Λ⊗(g(1Λ))

= rϕΛ,Y (g)

We now show that
ϕΛ,Y αΛ,Y = 1HomΛ(Λ,Λ)⊗Λ Y

and
αΛ,Y ϕΛ,Y = 1HomΛ(Λ,Y ).
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Let f ∈ HomΛ(Λ,Λ), g ∈ HomΛ(Λ, Y ) and y ∈ Y . Then

ϕΛ,Y αΛ,Y (f ⊗ y) = ϕΛ,Y ([λ 7→ f(λ)y]) = 1Λ⊗ f(1Λ)y = 1Λf(1Λ)⊗ y = f ⊗ y,

and

αΛ,Y ϕΛ,Y (g) = αΛ,Y (1Λ⊗ g(1Λ)) = [λ 7→ 1Λ(λ)g(1Λ)] = [λ 7→ λg(1Λ) = g(λ)] = g.

Then ϕΛ,Y is shown to be the inverse of αP,Y .

We denote by ϕnΛ,Y the diagonal n × n-matrix where all entries are equal to
ϕΛ,Y , that is:

ϕnΛ,Y : HomΛ(Λ, Y )n → (HomΛ(Λ,Λ)⊗Λ Y )n

{fi}ni=1 7→ {ϕΛ,Y (fi)}ni=1

The following diagram now illustrates our three-step strategy for finding an
isomorphism ϕP,Y from HomΛ(P, Y ) to HomΛ(P,Λ)⊗Λ Y .

(HomΛ(Λ, Y ))n (HomΛ(Λ,Λ)⊗Λ Y )n

I)

HomΛ(Λn, Y ) HomΛ(Λn,Λ)⊗Λ Y

II)

HomΛ(P ⊕ P ′, Y ) HomΛ(P ⊕ P ′,Λ)⊗Λ Y

III)

HomΛ(P, Y ) HomΛ(P,Λ)⊗Λ Y

ϕnΛ,Y

ϕP,Y

ϕΛn,Y

ϕP⊕P ′,Y

The upper arrow of Diagram 3.1.1 represents our starting point ϕnΛ,Y . The ver-
tical arrows represent R-module homomorphisms which can be made available for
us through the application of appropriate hom and tensor functors. We will proceed
by constructing, by composition of already existing maps, the R-module homomor-
phisms represented by the dashed horizontal arrows of the diagram. We will start
from the top and work downwards until we reach our target ϕP,Y , represented by
the most visible arrow at the bottom of the diagram.
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At this point all we can guarantee will be that ϕP,Y is an R-module homo-
morphism. We will complete this section by demonstrating that ϕP,Y is indeed
the inverse of αP,Y . Hence we will have proven that ϕP,Y is an isomorphism of
R-modules from HomΛ(P, Y ) to HomΛ(P,Λ)⊗Λ Y , as desired.

Throughout the following process we will occasionally assume that a hom or
tensor functor is a functor into Mod(R) without actually demonstrating that mor-
phisms are taken to R-module homomorphisms by the functor. However, since
we are in the framework of an R-algebra and R is a commutative ring, it seems
plausible that this holds – and it does.

Before we can begin, we need to find a way to identify P with a direct summand
of a power of Λ. We assume that Λ can be written as

Λ = Λe1 ⊕ Λe2 ⊕ ...⊕ Λem

for some m ∈ N, where the Λei’s are all the indecomposable projective Λ-modules,
and, for simplicity, that

Λei 6' Λej

for i, j ∈ {1, ...,m} such that i 6= j. Then any projective Λ-module P can be
written as a direct sum of indecomposable projective Λ-modules, and by collecting
equal terms, we get P expressed as a direct sum

P ' (Λe1)n1 ⊕ (Λe2)n2 ⊕ ...⊕ (Λem)nm .

Let

n := max
1≤i≤m

ni.

Then

P ⊕ ((Λe1)n−n1 ⊕ (Λe2)n−n2 ⊕ ...⊕ (Λem)n−nm︸ ︷︷ ︸
:=P ′

) ' Λn.

We let ψ denote the above Λ-module isomorphism P ⊕ P ′ → Λn, and we let

{νi : Λ→ Λn}ni=1

be the set of inclusions from Λ into Λn, and

{ρi : Λn → Λ}ni=1

be the set of projections from Λn onto Λ. We can now perform the steps I) through
III) illustrated by Diagram 3.1.1.

I) Let

ξ1 : HomΛ(Λn, Y )→ (HomΛ(Λ, Y )n

f 7→ {fνi}ni=1
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denote the Λop-module isomorphism (and thusR-module homomorphism) of Lemma
8, and let ξ2 denote the R-module homomorphism given by

ξ2 : (HomΛ(Λ,Λ)⊗Λ Y )n → HomΛ(Λn,Λ)⊗Λ Y

{gi⊗ yi}ni=1 7→
n∑
i=1

giρi⊗ yi.

We know that since ϕΛ,Y is a homomorphism of R-modules, then so is ϕnΛ,Y .

(HomΛ(Λ, Y ))n (HomΛ(Λ,Λ)⊗Λ Y )n

HomΛ(Λn, Y ) HomΛ(Λn,Λ)⊗Λ Y
ϕΛn,Y

ξ1 ξ2

ϕnΛ,Y

Then the composition

ϕΛn,Y := ξ2 ◦ ϕnΛ,Y ◦ ξ1

is a homomorphism of R-modules from HomΛ(Λn, Y ) to HomΛ(Λn,Λ)⊗Λ Y . For
h ∈ HomΛ(Λn, Y ), then

ϕΛn,Y = ξ2(ϕnΛ,Y (ξ1(h)))

= ξ2(ϕnΛ,Y ({hνi}ni=1))

= ξ2({ϕΛ,Y (hνi)}ni=1)

= ξ2({1Λ⊗hνi(1Λ)}ni=1)

=

n∑
i=1

ρi⊗hνi(1Λ).

II) We will now take advantage of the Λ-module isomorphism

ψ : P ⊕ P ′ → Λn.

Through the application of appropriate hom and tensor functors, ψ provides the
R-module homomorphisms

(− ◦ ψ−1)Y : HomΛ(P ⊕ P ′, Y )→ HomΛ(Λn, Y )

and

(− ◦ ψ)Λ⊗ 1Y : HomΛ(Λn,Λ)⊗Λ Y → HomΛ(P ⊕ P ′,Λ)⊗Λ Y.

We let

ϕP⊕P ′,Y := [(− ◦ ψ)Λ⊗ 1Y ] ◦ ϕΛn,Y ◦ [(− ◦ ψ−1)Y ],

as illustrated in the following diagram:
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HomΛ(Λn, Y ) HomΛ(Λn,Λ)⊗Λ Y

HomΛ(P ⊕ P ′, Y ) HomΛ(P ⊕ P ′,Λ)⊗Λ Y

ϕΛn,Y

(− ◦ ψ−1)Y (− ◦ ψ)Λ ⊗ 1Y

ϕP⊕P ′,Y

Then for h ∈ HomΛ(P ⊕ P ′, Y ), we get

ϕP⊕P ′,Y (h) = [(− ◦ ψ)Λ⊗ 1Y ] ◦ ϕΛn,Y ◦ [(− ◦ ψ−1)Y ](h)

= [(− ◦ ψ)Λ⊗ 1Y ][ϕΛn,Y (hψ−1)]

= [(− ◦ ψ)Λ⊗ 1Y ]

[
n∑
i=1

ρi⊗hψ−1νi(1Λ)

]

=

n∑
i=1

ρiψ⊗hψ−1νi(1Λ).

III) The canonical projection

π : P ⊕ P ′ → P

of P ⊕ P ′ onto P and the inclusion

µ : P → P ⊕ P ′

of P into P ⊕ P ′ now provide R-module homomorphisms

(− ◦ π)Y : HomΛ(P, Y )→ HomΛ(P ⊕ P ′, Y )

and
[(− ◦ µ)Λ⊗ 1Y ] : HomΛ(P ⊕ P ′,Λ)⊗Λ Y → HomΛ(P,Λ)⊗Λ Y.

We then get the following diagram, where we let ϕP,Y : HomΛ(P, Y )→ HomΛ(P,Λ)⊗Λ Y
be given by

ϕP,Y := [(− ◦ µ)Λ⊗ 1Y ] ◦ ϕP⊕P ′,Y ◦ [(− ◦ π)Y ].

HomΛ(P ⊕ P ′, Y ) HomΛ(P ⊕ P ′,Λ)⊗Λ Y

HomΛ(P, Y ) HomΛ(P,Λ)⊗Λ Y

ϕP⊕P ′,Y

(− ◦ π)Y (− ◦ µ)Λ ⊗ 1Y

ϕP,Y

For h ∈ HomΛ(P, Y ), then

ϕP,Y (h) = [(− ◦ µ)Λ⊗ 1Y ] ◦ ϕP⊕P ′,Y ◦ [(− ◦ π)Y ](h)

= [(− ◦ µ)Λ⊗ 1Y ][ϕP⊕P ′,Y (hπ)]

= [(− ◦ µ)Λ⊗ 1Y ]

[
n∑
i=1

ρiψ⊗hπψ−1νi(1Λ)

]

=

n∑
i=1

ρiψµ⊗hπψ−1νi(1Λ).
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Proposition 72. The map ϕP,Y : HomΛ(P, Y )→ HomΛ(P,Λ)⊗Λ Y given by

ϕP,Y (h) :=

n∑
i=1

ρiψµ⊗hπψ−1νi(1Λ)

for h ∈ HomΛ(P, Y ), is an isomorphism of R-modules which is natural in P and
natural in Y .

Proof. It is clear that ϕP,Y is an R-module homomorphism, since it is constructed
by composing R-module homomorphisms. We show that ϕP,Y is the inverse of
αP,Y by composing the two maps.

Let h ∈ HomΛ(P, Y ). Then

αP,Y ϕP,Y (h) = αP,Y

(
n∑
i=1

ρiψµ⊗hπψ−1νi(1Λ)

)

=

p 7→
 n∑
i=1

ρiψµ(p)︸ ︷︷ ︸
∈Λ

·hπψ−1νi︸ ︷︷ ︸
Λ-hom.

(1Λ)


=

[
p 7→

(
n∑
i=1

hπψ−1νiρiψµ(p)

)]

=

p 7→ hπψ−1

(
n∑
i=1

νiρi

)
︸ ︷︷ ︸

=1Λn

ψµ(p)


= [p 7→ h(p)]

= h,

hence αP,Y ϕP,Y = 1HomΛ(P,Y ).

Let f ⊗ y ∈ HomΛ(P,Λ)⊗Λ Y . Then
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ϕP,Y αP,Y (f ⊗ y) = ϕP,Y ([p 7→ f(p) · y])

=

n∑
i=1

ρiψµ⊗[p 7→ f(p) · y]
(
πψ−1νi(1Λ)

)
=

n∑
i=1

ρiψµ⊗ fπψ−1νi(1Λ)︸ ︷︷ ︸
∈Λ

·y

=
n∑
i=1

ρiψµ · fπψ−1νi(1Λ)⊗ y

=

p 7→ n∑
i=1

ρiψµ(p)︸ ︷︷ ︸
∈Λ

· fπψ−1νi︸ ︷︷ ︸
Λ-hom.

(1Λ)

⊗ y
=

[
p 7→

n∑
i=1

fπψ−1νi(ρiψµ(p))

]
⊗ y

= fπψ−1

(
n∑
i=1

νiρi

)
︸ ︷︷ ︸

=1Λn

ψµ⊗ y

= f ⊗ y,

so ϕP,Y αP,Y = 1HomΛ(P,Λ)⊗Λ Y .
The naturality of ϕP,Y in P and Y now follows from the naturality of αP,Y in

P and Y and Lemma 2.

3.1.2 The σδ,X-Algorithm

Recall the minimal projective presentation

P1 P0 X 0
s t

of X, and the short exact sequence δ given by

0 A B C 0.
f g

In this section we will construct an EndΛ(X)op-module isomorphism

σδ,X : δ∗(X)→ Ker(1Tr(X)⊗ f).

For this we will use the R-module isomorphism ϕP,Y developed in the previous
section, with certain specific choices for P and Y . In particular, ϕP1,A will play an
important role in the construction of σδ,X .

We apply ()∗ to the minimal projective presentation of X and get the follow-
ing exact sequence in mod(Λop), where t̂ denotes the canonical projection from
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HomΛ(P1, Y ) onto Tr(X):

HomΛ(P0,Λ) HomΛ(P1,Λ) Tr(X) 0
(− ◦ s)Λ t̂

(3.5)

Suppose Y ∈ mod(Λ). It can be shown that HomΛ(−, Y ) is a functor

HomΛ(−, Y ) : mod(Λ)→ mod(R).

We have seen that this functor takes objects in mod(Λ) to objects in mod(R)
(Lemma 23)(ii)). We leave it to the reader to check that HomΛ(−, Y ) takes
Λ-module homomorphisms to R-module homomorphisms. By Lemma 57, then
−⊗Λ Y is a functor

−⊗Λ Y : Mod(Λop)→ Mod(R).1

Then by applying HomΛ(−, Y ) to the minimal projective presentation of X and
−⊗Λ Y to Sequence (3.5), we get the exact sequences in mod(R) displayed in the
rows of the following diagram.

0 HomΛ(X,Y ) HomΛ(P0, Y ) HomΛ(P1, Y )

HomΛ(P0,Λ)⊗Λ Y HomΛ(P1,Λ)⊗Λ Y Tr(X)⊗Λ Y 0

(− ◦ t)Y (− ◦ s)Y

(− ◦ s)Λ ⊗ 1Y t̂⊗ 1Y

ϕP0,Y ϕP1,Y

(3.6)
The bottom row of Diagram 3.6 is in mod(R) (and not just in Mod(R)) because
of the R-module isomorphisms ϕP0,Y and ϕP1,Y , as well as Lemma 20.

Definition 73. For Y ∈ mod(Λ), we define

φY : HomΛ(P1, Y )→ Tr(X)⊗Λ Y

by
φY := [t̂⊗ 1Y ] ◦ ϕP1,Y .

For h ∈ HomΛ(P1, Y ), we see that

φY (h) = [t̂⊗ 1Y ](ϕP1,Y (h))

= [t̂⊗ 1Y ]

(
n∑
i=1

ρiψµ⊗hπψ−1νi(1Λ)

)

=

(
n∑
i=1

t̂(ρiψµ)⊗hπψ−1νi(1Λ)

)
.

1It can also be shown that −⊗Λ Y is a functor mod(Λop → mod(R), but we do not require
this result for our further work.
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It is evident that φY is a homomorphism of R-modules. Moreover, φY conve-
niently completes the top row of Diagram 3.6 to an exact sequence of R-modules,
as advertised in the introduction of Section 3.1.

Lemma 74. The R-module homomorphism φY is natural in Y , and the following
sequence is an exact sequence of R-modules:

0 HomΛ(X,Y ) HomΛ(P0, Y ) HomΛ(P1, Y ) Tr(X)⊗Λ Y 0
(− ◦ t)Y (− ◦ s)Y φY

Proof. Due to the naturality of ϕP,Y in P , then Diagram 3.6 is commutative. Then
the exactness of the above sequence follows directly from the definition of φY and
Lemma 10. We now show that φY is natural in Y . It is easy to see that t̂⊗ 1Y is
natural in Y : Let Y , Y ′ ∈ mod(Λ), and let h ∈ HomΛ(Y, Y ′). Then

HomΛ(P1,Λ)⊗Λ Y Tr(X)⊗Λ Y

HomΛ(P1,Λ)⊗Λ Y
′ Tr(X)⊗Λ Y

′

t̂⊗ 1Y

1HomΛ(P1,Λ) ⊗h

t̂⊗ 1′Y

1Tr(X) ⊗h

obviously commutes, since

[1Tr(X)⊗h] ◦ [t̂⊗ 1Y ] = t̂⊗h = [t̂⊗ 1′Y ] ◦ [1HomΛ(P1,Λ)⊗h].

Recall that by Proposition 72, ϕP1,Y is also natural in Y . Then by Lemma 2(ii),
the composition φY is natural in Y .

Starting with the exact sequence of Lemma 74, we may now construct a com-
mutative diagram from which the desired map

σδ,X : δ∗(X)→ Ker(1Tr(X)⊗ f)

can be obtained.

90



Proposition 75. The following diagram is commutative, and the rows and columns
are exact sequences of R-modules.

0

0 0 0 Ker(1Tr(X) ⊗ f)

0 HomΛ(X,A) HomΛ(P0, A) HomΛ(P1, A) Tr(X)⊗Λ A 0

0 HomΛ(X,B) HomΛ(P0, B) HomΛ(P1, B) Tr(X)⊗Λ B 0

0 HomΛ(X,C) HomΛ(P0, C) HomΛ(P1, C) Tr(X)⊗Λ C 0

δ∗(X) 0 0 0

0

(− ◦ t)A (− ◦ s)A φA

(− ◦ t)B (− ◦ s)B φB

(− ◦ t)C (− ◦ s)C φC

(f ◦ −)X (f ◦ −)P0
(f ◦ −)P1

(g ◦ −)X (g ◦ −)P0
(g ◦ −)P1

1Tr(X) ⊗ f

1Tr(X) ⊗ g

(3.7)

Proof. The exactness of the rows is stated by Lemma 74, as is the commutativity
of the squares involving φA, φB and φC . The rest of the diagram commutes by
associativity of composition of R-module homomorphisms (or just morphisms, in
general, for a category). That is, if we compose a homomorphism with one homo-
morphism from the left and one from the right, then the order in which we compose
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does not affect the outcome. The exactness of the left column follows from the left
exactness of HomΛ(X,−) and the definition of δ∗, while the middle columns are
exact since P0 and P1 are projective Λ-modules. Since Tr(X)⊗Λ− is a right exact
functor, then the right column is exact.

As mentioned above, we wish to construct a map σδ,X from δ∗(X) to Ker(1Tr(X)⊗
f). We will take advantage of the commutative diagram of Proposition 75. Con-
sider the following algorithm.

The σδ,X-Algorithm

Input: h̄ ∈ δ∗(X).

Output: σδ,X(h̄).

• Choose any preimage h ∈ HomΛ(X,C) for h̄.

• Choose any u ∈ HomΛ(P0, B) such that gu = ht.

• Find v ∈ HomΛ(P1, A) such that fv = us.

• Let σδ,X(h̄) := φA(v).

end

The trail of the element h̄ through Diagram 3.7 is illustrated below.

φA(v)

v φA(v)

u us = fv

h ht = gu

h̄

(− ◦ t)X

(− ◦ s)P0

φA
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Proposition 76. The σδ,X-Algorithm presented above forms an EndΛ(X)op-module
isomorphism

σδ,X : δ∗(X)→ Ker(1Tr(X)⊗ f)

which is natural in δ and in X.

Proof. We first need to prove that σδ,X forms a well-defined map, and that its image
is contained in Ker(1Tr(X)⊗ f). This requires the verification of the following five
statements.

I) The choice of preimage h ∈ HomΛ(X,C) of h̄ does not affect the outcome of
the algorithm.

II) For ht ∈ HomΛ(P0, C), there exists u ∈ HomΛ(P0, B) such that ht = gu.

III) The choice of u ∈ HomΛ(P0, B) such that ht = gu does not affect the outcome
of the algorithm.

IV) For us ∈ HomΛ(P1, B), there exists unique v ∈ HomΛ(P1, A) such that us =
fv.

V) The outcome φA(v) of the algorithm is an element of Ker(1Tr(X)⊗ f).

If I) through V) are satisfied, then σδ,X is an EndΛ(X)op-module homomor-
phism if

σδ,X(h̄ē) = σδ,X(h̄)ē (3.8)

for all ē ∈ EndΛ(X).
We first show that I) through V) are satisfied. We find it suitable to swap the

order in which the statements are proved.

II) Regard ht ∈ HomΛ(P0, C). Since (g ◦ −)P0 is onto HomΛ(P0, C), then ht is
of the form (g ◦ −)P0(u) = gu for some u ∈ HomΛ(P0, B).

IV) Regard us ∈ HomΛ(P1, B), and recall that ht = gu. We observe that

g(us) = (gu)s = ts = 0,

hence us ∈ Ker((g ◦ −)P1
) = Im((f ◦ −)P1

). That is,

us = (f ◦ −)P1
(v) = fv

for some v ∈ HomΛ(P1, A). Moreover, since f is a monomorphism, such v is
unique.

V) Regard v ∈ HomΛ(P1, A), and recall that fv = us for u ∈ HomΛ(P0, B).
Then

(1Tr(X)⊗ f)(φA(v)) = φB ◦ (f ◦ −)P1
(v) = φB(fv) =︸︷︷︸

fv=us

φB(us)

= φB ◦ (− ◦ s)B︸ ︷︷ ︸
=0

(u),

hence φA(v) ∈ Ker(1Tr(X)⊗ f).
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III) Suppose gu = gu′, and let v and v′ be the elements of HomΛ(P1, A) such that
us = fv and u′s = fv′. We claim that φA(v) = φA(v′). We first observe that

u− u′ ∈ Ker((g ◦ −)P0
) = Im((f ◦ −)P0

,

so there is w ∈ HomΛ(P0, A) such that u− u′ = fw. Then

fws = (u− u′)s = f(v − v′),

so v − v′ = ws since f is a monomorphism. That is,

v − v′ ∈ Im((− ◦ s)A) = Ker(φA),

hence φA(v − v′) = 0 which is what we wanted to show.

I) Suppose h̄ = h̄′. Then h− h′ ∈ Im((g ◦ −)X). That is, h− h′ = gr for some
r ∈ HomΛ(X,B), and (h − h′)t = (gr)t. We saw in III) that the choice of
u ∈ HomΛ(P0, B) such that gu = (h − h′)t does not affect the outcome, so
we now choose u = rt. Hence h− h′ is mapped to

(− ◦ s)B(rt) = rts = 0

in HomΛ(P1, B), since ts = 0. It is clear that if we continue through the
diagram, then h − h′ will also be mapped to 0 ∈ Ker(1Tr(X)⊗ f). That is,
the choice of preimage of h̄ in HomΛ(X,C) does not affect the final result.

We now show that σδ,X is a homomorphism of EndΛ(X)op-modules. To check
that (3.8) holds, we must first understand the EndΛ(X)op-module structure on the
domain and codomain of σδ,X .

We leave it up to the reader to check that

δ∗(X)× EndΛ(X)→ δ∗(X)

(h̄, ē) 7→ h ◦ e,

where h ∈ HomΛ(X,C) and e ∈ EndΛ(X) are any representatives for h̄ and ē,
respectively, defines an EndΛ(X)op-module structure on δ∗(X).

The EndΛ(X)-module structure on Ker(1Tr(X)⊗ f) is provided by the Tr-functor.
For ē ∈ EndΛ(X) we let Tr(e) be a chosen representative for Tr(ē). Then Tr(e)⊗ 1Y
is an R-module homomorphism

Tr(X)⊗Λ Y → Tr(X)⊗Λ Y

for any Y ∈ mod(Λ). Consider the following commutative diagram in mod(R).

0 Ker(1Tr(X)⊗ f) Tr(X)⊗Λ A Tr(X)⊗Λ B Tr(X)⊗Λ C 0

0 Ker(1Tr(X)⊗ f) Tr(X)⊗Λ A Tr(X)⊗Λ B Tr(X)⊗Λ C 0

ι 1Tr(X) ⊗ f 1Tr(X) ⊗ g

ι 1Tr(X) ⊗ f 1Tr(X) ⊗ g

(Tr(e)⊗ 1A)Ker Tr(e)⊗ 1A Tr(e)⊗ 1B Tr(e)⊗ 1C

(3.9)
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There is a kernel R-module homomorphism

(Tr(e)⊗ 1A)Ker : Ker(1Tr(X)⊗ f)→ Ker(1Tr(X)⊗ f),

satisfying

(Tr(e)⊗ 1A) ◦ ι = ι ◦ (Tr(e)⊗ 1A)Ker.

Since ι is an inclusion it does not actually alter the elements that is is applied
to. That is, for q⊗ a ∈ Ker(1Tr(X)⊗ f) then ι(q⊗ a) = q⊗ a, and it follows that
for any q⊗ a ∈ Ker(1Tr(X)⊗ f) then

(Tr(e)⊗ 1A)Ker(q⊗ a) = ι((Tr(e)⊗ 1A)Ker(q⊗ a))

= (Tr(e)⊗ 1A) (ι(q⊗ a)︸ ︷︷ ︸
=q⊗ a

∈Tr(X)⊗Λ A

)

= (Tr(e)⊗ 1A)(q⊗ a︸ ︷︷ ︸
∈Tr(X)⊗Λ A

).

We claim that the multiplication

Ker(1Tr(X)⊗ f)× EndΛ(X)→ Ker(1Tr(X)⊗ f)

(q⊗ a, ē) 7→ (Tr(e)⊗ 1A)Ker(q⊗ a︸ ︷︷ ︸
∈Ker(1Tr(X)⊗ f)

) = (Tr(e)⊗ 1A)(q⊗ a︸ ︷︷ ︸
∈Tr(X)⊗Λ A

)

(3.10)

defines an EndΛ(X)op-module structure on Ker(1Tr(X)⊗ f).
For the well-definedness of the above action, we suppose e ∈ PΛ(X,X). Then

Tr(e) ∈ PΛop(Tr(X),Tr(X)). We must show that

(q⊗ a)ē = (Tr(e)⊗ 1A)Ker = 0 (3.11)

for all q⊗ a ∈ Ker(1Tr(X)⊗ f). Since P∗1 is onto Tr(X) then by Lemma 45, Tr(e)
factors through P ∗1 : There is u ∈ HomΛop(Tr(X), P ∗1 ) and v ∈ HomΛop(P ∗1 ,Tr(X))
such that the following diagram in mod(Λop) is commutative:

Tr(X)

P ∗1

Tr(X)

u

Tr(e)

v
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Then for Y ∈ mod(Λ), the following is a commutative diagram in mod(R):

Tr(X)⊗Λ Y

P ∗1 ⊗Λ Y

Tr(X)⊗Λ Y

u⊗ 1Y

Tr(e)⊗ 1Y

v⊗ 1Y

Note that P ∗1 ⊗Λ− is a covariant, exact functor

mod(Λ)→ mod(R),

since P ∗1 ∈ mod(Λop) is projective. Then by filling in P ∗1 ⊗Λ− applied to δ in the
middle row of Diagram 3.9, we get the following commutative diagram in mod(R).

0 Ker(1Tr(X)⊗ f) Tr(X)⊗Λ A Tr(X)⊗Λ B Tr(X)⊗Λ C 0

0 P∗1 ⊗Λ A P∗1 ⊗Λ B P∗1 ⊗Λ C 0

0 Ker(1Tr(X)⊗ f) Tr(X)⊗Λ A Tr(X)⊗Λ B Tr(X)⊗Λ C 0

ι

ι

u⊗ 1A

v⊗ 1A

(u⊗ 1A)Ker

(v⊗ 1A)Ker

We see that

ι(Tr(e)⊗ 1A)Ker = (Tr(e)⊗ 1A)ι = (v⊗ 1A) (u⊗ 1A)ι︸ ︷︷ ︸
=0(u⊗ 1A)Ker

= 0.

Since ι is a monomorphism it follows that

(Tr(e)⊗ 1A)Ker = 0, (3.12)

and (3.11) is satisfied.

We now demonstrate that (3.8) holds for all h̄ ∈ δ∗(X) and ē ∈ EndΛ(X). Let
h ∈ HomΛ(X,C) and e ∈ EndΛ(X) be representatives for h̄ and ē. By Lemma
43 there is e0 ∈ EndΛ(P0) and e1 ∈ EndΛ(P1) such that the following diagram in
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mod(Λ) is commutative.

P1 P0 X 0

P1 P0 X 0

0 A B C 0

s t

s t

f g

e1 e0 e

vh uh h

(3.13)

The process of the σδ,X -Algorithm when applied to h̄ involves finding uh ∈ HomΛ(P0, B)
and vh ∈ HomΛ(P1, A) such that Diagram 3.13 commutes. If we let

uhe := uhe0

and
vhe := vhe1,

then by the commutativity of Diagram 3.13 it follows that uhe and vhe satisfies the
requirements for the second and third step of the σδ,X -Algorithm when applied to
he = h̄ē. By the above discussion, it follows that

σδ,X(h̄)ē = φA(vh)ē

and
σδ,X(h̄ē) = φA(vhe1).

We claim that the following diagram in mod(R) is commutative:

HomΛ(P1, A) P ∗1 ⊗ΛA Tr(X)⊗ΛA 0

HomΛ(P1, A) P ∗1 ⊗ΛA Tr(X)⊗ΛA 0

(− ◦ e1)A e∗1⊗ 1A Tr(e)⊗ 1A

φA

φA

ϕP1,A t̂⊗ 1A

ϕP1,A t̂⊗ 1A

(3.14)

The left part of Diagram 3.14 commutes by the naturality of ϕP1,Y in P1, as stated
by Proposition 72. The commutativity of the right side of Diagram 3.14 follows
directly from the construction of Tr(e). It follows that

φA(vh)ē
(3.10)

= (Tr(e)⊗ 1A)(φA(vh)) = φA(vhe1),
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and σδ,X is shown to be an EndΛ(X)op-module homomorphism.
To show that σδ,X is an isomorphism, we will apply [4, Snake Lemma 1.3.2, Ch.

1]. In order to associate our situation with that of the Snake Lemma, we find it
convenient to display Diagram 3.7 in a different fashion than before. We leave out
the insignificant components as well as the names of most of the maps.

0 0 0

HomΛ(X,A) HomΛ(X,B) HomΛ(X,C) δ∗(X)

HomΛ(P0, A) HomΛ(P0, B) HomΛ(P0, C)

HomΛ(P1, A) HomΛ(P1, B) HomΛ(P1, C)

Ker(1Tr(X)⊗ f) Tr(X)⊗ΛA Tr(X)⊗ΛB Tr(X)⊗Λ C

0 0 0

(g ◦ −)X

1Tr(X)⊗ f

(3.15)
Let

σ′ : HomΛ(X,C)→ Tr(X)⊗ΛA

be the connecting map of the Snake Lemma. Then

Ker(σ′) = Im((g ◦ −)X)

and
Im(σ′) = Ker(1Tr(X)⊗ f),

and we get an induced isomorphism

HomΛ(X,C)/Ker(σ′)→ Ker(1Tr(X)⊗ f)

which is precisely the map σδ,X , that we constructed.
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We have given σ the subscripts δ and X. This notation is slightly inaccurate;
the construction will also depend on the minimal projective presentation of X. We
had, however, fixed a minimal projective presentation of X before developing the
σδ,X -algorithm. Whenever σδ,X is applied we implicitly assume that a minimal
projective presentation of X is fixed beforehand. The same goes for the maps γδ,X
and ωδ,X which will be constructed in the next section.

3.1.3 Achieving our first goal; finding ωδ,X

Recall from Proposition 29 that the dual D = HomR(−, I) is a contravariant, exact
functor from mod(R) to mod(R). In the end of this section we will finally find the
isomorphism

ωδ,X : Dδ∗(X)→ δ∗(DTr(X))

that we are seeking. We now let δ be a fixed sequence

0 A B C 0
f g

in mod(Λ). Will use the adjoint isomorphism θ from Theorem 58 to construct an
isomorphism

γδ,X : DKer(1Tr(X)⊗ f)→ δ∗(DTr(X)),

to which we will assign additional structure to that following from θ. After this
task is completed, the isomorphism ωδ,X that we wish to construct may be found
immediately.

The above mentioned structure which will be assigned to γδ,X , is that of being an
EndΛ(X)-module homomorphism. (This will in turn assure, together with Propo-
sition 76, that ωδ,X is an EndΛ(X)-module isomorphism.) For this, it will be neces-
sary that we are familiar with in which way DKer(1Tr(X)⊗ f) and δ∗(DTr(X)) are
endoved with EndΛ(X)-module structure. For the latter case, we need to introduce
the notions of a pushout.

Definition 77. Consider the following diagram in mod(Λ):

M N

L

u

v

(3.16)

A pushout of this diagram is an element Y ∈ mod(Λ) together with û ∈ HomΛ(N,Y )
and v̂ ∈ HomΛ(L, Y ) such that

ûu = v̂v,

and universal with this property. That is, if Y ′ ∈ mod(Λ), u′ ∈ HomΛ(N,Y ′) and
v′ ∈ HomΛ(L, Y ′) such that

u′u = v′v,
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then there exists a unique y ∈ HomΛ(Y, Y ′) such that

yû = u′

and
yv̂ = v′ :

M N

L Y

Y ′

u

v

v̂

v′

û

u′

y

In this case we may also refer to Y as the pushout of u and v, and we call the
resulting square a pushout square.

We will need the following facts for pushout squares:

Lemma 78.

(i) For any M , N L ∈ mod(Λ), u ∈ HomΛ(M,N) and v ∈ HomΛ(M,L), then
there exists a pushout of Diagram 3.16.

(ii) Suppose

M N

L Y

u

v

v̂

û

is a pushout square in mod(Λ). Then

(a) ûCok is an isomorphism.

(b) If u is a monomorphism then v̂ is a monomorphism.

Proof. Consider [2, Proposition 5.6, Ch. 2].

(i) Take the pushout of Diagram 3.16 to be the cokernel of the Λ-module homo-
morphism [

u
−v

]
: M → N ⊕ L.

(ii)

(a) Follows directly.
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(b) It also follows that

M N ⊕ L Y 0

[
u
−v

] [
û v̂

]
is an exact sequence in mod(Λ). If u is a monomorphism, then so is[

u
−v

]
: M → N ⊕ L,

which means that

0 M N ⊕ L Y 0

[
u
−v

] [
û v̂

]
is an exact sequence in mod(Λ). By [2, Corollary 5.7, Ch. 2], it follows
that v̂ is a monomorphism.

We are now ready to define and analyze the isomorphism γδ,X .

Proposition 79. There is an isomorphism of EndΛ(X)-modules

γδ,X : DKer(1Tr(X)⊗ f)→ δ∗(DTr(X)),

which is natural in δ and natural in X.

Proof. For Y ∈ mod(Λ), then

D(Tr(X)⊗Λ Y ) = HomR(Tr(X)⊗Λ Y, I)

and
HomΛ(Y,DTr(X)) = HomΛ(Y,HomR(Tr(X), I)).

Recall that Tr(X) is an R-Λ-bimodule and I ∈ mod(R). By Theorem 58, there is
an abelian group isomorphism

θTr(X),Y,I : D(Tr(X)⊗Λ Y )→ HomΛ(Y,DTr(X)) (3.17)

which is natural in Tr(X) and in Y .
We now apply D to the right column of Diagram 3.7 and HomΛ(−, DTr(X))

to δ. Then (3.17) inserted A, B and C for Y respectively, yields the following
commutative diagram in Ab:

0 D(Tr(X)⊗Λ C) D(Tr(X)⊗Λ B) D(Tr(X)⊗Λ A) D(Ker(1Tr(X)⊗ f)) 0

0 HomΛ(C,DTr(X)) HomΛ(B,DTr(X)) HomΛ(A,DTr(X)) δ∗(DTr(X)) 0

' θTr(X),C,I ' θTr(X),B,I ' θTr(X),A,I ' γδ,X

(3.18)
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Since θTr(X),A,I , θTr(X),B,I and θTr(X),C,I are isomorphisms of abelian groups,
then by the Five Lemma, there is an abelian group isomorphism

γδ,X : D(Ker(1Tr(X)⊗ f))→ δ∗(DTr(X)) (3.19)

such that Diagram 3.18 commutes. We need to show that γδ,X is also a homomor-
phism of EndΛ(X)-modules.

The first question that arises, is in which wayD(Ker(1Tr(X)⊗ f)) and δ∗(DTr(X))
are EndΛ(X)-modules. Suppose h̄ ∈ EndΛ(X). By applying the transpose functor

Tr : mod(Λ)→ mod(Λop)

from Section 2.6 we get Tr(h̄) ∈ EndΛop(Tr(X)), and in accordance with Defini-
tion 48 we let Tr(h) ∈ EndΛop(Tr(X)) denote a chosen representative for Tr(h̄).
We shall see that Tr(h) will be involved in the action h̄ has on elements in both
DKer(1Tr(X)⊗ f) and in δ∗(DTr(X)).

We first explore the EndΛ(X)-module structure on DKer(1Tr(X)⊗ f). Recall
the R-module homomorphism

(Tr(h)⊗ 1A)Ker : Ker(1Tr(X)⊗ f)→ Ker(1Tr(X)⊗ f)

obtained from Diagram 3.9 (when replacing e by h) that we saw in the proof of
Proposition 76.

The duality D now induces the R-module homomorphism

D((Tr(h)⊗ 1A)Ker) = (−◦(Tr(h)⊗ 1A)Ker)I : DKer(1Tr(X)⊗ f)→ DKer(1Tr(X)⊗ f).

We claim that the multiplication

EndΛ(X)×DKer(1Tr(X)⊗ f)→ DKer(1Tr(X)⊗ f)

defined by

h̄z̄ := (− ◦ (Tr(h)⊗ 1A)Ker)I(z̄) = z̄ ◦ (Tr(h)⊗ 1A)Ker

for z̄ ∈ DKer(1Tr(X)⊗ f) assigns an EndΛ(X)-module structure toDKer(1Tr(X)⊗ f).
To show that this action is well-defined, we need to show that

h̄z̄ = z̄ ◦ (Tr(h)⊗ 1A)Ker = 0 (3.20)

for all h ∈ PΛ(X,X) and z̄ ∈ DKer(1Tr(X)⊗ f). We saw in the proof of Proposition
76 (by (3.12)) that

(Tr(h)⊗ 1A)Ker = 0

for all h ∈ PΛ(X,X), so (3.20) obviously holds.
We now investigate the action of EndΛ(X) on DKer(1Tr(X)⊗ f) in more de-

tail. Since I is injective, then for any z̄ ∈ DKer(1Tr(X)⊗ f) there exists z ∈
D(Tr(X)⊗ΛA) such that

z̄ = zι. (3.21)

102



Consider the following diagram in mod(R):

Ker(1Tr(X)⊗ f) Tr(X)⊗ΛA

Ker(1Tr(X)⊗ f) Tr(X)⊗ΛA

I

ι

ι

(Tr(h)⊗ 1A)Ker Tr(h)⊗ 1A

z̄
z

We see that
h̄z̄ = z̄ ◦ (Tr(h)⊗ 1A)Ker = z ◦ (Tr(h)⊗ 1A) ◦ ι (3.22)

for any z satisfying (3.21).
For q⊗ a ∈ Ker(1Tr(X)⊗ f), then

(h̄z̄)(q⊗ a) = z̄((Tr(h)⊗ 1A)Ker(q⊗ a))

= z(Tr(h)⊗ 1A)ι(q⊗ a)

= z(Tr(h)(q)⊗ a).

We now check that this multiplication satisfies the associativity requirement:
Let z̄ ∈ DKer(1Tr(X)⊗ f) and h̄1, h̄2 ∈ EndΛ(X), and suppose z ∈ D(Tr(X)⊗ΛA)
satisfies (3.21) and Tr(h1) and Tr(h2) are representatives for Tr(h̄1) and Tr(h̄2),
respectively. Then

h̄1(h̄2z̄)
(3.22)

= h̄1 (z ◦ (Tr(h2)⊗ 1A) ◦ ι)︸ ︷︷ ︸
∈DKer(1Tr(X)⊗ f)

(3.22)
= z ◦ (Tr(h2)⊗ 1A) ◦ (Tr(h1)⊗ 1A) ◦ ι

= z(Tr(h2) Tr(h1)⊗ 1A) ◦ ι
= z(Tr(h1h2)⊗ 1A) ◦ ι
(3.22)

= (h̄1h̄2)z̄.

We leave it up to the reader to verify that the rest of the module axioms are
satisfied.

We also wish to regard δ∗(DTr(X)) as an EndΛ(X)-module. Consider the set
ΥDTr(X),C/ ∼ of equivalence classes of short exact sequences from DTr(X) to C.
It can be shown that ΥDTr(X),C/ ∼ is an abelian group ([3, Theorem 7.21, Ch. 7]),
and we will now show how we can regard ΥDTr(X),C/ ∼ as an EndΛ(X)-module.
In the following, we will sometimes refer to the elements of ΥDTr(X),C/ ∼ as short
exact sequences, although implicitly we mean that we are regarding the equivalence
class of the given sequence.
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Let

0 DTr(X) E C 0
(3.23)

represent an element of ΥDTr(X),C/ ∼, and let h̄ ∈ EndΛ(X). Again we let Tr(h) ∈
EndΛop(Tr(X)) denote a chosen representative for Tr(h̄) ∈ EndΛop(Tr(X)). By
applying the contravariant functorD to Tr(h), we get the Λ-module homomorphism

DTr(h) : DTr(X)→ DTr(X).

Consider the following diagram in mod(Λ):

DTr(X) E

DTr(X)

DTr(h)

(3.24)

Let E′ be the pushout of Diagram 3.24. Then in light of Lemma 78, we see that
we get the following commutative diagram in mod(Λ):

0 DTr(X) E C 0

0 DTr(X) E′ C 0

DTr(h)

We now define the multiplication

EndΛ(X)× (ΥDTr(X),C/ ∼)→ (ΥDTr(X),C/ ∼)

by

h̄ · (0 DTr(X) E C 0) := (0 DTr(X) E′ C 0).

(3.25)
Note that the sequences of (3.25) are elements of ΥDTr(X),C and not of ΥDTr(X),C/ ∼,
but when writing these sequences we are implicitly referring to their correspond-
ing equivalence classes in ΥDTr(X),C/ ∼. The reason why we are assigning the
EndΛ(X)-module structure to ΥDTr(X),C/ ∼ instead of ΥDTr(X),C , is for the mul-
tiplication of (3.25) to be well-defined.

We now show that the associativity of multiplication with EndΛ(X) holds. Let
h̄1, h̄2 ∈ EndΛ(X). Then

h̄1(h̄2(0 DTr(X) E C 0))

yields the bottom row of Diagram 3.26.
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0 DTr(X) E C 0

0 DTr(X) E′ C 0

0 DTr(X) E′′ C 0

DTr(h2)

DTr(h1)

(3.26)

We want to show that the bottom row of Diagram 3.26 is also what we obtain from

(h̄1h̄2)(0 DTr(X) E C 0) = (h1h2)(0 DTr(X) E C 0).

Then we must show that E′′ is the pushout of Diagram 3.27:

DTr(X) E

DTr(X)

DTr(h1h2)

(3.27)

Since D and Tr are both contravariant functors, then

DTr(h1h2) = DTr(h1)DTr(h2).

It is easy to see that E′′, together with the same morphism in HomΛ(DTr(X), E′′)
and the composition of the pushout morphisms in HomΛ(E,E′) and HomΛ(E′, E′′)
from before, satisfies the first property of a pushout: That of the resulting square
from Diagram 3.27 being commutative. For the universal property, we will take
advantage of the fact that E′ and E′′ are the pushouts of

DTr(X) E

DTr(X)

DTr(h2)

(3.28)

and

DTr(X) E′

DTr(X)

DTr(h1)

(3.29)
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respectively.
Then given some E′′′ ∈ mod(Λ) together with morphisms in HomΛ(E′, E′′′)

and HomΛ(DTr(X), E′′′) which bring about a commutative square starting from
Diagram 3.27, a unique morphism in HomΛ(E′′, E′′′) (with suitable properties re-
garding commutativity), is obtained in the following manner: Since DTr(h1h2) =
DTr(h1)DTr(h2) and since E′ is the pushout of Diagram 3.28, there is a unique
morphism in HomΛ(E′, E′′′) (with suitable properties), and then since E′′ is the
pushout of 3.29, we get the desired morphism in HomΛ(E′′, E′′′). It is easy to see
that the required commutativity of the appropriate triangles is satisfied. Thus E′′

is a pushout of Diagram 3.27. We will not demonstrate that the rest of the module
axioms are satisfied, as it would require a thorough survey of the abelian group
structure on ΥDTr(X),C/ ∼.

Recall from Proposition 69(i) that

Ext1
Λ(C,DTr(X)) ' ΥDTr(X),C/ ∼ (3.30)

as abelian groups. Thus by regarding the elements of Ext1
Λ(C,DTr(X)) as equiv-

alence classes in ΥDTr(X),C/ ∼ and by the above discussion, we get an EndΛ(X)-
module structure on Ext1

Λ(C,DTr(X)). Moreover, we know that δ∗(DTr(X)) ⊆
Ext1

Λ(C,DTr(X)) asR-modules. We claim that δ∗(X) is also an EndΛ(X)-submodule
of Ext1

Λ(C,DTr(X)). What we will do now, is explain how an element of δ∗(DTr(X))
can be identified with an element of ΥDTr(X),C/ ∼, and then show that if we mul-
tiply the resulting element of ΥDTr(X),C/ ∼ with h̄ ∈ EndΛ(X), we get an element
in ΥDTr(X),C/ ∼ which also originates from an element of δ∗(DTr(X)). It would
be necessary to demonstrate that the correspondence

δ∗(X)↔ (ΥDTr(X),C/ ∼)

which we are about to describe is the same as including δ∗(DTr(X)) into Ext1
Λ(C,DTr(X))

and applying the isomorphism of (3.30) for a rigorous demonstration. We will not
do this here, but rather confine ourselves to a superficial motivation.

Given an element ȳ ∈ δ∗(DTr(X)) ⊆ Ext1
Λ(C,DTr(X)), then ȳ corresponds to

an equivalence class in ΥDTr(X),C/ ∼ in the following manner. Since

δ∗(DTr(X)) = HomΛ(A,DTr(X))/ Im((− ◦ f)I),

we can choose y ∈ HomΛ(A,DTr(X)) such that

ȳ = y + Im((− ◦ f)I).

Then in light of Lemma 78, we see that the pushout E of f and y yields the
following commutative diagram in mod(Λ):

0 A B C 0

0 DTr(X) E C 0

f g

y

(3.31)
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The bottom row of this diagram is the short exact sequence which we shall identify
with ȳ ∈ δ∗(DTr(X)), and it can be shown that it is unique up to the equivalence
∼ ([3, Ch. 7]).

We now see that the resulting sequence

0 DTr(X) E′ C 0
(3.32)

from multiplying h̄ with the bottom row of Diagram 3.31 ”is contained in δ∗(DTr(X))”
in the sense that the composition (DTr(h))y ∈ HomΛ(A,DTr(X)) is a represen-
tative for an element

(DTr(h))y ∈ δ∗(DTr(X)),

whence (3.32) is obtained. This argues that δ∗(DTr(X)) is an EndΛ(X)-submodule
of EndΛ(C,DTr(X)) ' (ΥDTr(X),C/ ∼), which we from now on will assume holds.

To show that γδ,X is an EndΛ(X)-module homomorphism, we need to look
closer at how γδ,X behaves applied to an element z̄ ∈ DKer(1Tr(X)⊗ f). Note that

δ∗(DTr(X)) = HomΛ(A,HomR(Tr(X), I))/ Im((− ◦ f)DTr(X)),

and that (−◦ι)I is the canonical projection fromD(Tr(X)⊗ΛA) ontoDKer(1Tr(X)⊗ f).
Recall the following commutative diagram in Ab:

D(Tr(X)⊗ΛA) DKer(1Tr(X)⊗ f)

HomΛ(A,DTr(X)) HomΛ(A,DTr(X))/ Im((− ◦ f)DTr(X))

(− ◦ ι)I

θTr(X),A,I γδ,X

Suppose z̄ ∈ DKer(1Tr(X)⊗ f). Then there is some z ∈ D(Tr(X)⊗ΛA) such that

z̄ = (− ◦ ι)I(z) = zι,

that is, satisfying (3.21).
Since γδ,X is the cokernel map of θTr(X),A,I , then

γδ,X(z̄) = θTr(X),A,I(z) + Im((− ◦ f)DTr(X))

= [a 7→ z(−⊗ a)] + Im((− ◦ f)DTr(X)) (3.33)

for any z satisfying (3.21).
Suppose h̄ ∈ EndΛ(X). Then

γδ,X(h̄z̄)
(3.22)

= γδ,X(z ◦ (Tr(h)⊗ 1A) ◦ ι)
(3.33)

= [a 7→ z(Tr(h)(−)⊗ a)] + Im((− ◦ f)DTr(X)). (3.34)

We must now show that the same element of ΥDTr(X),C/ ∼ is obtained from
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I) identifying [a 7→ z(Tr(h)(−)⊗ a)] + Im((− ◦ f)DTr(X)) with an equivalence
class in ΥDTr(X),C/ ∼,

II) identifying [a 7→ z(−⊗ a)] + Im((− ◦ f)DTr(X)) with an equivalence class in
ΥDTr(X),C/ ∼, and then multiplying with h̄ as in (3.25).

Note that I) yields the short exact sequence obtained from taking the pushout of f
and [a 7→ z(Tr(h)(−)⊗ a)], while II) yields the short exact sequence obtained from
taking the pushout of f and the composition

DTr(h) ◦ [a 7→ z(−⊗ a)] = [a 7→ DTr(h)(z(−⊗ a))].

Since

DTr(h)(z(−⊗ a)) = (− ◦ Tr(h))I(z(−⊗ a))

= z(−⊗ a) ◦ Tr(h)

= z(Tr(h)(−)⊗ a),

we see that
DTr(h) ◦ [a 7→ z(−⊗ a)] = [a 7→ z(Tr(h)(−)⊗ a)].

We have then demonstrated that

γδ,X(h̄z̄) = h̄γδ,X(z̄)

for all z̄ ∈ DKer(1Tr(X)⊗ f) and h̄ ∈ EndΛ(X). That is, γδ,X is an isomorphism
of EndΛ(X)-modules.

The naturality of γδ,X in δ and X is yet to be proven. We first show that γδ,X
is natural in δ. Let δ and δ′ be two exact sequences in mod(Λ) as displayed in
Diagram 3.35, and let (u, v, w) : δ → δ′ be a set of Λ-module homomorphisms such
that the diagram commutes.

δ : 0 A B C 0

δ′ : 0 A′ B′ C ′ 0

f g

f ′ g′
u v w

(3.35)

What we need to show is that Diagram 3.36 is commutative. The left verti-
cal arrow represents the cokernel morphism D(Tr(X)⊗Λ−)(u)Cok induced from
(u, v, w) when applying D(Tr(X)⊗Λ−) to δ and δ′, and the right vertical arrow
represents the cokernel morphism HomΛ(−, DTr(X))(u)Cok induced from (u, v, w)
when applying HomΛ(−, DTr(X)) to δ and δ′.

DKer(1Tr(X)⊗ f ′) δ′∗(DTr(X))

DKer(1Tr(X)⊗ f) δ∗(DTr(X))

γδ′,X

γδ,X

D(Tr(X)⊗Λ−)(u)Cok HomΛ(−, DTr(X))

(3.36)
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We will proceed by drawing two copies of Diagram 3.18 behind each other, the
front one for δ and the back one for δ′. Consider Diagram 3.37. Here Diagram 3.36
is the one drawn with thicker edges. To simplify and save space in Diagram 3.37
we denote the contravariant functors HomΛ(−, DTr(X)) and D(Tr(X)⊗Λ−) by
F and G respectively, when applied to morphisms.

Let Diagram 3̂.37 denote the part of Diagram 3.37 where the edges of Diagram
3.36 are left out. Since the morphisms of Diagram 3.36 are cokernel morphisms,
they are constructed precisely such that the squares connecting their corresponding
edges to Diagram 3̂.37 commute. Thus, if Diagram 3̂.37 is commutative, then so is
Diagram 3.36.
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We now show that Diagram 3̂.37 is commutative. Throughout this paragraph we
assume that Diagram 3.37 is rotated back to normal position prior to investigation.
There are four types of squares to consider: The ”horizontal” ones, constituting
the top and the bottom of the two cubes of the diagram, the ”straight vertical”
ones, constituting the front and the back side of the cubes, and the ”skew ver-
tical” ones, constituting the sides of the cubes. The commutativity of the skew
vertical and the straight vertical squares follows immediately from the naturality
of θTr(X),Y,I in Y . The commutativity of Diagram 3.35 implies that the horizontal
squares commute, since contravariant functors switches the order in compositions
of morphisms. Hence γδ,X is natural in δ.

We now show that γδ,X is natural in X. Let X, X ′ ∈ mod(Λ), and let h ∈
HomΛ(X,X ′). Then X and X ′ give raise to two different versions of Diagram 3.18.
We display them both in Diagram 3.38, the one for X in front of the one for X ′.
We have not named all the edges in the diagram, but it should be clear from the
context which morphism each one of them represents.
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As in the proof of the naturality of γδ,X in δ, we must now show that the
diagram drawn with thicker edges in Diagram 3.38 is commutative. By the same
arguments as above, it suffices to prove the commutativity of the part of Diagram
3.38 obtained from omitting the thicker edges. Again, we divide the squares to
consider into the three types ”horizontal”, ”straight vertical” and ”skew vertical”
(after rotating the diagram back to normal position). The skew vertical squares
commute by the naturality of (3.17) in Tr(X), and the straight vertical squares
commute by the naturality of (3.17) in Y . The commutativity of the bottom
horizontal squares follows from the associativity of composition of morphisms.

We now show that the top horizontal squares are commutative. We will prove
this for the left one; the procedure is similar for the right one. Consider the
following diagram.

Tr(X)⊗ΛB Tr(X)⊗Λ C

Tr(X ′)⊗ΛB Tr(X ′)⊗Λ C

1Tr(X)⊗ g

Tr(h)⊗ 1B

1Tr(X′)⊗ g

Tr(h)⊗ 1C

It is easy to see that this diagram is commutative:

(Tr(h)⊗ 1C) ◦ (1Tr(X)⊗ g) = Tr(h)⊗ g = (1Tr(X′)⊗ g) ◦ (Tr(h)⊗ 1B).

When applying the contravariant functor D to the above diagram we obtain the top
left horizontal square of Diagram 3.38, hence the latter must also be commutative.

By the above discussion the square with thicker edges of Diagram 3.38, is com-
mutative; naturality of γδ,X in X has been proven.

We have now done all the preliminary work which is necessary in order to derive
the desired connection between the dual and the defect functors. Recall that by
Proposition 76, there is an isomorphism of EndΛ(X)op-modules

σ−1
δ,X : Ker(1Tr(X)⊗ f)→ δ∗(X)

which is natural in δ and in X. We hereby present one of the main results of this
thesis.

Theorem 80. Let

ωδ,X := γδ,XDσ
−1
δ,X .

Then ωδ,X is an isomorphism of EndΛ(X)-modules

ωδ,X : Dδ∗(X)→ δ∗(DTr(X)) (3.39)

which is natural in δ and natural in X.

Proof. Since

σ−1
δ,X : Ker(1Tr(X)⊗ f)→ δ∗(X)
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is an EndΛ(X)op-module isomorphism, then

Dσ−1
δ,X : Dδ∗(X)→ DKer(1Tr(X)⊗ f)

is an EndΛ(X)-module isomorphism. It is evident that the composition

Dδ∗(X) DKer(1Tr(X)⊗ f) δ∗(DTr(X))
Dσ−1

δ,X γδ,X

of two EndΛ(X)-module isomorphisms is also an isomorphism of EndΛ(X)-modules.
Since D is a functor, then naturality of Dσ−1

δ,X in δ and in X follows from

naturality of σ−1
δ,X in the same variables.

By Lemma 2(ii), a composition of natural transformations is also natural.
Hence, by the above discussion and Proposition 79, the composition γδ,XDσ

−1
δ,X

is natural in δ and natural in X.

3.2 The Almost Split Sequnece Algorithm

In this section we will show how we can employ the results of this thesis in or-
der to compute almost split sequences for finitely generated indecomposable non-
projective modules over a finite dimensional algebra over a field. As formerly
announced, we will make use of the EndΛ(X)-module isomorphism ωδ,X developed
in the previous section in the special case that δ is the exact sequence of Definition
37(i) given by

0 Ω P0 X 0,
ι t

(3.40)

where
Ω := ΩΛ(X)

is a fixed kernel of P0.

Definition 81. We let

σ̆X := σδ,X ,

γ̆X := γδ,X

and

ω̆X := ωδ,X

for this particular choice for δ.

Of course, whenever fixing a non-projective, indecomposable X ∈ mod(Λ), it
will still be necessary to make a choice for P0 and Ω in order to obtain δ. That
is, δ is not uniquely determined by X. Nevertheless we find it appropriate to
omit the subscrips δ from the above morphisms because P0 and Ω are unique up
to isomorphism in mod(Λ); altering these objects will not be affecting the actual
structure of a morphism with δ-dependence.
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3.2.1 Investigating ω̆X

The aim of this brief section is to specify the domain and codomain of the EndΛ(X)-
module isomorphism ω̆X . For that we will need the result of the following lemma.

Lemma 82. Let Y ∈ mod(Λ). Then

δ∗(Y ) = HomΛ(Y,X).

Proof. Recall that for Y ∈ mod(Λ), then δ∗(Y ) is defined by the exactness of the
following sequence:

0 HomΛ(Y,Ω) HomΛ(Y, P0) HomΛ(Y,X) δ∗(Y ) 0
(ι ◦ −)Y (t ◦ −)Y

Thus δ∗(Y ) is the cokernel of (t ◦ −)Y , that is,

δ∗(Y ) = HomΛ(Y,X)/ Im((t ◦ −)Y ). (3.41)

We now show that
Im(t ◦ −)Y = P(Y,X).

If u ∈ Im(t ◦ −), then u clearly factors through a projective Λ-module, namely
P0. Conversely, if u factors through some projective Λ-module P , then by Lemma
45, u will also factor through P (X). Then from (3.41) we get

δ∗(Y ) = HomΛ(Y,X)/P(Y,X) = HomΛ(Y,X).

We now see that ω̆X indeed identifies the dual of EndΛ(X) with the set of
equivalence classes of short exact sequences ending in X (as EndΛ(X)-modules),
as advertised in the introduction of this chapter.

Proposition 83. The special case ω̆X of ωδ,X is an isomorphism of EndΛ(X)-
modules

ω̆X : DEndΛ(X)→ Ext1
Λ(X,DTr(X)).

Proof. Recall from Theorem 80 that

ωδ,X : Dδ∗(X)→ δ∗(DTr(X)).

Lemma 82 implies that δ∗(X) = EndΛ(X), hence

Dδ∗(X) = DEndΛ(X). (3.42)

Note that since X ∈ mod(Λ), then Tr(X) ∈ mod(Λop) – hence DTr(X) ∈
mod(Λ). By applying the contravariant functor HomΛ(−, DTr(X)) to δ and by [3,
Theorem 7.3, Ch. 7], we get the following exact sequence:
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0 HomΛ(X,DTr(X)) HomΛ(P0, DTr(X)) HomΛ(ΩΛ(X), DTr(X)) · · ·

· · · Ext1
Λ(X,DTr(X)) Ext1

Λ(P0, DTr(X))

(3.43)
Since P0 is projective, then Ext1

Λ(P0, DTr(X)) = 0. We thus recognize Se-
quence (3.43) as Sequence (2.38) of Definition 49, where X is replaced by DTr(X).
That is,

δ∗(DTr(X)) = Ext1
Λ(X,DTr(X)). (3.44)

We obtain the desired result from (3.42) and (3.44).

3.2.2 Designing the algorithm for R = K

Recall from Proposition 69 that identifying the elements of Ext1
Λ(X,DTr(X))

with equivalence classes of short exact sequences ending in X gives rise to an
EndΛ(X)-module structure on Ext1

Λ(X,DTr(X)) such that this is a finitely gen-
erated EndΛ(X)-module. Furthermore, the the socle of Ext1

Λ(X,DTr(X)) as

EndΛ(X)-module is simple and corresponds to the set Υ̂DTr(X),X/ ∼ of equiv-
alence classes of almost split sequences in mod(Λ) ending in X. This means that
any nonzero element e of SocΓ(DEndΛ(X)) can be used to generate Υ̂/ ∼, since
ω̆X(e) ∈ SocΓ(Ext1

Λ(X,DTr(X)) will then be nonzero.
Our strategy is now to try to find any nonzero element of DEndΛ(X), and then

check that it is also contained in the socle. We do know of a nonzero element in
EndΛ(X), namely the equivalence class represented by the identity morphism from
X to X; 1̄X . How can we take advantage of this knowledge to obtain an element
of DEndΛ(X)?

Our rescue will be the mapping of Definition 31 from Section 2.3. This can be
applied once we make our final assumption; from now on we let R be a field. Then
by Lemma 30, R = K and the functor D is given by

D = HomK(−,K) : mod(K)→ mod(K).

Lemma 84. Consider the identity 1̄X ∈ EndΛ(X). Let

BKer(1Tr(X)⊗ ι) := {σ̆X(1̄X), w2, ..., wl}

be a K-basis of Ker(1Tr(X)⊗ ι). Then

γ̆X(dBKer(1Tr(X) ⊗ ι)
(σ̆X(1̄X))) ∈ SocΓ(Ext1

Λ(X,DTr(X)))

is a generator.

Proof. Let
σ̆−1
X (BKer(1Tr(X)⊗ ι)) := {1̄X , σ̆−1

X (w2), ..., σ̆−1
X (wl)}
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be the K-basis of EndΛ(X) corresponding to BKer(1Tr(X)⊗ ι). We know that

1̄X ∈ TopΓop(EndΛ(X))

is a nonzero element, hence by Lemma 67(ii) then

(dσ̆−1
X (BKer(1Tr(X) ⊗ ι))

)(1̄X) ∈ SocΓ(DEndΛ(X))

is a nonzero element, thus since ω̆X is an isomorphsim of EndΛ(X)-modules,

ω̆X((dσ̆−1
X (BKer(1Tr(X) ⊗ ι))

)(1̄X)) = γ̆X(Dσ̆−1
X )((dσ̆−1

X (BKer(1Tr(X) ⊗ ι))
)(1̄X))

∈ SocΓ(Ext1
Λ(X,DTr(X)))

is a nonzero element. Furthermore, by Lemma 34 we know that

(Dσ̆−1
X )(dσ̆−1

X (BKer(1Tr(X) ⊗ ι))
(1̄X)) = dBKer(1Tr(X) ⊗ ι)

(σ̆X(1̄X)),

thus

ω̆X((dσ̆−1
X (BKer(1Tr(X) ⊗ ι))

)(1̄X)) = γ̆X(dBKer(1Tr(X) ⊗ ι)
(σ̆X(1̄X))).

By Lemma 68, this nonzero element is a generator for SocΓ(Ext1
Λ(X,DTr(X))).

The previous lemma implies that what we are really interested in doing, is to
algorithmically compute γ̆X(dBKer(1Tr(X) ⊗ ι)

)(σ̆X(1̄X)). We observe that the σδ,X -

Algorithm of Section 3.1.2 can be drastically simplified in the special case that we
are studying.

Lemma 85. In accordance with the name change from σδ,X to σ̆X , we let the
σ̆X-Algorithm be the resulting σδ,X-Algorithm from letting δ be the exact sequence
(3.40). Then with input 1̄X , the σ̆X-Algorithm returns

σ̆X(1̄X) = φΩ(w),

where w is the projective cover of Ω.

Proof. We begin by translating Diagram 3.7 to our current situation:
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0

0 0 0 Ker(1Tr(X) ⊗ ι)

0 HomΛ(X,Ω) HomΛ(P0,Ω) HomΛ(P1,Ω) Tr(X)⊗Λ Ω 0

0 HomΛ(X,P0) EndΛ(P0) HomΛ(P1, P0) Tr(X)⊗Λ P0 0

0 EndΛ(X) HomΛ(P0, X) HomΛ(P1, X) Tr(X)⊗Λ X 0

EndΛ(X) 0 0 0

0

(− ◦ t)Ω (− ◦ s)Ω φΩ

(− ◦ t)P0
(− ◦ s)P0 φP0

(− ◦ t)X (− ◦ s)X φX

(ι ◦ −)X (ι ◦ −)P0
(ι ◦ −)P1

(t ◦ −)X (t ◦ −)P0
(t ◦ −)P1

1Tr(X) ⊗ ι

1Tr(X) ⊗ t

(3.45)
We now perform the σ̆X -Algorithm on the specific element 1̄X ∈ EndΛ(X). We
begin by choosing the preimage 1X ∈ EndΛ(X). We then observe that an element
u ∈ EndΛ(P0) such that tu = t is readily at hand; we simply choose 1P0

. Next, wee
must find v ∈ HomΛ(P1,Ω) such that ιv = s. Recall from Definition 37(ii) that the
projective cover w of Ω satisfies this property. At last, we evaluate φΩ in w.

The previous results give rise to the following algorithm for computing a gen-
erator for almost split sequences in mod(Λ) ending in X.

118



The Almost Split Sequence Algorithm

Input: X ∈ mod(Λ) indecomposable and non-projective. 2

Output: A generator

0 DTr(X) E X 0

for Υ̂/ ∼.

• Regard φΩ(w) ∈ Ker(1Tr(X)⊗ ι) where w is the projective cover of Ω , and
extend to a K-basis

BKer(1Tr(X)⊗ ι) := {φΩ(w)︸ ︷︷ ︸
:=w1

, w2, ..., wl}

of Ker(1Tr(X)⊗ ι).

• Expand BKer(1Tr(X)⊗ ι) to a K-basis

BTr(X)⊗Λ Ω := {φΩ(w), w2, ..., wl, wl+1, ..., wl+m}

of Tr(X)⊗Λ Ω.

• Let ξ : Ω → DTr(X) be the Λ-module homomorphism defined as follows.
For a ∈ Ω then

ξ(a) : Tr(X)→ K

q 7→ the first K-coefficient of q⊗ a with respect to BTr(X)⊗Λ Ω.

• Let E be the pushout of ι and ξ.

end

Theorem 86. The Almost Split Sequence Algorithm returns a generator

0 DTr(X) E X 0

for all almost split sequences in mod(Λ) ending in X.

Proof. By Lemma 85 then
σ̆X(1̄X) = φΩ(w),

so BKer(1Tr(X)⊗ ι) is as in Lemma 84, implying that

γ̆X(dBKer(1Tr(X) ⊗ ι)
(φΩ(w))︸ ︷︷ ︸

:=z̄

) := ȳ

generates SocΓ(Ext1
Λ(X,DTr(X)).

2We also assume that a projective cover P0 of X, a kernel Ω of P0 and a projective cover w of
Ω, are chosen beforehand as described.
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As in the proof of Proposition 79, an element of Υ̂/ ∼ is obtained by taking the
pushout E of ι and any representative y ∈ HomΛ(Ω, DTr(X)) for ȳ. Since γ̆X is
the cokernel map of θTr(X),Ω,K , then if

y := θTr(X)Ω,K(z)

for any representative z ∈ D(Tr(X)⊗Λ Ω) for z̄, then y is a representative for
γ̆X(z̄) = ȳ. Let µ denote the inclusion

µ : Ker(1Tr(X)⊗ ι)→ Tr(X)⊗Λ Ω.

Then
Dµ = (− ◦ µ)K : D(Tr(X)⊗Λ Ω)→ DKer(1Tr(X)⊗ ι)

is the canonical projection from D(Tr(X)⊗Λ Ω) onto its cokernel DKer(1Tr(X)⊗ ι),
and any z ∈ D(Tr(X)⊗Λ Ω) such that

zµ = z̄ (3.46)

is a representative for z̄. We now show that

z := dBTr(X)⊗Λ Ω
(φΩ(w))

satisfies (3.46).
Suppose q⊗ a ∈ Ker(1Tr(X)⊗ ι). Then applying dBKer(1Tr(X) ⊗ ι)

(φΩ(w)) to q⊗ a
corresponds to expressing q⊗ a in terms of BKer(1Tr(X)⊗ ι), and then extracting
the first K-coefficient. Since BTr(X)⊗Λ Ω is merely an expansion of BKer(1Tr(X)⊗ ι),
then the outcome does not change if we instead include q⊗ a into Tr(X)⊗Λ Ω
and express q⊗ a in terms of BTr(X)⊗Λ Ω before extracting the first K-coefficient –
which, in turn, corresponds to applying dBTr(X)⊗Λ Ω

(φΩ(w))µ to q⊗ a.

It is then clear that we must take the pushout of ι and θTr(X),Ω,K(dBTr(X)⊗Λ Ω
(φΩ(w)))

in order to obtain the desired almost split sequence. We recall from Theorem 58
that

θTr(X),Ω,K(dBTr(X)⊗Λ Ω
(φΩ(w)))(a) =[q 7→ dBTr(X)⊗Λ Ω

(φΩ(w))(q⊗ a)]

=[q 7→ the first K-coefficient of q⊗ a
with respect to BTr(X)⊗Λ Ω]

=ξ(a)

for any a ∈ Ω. Hence

θTr(X),Ω,K(dBTr(X)⊗Λ Ω
(φΩ(w))) = ξ,

and this completes the proof.
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