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ABSTRACT
The design of controllers and observers often relies on first or-

der models of the system in question. These models are often

obtained either through step-response tests, through on-line or

off-line identification or through development of a mathematical

model. When the system in question has unknown or uncertain

parameters, the developed model also contains uncertainties and

the controller/observer design may result in bad performance or

even instability. In this paper we present a combined design of a

controller and an observer for scalar linear time-invariant systems

with unknown parameters. We combine a model reference adaptive

controller, which does not require a model of the system, with a

Luenberger observer which uses the desired closed-loop dynamics

as its model. We show through Lyapunov theory and by application

of Barbǎlat’s lemma that all error states in the closed-loop system

converge to zero and that all signals are bounded.
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1 INTRODUCTION
Controller and observer design for linear time-invariant (LTI) sys-
tems has for decades revolved around the assumption that the
system dynamics, or at least an approximation of these, are known.
∗
Corresponding author

Figure 1: The proposed method consists of a MRAC and an
observer with the same dynamics as the reference model.

A dynamic model of the system, or some knowledge about the open-

loop behaviour, is often required in order to tune controllers and

observers. The well-known, and widely used, Ziegler-Nichols [11]

and Skogestad IMC (SIMC) [7] tuning methods cannot be applied

without knowledge of the systems critical gain and oscillation pe-

riod, and the gain and time constant, respectively.

The models are often obtained by constructing a mathematical

model based on physical properties of the system (first-principle

models) and linearizing this around the desired operating point.

This model will only be valid in a region close to the linearization

point. The model can also be obtained through step response analy-

sis [6, Ch. 4], or through on-line or off-line identification/estimation

of the system parameters [1, Ch. 4]. The last two approaches re-

quires that the plant we wish to control is up and running and that

the necessary measurements exist. This may not be feasible for all

plants.

These methods of modelling, though quite different, have one

thing in common: They all attempt to find out what the dynamics

of the real system is and design an observer or a controller based

on these dynamics. It is well known that any model of a system

is an approximation at best. If the process itself changes, e.g. an

actuator is worn down, or physical parameters, such as mass or

pressure, changes, the linear controller may fail or perform worse

than originally intended. Moreover, if there are uncertainties in the

model parameters, it is impossible to guarantee that the designed

linear controller or observer will work.

To handle the uncertainty often found in systems we can in-

troduce measures to increase the robustness of our controller or

observer. This can be done through non-linear control methods

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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e.g., sliding-mode controllers (see for instance [2]) or adaptive con-

trollers (see for instance [1]), and in the observer case through

high-gain observers [3].

In this paper we introduce a different approach to the design of

controllers and observers for unknown systems. This paper contains

preliminary work and hence, only considers first-order LTI systems.

Since the unknown system dynamics will converge to the dynamics

of the reference model used in the MRAC scheme, we can design

the observer based on these known dynamics, instead of on the

unknown open-loop dynamics. A block diagram of our proposed

method is shown in Figure. 1. In this paper we show that this

approach also works during the transient period.

To the best of the authors knowledge the specific idea presented

here is novel. Only two related works [9, 10] could be found in

published literature.

This idea is touched upon in [9] where it is argued that an ob-

server cannot be designed for a system with unknown parameters

and [9] propose that the observer should contain the known closed-

loop dynamics. A stability proof for the observer/controller solution

is not presented in [9], but the scheme is demonstrated through

simulations on a discrete-time system.

In [10], an observer-based solution for non-linear systems is

presented with stability proofs. The observer is designed based on a

reference model and the controller is an iterative learning controller

based on a filtered fuzzy neural network. The general idea is the

same as the one presented in this paper, but in this paper we use a

simple model reference adaptive controller instead of a fuzzy neural

network, and since this paper contains preliminary work, we do

not consider non-linear systems.

In this paper we present a new adaptive control method for

systems with unknown dynamics and we prove the stability of the

method through Lyapunov theory. The stability proof also holds

during the transient period.

2 PROBLEM FORMULATION
Consider the scalar linear time-invariant system

Ûx = ax + bu . (1)

Designing a controller for this system if a and b were known would

be rather trivial: We choose u = −k∗x and choose k∗ such that

a − bk∗ < 0.

2.1 Control design for unknown systems
If the parameters of the system in (1) are unknown or uncertain, one

possible controller choice is to use model reference adaptive control

(MRAC) [1, Ch. 6]. When designing an MRAC for the system in (1),

we do not concern ourselves with the dynamics of the real system

as we are only required to know sign(b).
The goal of MRAC is to force the output or state of the system

to track the output or state of a reference model with dynamics

Ûxm = −amxm + bmr (2)

where am > 0 and bm , 0 are chosen by the control designer. If we

know a and b of (1) we can simply choose

u = −k∗x + l∗r (3)

where k∗ = (am + a)/b and l∗ = bm/b.

Since we do not know a and b we must instead use estimates

of the controller gains,
ˆk and

ˆl . These estimates are updated by

respective update laws that ensures convergence of the system state

to the state of the reference model. Boundedness of the controller

gains are also ensured.

2.2 Observer design for unknown systems
If a and b of (1) are known the Luenberger observer

Û̂x = ax̂ + bu + L(x − x̂) (4)

where L > 0, can be designed trivially. The observed state can be

used in a feedback control law u = −k∗x̂ . By application of the

well-known separation principle [8, Ch. 9.2], we can guarantee that

the observer error converges to zero and that the controlled state

converges to the desired value. Furthermore, the stability of the

closed-loop system can be determined by choosing, independently,

suitable controller and observer gains.

If a and b are unknown we cannot use the Luenberger observer

in (4). We could instead use an adaptive observer [1, Ch. 5] and

identify a andb, but this would require a persistently exciting signal
to guarantee that the estimated a and b converge to the real values.

A high gain observer, [3], could be used for unknown systems,

but our focus in this paper is to present an alternative to this method.

3 COMBINED CONTROLLER AND OBSERVER
DESIGN

We consider the system given in (1) with unknown a and b, with
the following assumptions:

Assumption 1. In (1), the maximum value of a is known, i.e.,
|a | ≤ amax.

Assumption 2. In (1), b , 0 and sign(b) is known.

Assumption 3. In (1), a and b are constant.

Theorem 1 (Main result). Let the system be given by (1) with
unknown a and b satisfying Assumptions 1–3. Let the controller be
given by

u = − ˆkx̂ + ˆlr (5)

where ˆk and ˆl satisfy the update laws
Û̂
k = sign(b)γ1x̂(e1m1 + e2m2) (6)

Û̂
l = − sign(b)γ2r (e1m1 + e2m2) (7)

with γ1,γ2,m2 > 0,m1 = camm2, c > 0 and the state estimate x̂ is
given by

Û̂x = −amx̂ + bmr + L(x − x̂) (8)

where am ≥ ϵ > 0, bm , 0 and L satisfies L ≥ ϵ̄2+
c
4
(amax + am )2+

amax with ϵ̄2 > 0. Furthermore, let the reference model be given by

Ûxm = −amxm + bmr , (9)

the error variables by

e1 = x − xm (10)

e2 = x − x̂ , (11)

and let r be a bounded signal. Then e1, e2, x , xm , x̂ , ˆk and ˆl are
bounded and e1, e2 converge to zero.



Controller and observer design for first order LTI systems with unknown dynamics ICCMA, October 2018, Tokyo, Japan

Proof. Consider the observer system

Û̂x = −amx̂ + bmr + L(x − x̂) (12)

where L > 0, r is a bounded reference and am > 0 and bm , 0 are

the desired time constant and gain of the reference system

Ûxm = −amxm + bmr . (13)

Trivially, xm is bounded.

If a and b of (1) had been known, we could have chosen u as

in (3) and guaranteed that the transfer function of the closed-loop

plant x(s)/r (s) is equal to that of the reference model xm (s)/r (s).
By adding and subtracting −k∗x + l∗r to (1) and inserting (5) we

get

Ûx = ax + b
(
k∗x − k∗x + l∗r − l∗r + ˆkx̂ + ˆlr

)
= (a − bk∗)x + bl∗r + b

(
k∗x − l∗r + ˆkx̂ + ˆlr

)
= −amx + bmr + bk∗x − b ˆkx̂ + b ˜lr . (14)

where
˜l = ˆl − l∗. Now we define the error variable e1 = x −xm with

time derivative

Ûe1 = −amx + bmr + bk∗x − b ˆkx̂ + b ˜lr + amxm − bmr

= −ame1 + b ˜lr + bk∗x − b ˆkx̂ . (15)

To this we add and subtract the term bk∗x̂ , which gives

Ûe1 = −ame1 + b ˜lr + bk∗ (x − x̂) + bx̂
(
k∗ − ˆk

)
= −ame1 + b ˜lr + bk∗e2 − b ˜kx̂ (16)

where e2 = x − x̂ and
˜k = ˆk − k∗.

Using the observer in (12), the error variable e2 = x − x̂ has time

derivative

Ûe2 = −amx + bmr + bk∗x + b ˜lr − b ˆkx̂ + amx̂ − bmr − Le2

= −(am + L)e2 + b ˜lr + bk∗x − b ˆkx̂ . (17)

We again add and subtract the term bk∗x̂ and get

Ûe2 = −(am + L)e2 + b ˜lr + bk∗e2 − b ˜kx̂

= −(am + L − bk∗)e2 + b ˜lr − b ˜kx̂

= −(L − a)e2 + b ˜lr − b ˜kx̂ (18)

where we use bk∗ = a + am .

To investigate the stability of the error system e =
[
e1 e2

]T
we propose the Lyapunov function candidate

V (e, ˜k, ˜l) =
1

2

eTMe +
|b |

2γ1

˜k2 +
|b |

2γ2

˜l2 (19)

where γ1,γ2 > 0 are constants and

M =
[
m1 0

0 m2

]
(20)

withm1,m2 > 0.

The time derivative of (19) along the system trajectories is

ÛV = −amm1e
2

1
+m1(a + am )e1e2 + b ˜lrm1e1

− b ˜kx̂m1e1 − (L − a)m2e
2

2
+ b ˜lrm2e2

− b ˜kx̂m2e2 +
|b |

γ1

˜k
Û̃
k +

|b |

γ2

˜l
Û̃
l . (21)

Since k∗ and l∗ are constants,
Û̃
k =

Û̂
k and

Û̃
l =

Û̂
l . We gather some

terms and express (21) as

ÛV = −eTQe + ˜k

(
|b |

γ1

Û̂
k − bx̂(m1e1 +m2e2)

)
+ ˜l

(
|b |

γ2

Û̂
l + br (m1e1 +m2e2)

)
(22)

where

Q =
[

amm1 − 1

2
m1(a + am )

− 1

2
m1(a + am ) m2(L − a)

]
. (23)

Inserting the update laws defined in (6) and (7) reduces (22) to

ÛV = −eTQe (24)

To ensure that Q is positive definite we require amm1 ≥ ϵ1 > 0

and det(Q) ≥ ϵ2 > 0 where ϵ1, ϵ2 are constants. Thus,

det(Q) = amm1m2(L − a) −
1

4

(a + am )2m2

1
≥ ϵ2 > 0 (25)

We choose ϵ2 = ϵ̄2amm1m2 andm1 = camm2, where ϵ̄2, c > 0 are

constants, reducing (25) to

L ≥ ϵ̄2 +
c

4

(a + am )2 + a . (26)

The above is satisfied if

L ≥ ϵ̄2 +
c

4

(amax + am )2 + amax . (27)

Thus

ÛV = −eTQe ≤ 0 (28)

and the origin of the e, ˜k, ˜l system is stable [2, Th. 4.1]. This also

implies that x, x̂, ˆk and
ˆl are bounded.

We now look at the time derivative of (28), i.e.,

ÜV = −2eTQÛe − eT ÛQe (29)

= −2eTQÛe . (30)

From (16) and (18) and the above, Ûe is bounded, and thus so is ÜV .
Hence, Barbǎlat’s lemma, as described in [2, Ch. 8.3] can be applied

and both boundedness ofV and convergence ofV to zero is ensured,

i.e., asymptotic stability of e1 and e2 and boundedness of
˜k and

˜l is
proven. �

4 SIMULATION RESULTS
4.1 Applied to an example system
The proposed solution is applied to a first order example system on

the form given in (1). The parameters a and b are chosen randomly

from a set a,b ∈ [−10 , 10] where b , 0 and amax = 10. The sign of

b is given to the controller.

Note that the system can be either open-loop stable or unstable

depending on the sign of a. The parameters used in the simulations

are given in Table 1.

In the first simulation we choose a = 10, to demonstrate that the

method works when the open-loop system is at its most unstable,

andb = 6.6 was chosen randomly. For comparison, we also simulate
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Table 1: Simulation parameters

Parameter: am bm ϵ̄2 c m2 m1 L γ1,γ2

Value: 1 1 1 0.1 10 1 14 10

0 10 20 30 40 50 60 70 80

Time [s]

-3

-2

-1

0

1

2

3

S
ta

te
 v

al
ue

 [-
]

Desired response
Measured response
Observer response
MRAC only response

Figure 2: The observer state and the measured state tracks
the state of the reference system.

using a standard MRAC without the observer, i.e., the update laws

are

Û̂
k = sign(b)γ1xe1

Û̂
l = − sign(b)γ2re1 (31)

As can be seen from Figure 2, the observer state response and the

measured state response converges to the desired state response

for a variety of setpoint changes. When we use the MRAC alone,

however, the convergence during the first step is significantly worse

than for the case when we use the proposed method. The presence

of the extra terms in the update laws
Û̂
k and

Û̂
l when we use the

proposed method is the cause of this difference. In Figure 3 we

see the controller parameters. The parameters are oscillating much

more when we use the proposed method because of the extra term

present in the update laws.

We perform another simulation where we choose a random, but

stable, a = −3.7 and a smaller b = 0.57. The controller tuning used

is the same as in the first simulation. As can be seen in Figure 4 the

states are not oscillatory, as was the case in the first simulation. We

see the same behaviour for the case where we only use the MRAC

as in the first simulation. The convergence during the first step

is slower. The controller parameters, shown in Figure 5, are quite

similar for both cases, but we see that the extra term present in

the update laws for the proposed solution causes a slightly faster

convergence during the first step.

We then apply a sinusoidal reference and use the same controller

parameters and open-loop system from the first simulation. In

Figure 6 we see that the states are able to track the desired response

given by the reference model. The convergence is better when we

use the proposed method compared to an MRAC alone. In this case,

the controller parameters converge to the actual values as seen in
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Figure 3: The controller parameters during the first simula-
tion.
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Figure 4: When the open loop system is stable, but has a low
gain, the performance during the first transient is less oscil-
latory.
Figure 7. The convergence is faster for the proposed method than

for a conventional MRAC due to the additional terms present in

the update laws.

4.2 Applied to a complex system
At this stage, the method has only been proven for a scalar, linear

case. In this section, we use the method on a complex, nonlinear

vector case in simulation. We do not present a proof, and include it

here only to illustrate the method’s potential broader applicability.

We consider a model of a gas liquid cylindrical cyclone (GLCC),

presented in [4]. The GLCC is a compact gas/liquid separation

device used in the oil and gas industry.

To ensure effective separation of gas and liquid it is important

to keep the liquid level at a certain setpoint. The gas pressure in

the GLCC must also be controlled in order to ensure safe operation.

The GLCC model contains nonlinearities in the valve-openings con-

trolling the liquid level and gas pressure as well as highly complex
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Figure 5: The controller parameters are not subject to the
same oscillations as in the first simulation since the open
loop system is stable.
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Figure 6: When we apply a sinusoidal reference the mea-
sured state and the observer state tracks the output of the
reference model.

nonlinearities describing the separation factors. The entire model

of the GLCC is too extensive to present here, but the liquid level

and gas pressure can be described by [5]

Ûh =
1

α

(
f1 + f1,s −wl

)
(32a)

Ûp =
β

αH −ml

(
f3 + f3,s − σwд +

mд(f1 + f1,s −wl )

aH −ml

)
(32b)

where α and β are model equations, H is the height of the GLCC

separator, the functions fx describes inlet flows and separation

flows between the gas and liquid phases (these functions are highly

nonlinear), σ is the gas mass fraction in the gas outlet (also highly

nonlinear),mд andml is the total amount of gas and liquid in the

GLCC, respectively, andwд ,wl are the outlet mass flows described
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Figure 7: The controller parameters converges to the true
values for k∗ and l∗ when the reference is persistently excit-
ing.

Table 2: Simulation parameters, GLCC system

Param.: am bm ϵ̄2 c m2 m1 L γ1,γ2 amax

wl : 0.1 0.1 1 1 10 1 36.5 1 10

wд : 0.1 0.1 1 1 10 1 36.5 0.01 10

using a valve equation on the form

wx = Cd ,xAxzx
√
ρx∆Px (33)

where Cd ,x is the valve coefficient, Ax is the cross-sectional area

of the valve, zx is the valve opening, ρx is the density of the fluid

and ∆Px is the pressure differential over the valve.

We used the proposed control structure to control the GLCC,

using two decoupled controllers, wl and wд , controlling liquid

level h and pressure p, respectively. The sign of b is easily deduced

from (32), (33) as an open valve reduces liquid level and pressure.

Trial and error was used to determine an appropriate L.
In use, GLCCs are usually given constant set-points. The param-

eters used for the GLCC controllers is listed in Table 2. The model

parameters are as in [4].

As can be seen from Figure 8, the controller/observer method

also appears to work on more advanced models containing non-

linearities. In the simulation, we also introduce disturbances in the

form of changes in the mass flow and gas mass fraction going into

the GLCC. The controller is able to handle these disturbances very

well. A conventional MRAC is also applied to this system and we

see a similar behaviour as we did in the simulations on the example

system. The conventional MRAC has the same adaptation gain

as the proposed method. Looking at the controller parameters in

Figure 9, we see that
ˆk and

ˆl are, for both controllers, quite small.

This could indicate that the system is open-loop stable or that the

open-loop gain is high such that little control action is required to

bring the states to the desired values.
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Figure 8: Simulation of the proposedmethod on a GLCC sys-
tem. The observer state is used as input to the controller and
the internal state tracks the state of the reference model.

5 CONCLUSION
In this paper we have presented an approach for designing a con-

troller and an observer for first-order linear time-invariant systems

with unknown dynamics. The controller is similar to a conven-

tional MRAC, but the update laws are different. The observer is

a Luenberger observer which uses the reference model dynamics

of the MRAC, rather than the (unknown) plant dynamics, as its

model. The main result proves, by the use of Lyapunonv theory,

that the system state converges to the reference model state, and

that the observer state converges to the system state. By utilizing

this method we have shown that we can, without any identification

of the open-loop model, design a controller and an observer for a

first-order LTI system.

We show trough simulations that the method can handle a va-

riety of unknown systems as long as the observer gain is chosen

appropriately, and that the transient performance is slightly better

than that of a classical MRAC working alone. We also apply the

method to a more complex system to illustrate that the same basic

method may work on more complex systems. However, proving

that this is the case remains future work.
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Figure 9: The controller parameters during the GLCC sim-
ulation. The parameters for the pressure controller is only
shown for the first second to better display the difference.

The results presented here is only the first step. As future work

wewould like to extend the stability proof to systemswith nonlinear

dynamics and to vectorial systems. Another interesting application

of the idea is to replace the Luenberger observer with a Kalman

filter which should give the system increased robustness against

noise.
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