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ABSTRACT: In simulations of flow around a concave curved cylinder, i.e. free-stream 

aligned with the plane of curvature and directed towards the inner face of the curvature, 

one can not avoid interactions between the cylinder and the inlet boundary. To get rid of 

the effects brought about by this interaction, we consider different lengths of upstream 

straight extensions at the lower end of the curved cylinder (0D, 5D and 10D, where D is 

the cylinder diameter), referred to as horizontal extensions. In this study, we directly solve 

the time-dependent three-dimensional Navier-Stokes equations. Results reveal that the 

appended horizontal extension allows the boundary layer to develop, so that the velocity 

profile at the curved cylinder inception is significantly different from the case where no 

horizontal extension is considered. The laminar boundary layer is thinner than that in the 

flat plate flow, which is given by Blasius’ solution.  The results from 5D and 10D 

extensions show a clear convergent tendency. We therefore suggest that a horizontal 

extension is essential for concave curved cylinder flow simulation, and 10D would be a 

preferred choice.  
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NOMENCLATURE 

CFi Force coefficients CFi = 𝐹𝑖
1
2

𝜌𝑈0
2𝑆𝑝⁄  t Time 

D Cylinder diameter u = (u, v, w) Instantaneous velocity vector 

f Frequency ∇𝒖 Velocity gradient tensor 

Fi  Body forces Fi = (Fx, Fy, Fz) <u>,<v>,<w> Time-averaged velocity 

p Pressure U0 Inlet(freestream) velocity 

Re Reynolds number 𝑅𝑒 = 𝐷𝑈0/𝜐 x, y, z Coordinates 

s Arc of cylinder centerline δ0.99 Boundary layer thickness  

S Symmetric part of ∇𝒖 υ Kinematic fluid viscosity 

Sp Projection area of geometry Ω Antisymmetric part of ∇𝒖 

St Strouhal number (St = fD/U0) λ2 2nd largest eigenvalue of 

(𝑆2 + Ω2)𝜌 Density 

1. Introduction

We encounter a configuration of a curved cylinder in different marine engineering 

applications: for example, a flexible riser that connects the seabed and floating offshore 

structures, mooring lines, or pipelines to transport oil and gas. Due to its curved span, the 
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wake behind a curved cylinder is considerably more complex than the wake of a straight 

cylinder, and becomes an interesting research topic. However, compared to the extensive 

studies on the straight cylinder wake, there are far less published results on a curved 

cylinder wake.  

The curved cylinder is modeled as a quarter segment of a ring in most relevant studies; 

depending on the specific problem, straight extensions may be added to one or both ends 

of the quarter ring. Earlier studies of curved cylinders mostly focused on flow normal to 

the plane of curvature, as reviewed in previous publications[1][2]. (Miliou et al.)[3] first 

carried out fundamental studies of curved cylinder wakes with the inflow aligned with the 

plane of curvature. They studied flow past stationary curved cylinders at low Reynolds 

numbers of 100 and 500, and systematically reported the shedding pattern and wake 

topology. (de Vecchi et al.)[2] also studied the wake of curved cylinders at low Reynolds 

number Re = 100 and they considered both stationary cylinders and cylinders with forced 

cross-flow oscillations. Both studies observed distinctly different wake topologies when 

the inflow direction is reversed, i.e. bent vortex shedding when the inflow is towards the 

outer face of the curvature (referred to as convex configuration), but suppressed vortex 

shedding when the inflow is towards the inner face of the curvature (referred to as concave 

configuration). In addition, both studies attributed the suppression of vortex shedding in 

the concave configuration to an axial flow along the curvature, which makes the shear layer 

less susceptible to roll up and subsequently shed as a vortex street. Recently, (Gallardo et 

al.) [4] investigated the turbulent wake behind a convex curved cylinder at Reynolds number 

Re = 3900, in which they revealed distinct differences between the wake pattern in the 

upper part of the curved cylinder wake as compared to that in the lower part.  (Xu and 

Cater) [5] reported a RANS study of a high Reynolds number flow (Re = 1.5×105) around a 

curved cylinder, which was virtually a flexible riser model. 

Unlike in simulations of flow past straight cylinders, where periodic boundary 

conditions are normally used at the two ends of the cylinders, special attention is essential 

for the boundary conditions at the two ends of the quarter ring. The abovementioned 

studies[1]-[4] all considered a straight extension normal to the free-stream direction (often 

referred to as a vertical extension) at one end of the quarter ring where a free-slip boundary 

condition was suggested. (Gallardo et al.)[6] carefully studied the free-slip boundary 

condition at this end of the quarter ring and the choice of a reasonable extension length.  

 It is noteworthy that in the convex configuration, most previous studies[2]-[4] also 

considered another straight extension aligned with the free-stream direction at the other 

end of the quarter ring, which is often referred to as a horizontal extension. This horizontal 

extension continues all the way to the outlet of the flow domain. No free end will therefore 

appear in the cylinder wake. However, when it comes to the concave configuration, the 

horizontal extension was omitted in most numerical simulations[2][3]. To the authors’ 

knowledge, the only study that considers a horizontal extension of a concave curved 

cylinder is an experimental investigation[1]. In that study the horizontal extension has a free 

end in the fluid and therefore induces additional disturbances to the incoming flow. 
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In the concave curved cylinder case reported by (Miliou et al.) [3], one end of the 

quarter ring interacts directly with the inlet surface. It is rather obvious that this direct 

interaction between the curved cylinder and inlet has some effects on the flow field. If one 

consider the most likely application of a curved cylinder, i.e. a deep-sea riser or a pipeline 

landing on the seabed, the curved part is most likely connected with straight extensions at 

both ends (horizontal and vertical). In this context, it is always difficult to isolate the curved 

part (quarter ring) from its straight extensions. Although (Miliou et al.) [3] gave a special 

treatment to the inflow boundary condition (as details in Section 2.1, viz equation (1)), the 

issue was left without any clarification.  

In the present study, we aim to investigate the influence of a horizontal extension on 

the flow around a concave curved cylinder. Free ends in the computational domain are 

intentionally avoided to eliminate additional disturbances; so the horizontal extensions will 

start upstream and affect the inlet boundary conditions. Only one Reynolds number Re = 

100 will be studied, while different lengths of the horizontal extension will be considered. 

This particular Re was chosen to enable direct comparisons with the results obtained by 

(Miliou et al.)[3]. Comparisons of the boundary layer flow along extensions of various 

lengths will be presented and the influence of the different extensions on the wake behind 

the curved part of the cylinder will be considered. 

 

2. Numerical setups  

2.1 Flow configuration 

In this study, we consider a quarter ring curved circular cylinder, and a concave 

configuration is adopted, i.e. the free-stream is directed towards the inner face of the ring. 

The geometry and the computational domain are depicted in figure 1. The radius of 

curvature is R = 12.5D, where R indicates the distance between the center of the ring (point 

O in figure 1) and the center of the circular cross sections, and D is the diameter of the 

circular cross-section. The Reynolds number is defined based on the free-stream velocity 

U0 and D, i.e. Re = 𝑈0𝐷 𝜐⁄ , where 𝜐 is the kinematic fluid viscosity.  

As shown in figure 1, the geometry studied here consists of three parts: a curved part 

(quarter ring), and two straight extensions at the two ends of it. We refer to them as the 

vertical (upper) extension and the horizontal (lower) extension, respectively. In order to 

study the effects caused by these straight extensions, we will consider some different 

combinations. An overview of the different cylinder configurations studied is given in 

Table 1. 

 

Table 1. List of all cases in this study 

Configuration Vertical 

extension 

Horizontal 

extension Re 
Domain size 

Lx × Ly × Lz 

v0h0 None None 100 28D × 21D ×18D 

v6h0 6D None 100 28D × 21D ×24D 

v6h5 6D 5D 100 33D × 21D ×24D 

v6h10 6D 10D 100 38D × 21D ×24D 
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Figure 1. Sketch of the geometry of the concave curved cylinder and the computational 

domain. The uniform inflow U0 is from the left.   

 

As depicted in figure 1, we define the streamwise direction as the x-direction, the 

transverse direction as the y-direction, and the vertical direction as the z-direction, therefore 

the velocity vector writes  𝑢𝑖 = (𝑢, 𝑣, 𝑤) . For all cases, we adopted the same inflow 

boundary condition as that used by (Miliou et al.) [3]: 

𝑢

𝑈0
= 1 − 𝑒𝑥𝑝 (−50(√(

𝑦

𝐷
)2 + (

𝑧

𝐷
+ 12.5)

2
− 0.5));  

𝑣

𝑈0
=

𝑤

𝑈0
= 0 .                  (1) 

This velocity profile mimicks a very thin exponentially growing boundary layer 

profile at the intersection of the cylinder with the inlet computational boundary. The 

boundary layer profile defined by equation (1) will be shown later in figure 5. If we follow 

the most commonly used 0.99-criterion to define the boundary layer thickness δ0.99, 

equation (1) virtually represents a δ0.99 = 0.092D thick boundary layer, while further away 

from the cylinder geometry, the incoming free-stream remains uniform as U0.  

We imposed Neumann boundary conditions for the velocity components (𝜕𝑢 𝜕𝑥⁄ =

𝜕𝑣 𝜕𝑥⁄ = 𝜕𝑤 𝜕𝑥⁄ = 0) and zero pressure (p = 0) at the outlet of the flow domain. On the 

other four sides of the computational domain, we used free-slip boundaries, while the solid 

surface of the cylinder was treated as a no-slip boundary. 

 

2.2 Numerical method 

In this study, we directly solve the full Navier-Stokes equations : 
𝜕𝑢𝑖

𝜕𝑥𝑖
  = 0                                                              (2) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=  −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+  𝜐

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
                                          (3) 

with a second-order finite-volume code MGLET[7]. Equations (2) and (3) are discretized 

on a 3-dimensional staggered Cartesian grid. The discretized equations are integrated in 

time with Williamson’s 3rd-order Runge-Kutta scheme[8], while pressure corrections are 
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achieved by using Stone’s strongly implicit procedure (SIP)[9]. The representation of the 

cylindrical geometry inside the Cartesian grid is accomplished by an immersed boundary 

method (IBM), which was described in detail by Peller et al. [10]. The same code has 

recently been used for the same curved cylinder, but with an opposite flow direction (so-

called convex configuration) [4][11]. 

 

2.3 Grid sensitivity study 

We used only the curved part of the cylinder (i.e. configuration v0h0 in Table 1) for 

a grid sensitivity study. Table 2 gives detailed information of the cases studied. Here we 

define the body force coefficients as CFi = 𝐹𝑖 0.5𝜌𝑈0
2𝑆𝑝⁄ , where Sp is the projected area of 

the curved cylinder in the streamwise direction. In cases A, B and C in table 2, we kept 

∆zmin unchanged while using different ∆xmin = ∆ymin in order to investigate grid sensitivity 

in the (x, y)-plane. The data obtained from Cases A, B and C clearly show that ∆xmin = ∆ymin 

= 0.05D is fine enough from a grid-convergence point of view. Cases C and D in Table 2 

aimed to reveal grid sensitivity in the z-direction, but the data indicates that the 

computational results are insensitive to the grid size in the z-direction. Therefore, the grid 

sizes of Case C are adopted in all further simulations. In addition, Table 2 lists reference 

results from a previous study [3]. Note that the wake of the v0h0 configuration is symmetric 

and steady (as shown in figure 2(a) and (b)), therefore CFy in Table 2 should ideally be zero. 

 

Table 2. Grid study cases for configuration v0h0 

Case (∆x =∆y)min/D ∆zmin/D CFx CFy CFz 

A 0.1 0.08 1.06 0.0012 0.43 

B 0.08 0.08 1.00 0.0008 0.41 

C 0.05 0.08 0.978 0.0003 0.41 

D 0.05 0.05 0.987 0.0002 0.41 

(Miliou et al. 2007)[3] - - 1.0745 0.0001 0.42 

 

3. Validation cases 

In order to validate the numerical method and the computational setup used in this 

study, we conducted two validation cases, i.e. v0h0 and v6h0, with the aim to compare with 

the corresponding results in (Miliou et al.)[3]. Figure 2 shows the vortical structures, which 

are presented by the iso-surface of  λ2 = -0.01. λ2 has been a widely used indicator for vortex 

cores since it was first proposed by (Jeong & Hussain)[12]. It is defined as the second largest 

eigenvalue of  𝑆2 + Ω2, where S and Ω are the symmetric and antisymmetric parts of the 

velocity gradient tensor ∇𝒖 .  

Figure 2(a) and 2(b) show a comparison of the vortical structure behind the v0h0 

configuration, from which we clearly observe that the vortical structures obtained from the 

present study (a) well resembles that from the literature[3] (b). All three components of the 

monitored body forces are steady because vortex shedding is suppressed by the axial flow 

in this particular case. Figure 2(c) and 2(d) also show good agreement between results from 

the present study and that from Miliou et al. [3] for configuration v6h0. The main features 
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of the flow around this cylinder configuration, i.e. suppressed vortex shedding behind the 

curved part together with conventional vortex shedding behind the vertical extension, were 

accurately captured. 

 

 
Figure 2. Qualitative comparisons of computed vortical structures and those reported in 

the literature[3]. (a) and (b) are v0h0 configuration, (c) and (d) are v6h0 configuration. (a) 

and (c) are from current study, while (b) and (d) are from Miliou et al.[3]. All plots show 

the iso-surface of λ2 = -0.01. Note that the coordinate system in (a) just indicates the 

directions, but not location of the origin.  

 

Figure 3(a) shows the pressure distribution in the symmetry plane, i.e. the (x,z)-plane 

at y/D = 0 for the v0h0 configuration. Figure 3(b)-(e) show the streamwise velocity (u/U0) 

contour plots in four different horizontal planes (i.e. (x,y)-planes) whose locations are z/D 

= 0, -2, -5, and -8, respectively. Figure 3 is meant to be visually compared (qualitatively) 

with figure 10 in (Miliou et al.)[3]. Figure 3(b)-(e) show that the flow is symmetric at all 

four different vertical locations. We also see that the wake becomes narrower as the vertical 

plane moves from the top of the curved cylinder to the lower part. All these results agree 

perfectly well with those in [3]. The observed variation of the wake width can be explained 

by the change of local cross-sectional shape. Due to the curvature of the cylinder, the cross-

sectional shape in the (x,y)-plane changes from a perfect circle at the upper top of the 

curved cylinder to an ellipse in the lower part. In addition, the aspect ratio of the cross-
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sectional ellipse increases downward. In this case, the slender cross-section leads to a more 

steady and narrow wake. The same phenomenon was also observed in the wake of an 

inclined prolate spheroid [13], where the inclination of the geometry similarly led to 

different cross-sectional shapes.  

 

 
Figure 3. Flow fields for configuration v0h0. (a) Pressure distribution in the symmetry 

plane, i.e. the (x,z)-plane at y/D = 0; (b)-(e) Streamwise velocity contour plots at four 

different (x,y)-planes whose locations are z/D = 0, -2, -5, and -8, respectively. 

 

4. Influences of horizontal extensions  

In this section, we will discuss how a horizontal extension affects the flow field 

around the concave curved cylinder by comparing the results for three different 

configurations: v6h0, v6h5, and v6h10. A quick check of the streamwise body force 

coefficient (CFx) on the curved part and the shedding frequency (St = fD/U0) of the three 

configurations are provided in Table 3, from which we somewhat surprisingly do not see 

any distinct differences between the three different cylinder configurations. 

 

Table 3. Force coefficient and frequency for different configurations 

Configuration Horizontal 

extension 
CFx on the curved 

part 
St (frequency) Reference St*  

v6h0 0D 1.066 0.108 0.1123 

v6h5 5D 1.013 0.106 - 

v6h10 10D 1.0 0.103 - 
* The reference St is from (Miliou et al.) [3], configuration v6h0. 

 

In order to investigate how the flow develops along the horizontal extensions in more 

detail, we look at the time-averaged streamwise velocity <u>/U0 along the horizontal 

cylinder in the symmetry plane at y/D = 0, and at different distances δh away from the 
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cylinder surface (in positive z-direction). In figure 4, we present data from the v6h10 

configuration. It is noteworthy that the results from the v6h5 configuration coincide 

perfectly with the first 5D of the v6h10 configuration. A dashed vertical line is therefore 

inserted in figure 4 to indicate where the v6h5 configuration stops. Five different δh (0.1, 

0.2, 0.3, 0.4 and 0.5, respectively) were chosen to also have an impression of how the flow 

field develops in the normal-to-surface direction. One should recall that for all different 

configurations considered here, we imposed the same inlet boundary condition (equation 

(1)). As already mentioned, this boundary condition gives a δ0.99 = 0.092D thick boundary 

layer; whereas the first <u>/U0 line in figure 4 is already δh = 0.1D away from the cylinder 

surface. Therefore all curves in figure 4 begin at x/D = -10 with a value of <u> very close 

or equal to the free-stream velocity U0.  

 

 
Figure 4. Streamwise velocity <u>/U0 distribution along the horizontal extension in the 

symmetry plane and at different distances δh/D away from the cylinder surface. The 

resultes are from the v6h10 configuration. The vertical dashed line at x/D = -5 indicates the 

location where the 5D extension of the v6h5 configuration would have stopped.  

 

From figure 4 it is clear that the streamwise velocity <u> changes considerably over 

the first 5D of the horizontal extension. The smaller δh is, the greater the changes in <u> 

are. At δh = 0.1D, we observe that after a distance of 5D from the inlet, the streamwise 

velocity dropped to less than 30% of the free-stream velocity. Even if we look at the farthest 

location from the cylinder, i.e. when δh = 0.5D, <u>/U0 has changed to about 0.9U0 after 

a distance of 10D. Whereas after a distance of 5D along the horizontal extension, <u>/U0 

changes relatively less. But it is still interesting to notice the different <u>/U0  values at 

position x/D = -5 and x/D = 0 in figure 4, because they indicate how different the flows in 

the v6h5 and v6h10 configurations are when they reach the curved part of the cylinder, i.e. 



9 
 

at position x/D = 0 in figure 4. Figure 5 offers a more straightforward comparison of the 

boundary layer profile exactly at position x/D = 0, i.e. at the interface between of the 

horizontal extension and the curved part. We can see that the boundary layers in both v6h5 

and v6h10 configurations are thicker than δ0.99 = 0.092D given by the inlet boundary 

condition in equation (1). 

 

 
Figure 5. Boundary layer velocity profiles at position x/D = 0 in the symmetry plane for 

all configurations. The profile for the v6h0 configuration is that defined by equation (1), 

whereas the two other profiles demonstrate how the boundary layer develops along the 

horizontal extension before it meets the curved part of the cylinder at x/D=0. 

 

 
Figure 6. Boundary layer thickness δ0.99 along the horizontal extension in the symmetry 

plane for configuration v6h10. The vertical dashed line at x/D = 5 indicates the location 

where a v6h5 configuration would have stopped. 

  

Figure 6 shows the boundary layer thickness δ0.99 along the horizontal extension 

obtained from the present simulation of the v6h10 configuration. Similarly as in figure 4, 
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results for the first 5D length coincide perfectly with the corresponding results for the v6h5 

configuration. δ0.99 in figure 6 is calculated based on data only in the symmetry plane, i.e. 

no circumferential average was taken. The boundary layer thickness from the Blasius 

solution for a laminar flat plate boundary layer, defined by equation (4) (White, 2005, p. 

232)[14], has also been provided for comparisons:  

𝛿0.99 = 5.0(𝜐𝑥 𝑈0⁄ )1 2⁄                                                     (4) 

where 𝜐 here denotes the kinematic fluid viscosity. The boundary layer development along 

long thin cylinders in axial flow has been studied for decades, see for example the reviews 

by (Willmarth et al.) [15] and more recently by (Tutty)[16]. Although most of the research 

focused on higher Reynolds numbers (generally over Re = 1000), it is generally accepted 

that the boundary layer thickness for flow along a long thin cylinder is clearly smaller 

compared to that for a flat plate [16]. This is in accordance with the result shown in figure 6.   

 

 
Figure 7. <u>/U0 along the concentric quarter-rings δh/D = 0.1, 0.2, 0.3, 0.4, 0.5 away 

from the surface (in upstream direction) of the curved cylinder in the symmetry plane. (a) 

v6h0 configuration; (b) v6h10 configuration. 

 

The effects brought about by the horizontal extension naturally extends to the curved 

part. Similarly as in figure 4, we picked out <u>/U0 results along the curvature of the 

curved cylinder in the symmetry plane at different normal distances δh away from the 

surface (in upstream direction). These are virtually a set of concentric quarter-rings with 

different radius. We use the arc of the curved cylinder centerline to indicate the location 

along the curved cylinder, i.e. s/D (as shown in figure 1.). Figure 7 shows <u>/U0 along 

these concentric quarter-rings for both the v6h0 and v6h10 configurations, from which we 

observe the different velocity distributions for both configurations. Over the first s = 2D-

3D (θ ≈ 9o-13o) in figure 7(a), we notice that <u>/U0 experiences a similar development 

as shown in the first 5D length of figure 4; while this scenario is distinctly different in 

figure 7(b). In the v6h10 configuration, the flow has already developed along the 10D long 

horizontal extension, therefore in the beginning of figure 7(b), <u> starts with relatively 

low values and experiences a smooth increment until it reaches a peak at about s = 5D – 

7D (θ ≈ 23o-32o) dependent on δh. The lower two curves in figure 7(a) also show that <u> 

experiences the same increment as in figure 7(b). However, this becomes less clear for δh 
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larger than 0.3D. It is worth mentioning that (Miliou et al.)[3] did not report any peak of 

streamwise velocity, obviously because they did not have any horizontal extension 

upstream of the curved cylinder. 

Figure 8 shows data only at δh/D = 0.3, but from all three configurations, put together 

for the sake of comparison. In figure 8, we also include data from (Miliou et al.)[3] which 

is the same case as the v6h0 configuration in the present study. From figure 8 we observe 

that the horizontal extension has a major influence on the streamwise velocity distribution 

along the quarter ring. In figure 8(b) the vertical velocity distributions <w> for different 

configurations are different from each other but all exhibit roughly the same tendency. The 

vertical velocity peak is predicted for all three configurations at almost the same location, 

i.e. at θ ≈ 46o (s/D ≈ 10). This is also in good agreement with (Miliou et al.) [3]. However 

in figure 8(a) we observe that both the v6h0 configuration in the present study and in 

(Miliou et al.)[3] fail to predict the streamwise velocity peak, whereas the v6h5 and v6h10 

configurations capture this peak, although at slightly different locations. 

 

 
Figure 8. (a) <u>/U0  along the curved cylinder at δh/D = 0.3 away from the cylinder 

surface for the three different configurations; (b) same as (a) but for <w>/U0. 

 

When we study flow around curved cylinders, the axial flow along the curvature is 

always important, as revealed in several previous studies[2][3]. The axial flow combines 

information from both the streamwise and vertical velocity components and offers a 

straightforward description of the flow. Figure 9 displays the axial velocity distribution 

along the curved part all the way to the end of the vertical extension in the symmetry plane, 

and at δh/D = 0.3 upstream of the cylinder surface for all three configurations. The axial 

velocity velaxial is calculated based on the local <u>, <w> and the angle θ, while for the 

vertical extension part, the axial velocity becomes equal to <w>. In figure 9, although both 

<u> and <w> are considered, we still observe distinct differences between the v6h0 

configuration and the other two along the initial curved part (before s/D ≈ 5, equivalently 

θ ≈ 23o). A comparison between the v6h5 and v6h10 configurations shows that the resulting 

axial velocities are somewhat different in values but the tendencies are all the same. It is 

particularly important to notice that an axial velocity peak at s/D ≈ 5 is predicted for all 
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three configurations. Moreover, although the results for the different configurations are 

rather different in the early part of the flow, they coincide with each other after s/D ≈ 10, 

or equivalently θ ≈ 46o.  

From figure 9, we observe a positive axial flow almost along the whole span, and the 

axial velocity is rather large along the lower part of the curved cylinder. However, after the 

velocity peak at s/D ≈ 5, the axial velocity drops dramatically. It is interesting to notice that 

as the flow approaches the vertical extension, the axial velocity attains small negative 

values and remains negative all the way to the end of the 6D vertical extension (i.e. to the 

upper boundary of the computational domain). Such negative values can also be observed 

in figure 8(b) and are in good agreement with the results reported in [3].  

 

 
Figure 9. The axial velocity along the curved cylinder (including the 6D vertical extension), 

taken at δh/D = 0.3 away from the cylinder surface.  

 

5. Concluding remarks 

In this paper, we have presented results from a series of simulations of the flow 

around some different concave curved cylinder configurations. The simulations were 

conducted by directly solving the full Navier-Stokes equations in space and time. The 

discussions focus primarily on the influences brought about by the horizontal extension, 

for which three different lengths: 0D (v6h0), 5D (v6h5), and 10D (v6h10), are considered.  

We adopt an analytical inlet boundary condition from a previous study [3], where no 

horizontal extension was considered. The given inlet boundary condition (equation (1)) is 

virtually a thin exponential boundary layer velocity profile. In the cases where horizontal 

extensions were included, we notice that the streamwise velocity experiences abrupt 

changes over the first 2-3D, as shown in figure 4. The streamwise velocity drops 

considerably along the 5D or 10D long horizontal extensions before the flow reaches the 

curved part (a quarter ring). Therefore, the velocity profiles at the lower end of the curved 

cylinder is very different depending on whether a horizontal extension is considered or not.  

The comparison of boundary layer profiles at the inception of the curved part reveals 

that the given inflow profile (equation (1)) provides a too thin boundary layer to be imposed 
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directly at the lower part of the curved cylinder. We also tracked the development of the 

boundary layer thickness along the horizontal extension and observed that the boundary 

layer thickness generally becomes thinner than that given by the Blasius solution for flat 

plates. This is in good agreement with previous studies (Tutty) [16], where a wide range of 

Reynolds numbers were studied from the laminar to the turbulent flow regime. 

By including the horizontal extension, we could capture local peak values for both 

streamwise velocity and vertical velocity at different axial locations along the curved 

cylinder. However, for the configuration (v6h0) without a horizontal extension, only a peak 

for the vertical velocity was found, in line with the earlier simulation reported by Miliou et 

al.[3]. 

The results and discussions in this paper reveal that the horizontal extension has 

surprisingly strong influences on the flow around a concave curved cylinder. Although this 

computational study has been performed at one low Reynolds number Re = 100, we believe 

that the qualitative findings are valid also for flows at somewhat higher Reynolds numbers 

as long as the boundary layer that develops along the horizontal extension remains laminar. 

In this study, we have shown that the flow takes at least a distance of 5D to develop itself 

properly. This means that at least a 5D long horizontal extension will be needed in order to 

get reasonable results for the concave curved cylinder flow. By comparing results obtained 

for the 5D and 10D horizontal extension configurations, we are inclined to conclude that  

a 10D extension would be the preferred choice.  
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