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Abstract 

The three-dimensional flow field around a prolate spheroid has been obtained by integration of 

the full Navier-Stokes equations at Reynolds numbers 0.1, 1.0 and 10. The 6:1 spheroid was 

embedded in a Cartesian mesh by means of an immersed boundary method. In the low-Re range, 

due to the dominance of viscous stresses, an exceptionally wide computational domain was 

required, together with a substantial grid refinement in vicinity of the surface of the immersed 

spheroid. Flow fields in equatorial and meridional planes were visualized by means of 

streamlines to illustrate Reynolds number and attack angle effects. Drag and lift forces and 

torques were computed and compared with the most recent correlation formulas. The largest 

discrepancies were observed for the moment coefficient whereas the drag coefficient compared 

reasonably well.    
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1 Introduction 

1.1 Background 

Solid particles embedded in a viscous fluid are encountered in a variety of different 

settings, both in industrial processes and in nature. Two notable examples of 

environmental concern are droplets in clouds (Shaw [40]) and microplastics in the 

ocean (Barboza and Gimenez [7]). Depending on the actual situation, the particles may 

either passively follow the flow as tracer particles, or lead or lag behind the fluid motion. 

Inertial particles are known to exhibit a slip velocity relative to the local fluid provided 

that the particle relaxation time is relatively large compared to a representative time 

scale of the fluid motion. The ratio between these two time scales is commonly referred 

to as the Stokes number. Besides particle inertia, parameterized by the Stokes number, 

the shape of the solid particle is another factor of major importance. Although the vast 

majority of investigations assumed the particles to be spheres, non-spherical particles 

are frequently encountered; see e.g. Andersson and Soldati [1] and Voth and Soldati 

[47]. A non-spherical particle is often modelled as either a finite-length circular cylinder 

or an ellipsoid. Most commonly axisymmetric ellipsoids, i.e. spheroids, are considered. 

In practice, however, also irregularly shaped particles are occurring in many industrial 

processes, as discussed by Sommerfeld and Qadir [43].   
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1.2 Computational modelling approaches 

 

A variety of different approaches are used to simulate particle-laden flows; see e.g. the 

best-practice guidelines by Sommerfeld et al. [42]. Here, we are only concerned with 

hybrid Lagrangian-Eulerian methods, in which the flow field is obtained by solving the 

Navier-Stokes equations in an inertial frame of reference, whereas the suspended 

particles are treated individually and tracked in a Lagrangian framework.  The choice 

of mathematical modelling of the solid particles depends on their characteristic size δ 

as compared with the size of the smallest flow structures η, which in a turbulent 

environment is known as the so-called Kolmogorov length scale. Distinctions have to 

be made between sub-Kolmogorov-scale particles (δ/η << 1), Kolmogorov-sized 

particles (δ ≈ η), and Taylor-scale-sized particles (δ/η >> 1). 

 

1.2.1 Point-particles  

Particulate additives to a continuous fluid can be treated as point-particles provided that 

their size δ is smaller than the tiniest turbulent eddies, i.e. δ << η. This assumption is 

justified in several different applications, for instance for planktonic organisms in the 

ocean. According to Durham et al. [12] the size of typical phytoplankton cells are δ ~ 

1 – 100 μm, whereas the Kolmogorov length scale η ~ 0.1 – 10 mm in marine turbulence; 

see e.g. Jiménez [25]. In addition to the size constraint, δ/η << 1, common practice 

requires that the particle Reynolds number Rep has to be smaller than one. The latter 

requirement is essential in order to utilize analytically derived expressions for the 

viscous forces and torques acting on a solid particle submerged in a Stokes flow. In the 

limit as Rep tends to zero, the flow in the immediate vicinity of a particle can be 

considered as Stokesian, the non-linear terms in the governing equations of motion are 

negligible, and the resulting set of linear equations becomes amenable to analytical 

treatment. Exact formulas for the viscous force and torque on an ellipsoidal particle 

were derived by Brenner [9] and Jeffery [22], respectively. A comprehensive treatise 

on the general subject of low-Re flows was provided by Happel and Brenner [19].  

These force and torque expressions were adopted by Zhang et al. [51], Mortensen 

et al. [30], and Marchioli et al. [28] to simulate the behaviour of several thousands of 

prolate spheroids suspended in turbulent channel flow. The individually modelled 

spheroids translate and rotate in accordance with the viscous forces and torques exerted 

on them. Although the point-particle approach was first developed for tiny spherical 

particles, see e.g. Eaton [13], the recent review by Voth and Soldati [47] illustrates how 

the approach has been further developed and adopted also for non-spherical particles. 

Advantages and shortcomings of the point-particle approach to simulate dispersed 

multiphase flows were discussed in review articles by Balachandar [5], Eaton [13], and 

Balachandar and Eaton [6]. 

 An obvious limitation of the point-particle approach is that the analytically 

derived expressions for the force and torque components are formally valid only for Rep 

= 0. However, the Stokes drag force on a spherical particle remains a good 
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approximation at Rep = 0.1 and nearly up to Rep = 1. The same reasoning is often carried 

over to non-spherical particles, although yet without any rigorous proof of evidence. 

1.2.2 Finite-sized particles 

For larger particles, i.e. when the particle size δ is larger than the Kolmogorov length 

scale η, the point-particle approach can no longer be justified. For particles of size 

comparable with the Taylor-length scale λ, i.e. δ ≈ λ >> η, each particle can be treated 

as a solid body moving in the viscous fluid. Such finite-sized particles occupy parts of 

the computational volume and the surface of each particle has to be embedded in the 

computational mesh on which the flow field is computed. Four different approaches to 

resolve numerically the flow around individually moving particles were summarized 

by Lucci et al. [26] whereas a more comprehensive review was provided by Maxey [29]. 

One decade ago, these methods were only used to simulate finite-size spheres in 

turbulence. More recently, however, Do-Quang et al. [11] and Eshghinejadfard et al. 

[15] used a lattice-Boltzmann (LB) method to simulate the translational and rotational 

motion of elongated particles in turbulent channel flow. Do-Quang et al. [11] 

considered cylindrical particles with aspect ratios from 2 to 15, whereas 

Eshghinejadfard et al. [15] studied prolate spheroids with aspect ratio 1, 2 and 4. 

Ardekani et al. [4], by means of an immersed boundary (IB) method, showed that finite-

sized oblate spheroids with aspect ratio 1:3 could lead to drag reduction. 

Eshghinejadfard et al. [16] attributed the drag reduction achieved by 1:3 oblate 

spheroids to the reduction of transverse fluid velocity fluctuations and enhancement of 

the spanwise streak spacing. These different approaches to resolved finite-size particle 

simulations require additional computational efforts for proper treatment of the solid 

surface of each of the moving particles. The number of particles in such simulations are 

therefore limited by the available hardware and typically of the order of 10 000.   

1.2.3 Kolmogorov-sized particles 

The point-particle approach cannot be justified for particles δ ≥ η whereas the resolved 

particle approach becomes computationally too demanding for δ ≤ η. Unfortunately, 

many particles encountered in various applications are of a size δ comparable with the 

Kolmogorov length scale η, i.e.  δ ≈ η.  Very recently, Schneiders et al. [38], [39] 

advocated a novel approach to facilitate direct particle-fluid simulations (DPFS) of 

Kolmogorov-sized particles, in which the flow field over each particle is fully resolved 

by direct numerical simulations of the conservation equations. The particle surfaces are 

discretely resolved by means of a Cartesian cut-cell method. Particle-resolved 

simulations of 45 000 spherical particles were reported by Schneiders et al. [38] and of 

45 000 prolate spheroids with aspect ratio 2 by Schneiders et al. [39].  An interesting 

assessment of the point-particle approach to non-spherical particles by means of DPFS- 

results in decaying turbulence was presented by Frölich et al.[17].   
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1.3 Extending the point-particle approach 

 

A viable extension of the point-particle approach to particle Reynolds numbers Rep of 

the order of unity and even above 1 is to generalize the analytically derived formulas 

for the force and torque components of Brenner [9] and Jeffery [22]. Several semi-

empirical formulas for the drag force on a sphere have been published over the years, 

of which the simple expression by Schiller and Naumann [37] is among the most 

popular. The Schiller-Naumann correlation is known to provide an accurate drag force 

up to Rep ≈ 800. Motivated by the need also for extensions of the force and torque 

expressions for spheroids to finite Reynolds numbers, some alternative formulas have 

been proposed during the last decade. These formulas were primarily obtained by 

curve-fitting to computed forces and torques, notably by Hölzer and Sommerfeld [20], 

[21], Zastawny et al. [50] and Ouchene et al. [32].  

Hölzer  and Sommerfeld [20] developed their correlation formula for the drag 

coefficient using a large number of experimental data from the available literature, 

together with results from their in-house Lattice-Boltzmann simulations [21]. They 

claim that their correlation is reliable for the entire range of subcritical Reynolds 

numbers. Zastawny et al. [50] derived formulas for drag, lift and torque coefficients, 

which were validated by means of individual numerical solutions of the Navier-Stokes 

equation using an IB method to represent a nonspherical particle. Ouchene et al. [32] 

came up with a new set of correlation formulas for drag, lift and torque coefficients. 

Their correlations were based on in-house computational results [31] obtained with a 

body-fitted Navier-Stokes solver covering Reynolds numbers Rep over the range from 

0.1 to 290. 

Sanjeevi and Padding [35] explored the orientation dependence of drag on 

spheroids over a fairly large range of Reynolds numbers and subsequently presented 

new correlation formulas (Sanjeevi et al. [36]). In an  earlier paper by Jiang et al. [23] 

we showed computed results for drag, lift and torques for a 6:1 prolate spheroid at 45° 

attack at Re = 50 and compared with the Hölzer and Sommerfeld [20] and Zastawny et 

al. [50] correlations. Such force- and torque-correlations have recently been used in 

simulations of turbulent channel flow by van Wachem et al. [46], Tavakol et al. [44] 

and Arcen et al. [3].  

  

 

1.4   Present contribution 

 

The aim of the present work is to examine the three-dimensional flow field around a 

prolate spheroid at low but finite Reynolds numbers and at some different attack angles. 

A comprehensive coverage of the three-dimensional parameter space (aspect ratio, 

attack angle and Re) will not be undertaken. Accordingly, to provide new correlation 

formulas for the forces and torques on the spheroid is beyond our scope. The actual 

flow configuration and its parametrization is introduced in §2. The anticipated need for 
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unusually large computational domains and the unexpectedly high resolution 

requirements for Re < 1 are addressed in §3. Results obtained by accurately integrating 

the full Navier-Stokes equations will be presented §4. Drag and lift coefficients will be 

compared with finite-Re correlations derived by others (see §1.3) and with analytical 

results in the creeping-flow limit.  

 

 

 

2. Computational modelling 

 

2.1 Flow configuration 

 

In this study, we simulate the flow field around a prolate spheroid with aspect ratio λ = 

c/a = 6:1, where 2c and 2a are the length of the major and minor axes, respectively. The 

Reynolds number is defined in terms of the uniform inflow velocity U0 and the length 

of the minor axis D = 2a, i.e. ReD = 𝑈0𝐷 𝜐⁄ , where 𝜐 is the kinematic fluid viscosity. 

Alternative Reynolds numbers can be based on a different reference length scale, for 

instance the volume-equivalent sphere diameter d. This Reynolds number, Rep, is 

frequently used in studies of non-spherical particles; e.g. Ouchene et al. [31] and 

Sanjeevi and Padding [35]. For the case of a 6:1 prolate spheroid, d  = 1.817D and 

therefore Rep = 1.817ReD.  

The spheroid is inclined an angle θ in the (x, y)-plane, i.e. with respect to the 

inflow direction; see Figure 1. Five different incidence angles will be considered, i.e. θ 

= 0o, 22.5o, 45o, 67.5o, and 90o for two different Reynolds numbers ReD = 1 and 10. In 

addition, the flow around spheroids at ReD = 0.1 is simulated for three different attack 

angles and with different grid resolutions. Table 1 provides an overview of the different 

simulations.  

 
Figure 1. Schematic of the flow configuration. The 3D computational domain (not to scale) is shown to 

the left and the 6:1 prolate spheroid is detailed to the right. The origin of the Cartesian coordinate system 

is at the center of the spheroid. The incoming flow with uniform velocity U0 is in the positive X-direction, 

with which the spheroid is inclined an angle θ.   



6 
 

 

Table 1. Physical and numerical parameters of the 17 different simulations. These cover 13 different 

flow configurations parameterized by ReD and θ. Three different grid resolutions (c – coarse; m – medium; 

f – fine) are used for ReD = 0.1.   

 

Case  ReD Rep θ 
Min grid  

size Δ/D 

Total number of 

grid points  

NT . 10-6  

Re0.1-0-c 0.1 0.1817 0o 0.04 26.0  

Re0.1-45-c 0.1 0.1817 45o 0.04 31.0 

Re0.1-90-c 0.1 0.1817 90o 0.04 26.0 

Re0.1-0-m 0.1 0.1817 0o 0.02 184.0 

Re0.1-0-f 0.1 0.1817 0o 0.01 425.0 

Re0.1-45-f 0.1 0.1817 45o 0.01 394.0 

Re0.1-90-f 0.1 0.1817 90o 0.01 425.0 

Re1-0 1 1.817 0o 0.04 26.0 

Re1-22.5 1 1.817 22.5o 0.04 25.5 

Re1-45 1 1.817 45o 0.04 31.0 

Re1-67.5 1 1.817 67.5o 0.04 25.5 

Re1-90 1 1.817 90o 0.04 26.0 

Re10-0 10 18.17 0o 0.04 26.0 

Re10-22.5 10 18.17 22.5o 0.04 25.5 

Re10-45 10 18.17 45o 0.04 31.0 

Re10-67.5 10 18.17 67.5o 0.04 25.5 

Re10-90 10 18.17 90o 0.04 26.0 

 

 

2.2 Mathematical modelling and numerical method 

 

The steady three-dimensional (3D) flow field is governed by the mass conservation and 

the Navier-Stokes equation for unsteady flow of an incompressible Newtonian fluid:   

 
𝜕𝑢𝑖

𝜕𝑥𝑖
  = 0                                                              (1) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=  −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+  𝜐

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
  .                                        (2) 

 

These equations are discretized by a second-order finite-volume scheme on a staggered 

Cartesian grid using the Navier-Stokes solver MGLET due to Manhart et al. [27]. The 

initial flow field is marched forward in time by means of the explicit third-order Runge-

Kutta scheme by Williamson [48] until a steady-state solution has been reached. The 

direct-forcing immersed boundary (IB) method developed by Peller et al. [33] is 

utilized to adapt the surface of the spheroid to the Cartesian grid. Local grid refinement 

is used to enable small grid cells in the vicinity of the spheroid whereas the grid is 

coarsened towards the boundaries of the computational domain. The local refinement 

is achieved by means of a multi-level hierarchy, as illustrated in Figure 2. The same 
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computational code was employed in our earlier studies of flow around a 45° inclined 

spheroid at higher Reynolds numbers, as reported by Jiang et al. [23], [24] and 

summarized by Andersson et al. [2].  

 

 

2.3 Primary and secondary force- and moment-coefficients 

Besides streamline plots aimed to illustrate the qualitative features of the computed 

flow fields, quantitative results will be provided in terms of the primary force and 

moment coefficients: 

𝐶𝐷 =  
𝐷𝑟𝑎𝑔

1
2

𝜌𝑈0
2𝜋

4
𝑑2                                                                                       (3) 

𝐶𝐿 =  
𝐿𝑖𝑓𝑡

1
2

𝜌𝑈0
2𝜋

4
𝑑2                                                                                       (4) 

𝐶𝑀 =  
𝑇𝑜𝑟𝑞𝑢𝑒

1
2

𝜌𝑈0
2𝜋

8
𝑑3 .                                                                                    (5) 

 

We refer to these coefficients as primary since the spanwise force component Fz and 

the streamwise and cross-stream moments Mx and My are zero due to the symmetry of 

the 3D-flow field about the (x, y)-plane at z/D = 0. This symmetry is first broken at 

Reynolds numbers way above the range considered herein, as shown by Jiang et al. [23], 

[24]. If also the secondary force and torque coefficients CFz, CMx and CMy are computed 

from a simulated flow field, they are expected to attain vanishingly small values. 

 

 
Figure 2. Illustration of the mesh structure used in the simulations for θ = 45o. (a) The 3D mesh structure; 

(b) a 2D mesh slice in the symmetry plane, i.e. the (x, y)-plane at z/D = 0. Each cube shown in (a) contains 

50×50×50 = 1.25×105 grid points. The size of the cubes in (a) and the squares in (b) reflects the resolution.   

 

 

 In the Stokes-flow limit ReD → 0, the analytical results derived by Brenner [9] 

will be used for comparisons. For a prolate spheroid inclined with respect to the 

oncoming flow, as in Figure 1, the drag and lift forces are: 
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𝐷𝑟𝑎𝑔 =  𝜇𝑈0[(𝐾𝑧𝑧 − 𝐾𝑥𝑥)𝑐𝑜𝑠2𝜃 + 𝐾𝑥𝑥]                            (6) 

 

𝐿𝑖𝑓𝑡 =  −𝜇𝑈0[(𝐾𝑥𝑥 −  𝐾𝑧𝑧)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 ].                                (7) 

 

The only non-zero components of the resistance tensor Kij in a coordinate frame aligned 

with the major (z) and minor (x) axes of a prolate spheroid are given for instance by 

Gallily and Cohen [18] and  Siewert et al. [41]:  

 

𝐾𝑥𝑥 = 16
𝜋𝑎2𝑐

𝜒+ 𝑎2𝛼
  ;    𝐾𝑧𝑧 = 16

𝜋𝑎2𝑐

𝜒+ 𝑎2𝛾
 ,                                (8) 

where  

𝜒 =  −
𝑎2𝜆

√𝜆2−1
𝜅                                                  (9) 

 

and α and γ are dimensionless shape factors: 

 

𝛼 =  
𝜆2

𝜆2−1
+  

𝜆

2(𝜆2−1)3 2⁄ 𝜅;    𝛾 =  −
2

𝜆2−1
− 

𝜆

(𝜆2−1)3 2⁄ 𝜅 ;                   (10) 

 

   𝜅 = ln (
𝜆− √𝜆2−1

𝜆+ √𝜆2−1
) .                                                       (11) 

                                            

For the 6:1 spheroid, the resistance components become Kxx = 25.20D and Kzz = 18.53D. 

 

 

 

3. Computational challenges for low-Re simulations  

 

The Reynolds number ReD measures the relative importance of inertia and viscous 

forces. While viscous effects are confined to thin boundary layers when ReD >> 1, 

viscous stresses will influence the flow field far away from the spheroid for ReD << 1 

and all the way to infinity in the creeping-flow or Stokes limit ReD = 0. It can therefore 

be anticipated that unusually wide computational domains are required for low-Re 

simulations, i.e. large cross-sections Ly × Lz in Figure 1. On the other hand, the generally 

large velocity gradients in the vicinity of the spheroid will reduce with decreasing ReD 

and the grid resolution requirements are therefore expected to be relieved. An overview 

of related investigations are provided in the accompanying Table 2.  

 In this section we first examine the need for a wide domain at the lowest 

Reynolds number ReD = 0.1 considered in this study. We thereafter address the grid 

resolution requirements at the same low Reynolds number. 
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3.1 Size of the computational domain for ReD = 0.1  

 

In our previous study (Jiang et al. [23]) of laminar flow around a 6:1 prolate spheroid, 

a grid refinement test showed that a minimum grid size Δ = 0.04D was adequate for the 

simulation at ReD = 50. In view of the lower Reynolds numbers considered in the 

present work, i.e. ReD ≤ 10, we adopt the same Δ for most of the simulations herein (see 

Table 1), anticipating that the grid requirement is relieved for lower-Re flows.  

 

Table 2. Overview of recent computations of flow past prolate spheroids. Some of these studies 

include also other geometrical shapes than prolate spheroids. The Reynolds number ranges are in most 

of the other studies based on Rep rather than on ReD. 
Authors Year Re Aspect Ratio λ Method Domain 

Ly × Lz 

Boundary 

Conditions 

Hölzer & 

Sommerfeld[21] 

2009 0.3 - 240 3:2 LB 74 × 60 symmetry 

Richter & 

Nikrityuk [34] 

2012 10 – 250 2:1 body-fitted 

finite-volume 

20 × 20 symmetry 

Zastawny et 

al.[50] 

2012 0.1 – 300 5:4; 5:2 IB 20 × 20 free-slip 

Ouchene et al. 

[31]   

2015  0.1 - 290 5:4; 5:2; 5:1 body-fitted 

finite-volume 

80 × 80 no-slip 

Sanjeevi et al. 

[36] 

2018 0.1 – 2000 5:2 LB 20 × 20 free-slip 

Present study  2018 0.1 - 10 6:1 IB 192 × 128 free-slip 

 

 

 
Figure 3. Streamwise velocity profile u/U0 in the geometrical symmetry plane (z/D = 0) at x/D = -40,       

-20, -10, -5, and 0. Attack angle θ = 0o and Reynolds number ReD = 0.1. Domain size 192D × 192D × 

128D. The profiles are plotted for y /D ≥ 10.  
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A challenge in CFD at low Reynolds numbers is that viscous effects are spreading 

far away from the spheroidal body. The common usage of free-slip boundary conditions 

on the sides of the computational domain, i.e. Neumann conditions on the tangential 

velocity components and a Dirichlet condition on the normal velocity component, 

cannot be justified unless the cross-section of the computational domain is unusually 

large. 

In the present study, the same free-slip boundary conditions as those used by Jiang 

et al. [23] are imposed at the four sides of the computational domain depicted in Figure 

1. To illustrate the far-reaching viscous effects at ReD = 0.1, we first computed the flow 

field when the major axis of the 6:1 spheroid was aligned with the oncoming flow, i.e. 

in the x-direction. Velocity profiles u(y) at some different locations upstream of the 

spheroid are shown in Figure 3. The streamwise velocity component u varies 

symmetrically about y = 0, but only results above y = 10D are shown here. 40D 

upstream of the center of the spheroid the velocity u approaches U0 about 40D above 

the x-axis. Closer to the spheroid, at x/D = -10 and -5, the streamwise velocity exhibits 

a modest overshoot around 20D above the x-axis, before u decays to a constant level 

slightly above U0 some 50D away from the x-axis. The largest overshoot, about 0.6% 

of U0, is seen just above the mid-section of the spheroid (x/D = 0). These results suggest 

that a domain height Ly = 100D would suffice at this particular Reynolds number (ReD 

= 0.1) and at this angle of attack (θ = 0°). Since the prolate spheroid is aligned with the 

flow direction in this particular test simulation, the flow field is symmetric about the x-

axis. This suggests the proper domain width also to be at least Lz = 100D. 

In order to explore the anticipated increasing domain-size effect at low Reynolds 

numbers, a domain-size study is performed at the lowest Reynolds number considered 

in the present work, namely ReD = 0.1. The attack angle is hereinafter 45o, and the 

smallest grid size is Δ = 0.04D. The outcome of these test simulations is reported in 

Table 3 in terms of the primary force and moment coefficients defined in Section 2.3.  

   

Table 3. Overview of test cases for a 6:1 spheroid at 45o angle of attack and ReD = 0.1 and smallest 

grid size Δ = 0.04D.  

Case 
Domain size 

(𝑳𝒙 𝑫⁄ × 𝑳𝒚 𝑫⁄ × 𝑳𝒛 𝑫⁄ ) 
La =  √𝑳𝒙 𝑳𝒚 𝑳𝒛

𝟑  CD  - CL CM 

A1 28 × 32 × 11 21.44 210.34 38.65 11.34 

A2 40 × 32 × 20 29.47 194.78 34.27 6.10 

A3 80 × 50 × 40 54.29 182.34 33.71 5.87 

A4 160 × 160 × 96 134.95 163.25 32.22 5.52 

A5 192 × 192 × 128 167.73 163.11 32.15 5.51 

 

  

Starting from the same size of the computational domain as that used by Jiang 

et al. [23] for ReD = 50, the domain size was gradually increased in all three directions. 

We use the size La of a volume-equivalent cube as a measure of the domain size.  La 

increased from 21D for Case A1 to 167D for Case A5. The resulting force and moment 
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coefficients exhibit a surprisingly strong dependency on the size of the computational 

domain. All coefficients show a decreasing dependence on La and the moment 

coefficient CM is reduced by 50% from the smallest to the largest domain. Fortunately, 

the computed values of the coefficients seem to converge. A similar decaying trend was 

observed for a 5:2 spheroid by Sanjeevi et al. [36]. The deviations between our Case 

A4 and Case A5 are negligibly small and we safely conclude that the domain size 

𝐿𝑥 𝐷⁄ × 𝐿𝑦 𝐷⁄ × 𝐿𝑧 𝐷⁄  = 192 × 192 × 128 is suitable for all simulations to be 

undertaken in the present study (to be reported in Section 4). Since we are concerned 

with the flow around an inclined spheroid, we intentionally chose the domain height 

larger than the domain width, i.e. Ly > Lz. This is consistent with the choice made by 

Hölzer and Sommerfeld [21]; see Table 2.  

We have now learned that computer simulations at Reynolds numbers below 

unity are exceptionally demanding with respect to the size of the computational domain. 

Even with cross-section Ly × Lz = 50D × 40D (Case A3), the drag coefficient CD is over-

predicted by more than 10%. This is because the viscous stresses are not only effective 

inside a thin boundary layer, as for ReD >> 1, but diffuse the effect of the spheroid 

surprisingly far away from the body itself. The present findings are supported by figure 

10 in Sanjeevi et al. [36] for Rep = 0.1, from which one observe that the wider domain 

used by Ouchene et al. [31] gives much better results than the correlation proposed by 

Zastawny et al. [50].  

 

3.2 Grid resolution study for ReD = 0.1 

 

The required grid resolution is normally dictated by spatial gradients of the flow 

variables to be solved for, e.g. ui and p in equations (1) and (2). The velocity component 

along a solid surface varies rapidly from no-slip at the surface and approaches the free-

stream velocity U0 away from the surface at high Reynolds numbers. However, such a 

thin boundary layer does no longer exist for Reynolds numbers of the order of unity. 

Instead, the adaption of the velocity u to U0 takes place over a fairly long distance, as 

shown in Figure 3. One might therefore be inclined to infer that a fine grid is no longer 

needed for low-Re simulations. However, although the IB-method gives reliable results 

for the three-dimensional flow field, an imperfect representation of a curved surface in 

a Cartesian mesh reduces the accuracy in the immediate vicinity of the originally 

smooth surface.  

  

Table 4. Force coefficients for ReD = 0.1 obtained with three different grid resolutions (c – coarse; m – 

medium; f – fine) at three different attack angles θ. 
Case θ Δ/D 𝑪𝑫 Theory  𝑪𝑫 Deviation* |𝑪𝑳| Theory  |𝑪𝑳|  Deviation* 

Re0.1-0-c 0° 0.04 122.17 142.91 -14.5% 4.3E-4 0 NA 

Re0.1-0-m 0° 0.02 134.52 142.91 -5.9% 3.5E-4 0 NA 

Re0.1-0-f 0° 0.01 138.39 142.91 -3.2% 2.1E-4 0 NA 

Re0.1-45-c 45° 0.04 163.11 168.64 -3.3% 32.15 25.74 24.9% 
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Re0.1-45-f 45° 0.01 174.22 168.64 3.3% 28.39 25.74 10.3% 

Re0.1-90-c 90° 0.04 193.30 194.38 -0.6% 1.1E-3 0 NA 

Re0.1-90-f 90° 0.01 203.44 194.38 4.7% 6.2E-4 0 NA 

*deviation = 100% × (CD(simulation) – CD(theory)) / CD(theory) 

 

 With the view to examine the effect of the grid resolution next to the spheroid, 

we performed simulations with three different grid resolutions at ReD = 0.1. The results 

for the drag and lift coefficients are provided in Table 4. In view of the very low 

Reynolds number, the computed coefficients should be comparable with the theoretical 

solutions (6), (7), which are formally valid only for ReD = 0. The data reported in Table 

4 show that the drag coefficient CD increases as the size Δ of the smallest grid spacing, 

which is found in the innermost cubes in Figure 2, is reduced from 0.04D to 0.01D. We 

believe that the unexpectedly large (14.5%) under-prediction of CD on the coarsest grid 

(c) is primarily due to imperfections of the IB-representation of the surface of the 

spheroid. According to Stokes’ theory, the viscous contribution is exactly twice the 

pressure contribution to the drag force on a spherical body. The viscous contribution to 

CD is substantially higher for a prolate spheroid aligned in the flow direction, as shown 

by Ouchene et al. [31]. Since an imperfect boundary representation affects the viscous 

surface stress but not the surface pressure, the unexpectedly high resolution requirement 

is of primary concern whenever the drag force is dominated by viscous stresses, i.e. for 

θ = 0o. With the finest grid (f), the computed drag coefficients in Table 4 are all within 

5% of the theoretical values given by equation (6) for aligned, inclined, and normally 

oriented spheroids. 

The observation that the drag coefficient approaches its theoretical value as the 

grid is refined is observed only when the spheroid is aligned with the flow, i.e. for θ = 

0°. A major fraction of the overall drag stems from viscous forces, which are predicted 

accurately only on a fine mesh. At large angles of attack, however, pressure makes a 

substantial contribution to CD, which therefore becomes less sensitive to grid resolution.   

The entries for the lift coefficient in Table 4 are vanishingly small for the 

spheroid aligned with the flow (θ = 0o) and for a perpendicularly oriented spheroid (θ 

= 90o). Indeed, both these orientations result in a flow field which is symmetric about 

the (x, z)-plane at y = 0. However, when the spheroid is inclined 45o, the lift coefficient 

becomes significant, albeit only less than 20% of CD. On the finest mesh (f), the 

magnitude of CL is about 10% over-predicted as compared with the asymptotic solution 

in equation (7). According to computations by Ouchene et al. [31], the pressure field 

contributes more than the viscous stresses to the lift force.  

 We speculate that the results for the force coefficients can be further improved 

if an even finer mesh resolution could be used in the vicinity of the spheroid so that any 

surface imperfections can be further reduced. However, the total number of grid points 

are already of the order of 400 million for the finest mesh (see Table 1), partly because 

of the domain size requirements addressed in the preceding sub-section.  A further grid 

refinement will also affect the stability of the explicit time-marching scheme (3rd-order 
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Runge-Kutta). The conventional CFL-condition is easily satisfied in wake-flow 

simulations at high Reynolds numbers. For ReD < 1, however, another stability 

condition assures that momentum should never diffuse over more than one grid cell Δx 

per time step Δt. A formal derivation of this condition for a general three-dimensional 

case is not at all straightforward, see for instance Beckers [8]. For the wake flow 

simulation at ReD = 0.1 and θ = 0o, we realized that Δt ~ (Δx)4 which makes a refined 

grid simulation even more demanding than suggested by the increasing number of grid 

points.   

 Computations of flow around a prolate spheroid at ReD = 0.1 using an IB-

method require not only a huge computational domain, but also an unexpectedly fine 

grid in the vicinity of spheroid. Both are low-Reynolds number challenges which are 

gradually relieved at the higher ReD = 1 and 10. This conjecture was verified by means 

of a test simulation at ReD = 1 and θ = 0o, but with a refined mesh Δ/D = 0.02 rather 

than Δ/D = 0.04 used in Case Re1-0. The primary force and moment coefficients 

compared with those in Table 5 to within 0.5%.  While the domain size requirement is 

universal, the grid size requirement is associated with the IB-method. A recent remedy 

to enhance the accuracy in the vicinity of the surface is higher-order reconstructions of 

near-surface velocities (Xia et al. [49]).  

 

 

4 Results and discussions 

 

Selected results from the computations of the different flow configurations introduced 

in Section 2.1 are presented in the following sub-sections. All simulations reported 

herein used the largest 192D × 192D × 128D domain size. Streamlines in the 

meridional and the equatorial planes are first presented in Section 4.1 for some 

representative values of attack angle θ and Reynolds number ReD, followed by 

computed values of the force, lift and torque coefficients in Section 4.2. The latter data 

are compared with correlation formulas proposed by Hölzer & Sommerfeld [20] and 

Ouchene et al. [32] in Section 4.3.  
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Figure 4. Streamlines in the meridional plane for four different attack angles for ReD = 1. The 

impingement point (I) and the separation point (S) are indicated in panel (b). 

 

4.1 Three-dimensional flow fields 

 

Only low-Reynolds-number flows are considered in this paper, for which the flow 

around the inclined prolate spheroid is steady and symmetric about the geometrical 

mid-plane, i.e. about z/D = 0. The equatorial plane, i.e. the plane through the mass 

center of the spheroid and with unit normal aligned with its symmetry axis, is a plane 

of symmetry of the spheroidal body. However, the equatorial plane is a plane of 

symmetry of the flow field only if the spheroid is aligned perpendicular to the inflow 

(at 90° angle of attack). 
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Figure 5. Streamlines in the meridional plane for four different attack angles for ReD = 10. 

 

 

4.1.1 Streamlines in the meridional plane  

 

Streamlines in the meridional plane (the geometrical symmetry plane at z/D = 0) are 

shown in Figure 4 for ReD = 1 and in Figure 5 for ReD = 10. The effect of the two 

different Reynolds numbers is best seen in the bulging of the streamlines above and 

below the spheroid. The streamlines at y/D = ±4 reveal that the flow is much better 

aligned in the streamwise x-direction for ReD = 10 than for the lower Reynolds number. 

At 45° attack, the flow impinges near the leading pole of the spheroid. The flow is 

directed along both sides of the spheroid until the flow along the rear side separates 

from the curved surface close to the upper pole, see for instance Figure 5b. The 

separation point (S) is located almost anti-symmetrically of the impingement point (I) 

at these fairly low but yet finite Reynolds numbers. A perfect fore-aft symmetry is 

expected only at ReD = 0.  

 

 

4.1.2 Streamlines in the equatorial plane  

 

Streamlines in the equatorial plane are shown in Figure 6 for some different attack 

angles for ReD = 10. Contrary to the streamlines in Figures 4 and 5, the lines shown in 

Figure 6 are not true streamlines but rather lines through projections of the three-
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dimensional velocity vectors into the plane. Except for the perpendicularly oriented 

spheroid (θ = 90°), a substantial flow through the equatorial plane is present.  

 

   

 
 

Figure 6. Streamlines in the equatorial plane for four different attack angles for ReD = 10. The 

equatorial plane is the plane perpendicular to the symmetry axis of the spheroid through its mass center. 

 

 

A modest fore-aft asymmetry can be observed at low angles of attack in Figure 

6a, b. This asymmetry seems to increase with increasing angle of attack. The 

streamlines at θ = 67.5° suggest that the flow is on the verge to separate from the surface 

of the spheroid and the streamlines at θ = 90° reveal a pair of zones of recirculating flow.  

The tendency of the flow to separate from the spheroid is clearly a Reynolds 

number dependent phenomenon, as shown in Figure 7. The streamlines at the lower 

Reynolds number ReD = 1 show an attached flow all the way to the rear of the spheroid, 

contrary to the separated flow at ReD = 10. The flow topology in the equatorial plane 

resembles the two-dimensional flow field around an infinitely long circular cylinder at 

a Reynolds number around unity. The visualized streamline pattern at ReD = 1.54 in 

Van Dyke [45] is clearly in between those in panels (a) and (b) of Figure 7. 
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Figure 7. Streamlines in the equatorial plane for attack angle θ = 90o for (a) ReD = 1 and  (b) ReD = 10. 

 

 

 

Table 5. Compilation of all force and moment coefficients for all ReD and θ. All simulations are with 

the largest domain size (192D ×192D × 128D). The mesh resolution for the various cases is given in 

Table 1.    

Case ReD θ CD |CL| CFz CMx CMy CM 

Re0.1-0-f 0.1 0o 138.39 2.1E-04 8.1E-04 -2.4E-04 -9.8E-05 -3.3E-04 

Re0.1-45-f 0.1 45o 174.22 28.39 2.3E-03 1.5E-04 -5.9E-04 5.24 

Re0.1-90-f 0.1 90o 203.44 6.2E-04 -4.9E-04 8.6E-05 1.4E-04 -5.8E-05 

Re1-0 1 0o 14.98 2.3E-04 -2.7E-04 9.3E-05 -2.0E-04 -9.3E-05 

Re1-22.5 1 22.5o 16.82 3.07 3.1E-04 3.4E-04 -5.1E-03 2.51 

Re1-45 1 45o 19.26 4.43 -4.6E-04 3.1E-04 6.7E-03 3.65 

Re1-67.5 1 67.5o 22.87 3.27 -6.9E-04 -5.9E-04 -3.4E-03 2.55 

Re1-90 1 90o 24.40 1.9E-04 -7.7E-05 -3.8E-04 -4.1E-05 6.8E-04 

Re10-0 10 0o 2.12 1.2E-05 1.4E-05 1.4E-05 -1.0E-05 7.6E-06 

Re10-22.5 10 22.5o 2.54 0.70 -7.7E-05 2.5E-05 -7.6E-04 1.07 

Re10-45 10 45o 3.59 1.12 -3.9E-04 1.7E-05 -8.5E-04 1.52 

Re10-67.5 10 67.5o 4.70 0.87 -5.4E-04 -4.2E-05 -5.9E-04 1.08 

Re10-90 10 90o 5.17 1.5E-05 3.9E-06 6.8E-05 -8.5E-06 3.2E-05 

 

 

4.2 Drag, lift and moment coefficients 

 

The computed force and torque coefficients are summarized in Table 5. In addition to 

the primary coefficients defined in equations (3)-(5), we also include the similarly 

defined secondary coefficients CFz, CMx, and CMy. The latter coefficients are formally 
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zero as long as the wake retains its symmetry about the meridional plane. It is readily 

observed from the entries in Table 5 that the computed values of these coefficients are 

lower than the primary coefficients by a factor of 0.001 or more. The vanishingly low 

values of the secondary coefficients serve as an additional validation of the computed 

flow fields.  This is, however, not the case for  ReD = 3000, for which a severely skewed 

wake was observed behind the θ = 45° inclined 6:1 spheroid by Jiang et al. [24]. This 

distinctly asymmetric wake gave rise to a substantial sideway force CFz as well as to 

secondary moments.  

Inspection of Table 5 shows that the lift force and the spanwise moment vanish 

when the spheroid is either aligned in the flow direction (θ = 0°) or perpendicular to it 

(θ = 90°). This is a direct consequence of the symmetry of the streamlines about the (x, 

z)-plane in these cases, e.g. Figure 4(d) and 5(d). Accordingly, the only integrated effect 

from the viscous flow field on the spheroid is the drag force parameterized as CD.  

 

 

4.3 Comparison of computed coefficients with correlation formulas 

 

The computed drag coefficients are provided in Table 6, together with corresponding 

values obtained from the correlation formulas provided by Hölzer and Sommerfeld [20] 

and Ouchene et al [32]. The correlation formulas of Zastawny et al. [50] involve shape-

specific parameters and are therefore not applicable to higher aspect ratio particles. The 

deviations of the computed drag coefficient from the two correlation formulas are of 

the order of 10% and without any obvious tendencies, except for the larger deviations 

at ReD = 10 and θ ≥ 67.5°.   

In their recent paper, Sanjeevi et al. [36] made comparisons with the coefficients 

deduced from their LB method simulations at two significantly higher Reynols numbers 

Rep = 100 and 2000. Their computed data were in good agreement with the correlation 

of Zastawny et al. [50], which is known to be inaccurate at lower Reynolds numbers. 

The more generic correlation of Ouchene et al. [32] was comparatively less accurate at 

these Reynolds numbers. In this sub-section, the results of the present simulations are 

compared with relevant correlations in the low-Re range ReD ≤ 10.  

The variation of the drag coefficient CD with attack angle θ is shown in Figure 

8 for ReD = 0.1 and in Figure 9 for ReD = 1 and 10. At the lowest Reynolds number in 

Figure 8, it can be anticipated that the correctly computed drag coefficient should be 

only slightly higher than the theoretical CD-value obtained from equation (6), which is 

formally valid only in the ReD = 0 limit. This is not the case when the spheroid is aligned 

with the flow direction. The drag on a prolate spheroid with zero attack angle is 

dominated by viscous stresses at this low Reynolds number. The modest under-

prediction of CD is probably an effect of an insufficient surface representation by the 

IB method, as explored in Section 3.2. However, as the attack angle θ increases, the 

relative contribution of the viscous stresses is reduced whereas the pressure becomes 

gradually more important. The drag force on the spheroid when oriented perpendicular 
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to the free stream is slightly higher than the creeping-flow solution (6), as one should 

expect, and almost coincides with the Ouchene-correlation.   

 

Table 6. Computed drag coefficients CD compared with correlation formulas by Hölzer & 

Sommerfeld [20] and Ouchene et al. [32]. The latter formula has been corrected for some typos 

pointed out by Arcen et al. [3]. 

 

Case  ReD Rep θ CD H & S Deviation* 

  

Ouchene 

et al.  

Deviation* 

Re0.1-0 0.1 0.1817 0o 138.39 139.58 -0.9% 151.91 -8.9% 

Re0.1-45 0.1 0.1817 45o 174.22 166.4 4.7% 178.79 -2.6% 

Re0.1-90 0.1 0.1817 90o 203.44 175.9 15.7% 205.68 -1.1% 

Re1-0 1 1.817 0o 14.98 16.18 -7.4% 16.94 -11.6% 

Re1-22.5 1 1.817 22.5o 16.82 17.92 -6.1% 18.06 -6.9% 

Re1-45 1 1.817 45o 19.26 19.57 -1.6% 20.76 -7.2% 

Re1-67.5 1 1.817 67.5o 22.87 20.55 11.3% 23.46 -2.5% 

Re1-90 1 1.817 90o 24.40 20.88 16.9% 24.57 -0.69% 

Re10-0 10 18.17 0o 2.12 2.47 -14.2% 2.27 -6.6% 

Re10-22.5 10 18.17 22.5o 2.54 2.96 -14.2% 2.57 -1.2% 

Re10-45 10 18.17 45o 3.59 3.51 2.3% 3.28 9.6% 

Re10-67.5 10 18.17 67.5o 4.70 3.88 21.1% 3.99 17.8% 

Re10-90 10 18.17 90o 5.17 4.01 28.9% 4.28 20.8% 

*: deviation = 100% × (CD(simulation) - CD(correlation)) / CD(correlation) 

   

 

 
Figure 8. Variation of drag coefficient CD with attack angle θ for ReD = 0.1. Data from Table 6 are plotted 

together with the theoretical solution (6). 
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The attack angle dependence of CD is also shown in Figure 9, but for higher 

Reynolds numbers. Aside from the substantially lower values at ReD = 10 than at ReD 

= 1, the drag coefficient is a monotonically increasing function of θ. It is noteworhty 

that the present data, as well as the Ouchene-correlation, exhibit an inflection point at 

both these Reynolds numbers. As expected, all results in Figure 9(a) are consistently 

above the results deduced from the analytical creeping flow solution (6). The drag 

coefficient for θ = 90° in Figure 9(b) is over-predicted by more than 20% compared to 

the two correlation formulas. This is obviously associated with the separated flow 

behind the spheroid seen in Figure 6(d), which inevitably increased the pressure drag. 

 

 
Figure 9. Variation of drag coefficient CD with attack angle θ for ReD = 1 (left) and ReD = 10 (right)   

Data from Table 6. The theoretical solution (6) is included in the left panel. 

  

 

Table 7. Computed lift CL and torque CM  coefficients compared with correlations by Ouchene et al. [32] 

corrected for some typos pointed out by Arcen et al. [3]. Entries for  θ =  0° and 90° are not included. 

 

Case  CL 
Ouchene 

et al.  
Deviation* CM 

Ouchene 

et al. 
Deviation* 

Re0.1-45-f 28.39 20.05 41.6 % 5.24 4.50 16.4 % 

Re1-22.5 3.069 2.547 20.5 % 2.507 1.35 85.7 % 

Re1-45 4.427 3.61 22.6 % 3.646 1.91 90.9 % 

Re1-67.5 3.270 2.56 27.7 % 2.546 1.35 88.6 % 

Re10-22.5 0.702 0.542 29.5 % 1.070 0.66 62.1 % 

Re10-45 1.119 0.784 42.7 % 1.520 0.94 61.7 % 

Re10-67.5 0.874 0.56 56.1 % 1.080 0.66 63.6 % 

*: deviation = 100% × (C(simulation) - C(correlation)) / C(correlation) 

 

Finally, computed lift and moment coefficients (CL and CM) are compared with 

Ouchene et al. [32] correlations in Table 7 and in Figure 10. While the deviations 
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between the computed drag coefficient and the corresponding correlation formulas in 

Table 6 were of the order of 10%, the computed lift coefficients in Table 7 deviate by 

some 20 to 60 per cent and the moment coefficients deviate even more. The computed 

coefficients (circles and squares in Figure 10) are consistently over-predicted for all 

attack angles and at all Reynolds numbers considered. The largest overpredictions, 

about 90%, are for the moment coefficient at ReD = 10 (Figure 10b).    

   

 
Figure 10. Lift and moment coefficients obtained from the present computations compared 

with the Ouchene-correlations [32] for ReD = 1 and 10. (a) Lift coefficient CL; (b) Moment 

coefficient CM . 

 

The present computations at ReD = 0.1 and θ = 45° overpredicted CD and CL by only 

about 3% and 10%, respectively (see Table 4). The Ouchene-correlations [32] provide lift- and 

momentum-coefficients that deviated substantially from the present computations in the low-

Re range 0.1 ≤ ReD ≤ 10. The deviations between the present computations and the Ouchene-

correlation for CL are equally large at ReD = 10 as at ReD = 0.1 and of the order of 40%, whereas 

even larger deviations are observed for CM in Figure 10b. The size of the computational domain 

used by Ouchene et al. [31] is reasonably good; see Table 2. However, their use of no-slip rather 

than free-slip conditions might possibly affect their computations on which their correlation-

formulas are based. 

 

 

5. Concluding remarks   

 

The three-dimensional flow field around a 45° inclined 6:1 prolate spheroid has been 

considered at low but finite Reynolds numbers. The need for exceptionally large 

computational domains has been explored. This was particularly challenging at the 

lowest Reynolds number ReD = 0.1 considered since the viscous stresses are influential 

far away from the body for Re ~ 1 and affect the flow field all the way to infinity in the 

creeping-flow limit as Re → 0. Another and unexpected challenge at low Reynolds 
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numbers, ascribed to the use of the immersed boundary (IB) method to represent the 

spheroid in a Cartesian mesh, is the severe grid resolution requirements. This challenge 

arises for parameter combinations for which the viscous stresses dominate over pressure, 

i.e. notably when the spheroid is aligned with the flow direction at ReD = 0.1.  

 Comparisons with correlation formulas for drag, lift and moment coefficients 

suggest that computations of flow fields around spheroids at Reynold numbers of order 

unity are challenging and the accuracy of already existing formulas can hardly be 

assessed. The usage of such finite-Re correlation formulas in point-particle simulations 

is not necessarily superior to simulations using analytically derived expressions, 

although the latter is formally valid only in the limit as Re → 0. The outcome of the 

present study suggests that existing correlation formulas are more reliable at Reynolds 

numbers well above unity. This is indeed unfortunate since such formulas are intended 

to replace the creeping-flow forces in equations (6, 7) to enable point-particle 

simulations at particle Reynolds numbers of order 1. At even higher Reynolds numbers, 

fully resolved particle simulations might be the preferred choice, although such 

simulations also may face resolution challenges when an IB method is used to represent 

the surface of the individually moving particles.  
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