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Abstract

In this thesis we look at how it is possible to construct models in quantum
mechanics by using p-adic numbers.

First we look closely at different quantum mechanical models using the real
numbers, as it is necessary to understand them well before moving on to p-adic
numbers. The most promising model, where Weyl systems are used, is studied in
detail. Here time translation is not generated by the Hamiltonian, but constructed
directly as an operator possessing some fundamental structure in relation to the
classical dynamics.

Then we develop the relevant theory of the field of p-adic numbers Qp, with
a focus on the properties of Qp as a locally compact abelian group. Here we
present alternative proofs to those found in the literature. In particular, we give
an independent proof of the selfduality of Qp.

In the last chapters we look at some models using Qp. We generalize the idea of
Weyl systems from real to p-adic numbers, and we discuss the physical implications.
When using Weyl systems, time is p-adic.

We also produce MatLab algorithms for numerical computations in connection
with approximations of p-adic models by finite models.
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Sammendrag (abstract in Norwegian)

I denne masteroppgaven ser vi på mulighetene for å konstruere modeller i kvante-
mekanikk ved bruk av p-adiske tall.

Først ser vi på forskjellige kvantemekaniske modeller som bruker de reelle tall,
da det er viktig å forstå disse godt før vi prøver å generalisere dem til det p-adiske
tilfellet. Den mest lovende modellen, hvor Weyl-system benyttes, blir studert i de-
talj. Her er ikke tidstranslasjon generert av Hamiltonoperatoren, men konstruert
direkte som en operator som oppfyller likninger som knytter den til klassisk dy-
namikk.

Deretter diskuterer vi relevant teori for de p-adiske tallene Qp, med fokus på
egenskapene til Qp som en lokalkompakt abelsk gruppe. Her presenterer vi et
uavhengig bevis for selvdualitet av Qp.

I de siste kapitlene ser vi på noen konkrete kvantemekaniske modeller som tar i
bruk Qp. Vi generaliserer Weyl-systemet til p-adiske tall, og vi diskuterer de fysiske
konsekvensene av modellene; her er tiden p-adisk.

I tillegg produserer vi MatLab-algoritmer for numeriske beregninger.
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Preface

My education is a combination of physics and mathematics, which clearly shows
in this thesis. So for physicists it will be a bit terse (especially the chapter on p-
adic analysis), and for mathematicians the chapter on quantum mechanics may
contain a bit of hand-waving. The chapters on real quantum mechanics and on
p-adic analysis can be read separately, and not all parts are strictly needed for the
remaining chapters; some sections are included to give us a broader understanding.
Think of this thesis more as presenting the possibilities than leading up to a final
conclusion.1

I apologize in advance for some of the huge calculations, but they are essential
and I was not able to find them in the literature.

I would like to thank professor Trond Digernes for his excellent supervision,
and for teaching me operator algebra which was essential in developing a clear
and intuitive understanding of quantum mechanics. I would also like to thank
the rest of the department of mathematics, and the department of physics, for
teaching me all the wonderful things they did, and for the opportunities they gave
me for passing on knowledge to other students. In the end, a master degree would
have been boring without my friends. So thank you all for the wonderful times,
the discussions and the laughter (and the dinners); and for making me more of a
Leonard than a Sheldon.

1The title of this thesis is: Applications of p-adic numbers to well understood quantum me-
chanics.
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Chapter 1

Introduction

1.1 When all you have is a hammer, everything
looks like a nail

Let us first try to tell you what we are trying to accomplish. We want to make
models in quantum mechanics using the p-adic numbers. Why? Because it might
work.1 There are lots of speculations on this subject, we refer the interested reader
to the review [1] by Dragovich et. al. from 2008. In this thesis we will take a broad
perspective, and try to follow several different approaches. To do that we need
several different ways of understanding quantum mechanics; and we have devoted
an entire chapter to this. We will also need quite a bit of mathematical background,
and we will look at analysis in Qp. The presentation will also include numerical
schemes for calculations.

But what kind of problems in quantum mechanics do we want to solve? None,
our primary focus is to reinvent the wheel, to reproduce known results in the
well understood parts of quantum mechanics. The benefit will come later, when
applying p-adic numbers to unresolved problems.2

There are several papers and books focused on developing quantum theories
over the p-adic numbers and the adeles, as in [2], [3] and [4]. Here quantum
mechanics over the p-adic numbers means that the wavefunctions have as domain
the p-adic numbers and as codomain the complex numbers. Whether time is real
or p-adic varies. However, we have not found anyone showing how this can be used
to compute the results we already know from doing quantum mechanics over the
real numbers.

1But even though it does not seem unreasonable that p-adic numbers will be used in modeling
physical systems sooner or later, there must be some reason for us to promote this way of making
models, enough of a reason to spend time studying them. In some mathematical sense, p-adic
numbers is the second most natural field to study after R (and C). This is because of the
classification theorem for locally compact fields which says that any completion of Q is either R,
or Qp for some prime p. This theorem is also known as Ostrowski’s theorem.

2One thing we can hope to accomplish in the long run is gaining insight into the bad conver-
gence properties, like renormalization.
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1.2 Mathematical background

In this section we will give a short review of the mathematical background we need.
We assume that the reader is familiar with (the definitions and basic theorems
of) groups, rings, fields, vector spaces, metric spaces, measure theory, probability
theory, Hilbert spaces and distributions.3 In addition it would be helpful to have
a familiarity with p-adic numbers. For p-adic numbers we refer to Gouvea’s book
[5] (with a focus on number theory), and Vladimirov’s book [2] (with a focus
on integration theory and mathematical physics). In addition, the book [6] by
Kochubei is very readable, and deals with a slightly generalized version of the
p-adic numbers (he considers any locally compact field).

1.2.1 The p-adic numbers

Let us take a quick recap of p-adic numbers. First we define the p-adic norm |− |p.
For x ∈ Z we have |x|p = p−l if pl divides x, but pl+1 does not divide x. We can
extend this norm to Q by |ab |p =

|a|p
|b|p . This norm gives a metric, and we call the

completion of Q under this metric for Qp. We will often write |x| = |x|p when
x ∈ Qp. It is well known that there is a unique representation of x ∈ Qp of the
form

x =

∞∑
v(x)

xip
i, (1.1)

where 0 ≤ xi < p and xv(x) 6= 0 and v(x) ∈ Z is a number depending on x. This
also defines the valuation v : Qp → Z.4

1.2.2 Haar measure µ and Fourier transform F on an abelian
group G

We will need integration theory and Fourier transforms on R,C,T,Qp and Zp. To
present this in a unified way, we will do it more generally. So let (G,+) be a locally
compact abelian group (for example an abelian group with a metric where addition
and inverse are continuous in said metric). First we will define a Haar measure5
on G, then we will give the Fourier transform.

A Borel measure µ is a function on the sigma-algebra generated by the open
sets in G, with the properties:

3Without this knowledge the proofs will be difficult to understand, but we will strive to make
the discussion accessible to those with an intuitive understanding of these concepts, with a special
eye to graduate level students in physics and/or mathematics.

4There are many ways to introduce the p-adic numbers, some start with the valuation and
then get a metric, while some use the algebraic inverse limit.

5The concept of measure generalizes the concepts of length, area etc. The Lebesgue measure
λ on R can be written as

λ(A) =

∫ ∞
−∞

χA(x) dx, (1.2)

where χA(x) = 1 for x ∈ A and 0 otherwise.
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• µ(A) ∈ R+ ∪ {∞} for all A.

• µ(∅) = 0.

• Given a sequence6 of pairwise disjoint sets Ai then

µ

(⋃
i

Ai

)
=
∑
i

µ(Ai). (1.3)

Definition 1.1. The measure µ is a Radon measure on G if:

• µ is a Borel measure.

• For any compact set K we have µ(K) <∞.

• Every Borel set E is outer regular, µ(E) = inf{µ(U) : E ⊆ U, U open}.

• Every open set O is inner regular, µ(O) = sup{µ(K) : K ⊆ O, K compact}.

Definition 1.2. The measure µ is a Haar measure on G if:

• µ is a Radon measure.

• µ is translation invariant, i.e. µ(A+ x) = µ(A).

Theorem 1.3. For any abelian locally compact group G there exist a Haar measure
µ which is unique up to multiplication with a constant.

Proof. See theorem 2.10 (page 37) in [7], and note that we are talking about an
abelian group, so that the notions of left and right Haar measure are the same as
our definition.

To get uniqueness of the Haar measure, what we normally do is specify a subset
H where µ(H) is not 0 or∞ (for any Haar measure), and require µ(H) = 1. For R
we choose H = [0, 1] and get the well known Lebesgue measure. For Z we choose
H = {0}, and for Qp we choose H = Zp. For compact groups we often choose
µ(G) = 1.

Given a group G and a Haar measure µ we can define integration7, and we will
write ∫

G

f(x) dµ(x) =

∫
f(x) dx. (1.4)

The Fourier transform is an essential tool. To define the Fourier transform,
we need the concept of dual group. We have already assumed that G is a locally
compact abelian group. Let us also assume that the topology is second-countable,
i.e. the topology has a countable basis.8

Let T denote the set of complex numbers with absolute value 1 under multipli-
cation.

6This sequence may be finite or countable.
7For measurable functions and integration theory we refer you to McDonald and Weiss [8].
8We could define the Fourier transform for any locally compact (and Hausdorff) group, but

this will not be useful to us. Assuming G is abelian, and that the topology is second countable
makes the notation a lot simpler.
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Definition 1.4. The dual of G is the set Ĝ of continuous homomorphisms from
G to T, i.e. the collection of functions γ : G→ T with

γ(x+ y) = γ(x)γ(y)

γ(lim
n
xn) = lim

n
γ(xn)

The following proposition is given without proof; see the beginning of chapter
4.1 in [7].

Proposition 1.5. The dual Ĝ can be given an abelian structure by

(γ1 + γ2)(x) = γ1(x)γ2(x). (1.5)

Furthermore, Ĝ with the topology of uniform convergence on compacts is a locally
compact group.

This means that we can take the dual of Ĝ. Before proceeding to some examples
it is natural to state the Pontryagin duality theorem.

Theorem 1.6. The natural evalulate-functorial is a group-isomorphism and a
homeomorphism between G and ̂̂G, by

x 7→ evalx = [γ 7→ γ(x)]. (1.6)

Proof. See [7] section 4.3.

Let us now look at some of the dual groups we will use. We will come back to
the dual of, and Fourier transform over, Qp later (in chapter 3).

Proposition 1.7. We have Ψ : R ' R̂ by

Ψ : x 7→ γx = [y 7→ eixy], (1.7)

and Φ : Z ' T̂ by
Φ : n 7→ γn = [z 7→ zn], (1.8)

Proof. See [7] theorem 4.5.

We note that the dual of T has the discrete topology. The following proposition
is proposition 4.4 in [7].

Proposition 1.8. If G is compact we get that Ĝ has the discrete topology.

Let L2(G) be the set of square integrable functions defined µ almost everywhere.

Definition 1.9. Given G and µ, the Fourier transform of f ∈ L2(G) gives Ff ∈
L2(Ĝ) by

f̃(γ) = Ff(γ) =

∫
G

γ(x)∗f(x) dµ(x), (1.9)

where z∗ is complex conjugation.
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Definition 1.10. The dual measure γ̂ on Ĝ of µ on G, is the measure that makes
the Fourier transform

F : L2(G,µ)→ L2(Ĝ, µ̂) (1.10)

unitary.

Theorem 1.11. The inverse Fourier transform of f̃ ∈ L2(Ĝ) is given by

F−1f̃(x) =

∫
Ĝ

γ(x)f̃(γ) dµ̂, (1.11)

where µ̂ is the dual of the Haar measure µ. If, f̃ is the Fourier transform of f ,
then f(x) = F−1f̃(x) ∈ L2.

In applications of the Fourier transform, there are several choices to be made.
Firstly there is a choice in the identification Ĝ1 ' G2, secondly there is a choice
in the Haar measure (as this is unique up to a constant), and thirdly we can put a
constant in front of the integral (which would correspond to changing the measure).

We will use unitary Fourier transforms, but there is still choices to be made.
To clarify notation, we will now present the definitions we will use when writing
F . On R we use the normal Lebesgue measure.

Definition 1.12. The Fourier transform on R is

(Ff)(y) =
1√
2π

∫
R
e−ixyf(x) dx, (1.12)

with inverse

(F−1f̃)(x) =
1√
2π

∫
R
eixy f̃(y) dy. (1.13)

On the circle T we choose µ(T) = 1, or, said in another way, we have the
measure-theoretical identification t 7→ e2πit from [0, 1) onto T, and we let the
measure carry over from [0, 1).

Definition 1.13. The Fourier transform on T is

Ff(n) =

∫
T
z−nf(z) dz, (1.14)

with inverse

F−1f̃(z) =

∞∑
n=−∞

znf̃(n). (1.15)

Sometimes we want to consider (T,+) = R/Z (that is the interval [0, 1) with
operations modulo 1), which is naturally isomorphic to the torus. To avoid con-
fusion we will use T for the complex numbers under multiplication, and (T,+) for
the periodic interval.
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Definition 1.14. The Fourier transform on (T,+) is

Ff(n) =

∫ 1

0

e−2πinxf(x) dx, (1.16)

with inverse

F−1f̃(x) =

∞∑
n=−∞

e2πinxf̃(n). (1.17)

We have natural isomorphisms between εZ and Z, and between εZn and Zn (for
any ε ∈ R). The Fourier transform can be transported by using these isomorphisms.

Definition 1.15. The Fourier transform on εZn (ε ∈ R) is

(Ff)(εj) =
1√
n

n−1∑
k=0

e−2πi
k
n jf(εk), (1.18)

with inverse

(F−1f̃)(εj) =
1√
n

n−1∑
k=0

e2πi
k
n j f̃(εk). (1.19)

Let us take a look at the general behavior when we have something akin to
Fourier series; when we have summation instead of integration in the inverse Fourier
transform.

Proposition 1.16. Assume G is compact, and µ(G) = 1. Then Ĝ is a basis for
L2(G).

Proof. By proposition 1.8 we see that equation 1.11 becomes

f = F−1f̃ =
∑
γ∈Ĝ

f̃(γ)γ. (1.20)

The Fourier transform is invertible, hence every f ∈ L2(G) can be written uniquely
in this form. Hence Ĝ is a complete set.

Orthonormality follows from the fact that F is an isometry, so that

〈γ1|γ2〉 = 〈Fγ1|Fγ2〉

= 〈

{
1 γ = γ1

0 else
|

{
1 γ = γ2

0 else
〉

=
∑
γ∈Ĝ

{
1 γ = γ1

0 else
·

{
1 γ = γ2

0 else

= δ(γ1 − γ2)
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Proposition 1.17. Let f : R→ C, and F the Fourier transform on R. Then

F dn

dxn
f = (iy)nFf (1.21)

for any f in the Schwartz space.9

Proof.

(Ff)(y) =
1√
2π

∫
e−ixyf(x) dx

(F dn

dxn
f)(y) =

1√
2π

∫
e−ixy

dn

dxn
f(x) dx

= (−1)n
1√
2π

∫
f(x)

dn

dxn
e−ixy dx

= (−1)n
1√
2π

∫
(−iy)ne−ixyf(x) dx

= (iy)n
1√
2π

∫
e−ixyf(x) dx

= (iy)n(Ff)(y)

1.3 Unitary representations of groups in Hilbert
spaces

Definition 1.18. A strongly continuous unitary representation, also known as a
unitary representation, of the locally compact group G on the Hilbert space H is
a homomorphism

π : G→ U(H) = {U : H → H|U−1 = U∗}, (1.22)

where the group operation on U(H) is composition, and where the function g 7→
π(g)f is continuous for any f ∈ H. The group G is represented as the image of π.

1.4 Classical physics
Before we end this chapter, let us review some classical physics. Newton’s three
laws is the first formulation of physics seen by a student. In addition we have the
principle of least action together with the Lagrangian, and we have the Hamilton
formulation.

In this section let V (x, p, t) denote the potential energy of the mechanical sys-
tem, dependent on the position x ∈ R3, the momentum p ∈ R3, and the time t ∈ R.
Further, T (x, p, t) is the kinetic energy.

9We use the Schwartz space S when physicists write ’sufficiently nice’. This is the space of
infinitely differentiable functions decaying faster than any x−2k.
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Newton’s equation now gives a second order differential equation where we have
initial values [x(t1), p(t1)] or boundary values [x(t1), x(t2)] (for t1 6= t2), and which
can be solved both forwards and backwards in time.

A different approach is via the Lagrangian and the action.

Definition 1.19. The Lagrangian of a physical system is

L = T − V, (1.23)

and depends on a parameter x, and its derivative ẋ. The action of a path x(t)
(from t = t1 to t = t2) is

A =

∫ t2

t1

L dt. (1.24)

Understanding the action is difficult, but what we need is the fact that the
action is minimal in any legal classical path. The principle of least action is that
given endpoints x(t1) and x(t2) the path x(t) taken by the system is the one with
a stationary action. If you look at the space of (differentiable) paths (f : R→ R3),
and A as a function on this space, the system chooses the path where the Gâteaux
derivative of A (in all directions) is zero.

It is important to note that the configuration x of the system need not be
represented by using the Cartesian coordinates of the position, but one can use
any set of parameters that completely describes the system.

Proposition 1.20. Writing x1, x2, x3 for the parameters describing the system
the path of least action satisfies the equations

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0. (1.25)

Hamiltonian mechanics use the Hamiltonian, which is the energy of the system.
We will only do these mechanics on a closed system, that is a system without
external forces and where no energy is added to the system.

Definition 1.21. The Hamiltonian of a closed system is

H = T + V, (1.26)

which depends on the (generalized) position [q1, q2, q3] and momentum [p1, p2, p3],
but it is independent of time t. The equations of motion are

ṗi = −∂H
∂qi

(1.27)

q̇i =
∂H

∂pi
. (1.28)

This can be generalized slightly through the use of Poisson brackets, as follows.

Proposition 1.22. The time evolution of an observable A = A(p, q, t) is

d

dt
A = {A,H}+

∂A

∂t
=
∑
i

∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi
+
∂A

∂t
. (1.29)



1.4. CLASSICAL PHYSICS 15

Note how the Lagrangian formulation gives a system of n second order equa-
tions, while the Hamiltonian formulation gives a system of 2n first order equations
(and requires initial values for [q(t1), p(t1)]). Note also that we don’t need Newton’s
formulation when we have Hamilton’s. Using the Newtonian equations one would
have to do experiments to determine the forces, like gravity and spring constants.
When using the Hamiltonian equations one needs to determine the Hamiltonian
by doing experiments.

Let us now give our main examples. These will be used throughout the text.

Example 1.23. For a free 1-dimensional particle we get the following equations.

T =
1

2
mẋ2

V = 0

L =
1

2
mẋ2

d

dt
mẋ = 0,

where the last equation comes from equation 1.25, and tells us that the velocity ẋ
is constant.

From the Hamiltonian equations we get

H =
1

2m
p2

ṗ = −0

ẋ =
p

m
,

giving the solution(
x(t)

p(t)

)
=

(
x(t1) +

∫ t
t1

p
m dt

p(t1)

)
=

(
x(t1) + (t− t1)p(t1)m

p(t1)

)
. (1.30)

Example 1.24. For a harmonic oscillator (mass-spring system) we get the follow-
ing equations, where k is the spring constant and w2 = k

m .

T =
1

2
mẋ2

V =
1

2
kx2

L =
1

2
mẋ2 − 1

2
kx2

−kx− d

dt
mẋ = 0

ẍ = − k
m
x

x(t) =
ẋ(0)

w
sin(wt) + x(0) cos(wt),
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where the third last equation comes from equation 1.25.
From the Hamiltonian equations we get

H =
1

2m
p2 +

1

2
kx2

ṗ = −kx
ẋ =

p

m
,

giving the solution(
x(t)

p(t)

)
=

( p(0)
mw sin(wt) + x(0) cos(wt)

p(0) cos(wt)− x(0)mw sin(wt)

)
. (1.31)

1.5 Classical mechanics and generators of time-translations
We want to emphasize a different view of the classical mechanics, which will be
useful when understanding Weyl-systems.

To begin, note that
(esDv)(t) = v(t+ s), (1.32)

where v can be a vector, as long as Dv(t) = v̇(t) is the differential operator, and we
use exponentiation of matrices. To see this, write out the Taylor expansion. This
can be used to calculate x(t) and p(t) by(

x

p

)
= etD

(
x(0)

p(0)

)
. (1.33)

For example, take the harmonic oscillator,(
ẋ

ṗ

)
=

(
p/m

−kx

)
=

(
0 1/m
−k 0

)(
x

p

)
, (1.34)

so that
D =

(
0 1/m
−k 0

)
. (1.35)

Then we can compute

etD =

(
cos(

√
k/mt)

sin(
√
k/mt)√
km

−
√
km sin(

√
k/mt) cos(

√
k/mt)

)
, (1.36)

which is a different way of presenting the solution to the problem; here we have
given the generator of time-translations (the operator that sends the position and
momentum a time t into the future). It is common to write Tt = etD for this
operator.



Chapter 2

Formulations of quantum
mechanics

In quantum mechanics we model systems with a Hilbert space H. A vector ψ ∈
H is called a wave-function. The name is sometimes reserved for a normalized
vector, or the 1-dimensional subspace spanned by ψ. We can only get experimental
information about subspaces, so in a 1-dimensional subspace any vector is a good
representative. But since the integral of a probability distribution is 1 and the
probability distribution is P (x) = |ψ(x)|2 we use unit vectors (with respect to
|| − ||2).

Here we feel the compulsion to clarify what the probability distribution means.
It is not a result of an uncertainty on our part, not of flawed measurements, but
something far deeper.1 Let us think of a particle (like an electron), and a physical
description (wave) ψ such that the probability of finding the electron in the interval
[x, x+dx] is |ψ(x)|2 dx. Then this is the result of theoretically perfect experiments.
The probabilities come from the fact that the electron does not know where it is,
the uncertainty is a basic property of the electron. Even worse, a probability with
phase eiθ will cancel out a probability with the phase e−iθ. Even though it may
seem counter-intuitive, this model is extremely successful at predicting behavior at
the Planck scale.

We want to note that the Hilbert space we use is always L2 with complex
valued functions, but it is not necessarily L2(R). We will use L2(G) for any (locally
compact Hausdorff second countable) group G, and the theory is stated for any
separable Hilbert space.

Let us first look at the physical implications when there is no time evolution.
Let us say that we know the state of the system to be ψ ∈ H. What happens if

1The notion of probability comes from modeling everyday experiences with too many inputs.
For example, when we throw a die we say there is a 1/6 chance of getting a six. But this
uncertainty is not in the nature of the die, as we could calculate exactly where the die would land
(given sufficiently precise input information). So everyday probability and uncertainty is in our
maps and models, and not in reality itself. In quantum mechanics, however, the uncertainty is
the nature of reality itself.

17
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we do a measurement asking whether the state is φ ∈ H? We get the answer ’yes’
with probability

Py = |〈φ|ψ〉|2, (2.1)

and ’no’ with probability

Pn = |〈φ⊥|ψ〉|2 =
∑
µ∈φ⊥

|〈µ|ψ〉|2, (2.2)

where the last sum is over an orthonormal basis of φ⊥. We see that Py + Pn = 1,
and note that the answer to the experiment can have a nonzero probability of being
’yes’ even though φ 6= ψ.2

In this chapter we will first look at the basics of quantum mechanics, then we
will look at different formulations. All of this will be done without considering
the p-adic numbers. Later we will draw inspiration from the different formulations
when trying to define quantum mechanics over Qp.

2.1 Schrödinger equation as a differential equation
Let us now consider the time-evolution of a physical system by using the Scrödinger
picture, i.e. we let the wave-functions depend on time. Given ψ(t = 0) we find
ψ(t) by solving the Schrödinger equation

i~
∂

∂t
ψ = Ĥψ, (2.3)

where Ĥ is the energy observable. The operator Ĥ will depend on the system under
consideration, we will assume it is independent of time. In classical mechanics we
use Ĥ = T (p̂) + V (x̂), so an analog can be constructed given that p̂(ψ) and x̂(ψ)
are understood. Given that ψ is the position representation of the system, so
that |ψ(x)|2dx is the probability of observing the particle in [x, x+ dx], we define
x̂ψ(x) = x · ψ(x). Note that this is natural because, given a ψ with support in
[a− ε, a+ ε] (where ε small),

〈ψ|x|ψ〉 ≈ a. (2.4)

But what about p̂ψ? There are several ways to define p̂ψ, and we will come
back to this, but the two most common are

p̂ = −i~ ∂
∂x

(2.5)

p̂ = F x̂F−1, (2.6)

where the latter is much easier to generalize than the former. We also have the
formula

[x̂, p̂] = x̂p̂− p̂x̂ = i~. (2.7)

A different way to define x̂, and p̂ is by viewing them as generators of 1-
parameter unitary groups. We will come back to this in the section on Weyl
formulation.

2To see how this gives experimental results, look at the double-slit experiment for electrons.
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Example 2.1. The classical Hamiltonian for the free particle (example 1.23) is

H =
1

2m
p2 (2.8)

Using equation 2.5 we get

Ĥf(x) =
−~2

2m

(
∂

∂x

)2

f(x). (2.9)

Example 2.2. The classical Hamiltonian for the harmonic oscillator (example
1.24) is

H =
1

2m
p2 +

1

2
kx2 (2.10)

Using equation 2.5 we get

Ĥf(x) =
−~2

2m

(
∂

∂x

)2

f(x) +
1

2
kx2f(x). (2.11)

Here one usually takes ω2 = k/m and gets

Ĥf(x) =
−~2

2m

(
∂

∂x

)2

f(x) +
1

2
mω2x2f(x), (2.12)

with eigenfunctions

ψn(x) = (2nn!)−1/2
(mω
π~

)1/4
e−mωx

2/(2~)Pn(x), (2.13)

where Pn are the Hermite polynomials

Pn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
. (2.14)

Example 2.3. When writing about the harmonic oscillator it is common to con-
sider Ĥ = p̂2/2+ x̂2/2. Let us look at how redefining the units gives this equation.3

Let now

X =

(
~
mω

)1/2

E = ~ω
x = Xx′

H = EH ′,

then the equation becomes

Ĥ ′f(x) = (~ω)−1
(
~
mω

)−1 −~2
2m

(
∂

∂x′

)2

f(x) + (~ω)−1
(
~
mω

)
1

2
mω2x′2f(x),

(2.15)
3Physicists often just set m = 1 or ω = 1 or even ~ = 1 (natural units), but this might lead to

confusion as the units do not really disappear.
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where most of the stuff cancels and we get

Ĥf(X−1x) =
1

2

(
∂

∂x

)2

f(X−1x) +
1

2
x2f(X−1x), (2.16)

after renaming. It is important to note that Hamilton’s equations (equation 1.27
and 1.28) do not change when multiplying the energy by a constant, as it is inde-
pendent of the choice of units. The function f is not given directly as a function
of the space variable, but as a function of the space variable divided by X. With
different masses m and angular frequencies ω we get different arguments in the
function f , that is, we get different Hilbert spaces.

2.1.1 Time evolution

We did assume that Ĥ is independent of time.4 This gives us a simple time evo-
lution process, as equation 2.3 becomes separable. Let |n〉 be an eigenvector of Ĥ
with eigenvalue En, then

i~
∂

∂t
ψ = Enψ, (2.17)

with the initial value ψ(0) = |n〉. This has solution

ψ(t) = e−itEn/~|n〉. (2.18)

In general ψ(0) = |φ〉 would give, if we have a complete ortonormal set of eigen-
vectors |n〉,

ψ(t) =
∑
n

〈n|φ〉e−itEn/~|n〉. (2.19)

2.2 Operator algebra - how to construct observ-
ables

The Hamilton operator we just described is an example of an observable, an entity
that can be determined by doing experiments. Now we want to show how any
observable can be constructed from yes/no questions, and that we end up with
self-adjoint (or as physicists say: Hermetian) operators on the Hilbert space.

Let us first take the simplest form of observables, yes/no questions about
whether ψ is in the closed subspace E ⊆ H, where ’yes’ has value 1, and ’no’
has value 0 (and your answer in the state ψ can only be 0 or 1). What self-adjoint
projection is the observable to this question?

Proposition 2.4. There is a 1-1 correspondence between the set of self-adjoint
projections and the set of all closed subspaces of H. Let C : P 7→ Im(P ) be this
correspondence and observe that:

4We do this for simplicity, as we are looking for simple applications in this thesis.
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• C(0) = 0

• C(I − P ) = C(P )⊥

• C(P1P2) = C(P1) ∩ C(P2)

• P1P2 = 0⇒ C(P1 + P2) = C(P1)⊕ C(P2)

The answer to the question is: "The self-adjoint projection with image E".
Let us take a more complicated example, working on L2((T,+)), (as before

(T,+) denotes [0, 1) = R/Z).

Example 2.5. We want to combine three observations, giving them one value
from R for a ’yes’-answer, and 0 for a ’no’ answer.

The first observation is whether the particle is in [0, 12 ) and ’yes’ has value 1,
the second observation is whether ψ is sin(x) and ’yes’ has value

√
2, the third

observation is whether ψ is constant (almost everywhere) and ’yes’ has value π.
First we will create one projection operator for each observation

P1ψ = χ[0, 12 )
ψ

P2ψ = 〈sin(x)|ψ〉 · | sin(x)〉

P3ψ =

∫ 1

0

ψ(x) dx = 〈1|ψ〉|1〉,

but these projections do not have the correct values associated with them. Per
definition, projections are self-adjoint operators, and so is any linear combination
with real valued coefficients. Let us first scale (here Piψi = ψi):

〈ψ1|P ′1|ψ1〉 = 1⇒ P1ψ = χ[0, 12 )
ψ

〈ψ2|P ′2|ψ2〉 =
√

2⇒ P2ψ = 4
√

2 · 〈sin(x)|ψ〉 · | sin(x)〉

〈ψ3|P ′3|ψ3〉 = π ⇒ P3ψ = π

∫ 1

0

ψ(x) dx.

In total this gives us the observable corresponding to the self-adjoint operator
A : H → H where

Aψ =
∑
i

P ′iψ = χ[0, 12 )
ψ+ 4

√
2π

∫ 1

0

sin(x)ψ(x) dx| sin(x)〉+π

∫ 1

0

ψ(x) dx (2.20)

What is the general picture of the situation in this example? We want to
assign subspaces of H to real numbers (experimental results). This is exactly the
definition of a projection valued measure, a measure on the set of reals giving
projection operators on H.
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Definition 2.6. Let (Ω,M) be a measurable space, and H a Hilbert space. The
map E :M→ B(H) is a resolution of identity, also known as a projection-valued
measure, on (Ω,M) if the following six items hold

• E(∅) = 0

• E(Ω) = 1B(H)

• E(w) is a self-adjoint projection for all measurable w.

• E(w ∩ w′) = E(w)E(w′)

• w ∩ w′ = ∅ ⇒ E(w ∪ w′) = E(w) + E(w′)

• For all x, y ∈ H the function Ex,y : w 7→ 〈E(w)x, y〉 is a complex measure.

Remark: In the last item, only countable additivity of disjoint sets needs to be
shown.

We know that there is a one to one correspondence between projection-valued
measures and self-adjoint operators on the Hilbert space (from the spectral theo-
rem).5 So when we are talking about an observable, we will often think of it as a
projection-valued measure.

This definition also clears up the hassle about the eigenvectors of the position
operator. In physics we often write

I =
∑
i

|vi〉〈vi| (2.21)

given an operator A with eigenvalues λi and eigenvectors vi, where (vi)i is an or-
thonormal basis for H. This is close to the definition of projection-valued measure,
and shows why it is also called resolution of identity. There is nothing wrong with
this equation, but let us consider the position operator x in the Hilbert space over
(T,+). Then physicists often write

I =

∫
dk|k〉〈k|, (2.22)

where 〈k|k′〉 is the delta distribution δk(k′).
How does this look from the mathematical point of view? Given the well known

measure space ([0, 1),M), the resolution of identity E : M → H is defined by
E(A)(ψ) = 1Aψ, where 1A is the characteristic function of A. Note that E([0, 1)) =
I with this definition. What happens here hints to the general case. If we have a
continuous spectrum (no eigenvectors), so that dim(E({λ})) = 0, we cannot write
the identity as a sum of projections. Instead we have to use a projection-valued
measure.

Even though we did not give an example of this, we can have an eigenvalue λ
with a degenerated eigenspace, so that dim(E({λ})) > 1

5The reason we have not included the spectral theorem is that it would require several pages
to get through all the definitions and preliminaries, like the Gelfand-Naimark transform.
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Before we leave this topic, let us comment on unbounded operators. quantum
mechanics in L2(R) requires the unbounded operators q̂ and p̂ (unbounded because
R is not compact), which have a domain that is dense in H. This makes the theory
a lot more technical, but the results are similar.

2.2.1 Doing experiments

An observable has its name because it can be observed, by doing experiments.
Given an observable T , we can set up an experiment that measures T (at least in
theory). What kind of experimental values will we get?

Let us prepare the system in a state ψ ∈ H, and observe the self-adjoint operator
T . Let vi,k be a basis for H of eigenvectors of T with eigenvalue λi where k is the
index for having degenerate eigenvalues (yes, this requires some assumptions on
T , but within physical precision we can do this). Then the probability of our
experimental machine printing a is 0 if a is not an eigenvalue λi. If, on the other
hand a = λb for some b then the probability of measuring a is∑

k

|〈vb,k|ψ〉|2. (2.23)

Confusion can arise when people talk about the experimental value of A in state
ψ as the expected value. We will come back to this, but please note that it may
not at all be possible to get the expected value as a result when doing a single
experiment.

2.2.2 Functions on the spectrum

To construct Ĥ we need to understand what f(T ) means (for example with f : x 7→
x2). When we view the operator T as partitioning the Hilbert space into closed
subspaces (resolution of identity), so that H =

∑
iEi where Ei has eigenvalue λi,

then f(T ) is the operator partitioning the Hilbert space into H =
∑
iEi where Ei

has eigenvalue f(λi). Let T̄ denote this correspondence between Ei and λi (the
inverse of the resolution of identity) for the operator T . Then

T̄ f
E1 −→ λ1 −→ f(λ1)
E2 −→ λ2 −→ f(λ2)

(2.24)

and so on. For this to work when the spectrum is more complicated (not just
eigenvectors) we need that the function f is Borel measurable. Note that this can
be used to take the square root of a positive operator, the logarithm of some unitary
operators and more. For precise formulation and proofs we recommend chapter 1
in Folland’s book on abstract harmonic analysis [7]. We will end with a simple
example.

Example 2.7. Why is the square of the observable T actually T ◦ T?
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Let ψ for simplicity be an eigenvector of T with eigenvalue λ. Then the square
of T should give the experimental result λ2. Fortunately

T ◦ Tψ = Tλψ = λTψ = λλψ = λ2ψ. (2.25)

So what we call T 2 is actually the observable with the property of being the square
of the observable T .

2.2.3 Combining Hilbert spaces (or underlying groups)

The Hilbert space in consideration depends on what we want to model. For example
one could model an electron in a Coulomb-potential. If you only care about the
radial part, you can use L2(R), but if you also need the angular momentum you
would work in L2(R3). If you also desire to know the spin of the electron, you
would need to add on a Hilbert space describing the spin. To describe the spin we
use a finite group (the group of Pauli spin matrices).

To see how this works in general we give the following definition and proposition
using the tensor product.

Definition 2.8. The tensor product of L2(G1) and L2(G2), L2(G1) ⊗ L2(G2), is
the dense linear span in L2(G1 ⊕G2) of

{h|h(x, y) = f(x)g(y) with f ∈ L2(G2) and g ∈ L2(G1)}. (2.26)

Proposition 2.9. We have that

L2(G1 ⊕G2) = L2(G1)⊗ L2(G2). (2.27)

2.3 Uncertainty principle and commutators

The commutators and the uncertainty relation are fundamental to understanding
the consequences of quantum mechanics. If two observables commute, it is theoret-
ically possible to design an experiment in which they are measured simultaneously.
When developing a p-adic model it is essential that we end up with the same
physical implications. So it is natural to take a short review of how this works.

2.3.1 Expectation and variance

Given an observable A the expected value for an observation when preparing the
system in state ψ is

〈A〉ψ = 〈ψ|A|ψ〉 =

∫
R
ψ∗A(ψ) dx, (2.28)

where the last equality is only for L2(R). When it is clear which state is considered,
we often write 〈A〉.
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Experimentally, given an infinite sequence of experimental values ai (to get this
sequence you have to do an infinite number of identical and independent experi-
ments measuring A in the state ψ), we get

〈A〉ψ = lim
n

∑n
i=1 ai
n

, (2.29)

from the law of large numbers.

2.3.2 Deriving the uncertainty relation

Let H be any separable Hilbert space.

Definition 2.10. The variance σA ∈ R of a symmetric operator A given a state
ψ ∈ H is

σA =
√
〈A2〉 − 〈A〉2 = 〈A− 〈A〉〉 (2.30)

Note that we do not write ψ when it is understood from the context.

Definition 2.11. The commutator of A and B is

[A,B] = AB −BA, (2.31)

where the multiplication is composition.

The domain of the commutator can be much smaller than the domain of A or
B, but this will not be a problem in the quantum mechanical applications as the
resulting domain usually is dense in H.

Theorem 2.12. Assume A and B are symmetric operators on H. Then the Robin-
son uncertainty relation,

σAσB ≥
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣ , (2.32)

holds for any ψ ∈ H whenever both sides of the inequality makes sense.

Proof. The Cauchy-Schwartz inequality for |(A− 〈A〉)ψ〉 and |(B − 〈B〉)ψ〉 gives

σ2
Aσ

2
B = 〈ψ|(A− 〈A〉)2|ψ〉〈ψ|(B − 〈B〉)2|ψ〉
≥ |〈ψ|(A− 〈A〉)(B − 〈B〉)|ψ〉|2

= |z|2,

defining z = 〈ψ|(A− 〈A〉)(B − 〈B〉)|ψ〉 ∈ C. Further

z − z∗ = 〈ψ|(A− 〈A〉)(B − 〈B〉)|ψ〉 − 〈ψ|(B − 〈B〉)(A− 〈A〉)|ψ〉
= 〈ψ|AB −A〈B〉 −B〈A〉+ 〈A〉〈B〉|ψ〉 − 〈ψ|BA−A〈B〉 −B〈A〉+ 〈A〉〈B〉|ψ〉
= 〈ψ|AB −BA|ψ〉
= 〈[A,B]〉.
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Now, |z| ≥ |Im(z)| = |(z − z∗)/2i| gives us

σAσB ≥ |z| ≥ |Im(z)| = |(z − z∗)/2i|

≥ | 1
2i
〈[A,B]〉|.

It is very interesting that this last theorem (and proof) has nothing to do with
the domain of the function ψ, so that it will work equally well for the Hilbert space
L2(Qp) using the p-adic numbers.

Example 2.13. Let us use the last theorem on x̂ and p̂ on L2(R).

σxσp ≥ |
1

2i
〈[x̂, p̂]〉| = | 1

2i
〈i~〉| = ~

2
, (2.33)

which is a well known fact.6

Summing up, if we can make a model that has [q̂, p̂] = kiI we automatically get
an uncertainty relation for q̂ and p̂.

2.4 Generator of translations
A common term for the momentum operator p̂ is the generator of translations. In
this section we will look at how the operators q̂ and p̂ can be viewed as generators
of groups of unitary operators. This will lead to the formulation of a Weyl system,
which is essentially a product of the U and V in the first definition.

Definition 2.14. Define U, V : R→ U(H) by U(t) = Ut, V (s) = Vs, and

Utf(x) = eitxf(x)

Vsf(x) = f(x+ s)

Proposition 2.15. We have

UtVs = eitsVsUt

lim
t→0

Ut − I
t

ψ = ixψ = ix̂ψ

lim
s→0

Vs − I
s

ψ = Dψ = ip̂ψ

Vs = esD,

where Df(x) = f ′(x), for ψ in a dense subspace of H.
6This is sometimes known as Heisenberg’s uncertainty relation, and is usually interpreted as

"you cannot both know the position and the momentum of your particle".
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Proposition 2.16. The Fourier transform of Ut is Vt, and the Fourier transform
of p̂ is x̂, that is

FVt = UtF (2.34)
F p̂ = x̂F . (2.35)

Proof. Let all integrals be from minus infinity to infinity, and see that

(FVtf)(y) =
1√
2π

∫
e−ixyf(x+ t) dx

=
1√
2π

∫
e−i(x−t)yf(x) dx

=
1√
2π
eity

∫
e−ixyf(x) dx

= (UtFf)(y).

The Stone-von Neumann theorem says something about how this is the only
way to do quantum mechanics, and that there is a correspondence between U, V
-systems and pairs of operators satisfying [q̂, p̂] = kiI.

2.5 Weyl formulation
A Weyl system is essentially a choice of coordinates in our Hilbert space. In this
section we give a definition of Weyl systems over R, and we give a very nice choice
in L2(R).

Definition 2.17. A Weyl system7 on L2(R) is a function W : R× R→ U(H), so
that W (q, p) is a unitary operator, with the property that

W (z + z′) = B(z, z′)W (z)W (z′), (2.36)

where B : R2 × R2 → T, and z = (q, p) ∈ R2.

Proposition 2.18. Let χ(x) = eaix for some real a,8 then

W (q, p)ψ(x) = χ
(qp

2
+ qx

)
ψ(x+ p) (2.37)

is a Weyl system on H = L2(R), where

B((q, p), (q′, p′)) = χ

(
q′p− p′q

2

)
. (2.38)

7What we call a Weyl system is more commonly called a multiplicative projection, or a pro-
jective representation. In the literature one finds that the Ut and Vs from the previous section
is called a Weyl system. However, the example W we present in the next proposition is actually
just a combination of Ut and Vs.

8We do not want to specify which character in the dual group to use, because the good choice
depends on the physical system under consideration.
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Proof. To see thatW (q, p) is a unitary operator, note thatW (q, p) = χ
(
qp
2

)
UatVp,

is a combination of unitary operators.
Next we want to show that W satisfies equation 2.36: Note that

W (p, q)−1 = χ
(qp

2
− qx

)
ψ(x− p), (2.39)

and calculate B by

W (z)W (z′)W (z + z′)−1ψ = W (q, p)W (q′, p′)W (q + q′, p+ p′)−1ψ

= W (q, p)W (q′, p′)

· χ
(

(q + q′)(p+ p′)

2
− (q + q′)x

)
ψ(x− (p+ p′))

= W (q, p)χ

(
q′p′

2
+ q′x

)
· χ
(

(q + q′)(p+ p′)

2
− (q + q′)(x+ p′)

)
ψ(x− p)

= W (q, p)χ

(
qp+ q′p− qp′

2

)
χ (−qx)ψ(x− p)

= χ

(
qp+ q′p− qp′

2

)
· χ (−q(x+ p))χ

(qp
2

+ qx
)
ψ(x)

= χ

(
q′p− qp′

2

)
ψ(x)

= B(z, z′)ψ(x),

where B has the required form.

2.6 Time evolution by propagator
Weyl systems are useful in general, but time evolution depends on the physical
systems we want to describe. If you have a bad choice of coordinates (i.e. Weyl
system) then the time evolution operator is very difficult to use.

If we know the Hamiltonian, we get a unitary group

Ut = eitH , (2.40)

defining time evolution of a wave ψ, so that

Utψ(x, s) = ψ(x, s+ t). (2.41)

This can be reformulated as

(Utψ)(x) =

∫
Kt(x, y)ψ(y) dy, (2.42)
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for some propagator Kt(x, y). This can be calculated without knowing H.9
For the nondimensionalized Harmonic oscillator (H = p̂2/2 + q̂2/2) we get

K(x, y, t) = Kt(x, y) =

(
1− i sign(sin t)

(2| sin t|)1/2

)
exp

(
2πi

x2 + y2

2 tan t
− 2πi

xy

sin t

)
(2.43)

from Dragovich [3]. We will not use the Hamiltonian or the Feynman-Kac formula
to get this. What we will do is take a guess, and prove that it satisfies certain
important conditions.10 We will not use the equation for the nondimensionalized
system, because nondimensionalization might not make sense for wavefunctions in
L2(Qp) as µ(37A) = µ(A) (for p 6= 37), and the order is not necessarily preserved
when multiplying with a scalar.

We claim that the propagator for the full Harmonic oscillator is

K(x, y, t) =
( mω

2πi~ sinωt

)1/2
exp

[(mω
2i~

)(
− x2

tanωt
− y2

tanωt
+

2xy

sinωt

)]
. (2.44)

In the following, we often use the formula (a, b, c ∈ C)∫
R

exp(−ax2 ± bx− c) =

√
π

a
exp

(
b2 − 4ac

4a

)
, (2.45)

where the real part of a is greater than 0, and where i−1/2 is defined so that the
formula holds.

Example 2.19. The lowest eigenstate of the harmonic oscillator

ψ0(x) =
(mω
π~

)1/4
e−mωx

2/(2~). (2.46)

We want to show that the two different time evolutions of this state gives the
same result. When doing this we can drop the constants in front of the exponential,
because what we are doing is really a time evolution of the 1-dimensional subspace
spanned by ψ.

Using equation 2.18 we get the following time evolution

ψ0(x, t) = e−it(~ω/2)/~ψ0(x) = e−itω/2ψ0(x). (2.47)

Using the propagator in equation 2.44, time evolution of ψ gives

ψ0(x, t) = (U(t)ψ)(x)

=

∫
Kt(x, y)ψ(y) dy

=
( mω

2πi~ sinωt

)1/2√π

a
exp

[
b2

4a
− c
]
,

9This is sometimes known as the Feynman-Kac formula. For more information, see wikipedia’s
page ’propagator’.

10In the same way that you can guess the solution of a differential equation, and then show
that it satisfies your equation.
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using equation 2.45, with

a =
mω

2i~

(
1

tanωt
− i
)

b =
mω

2i~
2x

sinωt

c =
mω

2i~
x2

tanωt
.

Then we get

ψ0(x, t) =

(
mωπ

2πi~ sinωt
(
mω
2i~
(

1
tanωt − i

)))1/2

exp

[
b2

4a
− c
]

=

(
1

cosωt− i sinωt

)1/2

exp

[(mω
2i~

)(x2(sinωt)−2

1
tanωt − i

− x2

tanωt

)]
=
(
e−iωt

)−1/2
exp

[(
mωx2

2i~ sinωt

)(
1

cosωt− i sinωt
− cosωt

)]
= e−iωt/2 exp

[(
mωx2

2i~ sinωt

)
(i sinωt)

]
= e−iωt/2 exp

(
mωx2

2~

)
= e−iωt/2ψ(x),

which is the same as before, so the propagator gives time evolution for the vacuum
state ψ0.

As we mentioned before, we do not want to calculate the propagator, but what
is the alternative? We look for some propagator K satisfying the equations in the
following proposition.

Proposition 2.20. The operator Ut defined by equation 2.42 and 2.44 satisfies

U(t)U(t′) = U(t+ t′), (2.48)

and

U(t)W (z)U(t)−1 = W (Ttz), (2.49)

where Tt comes from the classical time evolution (equation 1.36) and is

Tt(q, p) =

(
cos(ωt) sin(ωt)

mω
−mω sin(ωt) cos(ωt)

)(
q

p

)
. (2.50)
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Proof.

U(t)U(t′)ψ(x) =

∫
Kt(x, y)

∫
Kt′(y, z)ψ(z) dy dz

=

∫ ( mω

2πi~ sinωt

)1/2
exp

[(mω
2i~

)(
− x2

tanωt
− y2

tanωt
+

2xy

sinωt

)]
·
( mω

2πi~ sinωt′

)1/2
exp

[(mω
2i~

)(
− y2

tanωt′
− z2

tanωt′
+

2yz

sinωt′

)]
ψ(z) dy dz

=

∫
mω

2πi~
(sin s sin p)−1/2

√
π

a
exp

[
b2

4a
− c
]
ψ(z) dy dz,

with

s = ωt

p = ωt′

a =
mω

2i~
(cot s+ cot p)

=
mω

2i~
(sin p sin s)−1 sin(p+ s)

b =
mω

2i~

(
x

sin s
+

z

sin p

)
c =

mω

2i~

(
x2

tan s
+

z2

tan p

)
,

so that

b2

4a
− c =

mω

2i~

[(
x

sin s
+

z

sin p

)2

sin p sin s(sin(p+ s))−1 − x2

tan s
+

z2

tan p

]

=
mω

2i~

[
x2
(

sin p

sin s sin(p+ s)
− cot s

)
+ z2

(
sin s

sin p sin(p+ s)
− cot p

)
− 2xz

sin(p+ s)

]
=
mω

2i~

[
− x2

tan(p+ s)
− z2

tan(p+ s)
+

2xz

sin(p+ s)

]
.

For the part of the integrand in front of the exponential we get

mω

2πi~
(sin s sin p)−1

√
π

a
=

mω

2
√
πi~

(sin s sin p)−1/2
(mω

2i~
(cot s+ cot p)

)−1/2
=
( mω

2πi~

)1/2
(sin p cos s+ sin s cos p)−1/2

=
( mω

2πi~

)1/2
(sin(p+ s))−1/2.
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In total this gives that

U(t)U(t′)ψ(x) =

∫ ( mω
2πi~

)1/2
(sin(p+ s))−1/2

· exp

[
mω

2i~

(
− x2

tan(p+ s)
− z2

tan(p+ s)
+

2xz

sin(p+ s)

)]
ψ(z) dz

=

∫
Kt+t′(x, z)ψ(z) dz

= U(t+ t′).

Showing the second equation is a bit difficult to do directly, so what we will do
is first to show it for p = 0, and then for q = 0. This will be sufficient as

W (Ttz) = W (Tt(q, 0) + Tt(0, p))

= B(Tt(q, 0), Tt(0, p))W (Tt(q, 0))W (Tt(0, p))

= B(Tt(q, 0), Tt(0, p))U(t)W (q, 0)U(t)−1U(t)W (0, p)U(t)−1

= U(t)B(Tt(q, 0), Tt(0, p))W (q, 0)W (0, p)U(t)−1

= U(t)W (q, p)U(t)−1,

because

B(Tt(q, 0), Tt(0, p)) = B((q cosωt,−qmω sinωt), (p(mω)−1 sinωt), p cosωt))

= χ

(
−pq sin2 ωt− pq cos2 ωt

2

)
= χ

(
−pq

2

)
= B((q, 0), (0, p)).

Let us now show equation 2.49 for z = (q, 0). Since

W (Tt(q, 0))ψ(x) = χ

(
−1

2
mωq2 cosωt sinωt+ q cosωtx

)
ψ(x− qmω sinωt),

what we need to show is that

Kt(x, y)χ(qy) = Kt(x− qmω sinωt, y)χ

(
−1

2
mωq2 cosωt sinωt+ qx cosωt

)
.

Given that

a =
m2ω2

~
, χ(x) = e−2mω

mω
2i~ x, (2.51)

we need to show that(
− x2

tanωt
− y2

tanωt
+

2xy

sinωt

)
− 2qymω =

(
− (x− qmω sinωt)2

tanωt
− y2

tanωt
+

2(x− qmω sinωt)y

sinωt

)
+m2ω2q2 cosωt sinωt− 2qxmω cosωt,
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which is equivalent to

−2qymω = (2xqmω cosωt−q2m2ω2 sinωt cosωt−2qmωy)+m2ω2q2 cosωt sinωt−2qxmω cosωt,

which is true (for all x and y) if and only if all

0 = −q2m2ω2 sinωt cosωt+ q2m2ω2 sinωt cosωt

−2qmω = −2qmω

0 = 2qmω cosωt− 2qmω cosωt

are true (the first equation is for the constant, the second for y, the third for x).
It is easy to see that these three equations hold.

Let us now show equation 2.49 for z = (0, p). Since

W (Tt(0, p))ψ(x) = χ
(
(2mω)−1p2 cosωt sinωt+ (mω)−1xp sinωt

)
ψ(x+ p cosωt),

what we need to show is that

Kt(x, y − p) = Kt(x+ p cosωt, y)χ
(
(2mω)−1p2 cosωt sinωt+ (mω)−1xp sinωt

)
.

Given that a is the same as above, we need to show that

2yp cosωt

sinωt
− p2 cosωt

sinωt
− 2xp

sinωt
= −2xp cos2 ωt

sinωt
− p2 cos3 ωt

sinωt

+ 2yp
cosωt

sinωt
− p2 cosωt sinωt− 2xp sinωt

which is true (for all x and y) if and only if all

−p
2 cosωt

sinωt
= −p

2 cos3 ωt

sinωt
− p2 cosωt sinωt

2p cosωt

sinωt
= 2p

cosωt

sinωt

− 2p

sinωt
= −2p cos2 ωt

sinωt
− 2p sinωt

are true (the first equation is for the constant, the second for y, the third for x).
Showing these equations is easy.

2.7 Finite approximations in L2(R)
One of the main problems with x̂ and p̂ is that their spectrum is continuous, so
that we don’t get an orthonormal basis of H from the eigenvectors. (Note: x̂ is
the same operator as q̂, just emphasizing the coordinate description φ(x).) We can
consider finite approximations of x̂ and p̂.

Given η > 0 (η some big precision) we can define a position operator x̂η as
multiplication with the η-stair function

stairη(x) =
1

η
bηxc =

∑
i

iη−1 χ[iη−1,(i+1)η−1) (2.52)

This approximates the position operator x̂.
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Proposition 2.21. The η-stair function converges uniformly to f(x) = x as η →
∞. Furthermore x̂η → x̂ in the operator norm.

Proof. First see that

|x− stairη(x)| = 1

η
(ηx− bηxc) < 1

η
→ 0, (2.53)

then note that for any ψ ∈ Dx̂ = {f ∈ L2(R) : xf(x) ∈ L2(R)} we have

||(x̂η − x̂)(ψ)||2 =

∫
R
|(stairη(x)− x)|2|ψ(x)|2 dx <

1

η2
||ψ||2. (2.54)

Note that this also holds in L2(T).

2.7.1 Schwinger approximations
Here we will look at the Schwinger approximation, which approximates H = L2(R)
by H2 = L2(G) with a finite group G using periodic boundary conditions.

Here we will consider only approximations over the reals, a similar approach
will be seen later for the p-adic numbers. The following presentation owes heavily
to [9], and a complete proof of convergence can be found in [10].

The numerical idea is to avoid a discretization scheme for the derivatives (p̂ and
p̂2), and use the Fourier transform instead. To be able to use the finite Fourier
transform we need to have periodic boundary conditions. This is a good approx-
imation if the original problem is periodic (like for a free particle on a periodic
interval), or if the wave-functions have decayed to some very small value at the
boundary (which will be the case for the harmonic oscillator).

In order to have a scheme that will converge, we choose to increase the length
of the interval at the same time as we decrease the step-size. Given n we model
approximately the interval from −

√
n to +

√
n with step-size approximately 1/

√
n.

Definition 2.22. Given a Hamiltonian H on L2(R), and an integer n, we define
a grid Gn and a step size εn, by

εn =

√
2π

n

Mn = [−(n− 1)/2],−(n− 3)/2,−(n− 5)/2, ..., (n− 3)/2, (n− 1)/2]

Gn = εnMn.

To get a finite cyclic group we define addition on Gn modulo εnn. Then we
want an inclusion L2(Gn) ⊆ L2(R).

Definition 2.23. Define the real Schwinger inclusion to be the following unitary
linear injection:

I(S,R,n) : L2(Gn)→ L2(R) (2.55)
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Table 2.1: Results for the Schwinger approximation for the harmonic oscillator in
L2(R). For N = 81 the error may be due to machine precision or the precision of
the MatLab eigenvalue solver.

Analytical n = 12 n = 81
0.5 0.500000065379456 0.500000000000050
1.5 1.499997524117474 1.499999999999974
2.5 2.500038664576120 2.499999999999966
3.5 3.499548442356141 3.499999999999972
4.5 4.502914300652827 4.499999999999973
5.5 5.481199032508385 5.500000000000019
6.5 6.561903192170472 6.500000000000021
7.5 7.270244513931606 7.499999999999971
8.5 8.750364859037072 8.499999999999986
9.5 9.078011293650551 9.499999999999957
10.5 10.935958083327678 10.499999999999948
11.5 14.294444938848978 11.499999999999970

by
I(S,R,n)(f) = ε−1/2n

∑
i∈Gn

f(n) χ[Gn(i),Gn(i+1)). (2.56)

Definition 2.24. The position operator on L2(Gn) is

x̂f(a) = af(a), (2.57)

where a takes values in Gn ⊆ R.

When we look at this operator in I(S,R,n)(L2(Gn)), it is the x̂η operator from
equation 2.52.

2.7.2 Results
We used MatLab to implement the ideas for Schwinger approximation on the har-
monic oscillator. The files are attached in the appendix, and it is possible to copy
paste them from this thesis into MatLab. For the results with n = 12 and n = 81,
together with the well known analytical results, see table 2.1. For the corresponding
plots see figure B.1 and B.2 in the appendix.
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Chapter 3

Analysis on Qp

As we mentioned in the introduction, any p-adic number x can be written uniquely
as

x =

∞∑
i=v(x)

xip
i, (3.1)

(with xv(x) > 0, and 0 ≤ xi < p for all i) where addition and multiplication works
in the obvious way. The metric is given by

d(x, y) = |x− y| = p−v(x−y), (3.2)

and we have the strong triangle inequality making d an ultrametric:

|
∑
n

xn| ≤ max
n
|xn|. (3.3)

There is a very nice reformulation of the open ball with centre x and radius r

O(x, r) = {y ∈ Qp : |x− y| < r} = {y ∈ Qp : xi = yi ∀i ≤ − logp(r)}, (3.4)

which clearly gives that any point in an open ball is a center of that ball. Further-
more, since the function v takes values in Z, we see that the open ball of radius r
is the same as the closed ball of radius r − ε (for a sufficiently small ε depending
on r) which is compact.

3.1 Integration theory on Qp

To get integration we need a measure. From the introduction we know that Qp has
a unique Haar measure µ (as we have chosen µ(Zp) = 1).1

Now we want to look at some properties of the measure µ, and then some
properties of the integral. First let us establish some notation.

1This is because Qp is a group where the topology is a separable metric space. Remember
that Zp = {z ∈ Qp : v(z) ≥ 0}.

37
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Let us write

Bk(x) = {y ∈ Qp : |x− y| ≤ pk} = x+ pkZp = O(x, pk+1), (3.5)

and
Bk = Bk(0), (3.6)

for the ball of radius pk. From equation 3.4 we see that

Bk(x) =

p−1⋃
i=0

Bk−1(x+ ipk), (3.7)

where the union is disjoint. The sphere Sk(x) around x is

Sk(x) = {y ∈ Qp : |x− y| = pk}, (3.8)

and we get
Sk(x) = Bk(x) \Bk−1(x), (3.9)

Let also
Sk = Sk(0). (3.10)

What is then µ on these sets?

Proposition 3.1. We have that

µ(Bk(x)) = pk, (3.11)

and
µ(Sk(x)) = (p− 1)pk−1, (3.12)

Note that this is all we need to know about the measure µ (in addition to the
measure axioms) as it determines µ uniquely (the set of balls generates the sigma-
algebra).

Proof. By translation invariance µ(Bk(x)) = µ(Bk). For k = 0 we have µ(Bk) =
µ(Zp) = 1 by definition. Using equation 3.7 together with translation invariance
we get

µ(Bk) = µ

(
p−1⋃
i=0

Bk−1(ipk)

)

=

p−1∑
i=0

µ(Bk−1(ipk))

= pµ(Bk−1),

hence
µ(Bk) = pmµ(Bk−m)

for any m ∈ Z. By choosing m = k we get

µ(Bk) = pkµ(B0) = pkµ(Zp) = pk.

The second equation follows from additivity of the measure.
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There is another useful equation, with a rich theoretical background.2 We will
now show that

µ(xA) = |x|pµ(A), (3.13)

for any x ∈ Qp and measurable set A.

Lemma 3.2. For any open ball U = b + pnZp and any a ∈ Qp we have µ(aU) =
|a|pµ(U)

Proof. Write a = pmu where |u| = 1. Then aU = ab + pm+nZp. By proposition
3.1 µ(U) = p−n and µ(aU) = p−m−n. By remembering that |a|p = p−m we get the
required equality.

Theorem 3.3. For any measurable set E we have µ(aE) = |a|pµ(E)

Proof. By now, we know that µ(aZp) = |a|µ(Zp) = |a|. Let us define a new measure

νa(E) = µ(aE) (3.14)

for any a ∈ Qp. Clearly this is a Haar measure, so there exist a constant c with
the property that

νa = cµ. (3.15)

This c can be determined by c = cµ(Zp) = νa(Zp) = µ(aZp) = |a|. So for any
measurable E, we get

µ(aE) = νa(E) = cµ(E) = |a|pµ(E). (3.16)

We end this section with another similarity between Qp and R.

Proposition 3.4. Any open set in Qp can be written as a (countable) disjoint
union of open balls.

Proof. Let U be an open set, then U =
⋃
i∈IWi withWi open balls and I countable

(as Qp is a separable metric space). Given any two balls with nonempty intersec-
tion, Br(x) and Bs(y), and z an element in the intersection, we can write them as
Br(z) and Bs(z), so that one is contained in the other.

Hence for any overlapping Wi and Wj we can remove one of them from the
union, while still covering U . In this way we get an index-set J ⊆ I such that
U =

⋃
i∈JWi is a disjoint union.

2This equation can be used to define the norm given that you have a locally compact field.
This gives a very different way to develop the theory.
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3.2 Fourier transform on Qp

3.2.1 The rational part
As a preparation we need the following function on Qp.

Definition 3.5. The rational part function is

x =

∞∑
v(x)

xip
i 7→ {x} =

−1∑
v(x)

xip
i, (3.17)

and can be considered a function from Qp into Q, R, C, or Qp.

A locally constant function f on Qp has the property that there is some Bk so
that f(x) = f(x+ h) for h ∈ Bk.

Proposition 3.6. The rational part function is locally constant, and satisfies

{x+ y} = {x}+ {y}+Nx,y, (3.18)

where Nx,y is either 0 or -1.

Proof. Clearly {z} = 0 for z ∈ Zp, and because carry in Qp is to the right, {x+z} =
{x} for z ∈ Zp.

The equation comes from the fact that carry may only influence {−} if we
carry from (x+ y)−1 to (x+ y)0, in which case, the difference between {x+ y} and
{x}+ {y} is 1.

For the rest of this thesis we will write

γx(y) = e2πi{xy}, (3.19)

for any x ∈ Qp

Proposition 3.7. The function γx is a continuous homomorphism from Qp to T.

Proof. The continuity follows from that the rational part function is locally con-
stant. The homomorphism property follows from

e2πi{x+y} = e2πi({x}+{y}+Nx,y) = e2πi{x}e2πi{y}. (3.20)

3.2.2 Characters on Qp

In this section we present an independent proof that Qp is self-dual. Let us first
recall the definition of a character.

Definition 3.8. A character, or additive character, on Qp is a continuous group
homomorphism γ : (Qp,+)→ (T, ·). Here T = {z ∈ C : |z| = 1}. Denote the set of
all characters on Qp by Q̂p.
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We already have a continuum of examples by proposition 3.7. We want to show
that these are all the possibilities.

Proposition 3.9. For a character γ ∈ Q̂p we have for any n ∈ Z

γ(nx) = γ(x)n (3.21)

Proof. This follows easily from the definition.

Proposition 3.10. Assume γ(pN ) = 1, then γ(pNZp) = 1.3

Proof. We have that pNZ is dense in pNZp. By continuity of γ we need only
show that for any x = pNz (z ∈ Z) we have γ(x) = 1. But this is trivial as
γ(x) = γ(pN )z = 1.

Lemma 3.11. For any character γ on Qp or p−KZp there is some N such that
γ(pN ) = 1.

Proof.
1 = γ(0) = lim

n→∞
γ(pn) = lim

n→∞
γ(1)p

n

∈ T (3.22)

We see that this sequence must be eventually constant, i.e. there is some N such
that γ(pN ) = γ(1)p

N

= 1.
Why is this?4 Let xn = γ(1)p

n

= e−iθn , with θn ∈ (−π, π]. As xn → 1
we can assume θn ∈ (−p−1, p−1) by considering n ≥ M for some big M . Now,
if θM 6= 0, then for some k we must have p−1 ≤ |pkθM | ≤ 1, so that θM+k =
pkθM /∈ (−p−1, p−1) (even modulo 2π), which is a contradiction. Hence θM = 0

and γ(1)p
M

= 1.

Lemma 3.12. Given any x ∈ Qp, the function γx : Qp → T defined by

γx(y) = e2πi{xy} (3.23)

is a character on Qp and on p−KZp (for all K).

Proof. The first part follows from proposition 3.7. Finally, p−KZp is an open
subgroup of Qp.

Lemma 3.13. Any character on p−KZp is on the form γx where x =
∑K−1
i=−N xip

i.

Proof. Given γ there exist N such that γ(pN ) = 1. Note that γ is determined
by γ(p−K). The equation γ(p−K)p

N+K

= 1 has at most5 pN+K solutions in C, so
there are at most pN+K different characters (given N and K).

All γx where x =
∑K−1
i=−N xip

i are unique characters on p−KZp with the property
that γx(pN ) = 1. Since there are pN+K of them, we get that γ must be one of
them.

3Here γ of a set A is the set {γ(a) : a ∈ A}, and 1 denotes the set {1}.
4This can be made into a general statement in C: Let z ∈ C, if zn → 1 as n→∞ then zN = 1

for some N ∈ N.
5Well, it’s ’exactly’ that many solutions, but we only need ’at most’ in our proof.
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Theorem 3.14. Any character on Qp is on the form γx where x =
∑∞
i=−N xip

i.

Proof. First we see that γ is a character on p−KZp for any K. So on all these sets
there exist aK ∈ Qp such that γ = γaK on the set. For any K and L with K < L,
both aK and aL are characters on p−KZp, hence aK = aL mod pK . Hence we can
define

a = lim
K→∞

aK ∈ Qp. (3.24)

Since γ = γa on all the sets p−KZp, we get γ = γa on Qp.

Corollary 3.15. We have that Qp is self-dual, i.e. The function

Ψ : x 7→ γx (3.25)

is an isomorphism and a homeomorphism between Qp and Q̂p.

Proof. First, because of the previous theorem it is easy to see that Ψ is a bijection.
Second, notice that

γx+z(y) = e2πi{(x+z)y} = e2πi({xy}+{zy}+Nx,y,z

= e2πi{xy}e2πi{zy} = γx(y)γz(y).

To show continuity, let xn → x ∈ Qp. Choose any compact set K in Qp. Then
K ⊆ Br for some r ∈ Z. Take N so large that xn − x ∈ B−r for n > N . Then
γxn/γx = γxn−x, and for all y ∈ K we have y(xn−x) ∈ B0 = Zp so that γxn−x = 1
on K. Hence for any compact K there exist N such that for n > N we have
γxn

= γx on K. It follows that γxn
→ γx ∈ Q̂p (where the topology is uniform

convergence on compacts).
To show that the inverse is continuous, assume that γxn

→ γx ∈ Q̂p. Consider
the compacts p−KZp. First we will establish that

γx(pM ) = 1⇒ γxn
(pM ) = 1, (3.26)

for n > N . So let M be so that γ(pM ) = 1, and take ε so small that |ω − 1| > ε

when ωp = 1 (and ω 6= 1). By convergence in Q̂p we have some N (depending on
K and ε) such that |γx − γxn | < ε on p−KZp (when n > N). Let ln be the biggest
number in Z so that γxn

(pln) 6= 1.6 Then

γxn(pln+1) = (γxn(pln))p = 1, (3.27)

and so γxn
(pln) is a p-th root of unity (what we called ω). By our choice of ε, when

n > N we get that γx(pln) 6= 1, hence

ln < M. (3.28)

Let us now drop the first N terms of the sequence by re-indexing (we can do
that without changing any convergence properties of the sequence), and we have a
sequence with the property in equation 3.26 for all n.

6Do not think of ln as a sequence, only as a number depending on the n you are considering.
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Both γx and γxn are characters on p−KZp, and the values of γxn converge
uniformly on p−KZp to the values of γx. According to lemma 3.13 there is a finite
number of different characters on p−KZp with the property that γ(pM ) = 1, hence
for some big NK we get

γx(y) = γxn(y) for y ∈ p−KZp and for n > NK . (3.29)

In other words, γx−xn
(y) = 1 for y = p−K and n > NK , hence y(x− xn) ∈ Zp and

x−xn ∈ pKZp. For any ε = p−K we get NK+1 with the property that |xn−x| < ε
for n > NK+1. This is the same as xn → x ∈ Qp.

3.2.3 Onwards to the Fourier transform

The Fourier transform on Qp is

(Ff)(y) =

∫
Qp

e−2πi{xy}f(x) dx, (3.30)

with inverse

(F−1f)(x) =

∫
Qp

e2πi{xy}f(y) dy. (3.31)

3.2.4 Properties of the Fourier transform on L2(Qp)

For the real Fourier transform there are several invariant subspaces, like the space
spanned by Gaussian functions (ex

2/2). Are there any invariant subspaces in
L2(Qp)? Yes, let us look at some particularly interesting subspaces.

Definition 3.16. Define the following subspaces of L2(Qp):

Ck = {f ∈ L2(Qp) : support(f) ⊆ Bk}.
Sk = {f ∈ L2(Qp) : f(x+ a) = f(x) ∀a ∈ B−k}.
Wk = Ck ∩ Sk.

Proposition 3.17. We have that

Ck ⊆ Ck+1

Sk ⊆ Sk+1

Wk ⊆Wk+1

F(Ck) = Sk

F(Sk) = Ck

F(Wk) = Wk



44 CHAPTER 3. ANALYSIS ON QP

Proof. Given f with support(f) ⊆ Bk, and a ∈ B−k we have

(Ff)(y + a) =

∫
Qp

e−2πi{x(y+a)}f(x) dx

=

∫
Bk

e−2πi{xy}e−2πi{xa}f(x) dx

=

∫
Bk

e−2πi{xy}e−2πi·0f(x) dx

=

∫
Bk

e−2πi{xy}f(x) dx

= (Ff)(y).

Similarly, given f with f(x+ a) = f(x) ∀a ∈ B−k, and y /∈ Bk

(Ff)(y) =

∫
Bk

e−2πi{xy}f(x) dx

=

∫
Bk

e−2πi{xy}f(x− p−k) dx

=

∫
Bk

e−2πi{(x+p
−k)y}f(x) dx

=

∫
Bk

e−2πi{xy}e−2πi{p
−ky}f(x) dx

= e−2πi{p
−ky}(Ff)(y).

Since p−ky /∈ Zp we get 0 < {p−ky} < 1, and e−2πi{p
−ky} 6= 1. Hence (Ff)(y) = 0.

Finally

F(Wk) = F(Ck ∩ Sk) = F(Ck) ∩ F(Sk) = Sk ∩ Ck = Wk.

3.3 Ordering and intervals on Qp

One of the arguments that we can’t have p-adic time is because time must be
ordered for it to make any sense to us. Apart from using t as a real parameter on
our complex Hilbert space, we can use p-adic time with the following lexicographic
ordering. These ideas can be found in [11].

In this section, indexing will be used to denote the canonical expansion in
equation 3.1 without comment.

Definition 3.18. We say that x < y for x, y ∈ Qp if

• v(x) < v(y), or

• v(x) = v(y) and xi = yi for v(x) ≤ i < k and xk < yk (for some k).
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Of course, x ≤ y if x < y or x = y.

Note that this gives a total ordering, and that 0 < x for all x 6= 0 ∈ Qp.
We can define

[a, b] = {x ∈ Qp : a ≤ x ≤ b}, (3.32)

but we get
[1, 2]− 2 6= [1− 2, 2− 2] = [−1, 0], (3.33)

as the last set is empty.
This is really bad, but can we remedy it? For example by restricting the z we

add with to be from Z+?

Proposition 3.19. For any a < b ∈ Qp there is some z ∈ pkZ+ so that

b+ z < a+ z, (3.34)

where we can choose k = min{v(a), v(b)} − 1.

Proof. Assume v(a) = v(b). Then there is a least i such that a(i) < b(i). Let
z = (p − bi)pi. Then (a + z)i 6= 0, and (b + z)i = 0, while (a + z)k = (b + z)k for
k < i. Hence b+ z < a+ z.

If v(a) 6= v(b) we can add pmin{v(a),v(b)}−1 to both a and b. After this, if b > a
we are done. If a is still smaller than b we can do the same procedure as above.

Assuming a, b ∈ pZp (which is the domain of the p-adic sine, and therefore will
be the domain of our p-adic time - all of this will come later, in chapter 6), we get
some z ∈ Z+ with the property that translating with z changes the time-order of
a and b.

We rephrase this result and get the following proposition.

Proposition 3.20. For any a < b ∈ Qp there is some z ∈ pkZ

[a, b] + z 6= [a+ z, b+ z]. (3.35)

Proof. By the previous proposition, we can find a z so that [a+ z, b+ z] = ∅.

3.4 Important maps between R and Qp

In this section we will focus on three interesting maps, the first we saw in [11] and
can be used to transfer the Haar measure between R and Qp, but is not order-
preserving. The second was presented in [2] and does preserve the ordering, but
maps the p-adic numbers to a Cantor-like (nowhere dense and measure zero) subset
of R. The third is a slight generalization of the rational part function.

Definition 3.21. The simple almost-inclusion of Qp into R is

Ps :

∞∑
i=v(x)

xip
i 7→

∞∑
i=v(x)

xip
−i. (3.36)
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Definition 3.22. The Vladimirov inclusion of Qp into R is

PV :

∞∑
i=v(x)

xip
i 7→

∞∑
i=v(x)

xip
−2i. (3.37)

Definition 3.23. The k-rational part function from Qp to Q is

PR,k :

∞∑
i=v(x)

xip
i 7→ pk{p−kx} =

k−1∑
i=v(x)

xip
i. (3.38)

Proposition 3.24. The function Ps is

• not injective,

• injective almost everywhere,

• surjective onto the positive real numbers

• continuous,

• unable to preserve the ordering.

Proof. Note that
∞∑
i=0

(p− 1)pi (3.39)

is mapped to
∞∑
i=0

(p− 1)p−i =
p− 1

1− 1/p
= p, (3.40)

and

p−1 (3.41)

is also mapped to p. This makes Ps not injective, but these counterexamples
requires the ambiguity in the notation of the real numbers (i.e. 1 = 0.99999...),
and the set of these ambiguous numbers is countable. The preimage under P is
also countable, hence of measure zero.

For surjectivity, it is enough to note that every positive real number can be
written as an infinite positive expansion with base p (where p does not need to be
a prime, e.g. the decimal system).

Let us now show continuity. Let |P (x)− P (y)| < ε = p−N , choose δ = p−N−1,
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then

|x− y|p < δ ⇒ xi = yi ∀i<N+1 ⇒

|f(x)− f(y)| = |
∞∑

i=v(x)

xip
−i −

∞∑
i=v(y)

yip
−i|

= |
∞∑

i=min{v(x),v(y)}

(xi − yi)p−i|

= |
∞∑

i=N+1

(xi − yi)p−i|

≤
∞∑

i=N+1

|xi − yi|p−i

≤
∞∑

i=N+1

2pp−i

≤ 2p

p− 1
p−N−1 ≤ 2p−N ≤ 2ε

This concludes the proof of continuity.
To see that it does not preserve the ordering, the fact that it is not injective is

sufficient.

Proposition 3.25. The function Ps preserves the measure of a set, that is

µR(P (B)) = pµQp(B) (3.42)

Proof. This is the result by Minggen et. al in [11], where they define the measure
µQp

using the above equation (after dividing out a set of measure zero) in their
definition 2.1. Then they prove that it actually is a Haar measure in Theorem 2.3.
Since it is a Haar measure with µQp(Zp) = 1 it is the same as our measure.

Proposition 3.26. The inclusion PV is

• injective,

• not surjective,

• maps onto a Cantor-set (nowhere dense and measure zero),

• continuous,

• able to preserve the ordering.

Proof. See chapter I.6 in [2].

Proposition 3.27. The k-rational part function from Qp to R

• can be considered a function onto Qp�(pkZp)
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• satisfies limk PR,k(x)→ x ∈ Qp (where the limit is in | − |p)

• locally constant.

Proof. The first three points are easy to see. The last point follows from proposition
3.6.

3.5 Differentiation and anti-integration

In this section we want to point out the many notions of differentiation in Qp.
The fact that we have several ways to generalize differentiation is a problem, both
when trying to define position and momentum operators, and when describing the
generator of a unitary representation.

3.5.1 Banach differentiation

With f : Qp → C we can define derivative between the two spaces in a similar way
to what we do between two Banach spaces. For some f and some points x ∈ Qp,
define (DBf)(x) whenever

lim
h→0

|f(x+ h)− f(x)− (DBf)(x)|
|h|

= 0, (3.43)

where h ∈ Qp, the numerator uses complex absolute value and the denominator
p-adic absolute value.

3.5.2 Fourier transform of the p-norm

By looking at proposition 2.16 we get the idea for the following definition.

Definition 3.28. The Fourier-Norm (FN) derivative DFN of f is

DFN (f) = (F−1|x|pF)(f). (3.44)

3.5.3 Fourier transform of the fractional part

By looking at proposition 2.16 we get the idea for the following definition.

Definition 3.29. The Fourier-Character (FC) derivative DFC of f is

DFC(f) = (F−1{x}F)(f). (3.45)

We can also use the k-rational part from definition 3.23

DFC,k(f) = (F−1pk{p−kx}F)(f), (3.46)

or perhaps the limit as k →∞ in some sense.
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3.5.4 The anti-integration

From [11] we have a notion of integration from 0 to x, so we can define differentiation
to be the opposite of integration.

Definition 3.30. The Anti-Integration (AI) derivative of f : Qp → C (when it
exists) is the function DAI(f) defined almost everywhere satisfying∫ x

0

DAI(f)(x′) dx′ = f(x). (3.47)

3.6 Finite approximations in L2(Qp)

When we want to use a compact subgroup of R we use addition modulo 1 on [0, 1),
but in Qp the compact set Zp is already a group. To discretize (in R) this compact
group into a finite group, we can use the set An = { in |0 ≤ i < n} ⊆ [0, 1) with
addition modulo 1. Similarly we can use

Gn = p−nZp/(pnZp) (3.48)

in the p-adic case.

3.6.1 Approximating H

Similarly to what we did in the real case, we define a position operator x̂ on Qp.
Then we take the momentum operator to be the Fourier transform of x̂. Both of
these operators can also be considered operators on Gn. The Fourier transform
factors nicely, i.e.

p̂ = Fnx̂F−1n on Gn, (3.49)

where Fn is the finite Fourier transform on Gn.
We have constructed a MatLab algorithm that can be found in the appendix. In

table 3.1 and 3.2 you can find the numerical results, together with the analythical
results from chapter X.9 and X.10 in [2].

For p = 3 the multiplicity is calculated as follows. According to [2] (page 181 -
182) we get that

λlN = 32N + 32l−2N , N ∈ Z, l = 2, 3, ... (3.50)

has multiplicity at least
4
∑

1≤i≤d

3yi−2, (3.51)

where {(xi, yi) : i = 1, 2, ..., d} are the solutions for x ∈ Z and y = 2, 3, ... of

λlN = 32x + 32y−2x. (3.52)
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Table 3.1: Results for the approximation for the harmonic oscillator on L2(Qp) with
p = 3, and with the position operator chosen as x̂f(x) = |x|pf(x) (the momentum
operator is the Fourier transform of the position operator).

Analytical n = 1 n = 2
< 4.5 0.681874953487972 0.669253240146968

- 4.703703703703697 4.692719683556841
- 4.725532453919437 4.716187293920393
5 4.999999999999997 4.999999999999983
5 5.000000000000003 5.000000000000011
9 8.999999999999991 8.999999999999979
9 8.999999999999995 8.999999999999980
9 8.999999999999998 9.000000000000018
9 9.000000000000000 9.000000000000025
- - 40.522643828102950
- - 40.522652744396467

40 + 10
18 - 40.555555555555586

40 + 10
18 - 40.555555555555770
41 - 40.999999999999865
41 - 41.000000000000000
41 - 41.000000000000057
41 - 41.000000000000078
41 - 41.000000000000163
41 - 41.000000000000171
41 - 41.000000000000185

By the first lemma in chapter X.10 in [2] (α = 2) we get that the only solutions
of the previous equation are x = N and y = l − N , or x = l − N and y = N so
that the multiplicity of λlN is no less than

4
(
3l−N−2 + 3N−2

)
. (3.53)

Further we are given p− 2 = 1 eigenvectors with eigenvalue

λ1N = 32N + 32−2N , (3.54)

so that the multiplicity here is at least 1.
In the numerical calculations we used H = 1

2 x̂
2 + 1

2 p̂
2, so that our eigenvalues

are
λlN
2
. (3.55)
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Table 3.2: Results for harmonic oscillator using n = 4, for p = 3, x̂f(x) = |x|pf(x).
L. mult. stands for least multiplicity, and e.v. for eigenvalue.

Analytical e.v. L. mult. Numerical e.v. Mult.
<4.5 - 0.6688 1

- - 4.6923 1
- - 4.7158 1
5 1 5.0000 2
9 3 9.0000 4
- - 40.5214 2
- - 40.5556 2

41 5 41.0000 8
45 6 45.0000 24
81 8 81.0000 36
- - 364.5000 2
- - 364.5100 2
- - 364.5600 3

365 13 365.0000 24
- - 369.0000 72
- - 405.0000 216
- - 729 324
- - 3000<x<3700 2916
- - 6165 >2900
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Chapter 4

Classical mechanics and Weyl
quantization in Qp

In this chapter we want to generalize classical mechanics to the p-adic case, and to
look at a generalization of the Weyl system usable over Qp.

4.1 Classical mechanics
Let us first use p-adic numbers in classical mechanics. Using the same Hamiltonian
as in the real case, but with p-adic coordinates and time; according to [12] (equation
3.4-3.5) we get

H =
1

2m
p2 +

1

2
mω2q2 ⇒

ṗ = −mω2q, q̇ =
1

m
p; p(0) = p, q(0) = q,

with the analytic solution(
q(t)

p(t)

)
=

( 1
mωp sinωt+ q cosωt

p cosωt− qmω sinωt

)
, (4.1)

where

sinx =

∞∑
n=1

(−1)n
x2n−1

(2n− 1)!
, |x|p < 1, |x|2 <

1

2

cosx =

∞∑
n=1

(−1)n
x2n

(2n)!
, |x|p < 1, |x|2 <

1

2
.

Several questions come naturally. The first is, ’Does this give the same physical
results as in the real case?’. One of the main motivations for using Qp is that we
need the rationals, because any result of a physical measurement can be interpreted
in Q. So let us look at this solution from that point of view.

53
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Proposition 4.1. We see that equation 4.1 looks the same but is not the same as
the solution in example 1.24.

Proof. The expression in equation 4.1, is the same as in 1.31, even the expressions
for the definition of sine and cosine are the same in the real and the p-adic case.
However, the sum to infinity has a different interpretation in the real numbers
(convergence in | − |∞) and the p-adic (convergence in | − |p). E.g.

sin

(
p

p2 + 1

)
=

∞∑
n=1

(−1)n
1

(2n− 1)!

(
p

p2 + 1

)2n−1

, (4.2)

which clearly converges both in | − |∞ and in | − |p. As long as none of these are
in Q, they live in completely different number fields.

4.2 Weyl systems in the general case

Assume thatG is a locally compact abelian group, which is also self-dual. Definition
2.17 can be generalized to the following definition.

Definition 4.2. A Weyl system on H = L2(G) is a function W : G×G→ U(H),
so that W (q, p) is a unitary operator, with the property that

W (z + z′) = B(z, z′)W (z)W (z′), (4.3)

where B : G2 ×G2 → T, and z = (q, p) ∈ G2.

Proposition 4.3. Let χ(x) = e2πi{ax} for some a ∈ Qp,1 then

W (q, p)ψ(x) = χ
(qp

2
+ qx

)
ψ(x+ p) (4.4)

is a Weyl system on H = L2(Qp), where

B((q, p), (q′, p′)) = χ

(
q′p− p′q

2

)
. (4.5)

Proof. The proof is exactly the same as the proof of proposition 2.18.

The following theorem shows how the system we just defined is the best choice;
all other choices are essentially the same as this, possibly with redundancy.

Theorem 4.4. There is only one irreducible Weyl-system over Qp up to unitary
isomorphisms, namelyW (q, p). All Weyl systems over Qp can be written as a direct
sum of copies of this.

1This χ is what we called the character γa in chapter 3. This a will become −mω in proposition
6.1.
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Proof. Using Theorem 3, and corollaries 1 and 2 on pages 247-249 in Vladimirov
[2], we only need to show that W (q, p) has a one-dimensional vacuum space, i.e.
that there is only one invariant wavefunction in L2(Qp) (up to multiplication with
a constant). The a we write in this proof is the a in the definition of W (see the
previous proposition).

So let ψ be so that

W (q, p)ψ(x) = χ
(qp

2
+ qx

)
ψ(x+ p) = ψ(x), (4.6)

where (q, p) ∈ a−1B0 ×B0. Then we get

ψ(x+ p) = ψ(x) ∀p∈B0

χ (qx)ψ(x) = ψ(x) ∀q∈a−1B0

support (ψ) ⊆ {x : χ (qx) = 1} ∀q∈a−1B0

We choose q = a−1 ∈ a−1B0, and get

support (ψ) ⊆ {x : e2πi{x} = 1} = B0 (4.7)

As ψ(x) = ψ(0) for x ∈ B0 with ψ(x) = 0 for x /∈ B0 we have that ψ is constant.
Hence the vacuum space is one-dimensional.

Let us comment why Vladimirov use (q, p) ∈ V0 = B0×B0, but we use (q, p) ∈
a−1B0 × B0. If you look at their symplectic form, it is the same as ours if you
scale our q by a−1 to cancel the a hidden in our symplectic form B (the notation
differs considerably, and they write the symplectic form on the other side of their
equations).

4.3 Weyl quantization

Weyl quantization2 is another way to interpret f(Q,P ) for operators Q and P (the
first way is to use f as a function on the spectrum of the operators, as mentioned
in section 2.2.2). Intuitively, given f : C2 → C

f(Q,P ) =

∫ ∫
f(q, p)δQ(q)δP (p) dq dp

=

∫ ∫
f(q, p)

∫ ∫ (
e2πia(Q−q)e2πib(P−p)

)
da db dq dp

=

∫ ∫ ∫ ∫
f(q, p)

(
e2πia(Q−q)e2πib(P−p)

)
dq dp da db,

2Also known as phase-space quantization.
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which can be made rigorous over L2(R). To be able to use this over L2(Qp) we
continue the calculations

f(Q,P ) =

∫ ∫ ∫ ∫
f(q, p)

(
e−2πiaqe−2πip)UaVb

)
dq dp da db

=

∫ ∫
UaVb

∫ ∫
f(q, p)

(
e−2πiaqe−2πip)

)
dq dp da db

=

∫ ∫
f̃(q, p)e−2πiab/2Wa,b da db,

where Wab = e2πiab/2UaVb is the Weyl system with character χ(x) = e2πix, and f̃
is the two dimensional Fourier transform. This can be generalized to Qp.

Definition 4.5. Given f : Qp×Qp → C, the quantization of (the classical function)
f is

Af =

∫
Qp

∫
Qp

f̃χp(−qp/2)Wq,p ds dt, (4.8)

where f̃ = FQp ⊗FQp(f), and the character in the Weyl system is χp(x) = e2πi{x}.



Chapter 5

Quantum mechanics with real
time using Schrödinger-like
operators

In this chapter we will look at what Vladimirov et. al. calls Schrödinger-like
operators. Let

Qα(f)(x) = |x|αp f(x) (5.1)

on L2(Qp). Further Pα = Q̃α = FQαF−1. Then we can define an operator that
seems to correspond to the Schrödinger operator for a harmonic oscillator,

H = Q2 + P 2. (5.2)

5.1 Generators of time translation
How can operators like H be used to generate time translation on L2(Qp)? We can
define

Ut = eitH , (5.3)
or use χ(tH) for any character χ on R. If we regard L2(Qp) as a complex (sep-
arable) Hilbert space, there is only one operator generating time translations (up
to multiples of I, and unitary transformations), namely the one we already know
from L2(R). We can hope to find nicer descriptions of some quantum systems in
this way (especially those with fractal properties), but merely using the isomor-
phism between L2(R) and L2(Qp) as separable Hilbert spaces to find the required
H seems artificial at best.

5.2 Basis for L2(Qp) of eigenvectors of P α

Let us find a basis of eigenvectors for Dα and for |x|αp that is also invariant under
the Fourier transform. The material in this section is taken from [2] (chapter IX.5
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and onwards) and [6] (Chapter 3).1

Proposition 5.1. H is self-adjoint and densely defined.

It is natural to look for locally constant compactly supported functions. So let
them be supported on a sphere Sk.

Given that l ≥ 2, N ∈ Z, k ∈ {1, 2, ..., p−1}, and ε(l) (given an l) can be written
uniquely as ε(l) = ε0 + ε1p

1 + ...+ εl−2p
l−2.

φl,N,k,ε(l)(x) = p
N+1−l

2 δ(|x| − pl−N )δ(x0 − k)χp(ε(l)p
l−2Nx2) (5.4)

where x0 = (x− {x}p) mod p. Define also

φ1,N,k(x) = p
N−1

2 Ω(|x|p − p1−N )χp(kp
−Nx). (5.5)

Then the Fourier transforms are

φ̃l,N,k,ε(l)(x) = ρp−
N−1

2 δ(|x| − pN )δ(x0 + 2ε0k)χp

(
1

ε(l)
p2N−lx2

)
(5.6)

where ρ is a constant (not important for us - it can be found in Kochubei chapter
3), and

φ̃1,N,k(x) = p−
N−1

2 δ(|x|p − pN )δ(x0 − k). (5.7)

Proposition 5.2. The set {φ} is a basis for L2(Qp) of eigenvectors of Pα.

Proof. According to Vladimirov (page 163-165) This is a complete orthornormal
set in L2(Qp), i.e. a basis. It is easy to see that any function multiplied with
δ(|x|− pN ) is an eigenfunction of Qα with eigenvalue pαN . Since all the φ̃ look like
this, we get that all φ are eigenfunctions of Dα.2

5.3 Commutator of Q and P

For all the functions
φl,N (x) l > 1, (5.8)

from the previous section, we argued why they are eigenfunctions of Pα with eigen-
values pαN . As they contain δ(|x| − pl−N ), they are eigenfunctions of Qα with
eigenvalue pα(l−N).

Proposition 5.3. For all the functions

φl,N (x) l > 1 (5.9)

the operators Q and P commute, i.e. QPφ = PQφ.
1The book by Vladimirov is frequently cited, but the book by Kochubei is more clearly written.
2This is also theorem 3.1 in Volovich.
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Proof. We have

[Q,P ]φl,N = QPφl,N − PQφl,N
= p(l−N)pNφl,N − pNp(l−N)φl,N

= 0

This proposition states that the commutator is 0 for an infinite dimensional
subspace, and its closed span. There is no way to repair this, and get a true
commutator for most of L2(Qp), which is what we would expect from a theory in
quantum mechanics with position operator Q and momentum operator P . To sum
up, we claim that this choice of H is not only bad for the Harmonic oscillator, but
for any quantum mechanical system.
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Chapter 6

Quantum mechanics with
p-adic time using Weyl systems

Whether we should use real or p-adic time is not evident. There are two strong
arguments for using p-adic time. The first is that relativity theory suggests that
space and time should be easily comparable. The second is that the time evolution
corresponding with the Weyl system and the classical physics is easily generalized.
This is the first thing we will look at in this chapter.

There is also a strong argument against using p-adic time, namely that there is
no good total ordering on Qp; we will also look at this.

6.1 Time evolution using the Weyl system

In this section we use the character χ = e2πi{x}. Let us define, as before, the time
evolution to be

(Utψ)(x) =

∫
Qp

Kt(x, y) dy. (6.1)

For the full Harmonic oscillator we will take the following propagator as our guess.
(We found it in Dragovich [3])

Kt(x, y) = λp(2ωt)|ωt|−1/2χ
(

xy

sinωt
− x2 + y2

2 tanωt

)
, (6.2)

with (write a = pv(a)(a0 + a1p
1 + a2p

2 + ...))

λp(a) =


1, v(a) = 2k(
a0
p

)
, v(a) = 2k + 1, p mod 4 = 3

i
(
a0
p

)
, v(a) = 2k + 1, p mod 4 = 3

, (6.3)
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for p 6= 2, and

λ2(a) =

{
2−1/2(1 + (−1)a1i), v(a) = 2k

(−1)a1+a22−1/2(1 + (−1)a1i), v(a) = 2k + 1
. (6.4)

Here (
a

p

)
= a(p−1)/2 mod p =


1,
√
a ∈ Fp

0, a mod p = 0

−1, else
(6.5)

is the Legendre symbol.
Similarly to proposition 2.20 we now show the following.

Proposition 6.1. The operator Ut defined by equation 6.1 and 6.2 satisfies

U(t)U(t′) = U(t+ t′), (6.6)

and
U(t)W (z)U(t)−1 = W (Ttz), (6.7)

where Tt comes from the classical time evolution (equation 4.1) and is

Tt(q, p) =

(
cos(ωt) sin(ωt)

mω
−mω sin(ωt) cos(ωt)

)(
q

p

)
. (6.8)

Here we choose the Weyl-system

W (q, p) = χ
(
−mω

(qp
2

+ qx
))

ψ(x+ p). (6.9)

Proof. First we show that Kt/ω+t′/ω(x, y) =
∫
Kt/ω(x, z)Kt′/ω(z, y) (since ω is

fixed, this is equivalent to what we want to get). First observe that

| sin(t)| = |t|
| cos(t)| = 1

| tan(t+ t′)| = | sin(t+ t′)|
| cos(t+ t′)|

= |t+ t′|

for all t, t′ where sin is defined (|t| < 1). If we write

t+ t′

2tt′
= p−A(a0 + a1p+ a2p

2 + ...) (6.10)

and
tan(t) + tan(t′)

2 tan(t) tan(t′)
= p−B(b0 + b1p+ b2p

2 + ...) (6.11)

we see that A = B and a0 = b0, hence

λp

(
t+ t′

2tt′

)−1
= λp

(
− t+ t′

2tt′

)
= λp

(
− tan(t) + tan(t′)

2 tan(t) tan(t′)

)
. (6.12)
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Consider now∫
Kt/ω(x, z)Kt′/ω(z, y) =

∫
λp(2t)λp(2t

′)|t|−1/2|t′|−1/2

· χ
(
xz

sin t
− x2 + z2

2 tan t
+

zy

sin t′
− z2 + y2

2 tan t′

)
dz

= λp(2t)λp(2t
′)|tt′|−1/2λp(α)|2α|−1/2

· χ
(
−β2

2α
− x2

2 tan t
− y2

2 tan t′

)
dz,

where

α =
−1

2
(cot t+ cot t′) =

−1

2

sin(t+ t′)

sin t sin t′

β =
x

sin t
+

y

sin t′
.

Then∫
Kt/ω(x, z)Kt′/ω(z, y) = λp(2t)λp(2t

′)|tt′|−1/2λp(
−1

2
(cot t+ cot t′))

∣∣∣∣ tan t+ tan t′

tan t tan t′

∣∣∣∣−1/2
· χ
(
−β2

4α
− x2

2 tan t
− y2

2 tan t′

)
dz

= λp(2t+ 2t′)λp(1/2t+ 1/2t′)|t+ t′|−1/2λp(
−1

2
(cot t+ cot t′))

· χ
(
−β2

4α
− x2

2 tan t
− y2

2 tan t′

)
dz

= λp(2t+ 2t′)|t+ t′|−1/2χ
(
−β2

4α
− x2

2 tan t
− y2

2 tan t′

)
dz.

This equals Kt/ω+t′/ω(x, y) if and only if

−β2

4α
− x2

2 tan t
− y2

2 tan t′
=

xy

sin(t+ t′)
− x2 + y2

tan(t+ t′)
, (6.13)

where the left side is( x

sin t
+

y

sin t′

)2( sin(t+ t′)

sin t sin t′

)−1
1

2
− x2

2 tan t
− y2

2 tan t′

which equals

xy

sin(t+ t′)
+
x2

2

(
−1

tan t
+

sin t′

sin t sin(t+ t′)

)
+
y2

2

(
−1

tan t′
+

sin t

sin t′ sin(t+ t′)

)
which equals the right side of equation 6.13.
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Now we want to show that

UtW (q, 0) = W (Tt(q, 0))Ut, (6.14)

and similarly for (0, p) before we use the same argument as in the real case. This
is the same as showing∫

Kt(x, y)χ(−mωqy)ψ(y) dy = W (q cosωt,−qmω sinωt)

∫
Kt(x, y)ψ(y) dy

(6.15)
which is the same as∫

Kt(x, y)χ(−mωqy)ψ(y) dy = χ(−mωqx cosωt)χ

(
−mω−q

2mω cosωt sinωt

2

)
·
∫
Kt(x− qmω sinωt, y)ψ(y) dy

which is true if

Kt(x, y)χ(−mωqy) = χ(qx cosωt)χ

(
q2m2ω2 cosωt sinωt

2

)
Kt(x− qmω sinωt, y).

(6.16)
Looking at the definition of Kt we see that this is true if

χ

(
xy

sinωt
− x2 + y2

2 tanωt

)
χ(−mωqy) = χ(−mωqx cosωt)χ

(
q2m2ω2 cosωt sinωt

2

)
· χ
(

(x− qmω sinωt)y

sin t
− (x− qmω sinωt)2 + y2

2 tanωt

)
true if

xy

sinωt
− x2 + y2

2 tanωt
−mωqy = −mωqx cosωt+

q2m2ω2 cosωt sinωt

2
− qmωy +

xy

sinωt

− x2 + y2

2 tanωt
+ xqmω cosωt− q2m2ω2 sinωt cosωt

2

which clearly holds.
Let us now show that

UtW (0, p) = W (Tt(0, p))Ut, (6.17)

This is the same as showing∫
Kt(x, y)ψ(y + p) dy = W ((mω)−1p sinωt,−p cosωt)

∫
Kt(x, y)ψ(y) dy (6.18)

which follows if

Kt(x, y − p) = χ(−mω(mω)−1px sinωt)

· χ
(
−mω (mω)−1p sinωt · (p cosωt)

2

)
Kt(x+ p cosωt, y),



6.1. TIME EVOLUTION USING THE WEYL SYSTEM 65

true if

χ

(
x(y − p)

sinωt
− x2 + (y − p)2

2 tanωt

)
= χ(−px sinωt)χ

(
−p2 sinωt · cosωt

2

)
· χ
(

(x+ p cosωt)y

sin t
− (x+ p cosωt)2 + y2

2 tanωt

)
,

true if (equation also multiplied with 2)

−2xp

sinωt
− p2 − 2yp

tanωt
= −2px sinωt− p2 sinωt · cosωt+

+
2py cosωt− 2xp cos2 ωt− p2 cos3 ωt

sinωt
,

which is true (for all x and y) if and only if all

−p
2 cosωt

sinωt
= −p

2 cos3 ωt

sinωt
− p2 cosωt sinωt

2p cosωt

sinωt
= 2p

cosωt

sinωt

− 2p

sinωt
= −2p cos2 ωt

sinωt
− 2p sinωt

are true (the first equation is for the constant, the second for y, the third for x).
Showing these equations is easy.

Now we can do exactly the same as we did in the proof of proposition 2.20 to
show that

W (Ttz) = U(t)W (q, p)U(t)−1. (6.19)
This concludes our proof.

Theorem 6.2. Given W and Tt, there is only one time evolution Ut up to scalar
functions c(t) : Qp → T.

Proof. Let Ut and Vt be two different time evolutions, i.e.

UtW (z)U−t = W (Ttz)

VtW (z)V−t = W (Ttz),

so that

UtW (z)U−t = VtW (z)V−t

W (z) = U−tVtW (z)V−tUt

= (U−tVt)W (z)(U−tVt)
−1.

Since W is irreducible by theorem 4.4, the only operators commuting with W are
the scalars, hence

(U−tVt) = c(t)I

Vt = c(t)Ut,

where c(t) : Qp → T.
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6.2 Ordering, p-adic time, and stroboscopic mea-
suring

Before and after are important concepts referring to time, so we would like there
to be an ordering on pZp, the domain of p-adic sine and cosine. The only ordering
we have seen in the literature is the one we presented in section 3.3. This is
not preserved by time translation, as seen in proposition 3.19, and the following
comment. We do not know how to make sense of this, perhaps we need to consider
just pZ as the domain of sine (this is dense in pZp).

Another problem we face is how to understand why we only have the domain
pZp for time (assuming ω = 1), and not all of Qp. In the article [4] by Freund and
Olson they write about stroboscopic measurements, with a finite possible precision.
This could lead to a physical understanding of our theory.



Chapter 7

Further ideas

7.1 How many different quantum mechanics are
there?

Ordinary quantum mechanics is a triple (H,W,U), where H is a Hilbert space,Wqp

the Weyl system, and Ut the time evolution. Assuming the Hilbert spaces to be
separable and complex, we have an isomorphism between any two Hilbert spaces.
This unitary isomorphism can carry the Weyl system and the time evolution with
them (Weyl system specifies the coordinates we choose, time evolution specifies the
physical system we consider). It would be interesting to study how many different
descriptions we can have of the same system, and to consider how we use the
underlying group structure when H = L2(G).

7.2 Finding good Hamiltonians in real time

Using the ideas of chapter 5 we can look for different Hamilonians, and different
physical systems to find applications. Here it would be natural to use the algorithms
we have developed.

7.3 Weyl systems with real time

If we are able to find a generator for time evolution in classical physics (over p-
adic numbers) parametrized by t ∈ R, the we could use U(t) also with real time,
satisfying

U(t)W (z)U(t)−1 = W (Ttz). (7.1)
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7.4 Integration over R instead of over Qp

We can find an isomorphism by from L2(Qp) to L2(R) by using Ps from section
3.4. Define

φs : L2(Qp)→ L2(R) (7.2)

by
f∞ = φs(fp)(x) =

√
pfp(Psx) (7.3)

Claim 1. φs is an isomorphism onto L2(R+).

We think this can be proved by using that Ps is injective almost everywhere,
and surjective on R+, and proposition 3.25.



Appendix A

Notation

• H and Ĥ are operators, H is Hilbert space

• f̃ is the Fourier transform of the function f

• Ã = FAF−1 is the Fourier transform of the operator A

• Eigenstate, eigenfunction and eigenvector are all synonyms

Notation for some sets:

• a+B = {a+ b : b ∈ B}

• A+B = {a+ b : a ∈ A, b ∈ B}

• aB = {ab : b ∈ B}

• Zp = {x ∈ Qp : |x| ≤ 1} is the completion of Z in | − |p

• Bk = {x ∈ Qp : |x| ≤ pk}

• A+ = {x ∈ A : x ≥ 0}

• T = {x ∈ C : |x| = 1}

• (T,+) is the interval [0, 1] where 0 is identified with 1, under addition modulo
1.

Physicist’s notation:

• ψ = |ψ〉 is a vector, called a ket-vector, in a Hilbert space H

• 〈ψ| is a vector, called a bra-vector, in the dual of a Hilbert space

• 〈ψ|A|φ〉 is the operator A applied to the vector |φ〉 and then the inner product
of |ψ〉 with A(|φ〉)
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• The inner product 〈ψ|φ〉 is conjugate linear in it’s first entry (in ψ)

Some functions:

• bxc for x ∈ R is the floor function (greatest lower bound in Z)

• dxe for x ∈ R is the ceiling function (least upper bound in Z)

• δ(x) is the Dirac delta, δ(0) = 1 while all other values are 0.

• δy(x) is the delta distribution with mass one at y

• χp(x) = e2πi{x}

• γa(x) = e2πi{ax}

• {x} = {x}p =
∑−1
v(x) xip

i (when x =
∑∞
v(x) xip

i)

• |x| = |x|p is the norm of x ∈ Qp

• |x|∞ is the normal absolute value for x ∈ Q

• v(x) is the valuation (v : Qp → Z) with value given by |x| = p−v(x)

• f(A) = {f(a) ∈ C : a ∈ A} for f : B → C being any function and A ⊂ B



Appendix B

Figures

Here are the visualization of the Schwinger approximation on L2(R). The MatLab
code generating these figures is in appendix C.
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Figure B.1: The first 8 eigenvectors for the harmonic oscillator over L2(R) using
Schwinger approximation with input n = 12. The line is the exact solution, while
the diamonds represent the approximate solution. There is a small error at the
endpoints.
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Figure B.2: The first 8 eigenvectors for the harmonic oscillator over L2(R) using
Schwinger approximation with input n = 81. The line is the exact solution, while
the diamonds represent the approximate solution. There is no discernible error.
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Appendix C

Matlab code for Schwinger
approximations

Note that you can copy-paste one block at a time from the MatLab-files attached
in this appendix into MatLab.

Figure C.1: The MatLab code for the real Schwinger approximation (see chapter
2.7).

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % FiniteApproxReal.m
3 % Author: Haakon C. Bakka
4 % Date 21 Feb 2012
5 %
6 % This script calculates finite approximations using a Schwinger
7 % system, where the derivative is the fourier transform of the
8 % position operator.
9 %

10 % Requires: createHamiltonianHarmonicOscillator.m in the same folder.
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12

13 % Clean workspace
14 clc; clear; close all;
15

16 % SECTION: INPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 % #Points in the approximation
18 n = 41;
19 % Stepsize when plotting the analytic solution
20 plotStepsize = 0.01;
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22

23 % SECTION: CONSTANTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 % Hermite polynomials (physicists version)
25 ph = { @(x) ones(length(x),1), ...
26 @(x) 2*x, ...
27 @(x) 4*x.^2−2, ...
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28 @(x) 8*x.^3−12*x, ...
29 @(x) 16*x.^4−48*x.^2+12, ...
30 @(x) 32*x.^5−160*x.^3+120*x, ...
31 @(x) 64*x.^6−480*x.^4 + 720*x.^2 − 120, ...
32 @(x) (128*x.^7 − 1344*x.^5 +3360*x.^3 − 1680*x) };
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35 % SECTION: COMPUTATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 % Create the hamiltonian matrix H
37 [ xValues, H ] = createHamiltonianHarmonicOscillator( n, 1 );
38 % Removing errors resulting in imaginary numbers
39 H=real(H);
40 % Solving the problem
41 [eigVectors,temp] = eig(H);
42 eigValues = diag(temp);
43 % Sorting the eigenvalues (increasing) and eigenvectors (dependent)
44 [eigValuesSorted,orginalPositions] = sort(eigValues);
45 eigVectorsSorted = eigVectors(:,orginalPositions);
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47

48 % SECTION: PLOT APPROXIMATION TOGETHER WITH ANALYTHIC SOLUTION %%%%%%
49 % X−coordinates for analythic solution
50 gridXValues = (xValues(1):plotStepsize:−xValues(1))';
51 % A constant used in every for−loop
52 constant = pi^(−1/4) * exp(−gridXValues.^2/2);
53 figure
54 for i = 0:7
55 subplot(4,2,i+1)
56 % Analythic solution y−values
57 y = (2^i * factorial(i))^(−.5)*constant.*ph{i+1}(gridXValues);
58 % Plot analythic solution (blue line)
59 plot(gridXValues, y, 'color', 'blue')
60 hold on
61 % Eigenvector for the eigenvalue number i (0−indexed)
62 approxY = eigVectorsSorted(:, i+1);
63 % Normalization (Imbedding into hilbert space is isometric)
64 tempMax = max(abs(approxY));
65 temp1 = find(abs(approxY)==tempMax,1);
66 temp2 = find(gridXValues ≥ xValues(temp1), 1);
67 tempSign = sign(approxY(temp1))*sign(y(temp2));
68 approxY = approxY*(n/2/pi)^(1/4)*tempSign;
69 % Plotting finite approximation as green diamonds
70 plot(xValues', approxY, 'color', 'g', ...
71 'LineStyle','none', 'Marker', 'd', 'MarkerSize', 7, ...
72 'MarkerFaceColor', 'g')
73 title(sprintf('Eigenfunction %d', i+1))
74 end
75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure C.2: The MatLab code for creating the Hamiltonian for the harmonic os-
cillator used in the algorithm in figure C.1.

1 function [ xValues, H ] = createHamiltonianHarmonicOscillator( n, k )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % createHamiltonianHarmonicOscillator.m
4 % Author: Haakon C. Bakka
5 % Date 24 Apr 2012
6 %
7 % This function constructs the Hamiltonian of the harmonic oscillator
8 % for the finite−dimensional approximation. It has not been optimized
9 % for speed (it is more than fast enough for our purposes).

10 %
11 % Input:
12 % n − the number of dimensions (or #points)
13 % k − a scaling constant for the potential, typically 1 or 0,
14 % where 1 gives the harmonic oscillator and 0 a free particle
15 %
16 % Output:
17 % xValues − the x−coord. at which we approximate the wave−functions
18 % H − the Hamiltonian (nxn matrix)
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20

21 % Grid x and scaling constant \epsilon_N
22 x = (−1/2)*(n−1):(1/2)*(n−1);
23 epsn = sqrt(2*pi/n);
24

25 % Potential V
26 V = diag(x.^2*epsn^2);
27

28 % Discrete fourier transform matrix (unitary)
29 Fourier = exp (−1i*(x'*x)*epsn^2) / sqrt(n);
30

31 % Derivative −(d^2/dx^2)
32 D = Fourier' * V * Fourier;
33

34 % Hamiltonian
35 H = D/2 + k*V/2;
36

37 % X−coordinates (used mainly for plotting the results)
38 xValues = x*epsn;
39

40 end
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Figure C.3: The MatLab code for the p-adic approximation (see chapter 3.6).

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % FiniteApproxPadic.m
3 % Author: Haakon C. Bakka
4 % Date 24 Apr 2012
5 %
6 % This script calculates finite approximations, using a Schwinger
7 % system, for the observable H. (H must be self−adjoint.)
8 %
9 % Requires: createPadicHamiltonianHarmOsc.m in the same folder.

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 % Clean workspace
13 clc; clear; close all
14 % INPUT
15 n = 3;
16 p = 3;
17

18 % State problem
19 [ xValues, H ] = createPadicHamiltonianHarmOsc(p, n , 'norm');
20

21 % SECTION: Solve problem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 % Remove imaginary errors in H
23 H = real(H);
24 % Find eigenvalues (this is by far the most time consuming operation)
25 ev = real(eig(H));
26 % Sort eigenvalues from lowest to highest
27 ev = sort(ev);
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29

30 % SECTION: Display results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 % Display the 20 first eigenvalues
32 if length(ev)>15
33 disp ('The first 15 eigenvalues are')
34 disp (ev(1:15))
35 else
36 disp ('The first eigenvalues are')
37 disp (ev)
38 end
39 % Round off errors (needed for counting)
40 decimals = 4;
41 ev = round(ev*10^decimals)*10^(−decimals);
42 % Counting them using histogram function on a sorted vector
43 [numberOfDistinct,listOfDistinct] = hist(ev,unique(ev));
44 display(:,1) = listOfDistinct;
45 display(:,2) = numberOfDistinct;
46 disp('The eigenvalues, and the number of occurences of each are')
47 disp(display)
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



79

Figure C.4: The MatLab code for creating the Hamiltonian for the harmonic os-
cillator used in the algorithm in figure C.3.

1 function [xValues,H]=createPadicHamiltonianHarmOsc(p,n,type)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % createHamiltonianHarmonicOscillator.m
4 % Author: Haakon C. Bakka
5 % Date 24 Apr 2012
6 %
7 % This function constructs the Hamiltonian of the harmonic oscillator
8 % for the finite−dimensional p−adic approximation. It has been
9 % optimized for speed.

10 %
11 % Input:
12 % p − prime
13 % n − the level of precision (p^{2n}) points)
14 % k − a scaling constant for the potential, typically 1 or 0,
15 % where 1 gives the harmonic oscillator and 0 a free particle
16 %
17 % Output:
18 % xValues − the x−coord. at which we approximate the wave−functions
19 % H − the Hamiltonian (nxn matrix)
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21

22 % Length (# points) len, grid x and scale \epsilon_N
23 len = p^(2*n);
24 x = (0:len−1)';
25 epsn = p^(−n);
26

27 % Potential V
28 if strcmp(type,'norm')
29 % p−adic norm of x
30 xnorm = ones(p^(2*n),1);
31 for k = 1:(2*n)
32 xnorm(find(mod(x,p^k)==0))= p^(−k);
33 end
34 xepsnnorm = xnorm * p^n;
35 V = spdiags(xepsnnorm.^2, 0, len,len);
36

37 elseif strcmp(type, 'rationalPart')
38 % Rational part \Leftrightarrow (mod 1)
39 rationalPart = mod(x*epsn, 1);
40 V = spdiags(rationalPart.^2, 0, len,len);
41

42 elseif strcmp(type, 'justMultiply')
43 V = spdiags(x.^2*epsn^2, 0 , len, len);
44

45 else
46 disp('error, method not recognized')
47 V = zeros(len);
48 end
49

50 % Derivative −(d^2/dx^2)
51 D = ifft(V*fft(eye(len)));
52

53 % Hamiltonian
54 H = D/2 + V/2;
55

56 % xValues (for plotting)
57 xValues = x*epsn;
58

59 end
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