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Abstract 

The cracking behaviour of reinforced concrete (RC) ties are investigated by conducting virtual experiments 

using nonlinear finite element analysis (NLFEA). The assumptions in the model are verified by benchmarking 

the classical experiments of Bresler and Bertero (1968) and Yannopoulos (1989), which shows good agreement 

in comparison of steel strains, development of crack widths and crack spacing. Furthermore, virtual experiments 

on four difference RC ties show that the size of the cover and not the bar diameter governs the crack spacing and 

thus implicitly the crack width. An increase of the bar diameter has a beneficial effect in reducing the steel stress 

and the associated steel strains, which in turn reduces the crack width. Finally, a single bond-slip curve is 

sufficient in describing the average bond transfer of an arbitrary RC tie. 

Keywords: Cracks & cracking; bond; finite element methods 
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1. Introduction 

In deriving an analytical crack width calculation model for reinforced concrete (RC) elements, the role of (i) 

bond at the steel-concrete interface and (ii) cover becomes two key parameters (CEB, 1985; Balász et al., 2013). 

This paper investigates these two parameters using nonlinear finite element analyses (NLFEA), which were 

validated against classical experiments. The tensile strength of concrete, is a third key parameter. This parameter 

has been investigated thoroughly in the research project of CEOS.fr (2016) at which the scale effect is 

accounted for in determining the concrete tensile strength, and will not be addressed in detail here. 

 

The role of bond and cover are implemented in the empirical formulation recommended by ACI (ACI, 2001), 

and in the semi-empirical formulation recommended by Eurocode 2 (EC2) (CEN, 2004) and fib Model Code 

2010 (MC2010) (fib, 2013) in a relatively simplified manner. The bond and cover term in the crack spacing 

formula of EC2 and MC2010 are based on two different mechanical models and are as such in conflict with the 

basic principles in statics (Tan et al., 2018a). The authors in this paper claim that a more mechanically consistent 

crack width calculation model can be formulated by including the two key parameters in deriving and solving 

the second order differential equation for the slip. In such an analytical model, the choice of a local bond-slip 

curve becomes essential. While the relevance of a local bond-slip curve is well understood for pull-out tests (fib, 

2000), this seems not to be the case for RC ties subjected to pure tension. Although several authors have 

contributed in the discussions by conducting experiments on concentric tension specimens (Nilson, 1972; Dörr, 

1978; Mirza and Houde, 1979; Somayaji and Shah, 1981; Jiang et al., 1984), the answer to the question of what 

a local bond-slip model physically represents in an RC tie subjected to pure tension still remains unclear. There 

seems to be consensus in the literature (Russo and Romano, 1992; Balász, 1993; Debernardi and Taliano, 2013; 

Debernardi and Taliano, 2016) in choosing the local bond-slip model proposed by Eligehausen et al. (1983) and 

later adopted by MC2010. The parameters involved, however, were determined empirically based on pull-out 

tests in which the confining concrete is subjected to compression. The problem thus becomes related to choosing 

proper values that are representative in the case of RC ties subjected to pure tension. 

 

In this study, the authors seek to contribute to a better understanding of the cracking behaviour of RC ties with 

deformed steel bars subjected to pure tension by conducting virtual experiments using NLFEA. Such virtual 

experiments offers the possibility of monitoring the internal behaviour of the confining concrete, a convenience 
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that often is limited in physical experiments. First, important assumptions in the finite element (FE) model are 

discussed. Secondly, the classical experiments of Bresler and Bertero (1968) and Yannopoulos (1989) are 

benchmarked to investigate the validity of the assumptions in the FE-model and the cracking behaviour of RC 

ties. Then, the role of bar diameter and cover are investigated and discussed by conducting virtual experiments 

on four different RC ties. Finally, values for the parameters in the local bond-slip curve recommended by 

MC2010 (fib, 2013) are proposed. These can be used in an analytical crack width calculation model after having 

solved the second order differential equation for the slip. The authors in this paper are currently working on such 

an approach (Tan et al. (2018b). 

 

2. Finite element model 

2.1 Main assumptions 

Detailed NLFEA of RC ties with small element sizes (< 10 mm) are normally carried out using interface 

elements between concrete and steel, e.g. as suggested by Lutz (1970) and conducted by Tammo et al. (2009). 

This can be useful to include for effects such as the wedging action between the bar ribs and the surrounding 

concrete without physically modelling the geometry of the bar ribs, as well as including for the effect of slip 

when adhesion breaks down. In this study, interface elements are used to allow for separation but not any slip, 

meaning that the concrete at the interface is assumed to follow the longitudinal displacement field of steel 

completely. This further implies that the bond transfer at the interface is mechanically maintained, although the 

concrete is separated radially from the steel bar. This assumption is based on the experimental behaviour of RC 

ties reported in the literature, in which there is a general agreement that the crack width at the steel bar surface is 

significantly smaller than that on the concrete surface in the case of deformed steel bars (Watstein and Mathey, 

1959; Broms, 1968; Husain and Ferguson, 1968; Yannopoulos, 1989; Beeby, 2004; Borosnyói, 2010). The 

research of Goto (1971) and Tammo and Thelandersson (2009) concludes that this occurs due to the rib 

interaction between concrete and steel, which causes the concrete to crack internally, thus allowing it to follow 

the longitudinal displacement field of steel at the interface as depicted in Fig. 1(a). 

 

Note that the assumption of neglecting the crack width at the steel bar surface allows the use of a relatively 

simple FE-model, in which shear deformations in the steel concrete interface are prohibited and the explicit 

modelling of the bar ribs is avoided. This means that localized bond stresses that would arise at the bar ribs are 
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smeared over the rebar. This also implies that effects related to the rib geometry or other bond conditions, e.g. 

wedging action or slip due to loss of adhesion, cannot be captured in this FE-model. These effects, however, 

remain normally limited in RC ties with deformed steel bars subjected to pure tension (fib, 2000) making the 

simple FE-model adequate for the purpose of this study. 

 

2.2 Axisymmetric model 

The NLFEA were carried out using quadratic, axisymmetric, quadrilateral elements in the finite element 

program DIANA (DIANA FEA BV, 2016). A linear elastic material model was used for steel, while a non-

linear fracture mechanics material model with rotating cracks based on a total strains formulation was used for 

concrete. The parabolic curve according to Feenstra (1993) was used for the compressive behaviour, while the 

softening curve according to Hordijk (1991) was used for the tensile behaviour. The Poisson’s effect was 

gradually reduced in accordance with the total strains formulation as the cracking damage progressed, while 

lateral influences on the compressive behaviour were neglected. Geometry, interface layer, loading and 

boundary conditions for the FE-model are as shown in Fig. 1(b). Symmetry allowed for modelling half of the 

length only. 

 

Loads were monotonically increased in a displacement-controlled manner using regular Newton-Raphson 

iterations. The convergence criteria were force and energy based with the tolerance value of 0.01 and 0.001, 

respectively, in accordance with the Dutch Guidelines for NLFEA of Concrete Structures (Belletti et al., (2014); 

Hendriks et al., 2017). The element size was adjusted to obtain approximately 6-10 elements over the cover and 

1-3 elements over the steel bar radius. 

 

Interface elements between concrete and steel were chosen to have a thickness of          . A non-linear 

elasticity model with nonlinear properties in radial direction and a constant stiffness in shear direction were 

chosen to allow for radial separation only in accordance to the discussed assumptions in the previous section. 

The elastic radial and shear modulus for the interface elements were derived from the modulus of elasticity for 

concrete,   , i.e. respectively as       and      (    )   . The elastic radial modulus was reduced with a 

factor of       when a tensile strain of           at the interface was reached, in order to simulate the radial 

separation in a stable manner. 
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3. Validation of finite element model 

3.1 Test set-up 

The classical experiments of Bresler and Bertero (1968) and Yannopoulos (1989) were benchmarked to 

investigate the validity of the assumptions in the FE-model. The investigated RC tie named specimen H by 

Bresler and Bertero (1968) was 152 mm (6 in) in diameter, had a length of 406 mm (16 in), and was embedded 

with a deformed steel bar with diameter 28.7 mm (1.13 in) in the centre of the cross-section. The length of the 

specimen was chosen as twice the mean crack spacing obtained from the pilot studies of 1829 mm (72 in) long 

RC ties with similar sectional properties. The specimen was axially cyclic loaded in the steel bar ends in the 

experiments, and a notch was cut at the mid-length to induce a primary crack at this section. Strain gauges were 

mounted in a sawed-out canal in the centre of the steel bar to measure the steel strains over the length. The 

reduction of the steel bar area due to the sawed-out canal was accounted for by subtracting an inner radius of 5.6 

mm from the outer radius of the steel bar in the FE-model. This corresponded to the given nominal area of 548 

mm
2
 (0.85 in

2
) for the steel bar in the experiments. 

 

The six RC ties investigated by Yannopoulos (1989) were 76 mm in diameter, had a length of 100 mm, and 

were embedded with a deformed steel bar with diameter 16 mm in the centre of the cross-sections. The length of 

the specimens was limited to avoid formation of a new primary crack and was based on the mean crack spacing 

obtained from pilot studies carried out on 800 mm long RC ties with similar sectional properties. The RC ties 

were axially and monotonically loaded at the steel bar ends while measuring the development of the crack 

width. 

 

The material parameters given in the experiments are summarized in Table 1 and were used in validating the 

FE-model. Material parameters such as the Poisson’s ratio and the fracture energy were not given in the 

experiments and were derived in accordance with the recommendations in the Dutch Guidelines for NLFEA of 

Concrete Structures (Hendriks et al., 2017). 

 

3.2 Comparison of steel strains, crack widths and crack spacing 

The comparison of the obtained steel strains from the NLFEA and the experimental steel strains of Bresler and 

Bertero [(1968)] at four different load levels are shown in Fig. 2(a). The two lowest load levels corresponding to 
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steel stresses of 33 MPa and 65 MPa give good comparisons of the steel strains, as expected, since the 

experimental strains at these load levels are obtained from the first monotonic load cycle. The experimental 

strains at the two higher load levels corresponding to steel stresses of 195 MPa and 242 MPa, however, are 

obtained from the second load cycle. Cyclic loading is known to have a significant effect on the deterioration of 

bond even for the first repeated loads (Dörr, 1978; fib, 2000), which could explain the less stiff response of the 

experimental steel strains in the second load cycle compared to that obtained from the monotonic loading in the 

NLFEA. Nevertheless, the comparison of the steel strains obtained from the NLFEA and the experiments show 

in general a good agreement. 

 

A comparison of the development of the crack width with increasing steel stresses obtained in the experiments 

of Yannopoulos (1989) and in the NLFEA is shown in Fig. 2(b). The comparison of the developed crack width 

also show good agreement, however, it is observed that the NLFEA slightly overestimates the crack width for a 

given steel stress. . 

 

Separate NLFEA were conducted to investigate if the FE-model also could predict crack spacing similar to that 

obtained in the pilot studies of Bresler and Bertero (1968) and Yannopoulos (1989) on longer specimens. The 

RC tie lengths were thus increased in the FE-model to investigate this. The strain distributions in Fig. 3(a) and 

3(b) respectively shows that a new crack formed in the NLFEA at a distance of approximately 200 mm from the 

loaded end for the long “Bresler and Bertero” specimen and at approximately 80 mm for the long 

“Yannopoulos” specimen. This corresponds well to the mean crack spacing of 203 mm and 90 mm respectively 

obtained in the experiments of Bresler and Bertero (1968) and Yannopoulos (1989) on longer specimens. 

 

The good agreement in comparison of steel strains, crack widths and crack spacing confirms the validity of the 

discussed assumptions, and further show the ability of the FE-model to simulate the physical behaviour of RC 

ties realistically. 
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4. The physical behaviour of RC ties 

4.1 General 

The physical behaviour of RC ties is now discussed and elucidated using the results from the NLFEA conducted 

on the “Bresler and Bertero” specimen. Details for the test set-up were presented in section 3.1. A contour plot 

of exaggerated radial displacements at a steel stress           , which is just before a primary crack forms 

at the symmetry section, is shown in Fig. 4(a). It is noticed that the concrete is separated radially from the steel 

bar close to the loaded end due to the inflicted shear stress at the concrete inner surface. The radial 

displacements are counteracted by the stiffness of the concrete in the hoop direction, causing a confining 

pressure to the steel bar. Splitting cracks arise if the hoop stresses exceed the tensile strength of concrete as can 

be observed in Fig. 4(b). Actually, the splitting cracks causes a build-up of radial and shear stresses close to the 

loaded end, before reaching the peaks at the approximately same location over the bar length as can be observed 

in Fig. 4(c). Further propagation of internal splitting cracks as the load increases causes additional movement of 

the stress peaks towards the symmetry section. 

 

It should be mentioned that the maximum radial displacements in the analyses are in the magnitude of      

mm, which still is small compared to typical rib dimensions. This justifies the assumption of claiming that the 

mechanical bond is maintained although the concrete is separated radially from the steel bar. Finally, these 

observations suggests that the shear transfer is dependent on the stiffness of the confining concrete. 

 

4.2 Lightly versus heavily loaded members 

The interaction of the load level and the specimen length is significant for the cracking behaviour of RC ties. 

Russo and Romano (1992) were the first to introduce the principles of the comparatively lightly loaded member 

(CLLM) behaviour and the comparatively heavily loaded member (CHLM) behaviour, which are conceptually 

visualized in Fig. 5(a) and (b) respectively. The figures depict the steel and the corresponding concrete strain 

distribution of a long specimen with length          and a short specimen with length         , 

exposed to the same loading. To clarify, the arrows in Fig. 5(b) indicate the corresponding concrete surface 

strains to the steel strains for the short specimen. The main difference being is that the strains become 

compatible (     ) at a certain distance    from the loaded end and remain constant along the remaining 

length in the case of CLLM, while in the case of CHLM the strains remain incompatible (     ) over the 
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entire specimen length. The point of compatibility    moves towards the symmetry section upon increasing the 

load, and will have moved completely to the symmetry section (      ) for a sufficiently large load in the 

case of CLLM. Upon even further loading, strains become incompatible at the symmetry section and a primary 

crack will only have the possibility to form here if the concrete strains exceed the cracking strain. The specimen 

can then be said to have undergone a smooth transition from the CLLM behaviour to the CHLM behaviour. If 

the concrete strains exceed the cracking strain at any location prior to the symmetry section, i.e.   (  )     , a 

new primary crack will instead form here thus generating a new member length         . The new member 

will then exhibit either a CLLM behaviour or a CHLM behaviour depending on the load level and the member 

length. 

 

An analogy of the CLLM and CHLM behaviour can be drawn to the so-called crack formation stage and 

stabilized cracking stage, respectively. However, they are not the same. This can be explained by the fact that a 

smooth transition between the CLLM and the CHLM behaviour is possible, which is not the case in the concept 

of crack formation stage and stabilized cracking stage. 

 

5. The influence of bar diameter and cover on the cracking behaviour of RC ties 

5.1 Virtual experiments 

The bar diameter and cover are essential parameters in calculating the crack spacing and the crack width in the 

semi-empirical formulas recommended by EC2 (CEN, 2004) and MC2010 (fib, 2013). Both parameters have 

been subject of major discussions for several decades in developing the semi-empirical formulas (Saliger, 1936; 

Base et al., 1966; Ferry-Borges, 1966; Broms, 1968; Gergely and Lutz, 1968; Beeby, 1979; Beeby, 2004; 

Caldentey et al., 2013; Tan et al., 2018a). For this purpose, the FE-model established and verified in this study 

has been used to conduct virtual experiments on RC ties to better understand the influence of bar diameter and 

cover. 

 

The behaviour of four circular specimens, reinforced with one concentric deformed steel bar were investigated. 

The specimens were named       ,       ,        and       , indicating that the bar diameter   either 

was 20 or 32 mm and that the cover   either was 40 mm or 90 mm. A concrete grade C35 according to MC2010 
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(fib, 2013) was chosen for the concrete, while a Young’s modulus of               and a yield strength of 

           was chosen for the steel. The Poisson’s ratio and the fracture energy were  derived in accordance 

with the recommendations in the Dutch Guidelines for NLFEA of Concrete Structures (Hendriks et al., 2017). 

The analysis procedure was to first conduct CLLM studies on longer specimens (        ) to obtain a 

typical crack spacing    , after which a separate analysis on the cracked specimen was conducted to include for 

the CHLM behaviour. 

 

5.2 The influence of bar diameter 

5.2.1 CLLM behaviour 

The bond stress distributions for the CLLM behaviour of        vs.        and        vs.        are 

compared at the load levels just before a primary crack forms in Fig. 6(a) and (b), respectively, with Table 2 

showing the corresponding condition in the specimens. The comparison shows that the bond stress distributions 

are influenced greatly by the bar diameter and differs in general from one another. It is noticed though, that the 

bond stress distributions align and become negligibly small (       ) at the approximately same location 

over the bar length, indicating the end of the transfer length and that a primary crack is about to form in the 

vicinity. The concrete force resultant at a distance    from the loaded end is obtained by integrating the bond 

stress distribution  ( ) as  

  (   )  ∫  ( )    

  

 

       
      

 

(1) 

which is limited by the cracking force as  

          (2) 

Although the bar diameter influences the bond stress distribution and thus the concrete force resultant in Eq. (1), 

it does not significantly affect the limit value in Eq. (2) nor influence the transfer length as pinpointed out for 

Fig. 6(a) and (b). This means that a primary crack forms at the approximately same location over the bar length 

for specimens having similar cover, irrespective of the bar diameter size as also can be observed in Table 2. 
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5.2.2 CHLM behaviour 

The strain distribution for the CHLM behaviour of        vs.        and        vs.        with 

specimen lengths similar to the crack spacing in Table 2 is shown in Fig. 7(a) and (b) at two steel stress levels, 

while the development of the crack width with steel stresses is shown in Fig. 7(c) and (d). It is observed that the 

bar diameter influences the strain distribution over the bar length for a given steel stress. The 20 mm specimens 

experience more variation in steel strains than the 32 mm specimens. This can be explained by the fact that the 

32 mm specimens are exposed to a substantially higher load level than the 20 mm specimens for a given steel 

stress. This implies that the confining concrete for the 32 mm specimens is exposed to more internal cracking 

than the 20 mm specimens, which has a significant limiting effect on the tension stiffening. Less tension 

stiffening results in larger crack width for a given steel stress as can be observed in Fig. 7(c) and (d), which can 

be explained by the following. The crack width is obtained by integrating the difference in steel strains and 

concrete strains at the specimen surface over the bar length as  

  ∫ (     )  

   

 

 

 

(3) 

Acknowledging from Fig. 7(a) and (b) that the concrete strains are negligible in the case of CHLM behaviour, 

yields that the major contribution to the crack width must be the steel strains. Hence, larger reduction in steel 

strains over the specimen length results in smaller crack width. It should be mentioned though, that large bar 

diameters have a beneficial effect in reducing the steel stress and the associated steel strains for a given load 

level, which in turn reduces the crack width. 

 

5.3 The influence of cover 

5.3.1 CLLM behaviour 

The bond stress distributions for the CLLM behaviour of        vs.        and        vs.        are 

compared in Fig. 8(a) and (b), respectively, at two different conditions, one at a similar load level (          

and          ) and the other corresponding to the load levels in Table 2, which is just before a primary crack 

forms. The comparison of the bond stress distributions at the similar load level shows that they are quite similar, 

implying that the cover size does not affect the bond transfer significantly for a given load level and bar 

diameter in the case of CLLM behaviour. However, comparing the bond stress distributions at the load levels 
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just before a primary crack forms shows that both bond stresses and transfer lengths increase with increasing 

load level and cover, which can be explained mechanically by the following. A larger cover increases the 

cracking force in accordance with Eq. (2). The concrete force resultants in accordance with Eq. (1) though, 

remain approximately the same at the load level just before a primary crack forms in the specimen having a 

smaller cover since the bond stress distributions should be quite similar for a given load level. This means that 

the concrete force resultant for the specimen having a larger cover only can increase and approach its cracking 

force by increasing the load level. This in turn results in a larger bond stress distribution and transfer length, 

which also can be observed in Table 2 by comparing mean bond stresses and crack spacing for specimens 

having similar bar diameter but different covers. 

 

5.3.2 CHLM behaviour 

The strain distribution for the CHLM behaviour of        vs.        and        vs.        with 

specimen lengths similar to the crack spacing in Table 2 is shown in Fig. 9(a) and (b), while the development of 

the crack width with steel stresses is shown in Fig. 9(c) and (d). The specimens         and         are 

included to represent the hypothetical case in which        and        respectively were ought to have the 

same specimen lengths as        and       . It is noticed that the variation in steel strains and the 

development of crack width nearly remains the same for specimens having similar lengths and bar diameters but 

different covers. This means that it is the specimen length in which the steel strains are integrated over that 

governs the crack width and not necessarily the cover itself. Hence, the cover does not explicitly influence the 

crack width per sé, but contributes implicitly by increasing the crack spacing. Larger crack spacing simply 

results in larger crack width as indicated in Fig. 9(c) and (d). 

 

5.4 The influence of bar diameter and cover on the crack spacing 

The discussions of Fig. 6(a) and (b) and Fig. 8(a) and (b) suggest that the crack spacing is a geometrically 

dependent parameter, which is mainly governed by the size of the cover but not the bar diameter. Comparable 

conclusion was drawn by Broms (1968), Gergely and Lutz (1968), Beeby (2004) and Tan et al. (2018a), 

primarily by discussing the limited influence of        on the development of crack widths observed in several 

published experiments. A mechanical explanation to this finding is that the concentrated forces inflicted at the 

steel bar ends at the moment of cracking,       (         )       , should be close for two specimens 
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having similar cover but different bar diameters since the concrete area    remains almost the same as discussed 

earlier, see Table 2. This means that the concentrated forces inflicted at the steel bar ends should disperse in a 

similar fashion over the cover to obtain an even distribution of the stresses over the cross section, further 

implying that the transfer lengths also should be close. Fig. 10(a), which shows how the concrete force 

resultants gradually increase from the loaded end at the load levels corresponding to Table 2, supports this 

postulation. Another supporting evidence can be observed in Fig. 10(b), which shows the development of the 

corresponding concrete surface stresses over the respective transfer lengths. 

 

Although the cover appears to be governing for the crack spacing in virtual experiments, in physical 

experiments the bar diameter could still have a substantial influence. This is mainly owing to the large scatter of 

the tensile strength of concrete in real life structures (CEOS.fr, 2016). The influence of the tensile strength will 

cause a structure to crack more randomly and not necessarily at the end of the transfer length during the crack 

formation. The division of the member length due to the random cracking will cause an interaction of the CLLM 

and CHLM behaviour at which both the cover and the bar diameter together play significant roles for the further 

development of the crack pattern. 
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6. Local bond-slip curve 

6.1 Determining the local bond-slip curves 

The slip distributions for the analysed specimens are approximated by numerically integrating the difference in 

steel and concrete strains over the bar lengths using the method of Riemann sum as 

 ( )  ∫(     )  

 
 

 

 ∑ (       )

         
 
 

   

 

(4) 

where 

 ( ) is the slip at an arbitrary section   

   is strain at the steel surface 

   is strain at the outer concrete surface 

   is the x-coordinate of integration points adjacent to the steel and outer concrete surface 

    and     are respectively steel and concrete strains at these integrations points 

   is half the FE length 

 

A 2x2 integration scheme was applied for the FE.  Furthermore, using the strains adjacent to the outer concrete 

surface implies that the slip is composed of two parts: the relative displacement occurring at the interface 

between concrete and steel due to formation of internally inclined cracks and shear deformations occurring over 

the cover. This conforms to the definition of slip in accordance with fib bulletin No. 10 (2000) and Tan et al. 

(2018a). Local bond-slip curves are finally obtained by extracting the shear stresses in steel integration points 

adjacent to the steel bar surface at the location of the evaluated slip. 

 

6.2 The local bond-slip curves 

Local bond-slip curves at coordinates    ,      ,      ,        and       for steel stresses up to 

        have been extracted from all of the analysed specimens in this study and plotted in Fig. 11. Both 

CLLM and CHLM behaviour with specimen lengths corresponding to Fig. 6, 7, 8 and 9 have been included in 

the plots. Fig. 11 shows that the local bond-slip curves in general vary with the geometry of the RC tie. 

However, there are some significant resemblances. Except for the post peak region, which occurs at relatively 

large steel stresses, the local bond-slip curves are seen to exhibit quite similar behaviour independent of the 
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location over the bar length for a given geometry. The exception are the local bond-slip curves located in the 

vicinity of the primary crack (   ) owing to the combined formation of inclined and splitting cracks taking 

place here, as could be observed in Fig. 4(b). This suggests that one local bond-slip curve is sufficient in 

describing the mean bond transfer for a certain RC tie. Moreover, the bond-slip curve includes the effect that the 

stiffness reduction of the confining concrete has on reducing the bond transfer due to internal cracking. 

 

The local bond-slip curve proposed by Eligehausen et al. [(1983)] and later adopted by MC2010 [(2013)]  

    (
 

  

)
 

 
(4) 

is plotted with the parameters           ,           and        in Fig. 11, while Fig. 12 shows all of 

the obtained bond-slip curves plotted together with Eq. (4). It is seen that the chosen parameters for Eq. (4) tend 

to serve as a mean for all of the obtained bond-slip curves, irrespective of geometry and location over the bar 

length. This has an important practical significance in the sense that only one bond-slip curve seems to be 

necessary in describing the average behaviour of an arbitrary RC tie. In fact, solving the second order 

differential equation for the slip analytically using the bond slip curve in Eq. (4) is seen to yield both consistent 

and conservative predictions for the crack width and crack spacing in Tan et al. (2018b). This yields ultimately 

an analytical model that is capable of replicating the NLFEA conducted in this paper. 
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7. Conclusions 

Based on the findings in this study, the following conclusions can be drawn 

- The FE-model used to conduct virtual experiments is based on the assumption that the concrete follows 

the longitudinal displacement field of steel at the interface, which has proven to predict the cracking 

behaviour of cylindrical RC ties quite accurately. 

- Virtual experiments on four different RC ties show that the crack spacing can be proven mechanically 

to be a geometrically dependent parameter governed by the size of the cover, and not the bar diameter. 

In physical experiments, however, the bar diameter could still have a substantial influence. This is due 

to the large scatter of the tensile strength, which will greatly influence the crack spacing and thus the 

interaction of the CLLM and CHLM behaviour. 

- The cover size does not explicitly increase the crack width per sé, but contributes implicitly by 

increasing the crack spacing the steel strains are integrated over. Larger crack spacing simply results in 

larger crack widths. 

- Large bar diameters have a beneficial effect in reducing the steel stresses and the appurtenant steel 

strains, which in turn reduce the crack widths. 

- A local bond-slip curve includes for the effect that the stiffness reduction of the confining concrete has 

on the bond transfer due to internal cracking. Moreover, one bond-slip curve is sufficient in describing 

the average bond behaviour of an RC tie with arbitrary geometry. This has a practical significance that 

enables an analytical model capable of replicating the NLFEA results. 
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List of notations 

 

    Area concrete 

    Area steel 

   Cover 

    Modulus of elasticity concrete 

    Modulus of elasticity steel 

    Force resultant concrete 

     Cracking force concrete 

    Compressive strength concrete 

     Tensile strength concrete 

    Yield strength steel 

    Tensile fracture energy concrete 

     Compressive fracture energy concrete 

   Bar length 

   Slip 

    Slip parameter in bond-slip curve according to MC2010 

   Position over the bar length 

     Crack spacing 

    x-coordinate of integration points adjacent to the steel and outer concrete surface 

    Transfer length 

 

   Half FE length 

  Curve parameter in bond-slip curve according to MC2010 

   Strains at outer concrete surface 

    Concrete strains at integration points 

    Cracking strain concrete 

   Strains at steel surface 

    Steel strains at integration points 

    Poisson’s ratio concrete 

    Poisson’s ratio steel 

      Reinforcement ratio 

    Steel stress 

    Bond stress parameter in bond-slip curve according to MC2010 

       
  Mean bond stress over the crack distance 

  Bar diameter 
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Table 1. Material parameters of the RC ties investigated in the experiments of Bresler and Bertero (1968) 

and Yannopoulos (1989).  

 Bresler and Bertero (1968) Yannopoulos (1989) 

Material parameters Concrete Steel Concrete Steel 

Compressive strength,    [MPa] 40.8 - 43.4 - 

Tensile strength,     [MPa] 4.48 - 3.30 - 

Yield strength,    [MPa] - 413 - 424 

Modulus of elasticity,    and    [MPa] 33165 205464 32000 200000 

Poisson’s ratio,    and    0.15 0.30 0.15 0.30 

Tensile fracture energy,    
    

    

    
 [N/mm] 0.142 - 0.144 - 

Compressive fracture energy,          [N/mm] 35.6 - 36.0 - 

 

Table 2. CLLM behaviour of        vs.        and        vs.        showing the steel stress    

and the corresponding load level   just before a primary crack forms at a distance    from the loaded 

end, mean bond stress        
 of the bond stress distribution over the crack distance    , concrete force 

resultant at the section where a primary crack forms   (   )         
      and the cracking force 

         . 

RC tie    [MPa]   [kN]     [mm]        
 [MPa]   (   ) 

[kN] 

    [kN] 

       100.3 31.5 105 3.76 24.8 24.2 

       58.1 46.7 109 2.74 30.0 29.0 

       341.1 107.1 260 6.23 101.8 99.8 

       160.6 129.1 272 4.21 115.1 110.7 
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