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Abstract

The purpose of modeling a petroleum reservoir consists of finding the underlying
reservoir properties based on production data, seismic and other available data. In
recent years, progress in technology has made it possible to extract large amount of
data from the reservoir frequently. Hence, mathematical models that can rapidly
characterize the reservoir as new data become available gained much interest.

In this thesis we present a formulation of the first order Hidden Markov Model
(HMM) that fits into the description of a reservoir model under production. We
use a recursive technique that gives the theoretical solution to the reservoir char-
acterization problem. Further, we introduce the Kalman Filter which serves as
the exact solution when certain assumptions about the HMM are made. However,
these assumptions are not valid when describing the process of a reservoir under
production. Thus, we introduce the Ensemble Kalman Filter (EnKF) which has
been shown to give an approximate solution to the reservoir characterization prob-
lem. However, the EnKF is depending on multiple realizations from the reservoir
model which we obtain from the reservoir production simulator Eclipse. When the
number of realizations are kept small for computational purposes, the EnKF has
been shown to possibly give unreliable results. Hence, we apply a shrinkage regres-
sion technique (DR-EnKF) and a localization technique (Loc-EnKF) that are able
to correct the traditional EnKF. Both the traditional EnKF and these corrections
are tested on a synthetic reservoir case called the Brugge Field.

The results indicate that the traditional EnKF suffers from ensemble collapse
when the ensemble size is small. This results in small and unreliable prediction
uncertainty in the model variables. The DR-EnKF improves the EnKF in terms of
root mean squared error (RMSE) for a small ensemble size, while the Loc-EnKF
makes considerable improvements compared to the EnKF and produces model
variables that seems reasonable.



Sammendrag

Modelleringen av et petroleumreservoar bestar av a estimere underliggende reser-
voarparametre basert pa produksjonsdata, seismikk og andre typer data. I de
senere arene har utviklingen av teknologien gjort det mulig & utvinne store mengder
data fra reservoaret pé kort tid. Derfor har matematiske modeller som raskt klarer &
karakterisere reserservoaret nar nye data blir tilgjengelige fatt stor oppmerksomhet.

I denne oppgaven presenteres en formulering av en fgrste ordens skjult Markov
modell (HMM) som er godt tilpasset beskrivelsen av et reservoar under produk-
sjon. Her brukes det en rekursiv teknikk til & gi den teoretiske lgsningen av reser-
voarkarakterisingsproblemet. Videre introduserer vi Kalman-filteret som gir ek-
sakt lgsning under visse antakelser om Markov modellen. Disse antakelsene gjelder
likevel ikke i beskrivelsen av prosessen av et reservoar under produksjon. Derfor
innferes Ensemble Kalman Filter (EnKF) som har vist seg & veere en tilnsermet
lgsning av reservoarkarakteriseringsproblemet. Metoden EnKF er avhengig av at
mange realisasjoner genereres fra reservoarmodellen som faes fra reservoar pro-
duksjonssimulatoren Eclipse. Nar antallet realisasjoner er fa pa grunn av beregn-
ingsmessige arsaker gir EnKF upalitelige resultater. En mulig lgsning pa problemet
er & bruke en shrinkage regressjonsteknikk (DR-EnKF) eller en lokaliseringsme-
tode (Loc-EnKF) som gjor det mulig & korrigere den tradisjonelle EnKF. Bade den
tradisjonelle EnKF og disse variantene av EnKF er testet pa et syntetisk reservoar
case kalt Bruggefeltet.

Resultatene indikerer at den tradisjonelle EnKF lider av at ensemblet kollapser
nar ensemble-stgrrelsen er liten. Dette resulterer i liten og urimelig usikkerhet i
modellvariablene. Sammenlignet med EnKF gir DR-EnKF metoden forbedringer
for en liten ensemble-stgrrelse under root mean squared error (RMSE)-kriteriet,
mens Loc-EnKF metoden gir tydelige forbedringer og produserer modellvariable
som synes & veere rimelige.
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1 Introduction

In the petroleum industry, the construction of a reservoir production simulation
model is a highly necessary task when the purpose is to estimate the amount of
hydrocarbons present in the reservoir. This task involves the characterization of
model and state variables such as porosity, permeability, hydrocarbon saturation
and pressure. When new production data from wellbores are obtained, these model
and state variables must be tuned in order to fit the production data observed.
The process of tuning model and state variables is in the literature termed history
matching although the objective is not to match the observations exactly, but
rather assimilate the observations in order to make the best future predictions.

Mathematically, the determination of model and state variables is regarded as a
complex, ill-posed nonlinear inverse problem. Model variables are characterized as
being static during a reservoir production simulation run, and may include porosity,
permeability, and net-to-gross ratio. State variables are dynamic because they
change during a reservoir production simulation run and may include saturation
and pressure. Model and state variables define the state of the reservoir model.
Reservoir information obtained from the wellbores are referred to as production
data. Production data may include water production rate, oil production rate and
well bottom hole pressure.

The characterization of model and state variables being an ill-posed problem
means that there exist many reservoir models that are similarly consistent with
the observations. By this reason, there is a high risk in using only one reser-
voir production simulation model because different reservoir production simula-
tion models result in different forecasts. The complete solution should therefore
include all consistent reservoir models, which entails an uncertainty in the model
and state variables and hence uncertainty in the forecasts. The statistical approach
to the problem of determining the model and state variables is Baysian inversion.
In Baysian inversion, a priori knowledge about the model must be incorporated
through a probability distribution (prior model) before any observation is assimi-
lated. By determining a probabilistic term that connects the observations to the
model variables (likelihood model), it is possible to obtain a posteriori knowledge
about the model through a probability distribution (posterior model).

The process of continuously updating the reservoir model as new production
data occur has in recent years gained much interest. This can be attributed to
the improvement of computer power and development of mathematical models
that can incorporate many variables. Traditional methods that provide a single
reservoir production simulation model based on history production data has been
outperformed because they require much computational work. New methods that
are able to assimilate observations as soon as they become available has turned out
to be much more efficient.

The Kalman Filter (KF) (Kalman et al., 1960) is a sequential Bayesian updating
algorithm that handles models with many variables. It gives the analytical solution
to the predicted state, when the model is Gauss-linear. In a Gauss-linear model
the predicted state is linearly connected to the unpredicted state through a Gaus-
sian distribution, and the observation is linearly connected to the corresponding



state through a Gaussian distribution. For petroleum reservoir modeling purposes
however, the Gauss-linear assumption does not hold. The Kalman Filter has been
modified to handle models that deviate from the Gauss-linear assumption. In the
Extended Kalman Filter, a linearisation is made around the mean of variables that
are nonlinear. Although it is useful in some applications, it produces unreliable
results in highly nonlinear models such as petroleum reservoir models.

The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994) is a se-
quential Bayesian updating algorithm that approximates the solution to the in-
verse problem using Monte Carlo simulation. It was first used in applications
like oceanography and weather forecasting, and later in petroleum engineering
(Lorentzen et al., 2001) and has since been much used for solving inverse prob-
lems. When the Gauss-linear assumption does not hold, the solution to the inverse
problem is not analytically tractable. The EnKF is based on the idea of applying a
sample of realizations, called an ensemble, in order to capture the important char-
acteristics such as the mean and the covariance of the forecast distribution of the
state. When considering petroleum reservoirs, each ensemble member represent a
possible reservoir model state. The mean of the ensemble represents the forecast
of the state, and the spread in the ensemble represent uncertainty in the forecast.
For models that are Gauss-linear, the EnKF gives the solution to the forecast as
produced by the Kalman Filter when the ensemble size tends to infinity. Hence,
although an approximate sequential Monte Carlo algorithm the EnKF has a nice
asymptotic property.

In Section 2 we start with some of the notation used in this thesis, followed by
a formulation of a model that describes the dynamic process of a reservoir. This
section introduces a sequential algorithm that suits well to a model that needs to
be updated. Further, Section 3 introduces the traditional Kalman Filter algorithm
which gives the analytical solution to the inverse problem in cases when the model
is Gauss-linear. Section 4 describes the EnKF in the general case, and a special case
that is suited to reservoir modeling. In Section 5 we present the EnKF algorithm
in reservoir modeling in more detail. Here, we also discuss the solution in cases
when the ensemble size is small. In Section 6 we describe the equations that control
the process of a reservoir under production. This section is intended to give an
idea of what is being solved when running the reservoir production simulator. The
presented EnKF algorithm is tested on a synthetic well case, called the Brugge
field in Sections 7 and 8, using the reservoir ensemble tool (Ert). Finally, Section
9 gives a summary of what is achieved with this thesis and outline further work.

2 Notation and Model Description

Throughout this thesis we will denote a € R™= that a is a vertical vector of real
entries of size n,. We will denote A € R™*™ a matrix of real entries with m rows
and n columns. Both @ and A can include random entries. This will be clear
from the context. We use the sign ’ to denote the transpose of a vector or matrix.
Thus, A’ is a matrix of dimension n x m. Further, we will denote a ~ f(a) that a
follows a probability distribution f(-); and for the special case a ~ N,,_ (i, X) that



a is Gaussian distributed of dimension n,, with mean n,-vector u and covariance
(ng X ng)-matrix X.

We consider an unknown time series [zg,...,z7,Zr+1], where x; € R";t =
0,...,T+1 are multidimensional random variables. The time series [z, ..., Z7, T741]
defines a system that is evolving through time ¢t € {0,...,T + 1}. Thus, we call x;
the state of the system at time ¢. We assume that a related time series of obser-
vations [df, ...,d%] is available, with df € R";t = 1,...,T being generated from
the associated states. The current state of the system is x7 and the objective is to
predict the next state xpy;1 based on the given observations [dS, ..., d%].

We model the time series of [z, ..., z7,z7+1], by defining a prior model that
is restricted by the Markov properties:

[xo,...,xT,$T+1] ~ f(xo,...,l‘T,$T+1)
T
F@o) [ flaesrlao, ... z0)
t;o
= flao) [T f(@esalze). (1)

t=0

The second line follows from successive decomposition, while the last line follows
from the first order Markov property, which states that each state given the past is
only dependent on the previous state. Moreover, we assume the initial distribution
f(zp), and the transition functions f(ziy1|xt),t =0,...,T to be known. Thus we
have a model for the prior distribution that has an underlying first order Markov
property.

Further, we model the connection between observations and states by a likeli-
hood model. The likelihood model defines a probabilistic term of [dS, ..., d%] given
[0, ..., 27, T74+1]. We assume two properties on the likelihood model; conditional
independence and single state dependence:

(e} o
1,...,dT|$0,...,$T,{L‘T+1)

—~

[ (1),...7d%‘$0,...,$T,$T+1] ~ f

I
=

f(df|xo, ..., 2741)

~
Il
-

JACHEDD (2)

Il
=

~
Il
-

where f(d?|z;);t = 1,...,T are known likelihood functions. Hence, the likeli-
hood model assumes that observation at each time point is independent of other
observations once the associated state is known. Together, the prior model and
the likelihood model form a hidden Markov model that is displayed in Figure 1.
The arrows describes latent dependencies between the nodes, and the dependencies
are determined by likelihood functions and transition functions. Using Bayesian
inversion we get the posterior model:
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t=1
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T
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TT f(atlen) o)
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where ‘const’ is a normalizing constant. This normalizing constant is usually hard
to assess when the state dimension is large. Thus, the posterior model is rarely
analytically obtainable. But remember that the objective is to forecast xp,1 based

o
on dg,..

f($T+1|d(1),...,d%) :/.../f(aco,...,xT,ajT+1|df,...,d%)dxo...de.

.,d%. This is obtained by the forecast distribution:

(4)

Figure 1: A picture of the first order Markov model.

This forecast distribution can be assessed by a recursive algorithm. For conve-
nience, we introduce the notation

Tiy1

Zo,
[.’L’t|d€7..

Ty,

- dgl;

[Xeg1ldS, ... d7];  t=

t=1,..

Ml

1,...

T.

)

T.

(5)

Here, a and f denotes the assimilated and forecast outcomes, respectively. Follow-
ing is a description of the recursive algorithm:



Algorithm 1 Recursive forecasting

Initiate: xg ~ f(xo)
fort=1,...,7 do
Forecasting;:
of ~ @) = [ flodeio ) f@i,)deg,
Assimilate:
wf ~ f(af) = const x f(df|xf) f(x])
end for
Last forecast:

Ty = lorgalds. .. dg] ~ f(@h) = [ flare|o$) f(2g)dzs

The recursive algorithm in Algorithm 1, sequentially updates the state of the sys-
tem by following a forecast operation followed by an assimilation operation. This
sequential updating process makes it possible to compute the forecast distribution.
The recursive algorithm is depending on the prior model and the likelihood model.
We define the prior model:

g ~~ f(xO)a (6)

[Ti1]7] = w(we,€) ~ f(@ega]ae). (7)

Here ¢ ~ N,_(0,1,,) is a stochastic term or factor that represents the model
error, when state x; is propagated to state ;1. This term is often separated from
the transition function w, with the additional assumption €f ~ N,,_(0,%7). In the
general case, w : (R™ x R™=) — R™ is a known function. We defines the likelihood
model by means of functions (:

[ |24] = C(ae, €f) ~ f(d7]ae), (8)
where €} ~ N,,,(0,1,4) is a stochastic term or factor that represents the observa-
tion error. Often, the likelihood function ¢ is independent €f, with the additional
assumption € ~ N, (0,%¢). Generally, ¢ : (R" x R") — R"™ is a known func-
tion. The prior and likelihood model might be chosen arbitrarily, but a reference

model choice is a linear and Gaussian model, termed the Gauss-linear model. It is
defined as:

zo ~ f(zo) = Nu,(ug,%5),
[x|zim1] = Ayxi—1 + € ~ f(z]zi1) = Ny, (Aizi—1,X5), 9)
[df 2] = Hywy + € ~ f(df]ae) = Ny, (Hpae, 57).

Here, p& and X are assumed known. Also the matrices A;, ¥¥, H;, and X, are
known for all times and the model and observation error terms are independent
of the state. Under this Gauss-linear model assumption, the forecast distribution
is analytically tractable. This solution corresponds to the Kalman Filter, which is
discussed next.



3 The Traditional Kalman Filter (KF)

The KF is a recursive algorithm for assessing the forecast distribution using the
recursive algorithm in Algorithm 1, and assuming a Gauss-linear model as given by
Eq. (9). The use of the recursive algorithm ensures that Gaussianity is preserved
from one time step to the next. This is due to the property of the Gaussian
distribution being closed under linear operations. Hence, the predictive distribution
becomes Gaussian as well. A description of the Kalman filter algorithm is given in
Algorithm 2.

Algorithm 2 The Kalman Filter algorithm
Initiate: a8 ~ f(z§) = Ny, (1g, X&)
1o = 1o
¥ =535
fort=1,...,T do
Forecasting:
@ ~ f(z]) = No, (uf , Z])
pl = A,
E{ = AtZ?AA; + 2
Assimilating:
xf ~ f(l‘?) = Nnm(/ugv Eta)
ui = pl + S/ H,[HS H, +5{]7"(d7 — Ho)
g = xf — o H B H, + 27 Hx
end for
Last forecast:
$;+1 = [xr41ldy, ... d7) ~ f(ﬂfgrﬂ) = N, (N§+1’ E;H)
N§+1 = Arpt
S = ArSe AT + 32

The Kalman filter algorithm produces both forecast outcome :c{ unconditioned on

observation at the current time step, and assimilated outcome zf{ where the cur-
rent observation is taken into account. Moreover, the result is analytically tractable
and no approximations are made, assuming that the model is Gauss-linear only.
However, when the model deviates from being Gauss-linear, approximations can
be made. Extensions to the Kalman Filter has been proposed, such as the Ex-
tended Kalman Filter (Jazwinski, 1970) and the Unscented Kalman Filter (Julier
and Uhlmann, 1997) which work on nonlinear systems. In nonlinear systems, non-
linearity is attributed to the prior model, the likelihood model or both. However,
we will focus on a simulation based approach that also provides an approxima-
tion to the forecasting problem when considering nonlinear systems, namely the
ensemble Kalman filter.
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4 The Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter is a sequential Monte Carlo algorithm that approxi-
mates the forecast distribution. The idea in EnKF is to generate a set of realizations
of size n., called the ensemble that is propagated through the model equations. The
EnKF is an approximate solution both when the model is Gauss-linear, and when
deviation from these assumptions occur. When the model is Gauss-linear the EnKF
algorithm converges towards the exact KF solution when n. — oo. In EnKF, the
ensemble is propagated by the forward model. Then ensemble members are ad-
justed as observations occur. At time T + 1, the ensemble is used to assess the
forecast distribution f(zr41|dS,...,d%). We define the time series of ensembles as

@, d") = (@], d)?, ie{l,...n}; t=0...T+1,  (10)

where 7. is the ensemble size and ¢ is the time step. Here, x,{(i) = [x¢|dS, ..., dJ 4]
represents approximate realizations from f(x¢|dS,...,dS_;) while d,E” represents

realizations from the likelihood model. These realizations dgi) are associated with
the observation dy. At each time step, we define a covariance matrix between the
current state mtf and observation df. With ¢ omitted this covariance matrix is

N, = |:Ez de:| c R(nqund)x(nernd)’ (11)
Paw X4

where n, and ng are the dimension of the state vector and observation vector,
respectively. Using the current ensemble in Eq. (10) we can estimate this covariance
matrix, by estimating the unknown parameters ., I',q and ¥4. If we define a
matrix X holding the centered state vectors and a matrix D holding the centered
prediction data as

= {2l =i 2l i} (12)
D = {d" g "~} (13)
R 1 <~ 46
g = - xtf()7

¢ i=1
fua = iid(i)
e 34 b

the unknown parameters in the covariance matrix can be easily estimated by these
estimators:

11



- 1

Yo = XX,
Ne — 1
~ 1 ,
oo = ——= XD, (14)
~ 1 ,
Ya = DD,
Ne — 1

which are consistent when n, — oco. The EnKF algorithm is based on the same
procedure as the recursive algorithm. A description of the EnKF algorithm in its
general form is given in Algorithm 3.

Algorithm 3 The EnKF algortihm

Initialize the ensemble: 330 ~ f(zo); i=1,...,n
fort=1,...,T do

Forecasting:

WU N, (0,57 ) i=1,... n.

210 = (20 f(ﬁ)) i1

ef“)wN 0,8); i=1,...,n.
dgi) ¢z f() d()) i=1,...,M
€t:{($t,dt) } i:l,...,ne
Assimilating: X
Estimate ¥4 from the ensemble e; — 3.4, see Eq. (14)
20D =l O L S —dy; i=1,...n
end for
Last prediction:
&) ~ N, (0,5%);  i=1,...,n,
50 @i,y =10

Ty =Wy

xé&lwf(xTHMl,...,d"T); 1=1,...,M

The last line of the EnKF algorithm in Algorithm 3 indicates that we can assess

the forecast distribution f(z741|d1,...,dr) from the ensemble members xT&)l, 1=

1,...,n.. For instance, reasonable estimates of the forecast and the covariance of
the forecast are:

ne

R 1

Hr+1 = nf 4&)17
¢ =1

A IS i A ) -

Yry1 = ST @Y — ) (@) — i) (15)
¢ i=1

But also the full empirical forecast distribution can be evaluated using confidence
intervals when considering a skew forecast distribution. Essential to the EnKF

12



algorithm is the forecasting step and the assimilation step. In the forecasting step
we apply the transition function w on the ensemble members. In the assimilation
step we correct the ensemble members in a linear manner by weights estimated
from the ensemble. There are two basic assumptions made in the algorithm. First,
the initial ensemble is supposed to represent the initial distribution f(z). In cases
where the dimension of z( is large, this imply that a large ensemble is needed
to fairly represent the initial distribution. Second, the analyzing step is based
on the assumption that the joint distribution of the forecast state x{ @) and the

realization dgl) is Gaussian. When large deviations from Gaussian prior models and
or Gaussian likelihood models occur, we may obtain unreliable results. However, if
these two basic assumptions are reasonable to make, the EnKF algorithm provides a
reliable approximate solution to the forecast distribution. Moreover, under Gauss-
linear models the EnKF algorithm is consistent in the sense that the approximation
converges to the exact solution when the ensemble size n, — oo.

4.1 Special Case: EnKF With Gauss-linear Likelihood

We consider a hidden Markov model where the prior model is non-linear (i.e non-
Gauss-linear) with an additive model error, and a likelihood model that is Gauss-
linear. This is frequently used in applications. The assumptions made in this
special case are:

ro ~ f(xo)
[Te|ze—1] = w(re—1) +€f ~  flae|r—), (16)
[d7|xy] = Hyzy + e~ f(d7]ay),

where €& ~ N, (0,3%) and €} ~ N,,(0,2¢) are both known. The transition
function w might be a differential equation, or has a complex functionality. Under
the special case, we define the time series of ensembles:

etz{x{“); z':l,...,ne}; t=1,...,T+1. (17)

Here, we note that the ensemble is defined differently from Eq. (10) because the
cross covariance Fm = Z .H' at every time step can be assessed from the covariance
matrix 3,. The algorithm for this case appears as:

13



Algorithm 4 The EnKF algortihm with Gauss-linear likelihood

Initialize:
fort=1,...,T do
Forecasting:

efﬁll) NN”:(OVthfl)’ i:17"'7ne

x{(i) = w(x?ﬁll),ef&)), i=1,...,m
etz{x,gi)}; 1=1,...,n

Analyzing:

Estimate X, from the ensemble e,

D N (0,50 =1, ne

dgi) = Htx{(i) + ef(i)i =1,...,n

2f W = ol 4 S H [ HS H, + 5871 de —dY): i=1,...,n,
end for

Last forecast:
&N, (0,52); i=1,...,n.

x;(i:)l = w(x;(i), e?@); 1=1,...,n
O~ flapalds,. .., de);  i=1,...,n,

In Algorithm 4, the EnKF algorithm with Gauss-linear likelihood yields in the last
forecast, an approximate sample from the forecast distribution f(xr11ldi,...,dr).

In the case of reservoir modeling, the state vector of each ensemble member x,(f)
is often replaced by an augmented state vector y,gl) to account for the simulated

observations dii). Thus, we have

f(4)
i X
y{“:[t}], (18)

where dgi) is generated from a non-linear function with observation error included.
The relation that connects the state to the observations for this augmented case is
a linear function, namely the likelihood

A =1,-y/® (19)

where I is a matrix of size ng x (n, +ng4) consisting of zero entries and an identity
matrix of size ng on the right. Hence I has the property of extracting the simulated
observations from the augmented state matrix. The matrices fyd and f]d are easy
to compute because of the linear relationship. Thus, the corresponding assimilation
step for the augmented state, is

. . N , A ANt 7
0 =19 5,1 (15, 5)” ) o

where f]y 7 is the covariance matrix of the augmented state matrix of size n, + ng.
In fact, it is equal to 3,4 in BEq. (14). Noting that the original state vector is

14



29" = [,y°0) with I, a n, x n, matrix with an identity matrix of size n, on the
left and zero elsewhere, we multiply both sides of Eq. (20) by I,. The matrix I,
extracts the original state vector from the augmented state vector. Thus, we get

. . A~ ’ A / -1 7
220 = of O L[S 1 ([dzyf[d) (do —d"). (21)

Further we note that Imf]yff:i = f‘zd, Idf]yfI;i = f)d and Idyf(i) = dgi). Hence, we
are back to the original assimilation scheme

7 =y DSy ] = diY), (22)

given in Algorithm 3, where the likelihood is nonlinear. The two schemes are
therefore identical.

4.2 Limitations

The EnKF relies on the assumption that the forecast state and the associated ob-
servation is jointly Gaussian. Hence, a large deviation from this assumption does
not produce a good estimate for the forecast distribution. Alternative filter meth-
ods have been proposed that provides better estimates in non-Gaussian cases. The
particle filter (Doucet et al., 2001) is known to give a better approximation to the
forecast distribution in small scale problems. Moreover, it gives the asymptotically
correct solution for all HMM models when n, — oco. The randomized likelihood
filter (Oliver, 1996) has been shown to give better approximations when the fore-
cast distribution is multimodal, and it has the same asymptotic property as the
EnKF. However, when considering reservoir evaluation problems, the EnKF has
been proven to be a useful method.

The robustness of the EnKF method relies on its ability to capture the im-
portant properties of the forecast distribution that lies in the initial distribution
f(xo). If the initial ensemble is able to represent f(z() appropriately, the EnKF
will be able to approximate the forecast distribution. However, when the ensem-
ble size is small, it will not represent f(xg) sufficiently. This may lead to a poor
estimate of the Kalman gain matrix f‘wdflgl, which is seen long range correlations
between observation and model and state variables that are not real. The result
is incorrect updates for model and state variables. In this thesis, we will improve
the estimate of the Kalman gain matrix, using two well-known techniques. First,
we use dimension reduction as explained in Ssetrom and Omre (2011). Secondly,
we apply localization (Anderson, 2006) that restricts the model update to occur
locally to the observation only.

5 Reservoir Production Simulation
Before describing the reservoir modeling in the EnKF setting in more detail, we

need to introduce the reservoir production simulator. In a reservoir production sim-
ulator, numerical methods are used to solve the partial differential equations that
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describes the fluid flow (oil, water, gas) in a porous medium such as a petroleum
reservoir. A reservoir production simulator is used in oil and gas companies in or-
der to build a reservoir model that can assist in the development of new oil or gas
fields. For instance, a reservoir model can help deciding the number of producer
and injector wells that are needed and their locations in the reservoir. For existing
fields a reservoir model can assist in predicting future reservoir performances. We
will in this section give a brief derivation to the fluid flow equations.

Generally, flow in a porous medium is determined by mass conservation, mo-
mentum and energy conservation equations, and assisting equations for the fluids
and the porous medium. If we assume that the temperature in the reservoir remains
constant, we do not need to involve momentum and energy conservation. For a
slab with constant cross section area, as shown in Figure 2, the mass conservation
equations of a multiphase fluid flow appear as

V- (pw) —q = %, I = {oil, water, gas}. (23)

Here, ¢ denotes the porosity and p; the density of the fluid. The saturation of
the fluid is denoted by s;, the fluid velocity vector is represented by wu;, and
q, is a source/sink term representing the mass flow rate per unit volume (injec-
tor/producer). If we make the assumptions that the fluid flows with low velocity
and that the medium is isotropic, Darcy’s law gives the relationship between the
velocity field and the pressure, namely

Rakrl

U = Vpi, 1 ={oil, water, gas}, (24)

M
where k, is the absolute permeability, ,; is the relative permeability, u; is the
viscosity, and p; is the pressure. Inserting Darcy’s equation (24) into the mass
conservation equation (23) yields

0 s .
Vp) —q] = %, [ = {oil, water, gas}. (25)
These three equations have six unknowns, namely the pressure and saturation in
each phase. The other three equations consist of capillary pressure curves that are
measured by experiments in the laboratory, and noting that the saturations sum

up to one, i.e

Rakrl

V- (pu

Pcow = Pw —Po (26)
Pcog = Po — Dg

Zsl:].
l

Both capillary pressure and relative permeability are functions of saturation, while
porosity, density and viscosity are functions of pressure. When considering Newto-
nian fluids, the viscosity is constant, while the relationship of density to pressure
and porosity to pressure must be determined from assisting equations for fluids and
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the porous medium, respectively. The equations given in Eq. (25) and Eq. (26)
form the fluid flow equations in the reservoir.

Because of the complexity in the fluid flows equations, it must be solved nu-
merically. Classical reservoir production simulation models are based on the finite
difference method which serves as a numerical solution to the fluid flow equations.
The finite difference method is based on the idea of discretizing the reservoir do-
main into gridblocks, where the flow equations are solved in each gridblock. These
gridblocks can be regular as displayed in Figure 2, or they can be complex in order
to suit the geometry of the reservoir. Moreover, gridblocks near wells can be refined
so that near-wellbore effects in multiphase flow can be modeled accurately. The so-
lution to the partial differential equations consist of saturation and pressure of each
phase (oil, water, gas) in each gridblock. The determination of these state variables
that varies during the production period of the reservoir is important because they
determine the volumetric estimates of hydrocarbons that can be extracted from
the reservoir.

The solution given by the finite difference method is represented by the unknown
and potentially complex function w : R™ — R"=. As described in Algorithm 4, the
function w works as a reservoir simulator. For a given state at a time ¢, denoted z;
the reservoir production simulator brings the state forward in time to a new state
Tty1, 1€

Ti41 = W(.Tt, Et) = W(J/'t) + Gtw (27)

where the model error term €} represents numerical- and model simplification er-
Tors.

n, =48

Figure 2: A grid modeling the synthetic reservoir.

5.1 Ensemble Based Reservoir Tool (Ert)

The commercial reservoir production simulator Eclipse 100 was used to run the
simulations. Eclipse 100 solves the equations governing the fluid flow in a reservoir
using an implicit finite difference method. In order to handle the reservoir pro-
duction simulations in an EnKF setting, we use a software developed by Statoil
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and NR called Ert. Ert works with Eclipse in the sense that reservoir models in
Eclipse are conditioned on observed production data when we are using the EnKF
algorithm. When applying Ert to history matching and uncertainty analysis, we
need to do some preparatory work:

1) Ert relies on the restart capability of the Eclipse reservoir model. Thus, the
Eclipse data file must be prepared to be ready for use with Ert.

2) Creating an observation file for use with Ert.

3) Ert takes as input a configuration file which serves many purposes. It

- defines the Eclipse reservoir model to use (Eclipse gives the
data file, grid file, schedule file)

- defines the observation to use (from an observation file)
- defines how to run simulations
- defines how to store results

- creates a parametrization (model variables) of the Eclipse
reservoir model.

A detailed description for setting up the program and an introductory tutorial can
be found on the website www.ert.nr.no.

6 The EnKF in History Matching

In this section we present the state of a reservoir model, followed by an EnKF
algorithm used for characterizing a reservoir. Then we discuss some corrections of
the Kalman gain matrix in cases when the ensemble size is small.

6.1 Defining the Reservoir Model State

The EnKF method is suited to the history matching problem and can be easily
combined with any reservoir production simulator. The EnKF differs from tradi-
tional history matching in the sequential updating, and that it produces multiple
simultaneous history matched models. Both the model variables (porosity and
permeability) and the state variables (pressure and saturation) in addition to pro-
duction data are updated in the EnKF, and they are combined in an augmented
state vector. Consider a discretisation of the reservoir domain D € R? into a lattice
Lp = L, x Ly consisting of n gridblocks as displayed in Figure 2. Here, £, repre-
sents the n, gridblocks in the vertical direction, while £, is the n, x n, gridblocks
in the horizontal direction. Thus the total number of gridblocks is n = n, X1y, xn.
Each gridblock has different properties such as porosity ¢, log permeability x, sat-
uration s € [0,1] and pressure p. We let the model variables of the reservoir for
each time step ¢t € {0,...,T + 1} be given by the vectors m; and ry,

my = {¢/7K/}/ c an7 (28)
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re={s',p'} eR"™, (29)

where n,,, and n, are the number of gridblocks times the number of reservoir proper-
ties considered, respectively. These two vectors define the state of the reservoir. As
the reservoir state is propagating in time by the reservoir production simulator w,
we obtain a new set of state variables and with that a new set of reservoir production
data from the wells with observation error included. These reservoir production
data (with observation error included) are described by the vector d; € R™@ where
ng is the number of wells times the number of production properties considered,
while the real observation is described by d? € R™<. Hence, the vectors m;, r; and
dy are combined into an augmented state vector y; representing the augmented
state of the reservoir model.

my
ye= | e | €R™, (30)
dy
where ny = n,, + n, + ng is the dimension of the state variable. Note that this is
consistent with Eq. (18) since Eq. (18) is a single realization.

6.2 The EnKF Algorithm in Reservoir Modeling

In the context of reservoir modeling, it is sufficient to use the special case of the
EnKF algorithm if we use the augmented form of the state vector y;. Hence, we
can write:

Mep1 = My, (31)
Tt4+1 = w(mt,rt) +€f, (32)
[df+1|mt+1, Tt+1] = C(Myg1, 741, 6?) = Co(muys1,7e41) + 6?7 (33)

where €& ~ N, (0,%¢) and ¢/ ~ N,,(0,%¢) are known. Here, the function w
plus model error returns the state variables, while (y plus observation error yields
the production data obtained from the model, such as water production rate, oil
production rate and bottom hole pressure.

The EnKF algorithm consist of a forecast step and an assimilation step. In
the forecast step all the reservoir models are run forward in time with a reser-
voir production simulator. It is only necessary to run the simulator between two
consecutive time steps where observations are taken. Model variables remain the
same from one time step to the next, while state variables and production data are
changed by the functions w and . Then the entire state vector is updated in the
assimilation step. We define the ensemble of time series as in Eq. (17), but now
for the augmented system:

q:{d@; i:Luwn%; t=1,...,T+1. (34)
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