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Abstract

In this thesis we have explored the very high prices that sometimes occurs
in the Nord Pool electricity market Elspot. By applying AR-GARCH time
series models, extreme value theory, and ACER estimation techniques, we
have sought to estimate the probabilities of threshold exceedances related to
electricity prices. Of particular concern was the heavy-tailed Fréchet distri-
bution, which was the asymptotic distribution assumed in the ACER esti-
mation.

We have found that with extreme value theory we are better equipped to
deal with the very high quantiles in the time series we have analyzed. We
have also described a method that can give an assessment of the probability
of exceeding a selected level in the electricity price.
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Sammendrag

I denne oppgaven har vi utforsket de meget høye prisene som noen ganger
oppst̊ar i Nord Pool kraftmarkedet Elspot. Ved å bruke AR-GARCH tid-
srekkemodeller, ekstremverditeori, og ACER estimeringsteknikker, har vi
forsøkt å ansl̊a sannsynligheten for terskeloverskridelser knyttet til strømprisen.
Av spesiell interesse var den tunghalede Fréchet fordelingen, som var den
asymptotiske fordelingen antatt i ACER estimeringen.

Vi har funnet at vi med ekstremverditeori st̊ar bedre rustet til å takle de
svært høye kvantilene i tidsrekkene vi har analysert. Vi har ogs̊a beskrevet
en metode som kan gi en vurdering av sannsynligheten for å overskride et
valgt niv̊a i strømprisen.
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Chapter 1

Introduction

High electricity prices are always a burden for consumers, as they have no
choice but to pay whatever the cost is. In longer periods of high prices,
like in winter season 2009/2010 in Trondheim, this often becomes a topic
in the media and public debate. It is however not clear to most people the
intricacies that lie behind, and that cause high electricity prices.

In this thesis we will begin by giving a rundown of the electricity market
in Chapter 2. We will cover some of its history, how it works, and point to
some causes that contribute to the very high electricity prices we sometimes
observe. After a more qualitative introduction to the electricity market, we
will present the data set we have used in Chapter 3, together with some
diagnostic plots and some minor remarks.

Motivated by the data we will go through some of the theory in the field of
extreme value statistics in Chapter 4 and Chapter 5, and also some ways to
model electricity prices in Chapter 6. By applying this theory and one of the
models from Chapter 6, we will try to answer some basic questions: (i) How
well does extreme value theory apply to describe very high electricity prices?
(ii) Can we we use extreme value theory to asses the probability of very high
electricity prices?

We begin answering these questions in the data analysis in Chapter 7. Fol-
lowing the data analysis is an exploration of a different methodology that we
have experimented with in Chapters 8 through 10. The thesis is rounded off
with a discussion and concluding remarks in Chapter 11.

To implement the models and do calculations in this thesis we have used the
software R [11], and Matlab [6].

6



Chapter 2

The Electricity Market

2.1 Nord Pool

Nord Pool was established in 1992 as a consequence of the Norwegian energy
act of 1991 that formally paved the way for the deregulation of the electricity
sector in Norway [10]. It started out as a norwegian market, but Sweden
(1996), Finland (1998) and Denmark (2000) joined in later.

Nord Pool is a commodity market for electricity and can be divided into two
parts, Elbas and Elspot. Both of these markets are for physical delivery of
power. Elbas is a continuous hour-ahead market, also called the balancing
market, and Elspot is a day-ahead market.

There used to be a third market called Eltermin which dealt in power deriva-
tives, like forwards (up to three years ahead), futures (up to 8 weeks), options
and CFDs. This market is now part of Nasdaq OMX Commodities and is
a purely financial market used for hedging and speculation. The different
types of contracts listed above uses the Nord Pool Spot Price as their refer-
ence price.

The amount of consumed electricity traded on Nord Pool has grown ever since
Nord Pool opened, and today about 75% of the total power consumption in
the Nordic region is traded on Nord Pool.
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2.2 Price Setting at Nord Pool

At Elspot one-hour-long physical power contracts are traded at a minimum
unit of 0.1 MWh. At 12 pm each day, the market participants submit to
Nord Pool their bid and ask offers for the next 24 hours starting at 1 am the
next day.

Today there are around 350 buyers and sellers (called members) on Elspot.
Most of them trade every day, placing a total of around 2000 orders for power
contracts on a daily basis.

Figure 2.1: Illustration of the bidding structure at Nord Poll. Source: Kim
Stenshorne’s master thesis [12].

Figure 2.1 visualizes the bidding structure and at what times during the day
the prices are known. After bids have been placed, supply and demand for
each hour is tallied up, and a single price for each hour is found.
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Figure 2.2: Illustration of the supply and demand curves of spot prices.
Source: Nord Pool [9].

Figure 2.2 illustrates how the price is set after the bids have been placed.
This is done individually for every hour the next day.

2.3 Extreme prices at Nord Pool

One of the defining features of the Elspot market is the extreme volatility.
Even compared to the most volatile commodity markets, none come close to
the elspot market. A big part of this volatility is attributed to large short
term price changes called spikes.

It is hard to say what exactly is causing these spikes. Figure 2.3 attempts
to explain part of the reason. When sudden changes in supply (i.e. defect
power line) or demand (i.e. it is very cold and more electricity is needed for
heating) occurs, sometimes it is necessary to use more expensive sources of
energy.
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Figure 2.3: Illustration of different energy sources cost. Source: Wind
Energy, The Facts [14].

Rafal Weron argues in his book Modeling and Forecasting Electricity Loads
and Prices [13] that this alone does not explain the price spikes. According
to him it is the bidding strategies used by the market players that cause the
spikes. For many of the market players, electricity is an essential commodity
which they are willing to pay almost any price for. The suppliers are aware
of this and try to place their own bids accordingly, so as to maximize their
profits.

There is a technical ceiling of the Elspot price of 2000 Euros [16], but in
reality there is no cap. The highest price we observerd in our data series was
300 Euros.
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Chapter 3

Data

Our data are Elspot prices from January 1, 2005 to December 31, 2011. The
Elspot market has evolved and changed since it was first established [10], so
we thought this to be a reasonable time frame.

The Elspot prices were supplied by Nord Pool and Eirik Mo at Statkraft.

3.1 The Elspot Series

We denote the time series of Elspot prices Pt, where t is hours.
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Figure 3.1: Elspot prices, January 1, 2005 to December 31, 2011.

From Figure 3.1 we quickly notice the spikes and erratic behavior of the
Elspot prices.
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Figure 3.2: ACF and PACF for Elspot prices with lags for the entire time
frame of the data.

From the PACF and ACF of the Elspot Prices, shown in Figure 3.2, we can
see that the long term trends are dominating the ACF.

3.2 The Returns Series

We will call price differences from one hour to the next returns. The returns
series is formed by differencing Pt

Rt = Pt − Pt−1 (3.1)

13



Figure 3.3: Elspot price changes (returns), January 1, 2005 to December
31, 2011.

From Figure 3.3 we can see that the return series has some symmetry about
the x-axis. There are still spikes in the return series, but the highest value
is about half the value of the highest price.
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Figure 3.4: ACF and PACF for Elspot returns with lags for the entire time
frame of the data.

For the returns series in Figure 3.4 we can see more regular behavior in the
ACF. There is clearly a yearly pattern in the ACF indicated by the six tops
in the ACF (the time series is over seven years, but for last lags there is
almost no correlation left).
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Figure 3.5: ACF and PACF for Elspot returns with 15 days of lag.

By taking a look at the ACF with 15 days lag (or 360 hours), we clearly see
in Figure 3.5, a daily pattern and a weekly pattern.

16



Figure 3.6: Elspot price changes (%), January 1, 2005 to December 31,
2011.

We will call relative price changes net returns, calculated by

Nt =
Pt − Pt−1
Pt−1

(3.2)

From Figure 3.6 it looks like the up-spikes have been stretched out com-
pared to the returns series, while the negative relative returns have been
compressed. We can imagine the effect of dividing by very low prices, i.e.
close to zero.

The ACF and PACF behave in a similar manner as for the returns series.

3.3 Daily Data

The Elspot prices can also be considered as time series of daily data. We
can create time series of daily data for the Elspot prices by letting the price
of a particular hour each day be followed by the price of that same hour the
next day.
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Figure 3.7: Surface plot of the Elspot price from January 1, 2005 to De-
cember 31, 2011

In this way we can create a total of twenty-four time series for the Elspot
prices, one for each hour of the day.

In Figure 3.7 these time series are visualized together, each starting at Sat-
urday, January 1, 2005 (1 Days) and ending Saturday, December 31, 2011
(2556 Days). 1 Hours corresponds to the time-interval 00:00-01:00, and so
on. From this figure it is obvious that the daily prices time series, where one
hour of the day is selected, behave differently.
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Figure 3.8: Surface plot of the Elspot price from January 1, 2005 to De-
cember 31, 2011

From Figure 3.8 we can see that the peaks occur at around 08:00-09:00 and
17:00-18:00 hours, and these times also looks to be more volatile. Around
02:00-03:00 hours looks to be the least volatile time. We examine the ACF of
the most regular and least regular series, 02:00-03:00 and 08:00-09:00 hours.
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Figure 3.9: ACF and PACF for 02:00-03:00.

We see in Figure 3.9 that compared to the returns series, there is hardly any
correlation left for hours 02:00-03:00.
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Figure 3.10: ACF and PACF for 08:00-09:00

Compared to the ACF for 02:00-03:00 hours, the ACF for 08:00-09:00 hours
shows much more correlation. By examining closer in Figure 3.10 we see that
the significant correlation comes from the weekly lag.

3.4 Quantile Behavior

We take a look at how the normal distribution fits to our Elspot prices,
returns, and net returns series.
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Figure 3.11: Q-Q plot of the Elspot prices

For the Elspot prices the normal distribution actually predicts more low
prices. This is because the prices cannot be negative, so the data is truncated
at zero. For the very high quantiles we can see that the normal distribution
predict much lower prices.
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Figure 3.12: Q-Q plot of the Elspot returns

As we expected the tail behavior of the returns series deviates significantly
from the tail behavior of the normal distribution, both for negative and
positive returns.
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Figure 3.13: Q-Q plot of the Elspot net returns

For the very high quantiles it seems that the net returns series has even more
extreme behavior.
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Chapter 4

Extreme Value Theory

To further explore the extreme prices we have observed in the Elspot market
we need to establish a theoretical framework that can be used to analyze the
data. We will start off with outlining some basic premises for extreme value
analysis as described in An Introduction to Statistical Modeling of Extreme
Values (2001) [2].

Here extreme values are related to maximum values by considering

Mn = max{X1, ..., Xn}, (4.1)

where X1, ..., Xn is a sequence of independent and identically distributed (iid)
random variables having a common distribution function F . The distribution
of Mn is then given by

P(Mn ≤ η) = P(X1 ≤ η) · · ·P(Xn ≤ η) = FM(η). (4.2)

However F is usually unknown in applications, so we need some other way
of finding the distribution of Mn.

4.1 Extreme Value Distributions

We begin with a definition

Definition A distribution G is said to be max-stable if, for every n =
2, 3, ..., there are constants αn > 0 and βn such that

Gn(αnη + βn) = G(η) (4.3)

4
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Max-stable distributions and extreme value distributions are related in the
following way

Theorem 4.1.1. A distribution is max-stable if, and only if, it is a general-
ized extreme value distribution. �

Theorem 4.1.1 is used in the proof, which we will omit, of the following
theorem called Extremal Types Theorem

Theorem 4.1.2. If there exist sequences of constants {an > 0} and {bn}
such that

P{(Mn − bn)/an ≤ η} → G(η) as n→∞ (4.4)

where G is a non-degenerate distribution function, then G belongs to one of
the following families:

I : G(η) = exp

{
− exp

[
−
(
η − b
a

)]}
, −∞ < η <∞, (4.5)

II : G(η) =

{
0,

exp
{
−
(
η−b
a

)−α}
,

η ≤ b,
η > b,

(4.6)

III : G(η) =

{
exp

{
−
[
−
(
η−b
a

)α]}
,

1,

η < b,
η ≥ b,

(4.7)

for parameters a > 0, b and, in this case of families II and III, α > 0. �

These three families of distributions are called Gumbel, Fréchet and Weibull.
They are each special cases of the generalized extreme value (GEV) family.
We restate Theorem 4.1.2 using the generalized form

Theorem 4.1.3. If there exist sequences of constants {an > 0} and {bn}
such that

P{(Mn − bn)/an ≤ η} → G(η) as n→∞, (4.8)

for a non-degenerate distribution function G, then G is a member of the GEV
family

G(η) = exp

{
−
[
1 + ξ

(
η − µ
σ

)]−1/ξ}
, (4.9)

defined on η : 1 + ξ(x− µ)/σ > 0, where −∞ < µ < ∞, sigma > 0 and
−∞ < ξ <∞. �
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In plainer words Theorem 4.1.3 says that if there exist a distribution function
for Mn−bn

an
, then it must be on the form of Equation 4.9. The apparent problem

with the constants bn and an can be solved by assuming

P {(Mn − bn)/an ≤ η} ≈ G(x) (4.10)

for large enough n. Equivalently

P{Mn ≤ η} ≈ G {(η − bn)/an} (4.11)

= G∗(η), (4.12)

where G* is another member of the GEV family. In other words, if Theorem
4.1.3 enables approximation of the distribution of M∗

n by a member of the
GEV family for large n, the distribution of Mn itself can also be approxi-
mated by a different member of the same family. Since the parameters of the
distribution have to be estimated anyway, it is irrelevant in practice that the
parameters of the distribution G are different from those of G∗.

Thus we can partition a data series into blocks, and use the maximum of
those blocks to estimate an extreme value distribution for Mn.

4.2 Peaks Over Threshold

We explained in Section 4.1 how we can construct block maximums to es-
timate Mn. A problem with this is that the extreme values might not be
evenly spread throughout the data series, so we might end up discarding a
lot of extreme values if one or more blocks contains several extreme values.

The following theorem enables us to pick out extreme values in another way

Theorem 4.2.1. Let X1, X2, ... be a sequence of independent random vari-
ables with common distribution function F, and let

Mn = max{X1, ..., Xn}. (4.13)

Denote an arbitrary term in the Xi sequence by X, and suppose that F sat-
isfies Theorem 4.1.2, so that for large n,

Pr{Mn ≤ η} ≈ G(η), (4.14)

where

G(η) = exp

{
−
[
1 + ξ

(
η − µ
σ

)]−1/ξ}
(4.15)
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for some µ, σ > 0 and ξ. Then, for large enough u, the distribution function
of (X − u), conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ
(4.16)

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(η − µ). (4.17)

�

Theorem 4.2.1 states that if F satisfies Theorem 4.1.2, so that for large n
Mn follows a generalized extreme value distribution, then for a high enough
threshold u, the threshold exceedances will follow a generalized Pareto dis-
tribution.

This result becomes very useful because it enables us to filter out extreme
values in a new way. Instead of just using block maxima, we can select a
threshold u and use all the data values that exceeds this threshold.

Dependence in Threshold Exceedances

A problem that may arise when using POT methods instead of block maxima,
is that the threshold exceedances may be clumped together. This would
indicate, in most cases, that the independence assumption from Equation 4.1
has been violated.

A common way to deal with this is declustering where in the simplest case
an extreme value would be disregarded if it was in close proximity to another
extreme value.

4.3 Return Period

[3]

The return period of a level η for a random variable X is defined as

R =
1

P (X > η)
=

1

1− FX(η)
. (4.18)
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This means that the return rate R for η is the mean number of trials that
must be done for X to exceed η.

When modeling POT the return period for a level ηR = u+ y, where u is the
threshold, is given by

R =
1

λP (X > ηR)
=

1

λP (Y > y)
. (4.19)

Here λ is the mean crossing rate of the threshold per block (i.e. per year,
month etc.), or the average proportion of observations that fall over the
threshold. From (4.19) it follows that

P (Y ≤ y) = 1− 1

λR
, (4.20)

and since the distribution of Y is known, we have from ... that

ηR = u− σ̃

ξ

(
1− (λR)ξ

)
, (4.21)

for ξ 6= 0, and

ηR = u+ σ̃ log(λR), (4.22)

for ξ = 0.

Confidence intervals for the return level ηR is computed using the delta
method, that is assuming that the maximum likelihood estimator is multi-
normal distributed with expectation equal to the real parameter value and
variance covariance matrix V . The variance of the return level ηR can tehn
be estimated by the delta method as

V ar(ηR) ≈ ∇ηTRV∇ηR, (4.23)

where V is the variance-covariance matrix for the estimated parameters
(λ̂, σ̂, ξ̂), and

∇ηR =

[
∂ηR
∂λ

,
∂ηR
∂σ

,
∂ηR
∂ξ

]T
. (4.24)

For the ACER method the return levels are estimated by inverting ... with the
values for a, b, c and q, found by the least square routine, for the exceedance
rate of interest.
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Chapter 5

Average Conditional Exceedance Rates

The concept of average conditional exceedance rates (ACER) is a relatively
new method for extreme value estimation. The method is developed by Arvid
Næss, and is among others explained in the preprint Estimation of Extreme
Values of Time Series with Heavy Tails (2010) [8].

The main differences between ACER and POT methods are that ACER gives
an exact empirical distribution without making assumptions about indepen-
dence in the data.

5.1 Cascade of Conditioning Approximations

We let 0 ≤ t1 < ... < tN ≤ T denote the points in time for the observerd
data values of X(t), and let Xk = X(tk), k = 1, ..., N . We use the notation
from Equation 4.1 and denote P(Mn ≤ η) = P(η). P(η) is then given exactly
by

P(η) = P{X1 ≤ η, ..., XN ≤ η}
= P{XN ≤ η|X1 ≤ η, ..., XN−1 ≤ η} · P{X1 ≤ η, ..., XN−1 ≤ η}

=
N∏
j=2

P{Xj ≤ η|X1 ≤ η, ..., Xj−1 ≤ η} · P(X1 > η). (5.1)
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If we assume that the Xs are iid (∼Poisson appr.), then with α1j(η) =
P{Xj > η} we have

P(η) ≈
N∏
j=1

P(Xj ≤ η) =
N∏
j=1

(1− α1j(η))

≈ P1(η) = exp{−
N∑
j=1

α1j(η)}. (5.2)

If we instead of assuming independence condition on one previous value we
have

P{Xj ≤ η|X1 ≤ η, ..., Xj−1 ≤ η} ≈ P{Xj ≤ η|Xj−1 ≤ η}, (5.3)

which leads to the approximation

P(η) ≈ P2(η) = exp

{
−

N∑
j=2

α2j(η)− α11(η)

}
, (5.4)

where

α2j = P{Xj > η|Xj−1 ≤ η}. (5.5)

We can continue with conditioning on more values

P(η) ≈ P3(η) = exp

{
−

N∑
j=3

α3j(η)− α22(η)− α11(η)

}
, (5.6)

where

α3j(η) = P{Xj > η|Xj−1 ≤ η,Xj−2 ≤ η}, (5.7)

and

P(η) ≈ P4(η) = exp

{
−

N∑
j=4

α4j(η)− α33(η)− α22(η)− α11(η)

}
, (5.8)

where

α4j(η) = P{Xj > η|Xj−1 ≤ η,Xj−2 ≤ η,Xj−3 ≤ η}. (5.9)
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This process of conditioning on more and more previous values can be con-
tinued until there are no more values, but in particular, if N >> k, where k
is the number of values we condition on, we can approximate

Pk(η) ≈ exp

{
−

N∑
j=k

αkj(η)

}
, k = 1, 2, ... (5.10)

By using the approximation in Equation 5.10 we introduce the concept of
ACER in the following way

εk(η) =
1

N − k + 1

N∑
j=k

αkj(η), k = 1, 2, ... (5.11)

5.2 Empirical Estimation of ACER

The following random functions are defined

Akj(η) = 1{Xj > η,Xj−1 ≤ η, ..., Xj−k+1 ≤ η}, j = k, ..., N , k = 2, 3,
(5.12)

and

Bkj(η) = 1{Xj−1 ≤ η, ..., Xj−k+1 ≤ η}, j = k, ..., N , k = 2, ...,
(5.13)

where 1{A} denotes the indicator function of some event A. Then

αkj(η) =
E[Akj(η)]

E[Bkj(η)]
, j = k, ..., N , k = 2, ..., (5.14)

where E[·] denotes the expectation operator. Assuming an ergodic process,
then obviously εk(η) = αkk(η) = ... = αkN(η), and it may be assumed that

εk(η) = lim
N→∞

∑N
j=k Akj(η)∑N
j=k Bkj(η)

(5.15)

Clearly, limη→∞
∑N

j=k Bkj(η) = N−k+1 ≈ N . Hence, limη→∞ ε̃k(η)/εk(η) =
1 where

ε̃k(η) = lim
N→∞

∑N
j=k Akj(η)

N − k + 1
(5.16)
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The advantage of this modified ACER function ε̃k(η) is that it is easier to
use for non-stationary or long-term statistics.

The sample estimate of ε̃k(η) is

ε̂k(η) =
1

R

R∑
r=1

ε̃
(r)
k (η), (5.17)

where

ε̂
(r)
k (η) = lim

N→∞

∑N
j=k A

(r)
kj (η)

N − k + 1
. (5.18)

Estimating Confidence Intervals

The sample standard deviation is estimated by the standard formula

ŝk(η)2 =
1

R− 1

R∑
r=1

(
ε̂
(r)
k (η)− ε̂k(η)

)2
(5.19)

We can use the sample standard deviation to create a good approximation
of the 95% CI for ε̃k(η) where

CI±(η) = ε̂± 1.96ŝk(η)/
√
R (5.20)

Fitting Asymptotic Distributions

From Equations 4.5-4.7 we recall that there are three families of extreme value
distributions, the Gumbel, Fréchet and Weibull. Based on prior knowledge
that Elspot prices seem to have so-called fat-tailed behavior, we will focus
on the Fréchet case. By fitting empirical ACER functions to asymptotic
distributions, we can use the parametric form to make predictions of extreme
values.

If the data are independent this can be expressed as

ε1(η) ≈ [1 + ξ (a(η − b))]−
1
ξ , η≥η0 (5.21)

with the first ACER function where a corresponds to 1
σ

and b corresponds to
µ in Equation 4.9. This relies on the assumption that sampled data can be
used as a basis for prediction.
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Since we in practice never have infinite data a form that can capture sub-
asymptotic behavior is desirable. Without going into details we will assume
that εk(η) can be approximated by

εk(η) ≈ qk(η) [1 + ξk (ak(η − bk)ck)]
− 1
ξk , η≥η1 (5.22)

where the function qk(η) is weakly varying compared with the function ak(η−
bk)

ck . By assuming that qk(η) varies sufficiently slow in the tail region we
may replace it with a constant q. We finally write

ε(η) ≈ q [1 + ã(η − b)c]−γ , η≥η1, (5.23)

where γ = 1
ξ
, ã = aξ.

5.3 Fréchet Fit Optimization

To fit our estimated ACER functions to the parametric form in Equation 5.23
we need an optimization routine.

We define the mean square error function as

F (ã, b, c, q, γ) =
N∑
j=1

wj |log ε̂(ηj)− log q + γ [1 + ã(ηj − b)c]|2 (5.24)

where wj = (logCI+(ηj)− logCI−(ηj))
−2 is a weight factor that emphasizes

less extreme data points. However this weighting is a matter of preference
and application, and can be done in other ways.

To minimize the mean square error function, and to find estimates for the five
parameters ã, b, c, q, γ, the Levenberg-Marquardt least squares optimization
method is well suited. By fixing ã, b, c we find optimal values for

γ∗(ã, b, c) = −
∑N

j=1wj(xj − x̄)(yj − ȳ)∑N
j=1wj(xj − x̄)2

(5.25)

and

log q∗(ã, b, c) = ỹ + γ∗(ã, b, c)x̄ (5.26)

where yj = log ε̂(ηj) and xj = 1 + ã(ηj − b)c. The Levenberg-Marquardt
method is then used on the function F̃ (ã, b, c) = F (ã, b, c, q∗(ã, b, c), γ∗(ã, b, c))
to find the optimal values of ã∗, b∗ and c∗, and then Equations 5.25 and 5.26
are used to calculate γ∗ and q∗.
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Chapter 6

Modeling Electricity Prices

In Chapters 4 and 5 we set up some tools for analyzing extreme values. But
before we can apply these tools we need to consider the data. As shown in
Figure 3.1, the plot of Elspot prices, the data are hardly stationary. Station-
ary means, simply put, that there are no trends or dependence in the data.
Ideally we want to transform and model the data in such a way that we end
up with residuals that are independent and identically distributed to fulfill
the assumptions of Equation 4.1. In practice these assumptions rarely hold.
We do note that the dependence assumption is not necessary for the ACER
method, but will always make things easier.

6.1 In Literature

Our first idea was to use vector auto-regression (VAR) as described in Richard
Harris & Robert Sollis’ Applied Time Series Modeling and Forecasting (2003)
[5]. VAR is a statistical model used to capture the linear interdependencies
among multiple time series. VAR models generalize the univariate auto-
regression (AR) models. All the variables in a VAR are treated symmetri-
cally; each variable has an equation explaining its evolution based on its own
lags and the lags of all the other variables in the model.

In the implementation of this model we ended up with a huge number of
parameters and were unable to limit this with the R functions we used.

Another model we studied was the model Kim Stenshorne used in his master’s
thesis [12] where a mixed model was proposed. Prices, or rather returns were
divided into ’balanced’ and ’unbalanced’ returns. Ordinary least squares
regression was then used to capture the 24-hour correlation between hours, for
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one day. A generalized least squares regression was then applied to capture
between days correlation. This model was fairly successful in predicting
for the ’balanced’ returns, but did not attempt to make predictions for the
’unbalanced’ returns, or extreme prices.

We wanted to incorporate extreme value theory into describing the ’unbal-
anced’ returns, but failed to incorporate all of the rather substantial amount
of code included in Kim Stenshore’s thesis.

In Rafael Weron’s book Modeling and Forecasting Electricity Loads and Prices
(2006) [13], several models are described. We list some of them here:
Statistical models - ARMA-type models, Time Series with Exogenous Vari-
ables, Autoregressive GARCH Models, Regime Switching Models.
Quantitative Models - Jump Diffusion Models

In talks with Statkraft we learned that they use powerful fundemental mod-
els that can actually predict, to some degree, even extreme Elspot prices.
To accomplish this Statkraft benefits from having an incredible amount of
available data (detailed information on power lines, consumption, etc) to use
as exogenous variables.

After these meetings we decided that our focus should be on the stochastic
behavior of the extremes. Fundamental models such as the one Statkraft
uses are very powerful for short term and even mid term predictions. So
powerful in fact, that they explain the stochastic phenomenon we are trying
to study.

For our area of interest we found it best to use pure time series modeling
of the data, and consider all the possible exogenous variables as part of an
underlying stochastic process.

6.2 AR-GARCH model

In Alexander J. McNeil and Rüdiger Frey’s article Estimation of tail-related
risk measures for heteroscedastic financial time series: An extreme value
approach (2000) [7], and Hans N.E. Byström’s article Extreme value theory
and extremely large electricity price changes (2005) [1] it is proposed to use an
AR-GARCH model to model returns, and then apply extreme value theory
to a series of standardized residuals. We will follow the approach of Byström.

Because of the daily and weekly correlation patterns observed in the returns
series we will use an AR filter with lags at t−1, t−24 and t−168. We could
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probably get a better fit by including more lags, but we want a simple and
intuitive model

rt = a0 + a1rt−1 + a2rt−24 + a3rt−168 + εt (6.1)

To account for varying volatility in the time series, a GARCH model is pro-
posed

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (6.2)

Again a simple model is chosen with just the first lag for the errors and
standard deviations. Making more sophisticated GARCH models could be
an interesting study, but not something we will focus on here.

After an AR-GARCH model is fitted to the returns wilth either normal or
student’s t distributed innovations, we can reverse the process by first picking
out quantiles from a fitted extreme value distribution, then scale it with σt
and finally add to the AR trend.

αt,p = a0 + a1rt−1 + a2rt−24 + a3rt−168 + σtαp (6.3)

To fit an extreme value distribution, a POT method is applied to the stan-
dardized residuals.

POT

The peak over threshold method is an application of Theorem 4.2.1. We use
it to estimate αp.

The values of the standardized residuals series that are over the threshold u
follow the excess distribution Fu(y) given by

Fu(y) = P(R− u ≤ yR > u)

=
FR(u+ y)− FR(u)

1− FR(u)
, 0 ≤ y ≤ RF − u (6.4)

Equation 4.16 with σ̃ equal to α

Gξ,α(y) = [1− (1 +
ξy

α
)]−1/ξ, if ξ 6 0 (6.5)

Gξ,α(y) = 1− e−y/α, if ξ = 0. (6.6)
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FR(u+ y) = (1− FR(u))Fu(y) + FR(u). (6.7)

We write FR(u) as (n − Nu)/n where n is the total number of observations
and Nu is the number of observations above the threshold.

FR(x) = 1− Nu

n
(1 +

ξ

α
(x− u))−1/ξ. (6.8)

and α given by

αp = u+
α

ξ

(
(
n

Nu

p)−ξ − 1

)
. (6.9)
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Chapter 7

Data Analysis

We began by analyzing the Elspot net returns series as Byström did in his
article [1], but now with newer data. Byström used Elspot prices from Jan-
uary 1, 1996 to October 1, 2000, whereas we have used data from January
1, 2005 to December 31, 2011.

To implement the AR-GARCH model we have used the rugarch library [4]
in R. This library allows you model the AR and GARCH part at the same
time, and also lets you fix parameters to predefined values.

To model the threshold exceedances we have used the fExtremes library [15]
in R. For the ACER implementation we have used Matlab [6] , with help
from Kai Erik Dahlen [3].

7.1 Analysis of Net Returns

We repeat the AR-GARCH model we have used for convenience

rt = a0 + a1rt−1 + a2rt−24 + a3rt−168 + εt (7.1)

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (7.2)

Here rt corresponds to Nt, the net returns.
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Normal Student’s t

AR-GARCH parameters
a0 -0.401 (0.206) -0.667 (0.0404)
a1 0.182 (0.00427) 0.168 (0.00321)
a2 0.294 (0.00348) 0.289 (0.00375)
a3 0.178 (0.0039) 0.202 (0.0337)
φ0 0.386 (0.0237) 1.24 (0.0337)
φ1 0.249 (0.00552) 0.671 (0.011)
φ2 0.750 (0.00715) 0.328 (0.00624)
v 3.08 (0.0243)

Standardized residuals statistics
Mean (%) 0.0153 0.02
Standard deviation (%) 1.12 1.26
Skewness 1.68 1.97
Excess kurtosis 38.3 48.6
Q(10) 1519 1484
Q(20) 1810 1762
Q2(10) 35.72 888.9
Q2(20) 62.09 927.2

GPD parameters with POT
ξ 0.312 (0.0237)
α 0.884 (0.0259)
u 0.05

Table 7.1: AR-GARCH parameters, statistics on the standardized residuals,
as well as GPD parameters for the net returns series

In Table 7.1 all the parameters from Equations 7.1 and 7.2 are fitted with
both normally distributed and student’s t distributed innovations. Byström
used a 5.5% threshold for his POT analysis, and we have used a similar
threshold of 5%, denoted u in Table 7.1. To estimate the POT parameters ξ
and α we used the standardized residuals from the AR-GARCH model with
normally distributed innovations. The standardized residuals are calculated
by dividing the residuals from the auto regressive (AR) filter by the time
dependent standard deviations from the GARCH modeling.

In Byström’s article he compared how well a normal distribution, a student’s
t distribution and a generalized Pareto distribution would describe the top
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5.5% of the standardized residuals calculated from the AR-GARCH model.
He did this by calculating the expected number of exceedances for different
quantiles, and then seeing how the empirical exceedances for the different
distributions would compare.

Probability Expected AR-GARCH AR-GARCH-t Conditional GPD

0.95 3068 2812 1585 3067
0.99 614 1409 409 632
0.995 307 1150 246 313
0.999 62 789 75 59
0.9995 31 696 37 30
0.9999 7 514 6 4

Table 7.2: Empirical exceedances for normal, student’s t and GPD distri-
butions compared to the theoretically expected number of exceedances.

We have repeated this analysis and presented the results in Table 7.2. The
numbers are very much in line with Byström’s results, demonstrating that
the extreme value distribution describes exceedances in the tail of the stan-
dardized residuals better. To expand up Byström analysis we wanted to see
how ACER would predict exceedances for the same quantiles.

ACER Modeling

To align ourselves with the time dependence structure used in the AR-
GARCH model, we study the ACER functions k = 1, k = 2, k = 25 and
k = 169 corresponding to the lags in the AR-filter in Equation 7.1. We
wanted the ACER predictions to be comparable to the POT predictions, so
we started with the same threshold as for the POT estimation, in the ACER
estimation. That is, 5%, or η1 = 1.56 for the standardized residuals.
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Probability Expected ACER1 ACER25 ACER169

0.95 3068 3103 976 92
0.99 614 610 477 90
0.995 307 310 263 84
0.999 62 63 57 44
0.9995 31 30 29 23
0.9999 7 9 10 6

Table 7.3: AR-GARCH parameters, statistics on the standardized residuals,
as well as GPD parameters

The results presented in Table 7.3 were a bit surprising. The empirical ex-
ceedances based on the ACER fit predictions were very close the to expected
number of exceedances for the first ACER function. But the exceedances for
ACER25 and ACER169 were way off except for the most extreme quantiles.
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Figure 7.1: A selection of ACER functions for the standardized residuals
from the AR-GARCH fit of net returns.

By plotting the ACER functions, shown in Figure 7.1, we quickly realized
some obvious shortcomings. Our threshold selection of η1 = 1.56 looked to
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be ok for the first ACER function, but for ACER169 the tail doesn’t start
until atleast η1 = 5. We therefore needed to choose the tail marker η1 in a
different way.

We will explore this further in the next section, but first we need to explain
another issue in the ACER implementation.
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Figure 7.2: ACER1 with fit for the standardized residuals from the AR-
GARCH fit of net returns.

In Figure 7.2 we show the empirical ACER1 function together with the para-
metric fit q [1 + ã(η − b)c]−γ from Equation 5.23. Here we can see that the
data are cut at the tail marker η1 = 1.56, but if we look closely and compare
with Figure 7.1 we notice that the most extreme values have been cut as
well. How many of the most extreme values are cut, is determined by the
choice of a parameter δ in the ACER implementation. Here δ = 1, and a
lower value will cut more data, and a higher value will include more. This
parameter helps the optimization go smoothly, but it is worth noting because
it can have an impact on the fitted tail. We also keep in mind that the POT
implementation we have used with fExtremes [15], doesn’t cut any of the
most extreme values.
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7.2 Analysis of Returns

After having gone through Byström’s approach with a newer data set, and
made some brief comparisons between POT and ACER methods, we decided
to switch the analysis from using the net returns series to the returns series.
As we recall from Equation 3.2 net returns are calculated by

Nt =
Pt − Pt−1
Pt−1

(7.3)

We observed in Figure 3.1 that the Elspot prices came close to zero in several
periods throughout that time series. Our primary concern is that by dividing
by Pt−1 to calculate net returns, we might ’produce’ extreme values simply
by dividing by very low prices.

44



Normal Student’s t

AR-GARCH parameters
a0 -0.00852 (0.001) -0.00852 (0.0012)
a1 0.148 (0.00355) 0.125 (0.00318)
a2 0.311 (0.00356) 0.289 (0.00377)
a3 0.184 (0.00304) 0.216 (0.00342)
φ0 0.0579 (0.00254) 0.21 (0.00615)
φ1 0.236 (0.00476) 0.656 (0.0124)
φ2 0.763 (0.00526) 0.343 (0.00776)
v 3.09 (0.0277)

Standardized residuals statistics
Mean (%) 0.0285 0.0277
Standard deviation (%) 1.06 1.21
Skewness 1.40 4.75
Excess kurtosis 34.3 232.6
Q(10) 1265 1238
Q(20) 1324 1292
Q2(10) 69.13 12.58
Q2(20) 87.62 17.62

GPD parameters with POT
ξ 0.297 (0.0234)
α 0.760 (0.0221)
u 0.05

Table 7.4: AR-GARCH parameters, statistics on the standardized residuals,
as well as GPD parameters for the returns series

The AR-GARCH fit for the returns is shown in Figure 7.4. The AR-GARCH
parameters are similar to the fit for the net returns series. In particular we
note that the GDP parameters have changed from ξ = 0.312 to ξ = 0.297
and from α = 0.884 to α = 0.760.

As we explained in the previous section, we need to pay attention to how we
cut the tail in the ACER modeling.
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Figure 7.3: Mean residual life plot for the standardized residuals of the
AR-GARCH fit of net returns.

In Figure 7.3 we have made a mean residual life plot of the standardized
residuals. A MRL plot can be used as an aid in threshold selection, but gives
no definite answers. In the plot we want to look for linearity or intervals of
’regular’ behavior. There seems to be a trend up until a value of about seven
for the threshold, and a less consistent trend up until about a value of 18 for
the threshold.

The ACER functions can also be used to diagnose tail behavior, and in
Figure 7.4 we have plotted ACER functions for k = 1, k = 2, k = 25 and
k = 169
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Figure 7.4: A selection of ACER functions for Elspot price changes, Jan-
uary 1, 2005 to December 31, 2011.

The plot of ACER functions does not look as ’nice’ as the plot of ACER
functions in Figure 7.1. By this we mean that the tail bahavior looked to
be more regular in the case where we used net returns as input to the AR-
GARCH model. We also saw in the QQ-plot in Figure 3.13 of the net returns,
that the net returns seemed to be ’stretched’ out more nicely in the tail.

Regarding the selection of a threshold we see in Figure 7.4 some of the same
things we saw in the MRL plot. But the plot of ACER functions gives us
more information since part of the time dependence structure is uncovered.
Judging from this plot choosing a good tail marker will be a difficult task be-
cause the interval with most regular behavior for ACER1 (up until a threshold
value of seven), is not valid for ACER169.

The drop in the ACER function for k = 169 showed that there is still time
dependence in the standardized residuals that the AR-GARCH filter didn’t
pick up.
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Figure 7.5: ACF and PACF for the standardized residuals of the AR-
GARCH model of returns.

In Figure 7.5 we have plotted the ACF and PACF of the standardized results
to do some extra investigation of the time dependence. Compared to the ACF
and PACF in Figure 3.5 of the returns, we can see that alot of the correlation
has been caught by the model. In particular the correlation at the weekly
lag is now much less pronounced.

We found this a bit odd after observing a significant time dependence at the
weekly lag in the ACER functions. But by studying the AR-GARCH model
in Equations 7.1 and 7.2 model we found some issues that may explain this
observation.

The AR filter is fitted with the weekly lag, but the fit is made with all of
the data, so the filter has no chance to predict extreme values. The GARCH
model attempts to scale down the extreme values when they come in clusters,
but the GARCH model is not fitted with the weekly lag, so it will not scale
down extreme values that are further apart.

In the POT method that Byström used in his analysis, the standardized
residuals were assumed to be independent since no declustering was done
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after filtering with the 5.5% threshold. We have uncovered with the ACER
method that this may have been a mistake.

ACER function k q a b c e 50-year return level

η = 1.59(0.95), δ = 1
1 0.143 0.811 0.209 2.53 0.953 71.4 [39.4, 118]
25 - - - - - -
169 - - - - - -

η = 4.06(0.995), δ = 0.99
1 0.00478 0.65 4.11 0.868 0.205 51.4 [25.5, 446]
25 0.00478 0.65 4.11 0.907 0.205 46.6 [4.3, ∞]
169 - - - - - -

η = 7.25(0.999), δ = 1
1 0.00102 0.0194 6.06 3.06 1.48 67.3 [18.9, 2320]
25 0.000931 0.0224 6.16 3.03 1.60 78.5 [19.2, 4140]
169 0.000548 0.157 7.3 1.5 0.80 79.4 [- , -]

Table 7.5: Return level estimates with ACER

By our line of reasoning we would be fast to select the ACER169 function,
but if we study Figure 7.4 again there are a few problems. Like we have
already discussed, there is a difficulty with choosing a good threshold, and
this looks to be even harder for the ACER169 function. Also we will have to
rely on far less data if we use the ACER169 function.

Because we saw no clear way to select ACER functions and cut the tail, we
decided to make parameter estimates with different setups of ACER functions
and tail-cutting parameters, η and δ.

In Table 7.5 we have plotted the parameter estimates together with a 50-
year return level estimate. In applications 50 years is not really relevant,
but we wanted to see how the different parameter estimates would affect
asymptotic behavior. Another thing to note is that the parameter c is equal
to one in the asymptotic case, so we should be weary of values that deviate
significantly from one. How much significantly is, we are not equipped to
say. But values of the c parameter of 3.06 like we observed in Table 7.5 has
to raise some concern about overfitting the sub-asymptotic case at the cost
of maybe skewing the fit of the shape parameter ξ.
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The results in Table 7.5 are hard to make any sense of because there doesn’t
seem to be much consistency.
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Figure 7.6: 50-yera return level plot for ACER1 with η1 = 1.59 and δ = 1.

In Figure 7.6 we have shown the return level plot of the parameter setup the
gave us the tightest confidence bounds. This setup uses the same tail marker
at the POT method, but cuts a few of the most extreme observations. So we
might expect a similar shape parameter ξ.

We see in Table 7.5 that the shape parameter is 0.953 compared to 0.297
for the POT method. This is a wide discrepancy, but we also see that the
c parameter is 2.53, and that we may have over-fitted the sub-asymptotic
behavior in this instance. We estimated the same parameter setup (with
k = 1, η1 = 1.56, δ = 1) for the net returns to compare. We then found
estimates more in line with the POT estimates with ξ = 0.218. Here c was
0.891, so that is another indication that we should be skeptical of estimates
where the c parameter deviates significantly from one.
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ACER function k q a b c e 50-year return level

η = 1.59(0.95), δ = 2
1 2899 10.2 0.164 0.189 9.5e-5 44.3 [29.6, 63.9]
25 - - - - - -
169 - - - - - -

η = 4.06(0.995), δ = 2
1 0.00465 0.595 4.11 0.873 0.14 40.1 [26.3, 131]
25 0.00355 0.491 4.11 0.905 0.133 39.3 [25.7, 138]
169 - - - - - -

η = 7.25(0.999), δ = 2
1 0.000992 0.0409 6.49 2.52 1.02 47.8 [- , -]
25 0.00921 0.0423 6.41 2.43 0.986 48 [22.5, 345]
169 0.000547 0.0286 6.23 2.42 1.02 49.8 [- , -]

Table 7.6: Return level estimates with ACER

In Table 7.6 we have tried experimenting with a δ parameter equal to 2, to
see what happens when all of the most extreme observations are included.
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7.3 Forecasting Extreme Values

Our goal in this thesis is not really to predict when extreme values will
occur, but to say something about the probability that a given threshold will
be exceeded within a certain time frame.

Predicting quantiles is done by using Equation 6.3

αt,p = a0 + a1rt−1 + a2rt−24 + a3rt−168 + σtαp (7.4)

where αp are quantiles from the extreme value distributions we have fitted.
Our predicted quantiles from the fitted distributions will be scaled by the
GARCH model and then added to the trend predicted by the AR filter.

This will give us predictions for the returns series, but we want to see what
happens with the predictions for the Elspot prices.

We recall from Equation 3.1 that returns were found as

Rt = Pt − Pt−1. (7.5)

This also mean that the next expected price at time t would be the current
price plus the expected return

E[Pt+1] = Pt + [Rt+1] (7.6)

We were curious what would happen in periods with large price differences.
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Figure 7.7: Constructed example of forecasting after a spike (forecast dotted
in green).

In Figure 7.7 we have tried to illustrate what might happen with predictions
after a spike. The return at time t will be extremely large. This value will
then be used in Equation 7.7 to calculate the expected return at time t+ 1

E[rt+1] = a0 + a1rt + a2rt−23 + a3rt−167. (7.7)

Without doing the exact calculations we can then imagine that the result will
be something like the plot in Figure 7.7 if we continue to calculate expected
returns without using information about the actual price past time t.

We wanted to study this further.
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Chapter 8

Returns & Extreme Values

When we model returns we have to make some assumptions about their
dependence and distribution. If we assume iid normal returns we are working
under the assumptions of the Wiener process

Wt = Wt −Ws ∼ N (0, t− s) (8.1)

where Wt is a time series and t − s is the lag difference. In the case of a
returns series, s would be the first lag, t− 1, at time t.

A modified version of the Wiener process, where the properties of the process
have been changed so that there is a tendency of the process to move back
towards a central location, with a greater attraction when the process is
further away from the centre, is called a Ornstein-Uhlenbeck process

dxt = θ(µ− xt)dt+ σdWt (8.2)

with solution given by

xt = x0e
−θt + µ(1− e−θt) +

∫ t

0

σeσ(s−t)dWs (8.3)

The Ornstein-Uhlenbeck process can be thought of as the continuous-time
analogue of the discrete-time AR(1) process.

Both of these processes have normally distributed noise as their input. We
tried to make some assessments about what happens when we take returns
of Elspot prices, and in particular the extreme values.
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8.1 A Stock Market Comparison

For a series of stock prices it makes intuitively sense to take returns because
the stock price always reflect the underlying asset, the company’s value. And
if the stock market is efficient, then at no point in time should the stock’s
price history influence the future prices of the stock. I.e. there should be
no arbitrage opportunities in the sense that you should not be able to tell
anything about the future price development of a stock based on recent price
jumps or price falls. Therefore, if you have a time series of stock returns, the
returns should be independent and identically distributed

These assumptions may be harder to make for the Elspot returns. In Section
2.2 we explained how the Elspot market works. We recall that bid and ask
offers are placed on one-hour-long contracts, and that the bids are placed
each day at noon for the next 24 hours, starting at midnight. In such a
market there is no asset or entity that changes its value from one hour to the
next. Electricity is bought by the hour and consumed by the hour.

In Section 3.3 we calculated ACFs for 02:00-03:00 and 08:00-09:00 hours, and
visualized their differences in Figure 3.8. Clearly the hours’ prices behave
differently, so the perceived entity that changes value from one hour to the
next, is not really the same thing.

8.2 Mean Reversion

When we chose to model the returns with an AR-process we assumed a
priori that the returns were mean reverting without thinking about it. We
performed an R/S analysis on the returns to get a better idea of the mean
reversion in the hourly Elspot prices.

Rescaled Range Analysis

This method, described in Rafael Weron’s book Modeling and Forecast-
ing Electricity Loads and Prices [13], allows for the calculation of the self-
similarity parameter H, which measures the intensity of long-range depen-
dence in a time series [13].

The analysis begin with dividing a time series (of returns) of length L into d
subsets of length n. Next for each subseries m = 1, ..., d:
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1. find the mean (Em) and standard deviation (Sm);

2. normalize the data Zi,m by subtracting the sample mean Xi,m = Zi,m−
Em for i = 1, ..., n;

3. create a cumulative time series Yi,m =
∑i

j=1Xj,m for i = 1, ..., n ;

4. find the range Rm = max{Y1,m, ..., Yn,m} −min{Y1,m, ..., Yn,m} ;

5. rescale the range Rm/Sm

Finally, calculate the mean value (R/S)n of the rescaled range for all subseries
of length n.

It can be shown that the R/S statistic asymptotically follows the relation
(R/S)n ∼ cnH . Thus the value of H can be obtained by running a simple
linear regression over a sample of increasing time horizons

log(R/S)n = log c+H log n. (8.4)

Equivalently, we can plot the (R/S)n statistic against n on a double-logarithmic
paper. If the returns process is white noise then the plot is roughly a straight
line with slope 0.5. If the process is persistent then the slope is greater than
0.5; if it is anti-persistent (or mean reverting) then the slope is less than 0.5.

56



0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

log n

lo
g 

R
/S

Figure 8.1: R/S analysis plot. The slope of the curve estimates the Hurst
parameter. The blue line is for a Hurst parameter of 0.5.

In Figure 8.1 we can clearly see that the Hurst exponent, or self-similarity
parameter is well below 0.5, which indicates that the returns series is mean
reverting.

But other than confirming that our time series is mean reverting, the Hurst
exponent does not say us all that much. We tried to make some plots to
help us understand more about how the time series was mean reverting. We
defined the sums

∆t =
l−1∑
i=0

Rt−i (8.5)

∇t =
l∑

i=1

Rt+i (8.6)
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Figure 8.2: Excerpt from the Elspot prices series showing how

Figure 8.2 visualizes how these sums are calculated at time t.
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Figure 8.3: ∇t against ∆t with lags of a day, a week, a month and a year.

In Figure 8.3 we have plotted ∇t against ∆t in a scatterplot, with l =
24, 168, 720, 1248, with t running through the entire time series. The plots
show that if we have a period where the sum of returns is very high, i.e. the
price has risen, the next period of equal length will tend to have an equally
large sum with opposite sign.

This again indicates mean reversion, but we were wondering what the time
series was mean reverting to, and how fast it was happening.
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Figure 8.4: Excerpt from daily Elspot prices at 08:00-9:00

In Figure 8.4 we have shown an example from the hourly Elspot prices where
the trend has as much variation as the spikes. In such a scenario it is difficult
to seperate a spike from a trend. In Figure 8.2 the trend is much easier to
identify, although we do note that even in that figure, the spike is not a
singular value, but the sum of several big increases.

8.3 Asymmetric Transformation of Extreme Quantiles

In Section 7.3 we ran into the problem of forecasting after observing a spike.
We constructed another example here to highlight an issue with taking re-
turns.
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Figure 8.5: Constructed example of a time series with a single spike, and
its differenced series

If we happen to have a large singular spike like in Figure 8.5. The differenced
series, or the returns, will now contain two spikes instead of one.
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Chapter 9

An Alternative Transformation

Taking returns or differencing a time series is a standard way to make time
series more stationary, so we naturally took that approach here aswell. As we
discussed in the previous chapter, there can be some issues with the returns
series, in particular when analyzing extreme values.

To avoid what we perceived as problems with the returns series we thought
about applying ACER directly to the Elspot prices. The problem with this
is shown in Figure 9.1.
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Figure 9.1: Elspot prices, January 1, 2005 to December 31, 2011.

To avoid classifying data as spikes that are part of trend, we would have to
use a very high threshold. In Figure 9.1 we have circled out where the trend
has its highest values, and drawn a line well above this as an approximate
threshold. With such a high threshold we can see from the figure that we
would have to scrap most of the data and only capture a small percentage of
the spikes.

9.1 A Moving Median

Our naive approach was to consider something in-between Elspot prices, and
Elspot returns. By forming a time series of differences between the Elspot
prices and a moving median we hoped to capture all the spikes but at the
same time not let the extreme quantiles be distorted by putting too much
emphasis on immediate history. We set the moving median to be the median
of one week of Elspot prices, or an hourly lag of 168. The differences series
becomes
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Dt = Pt −median([Pt−168, Pt−1]) (9.1)

Figure 9.2: Elspot prices, January 1, 2005 to December 31, 2011 with the
moving median in green.

This method of transforming the data shows some promise after studying
Figure 9.2. The moving median seems to follow the trend nicely without
being affected by the spikes. There is an obvious issue of what the lag of
the moving median should be, but we found that with a lag of one week, the
moving median was following the trend fairly close, but at the same time not
dipping down, or jumping up with the spikes.
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Figure 9.3: Elspot prices differences with lag according to the moving me-
dian. Plotted together with the Elspot returns series in grey.

By comparing with Figure 3.3 (in grey in Figure 9.3) we see that the series
of differences Dt does not have the same symmetry about the x-axis that the
return series has. Our constructed example illustrated in Figure 8.5 showed
how taking returns could possibly ’produce’ new extreme values with some
symmetry, so we consider it a good thing that we see less symmetry here.

In the sense that we can consider the returns or differences a residual series
themselves, we computed their sum and sum of squares to gauge some of
their properties. We see in Table 9.1 that we end up with a much larger
squared sum of differences than squared sum of returns.
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Data Sum Sum of Squares

Returns 5.23 46.8 ×104

Differences 2407 278 ×104

Adjusted differences 10080 247 ×104

Table 9.1: Squares

If we wanted to fit a time series model to the differences, then the numbers
from Table 9.1 would not be a good sign. Our concern is with the very high
quantiles, so this might not matter for us.

9.2 Daily Differences

Kai Erik Dahlen analyzed daily prices in his master’s thesis [3], where he
looked at the prices for hours 08:00-09:00. Figure 3.7 indicates different
behavior for different hours, so we wanted to get a better idea about how
different hours differed in distribution.

So we will take the series of differences and divide it up into series for each
hour, and look at their empirical distributions.
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Figure 9.4: Empirical densities of daily differences for the different hours
of the day.

From Figure 9.4, we can see that the densities do not share a common mean
or are centered about a common peak density. This was expected because
of the way we constructed the differences series. It might also partly have
contributed to the larger numbers for the differences in Table 9.1.

We took the freedom to simply subtract the mode from each distribution
to sort of compensate for the daily cycle of prices. We will justify this by
admitting that our approach is experimental and more of a practical solution
than anything else.
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Figure 9.5: Empirical densities of daily differences for the different hours
of the day, each one adjusted to a mode equal to zero.

After studying Figure 9.5 we realized that the hourly differences contains
values from all of these distributions combined, so the distribution of hourly
differences can be thought of as the distribution of a sum of different stochas-
tic variables, X1, X2, ..., X24.

This makes a strong argument for considering daily prices, or in our case,
daily differences. The downside is that daily series have far less data. In the
next chapter we will take a look at both.
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Chapter 10

ACER Analysis of Differences

After making a sort of blind folded transformation of the data in the previous
chapter, we applied ACER to the differences to see if this new way of looking
at the data has any merit. Because of the different distributional properties
of the different hours we looked at both the hourly differences, as we did
in Chapter 7 following Byström’s approach, and the the daily differences.
The daily differences will still be the values from the hourly differences, but
because the moving median remains fairly stable, these values will be very
similar to separately daily series with the own moving median etc. We tried
that, and actually found this method favorable because the moving median
was less stable when considering daily data.

10.1 Daily Differences

Even in the data description we saw in Figure 3.7, we saw that the electricity
prices of different hours behaved differently. We have looked into them in
more detail in this section.
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Figure 10.1: A selection of ACER functions for the differences at 02:00-
03:00

Figure 10.1 shows the ACER functions for independent data, daily, and
weekly lag for hours 02:00-03:00. For ACER1 it looks like we have and
exponential tail-off. For ACER8 the tail off seems more linear, except for the
most extreme values.

In Figure 10.2 we have plotted two different fits, one of ACER1, and of
ACER8, together with their return level plots. The parameter and return
level estimates are presented in Table 10.1.
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Figure 10.2: Fitted ACER functions and return level estimates for a selec-
tion of ACER function with a selection of tail cuts 02:00-03:00

The plot shows us that what ACER function we choose and how we cut
the tail can have a big impact on the fit. In Table 10.1 we see that the
shape parameter ξ tells two very different stories. While the first is clearly a
Frechet, the second one looks to be more Gumbel.

ACER function k q a b c e 50-year return level

η1 = 2.73(0.95), δ = 2
1 0.0556 1.65 2.35 2.49 1.7 76.9 [12, 515]

η1 = 3, δ = 1
8 0.0376 4.7e-5 -6.54 4.49 0.097 8.49 [5.72, 43.3]

Table 10.1: Parameter and return level estimates for 02:00-03:00.
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Figure 10.3: A selection of ACER functions for the differences at 08:00-
09:00

Figure 10.3 shows the ACER functions for independent data, daily, and
weekly lag for hours 08:00-09:00.

In Figure 10.4 we have plotted two different fits, one of ACER1, and of
ACER8, together with their return level plots. The parameter and return
level estimates are presented in Table 10.2.
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Figure 10.4: Fitted ACER functions and return level estimates for a selec-
tion of ACER function with a selection of tail cuts 02:00-03:00

In Figure 10.4 and Table 10.2 the same pattern as for hours 02:00-03:00,
where the independent with the entire tail, seems to be more heavy-tailed.

ACER function k q a b c e 50-year return level

η1 = 14(0.95), δ = 2
1 0.0465 0.0084 14 2.05 1.4 877 [169, 6075]

η1 = 17, δ = 1.2
8 0.011 0.013 17.2 1.4 0.32 160 [69, -]

Table 10.2: Parameter and return level estimates for 08:00-09:00.
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10.2 Hourly Differences

The hourly differences are more similar to the return series we studied in
Chapter 7. As we can see from Figure 10.6 the first ACER function looks
to behave nicely with what looks like a smooth curve for the majority of the
tail. For ACER169 the function is far less regular.
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Figure 10.5: A selection of ACER functions for the differences.

A thing to keep in my when it comes to the ACER169 function is that we
dont know which exceedances are removed. If we think about the hourly dif-
ferences as the compilation of daily differences, then the counted exceedances
will probably come from different daily series, depending on the size of spikes,
their ordering, and threshold. Since these have different distributions, this
might be an argument for using the ACER1 function.
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Figure 10.6: 50-year return level plot for ACER1 with η1 = 7.32 and δ = 2.

In Figure 10.6 we have plotted the return level estimates for ACER1. It
is tempting to use this ACER function because of the nice fit and more
reasonable confidence bounds.
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Figure 10.7: 50-year return level plot for ACER169 with η1 = 7.32 and
δ = 1.

From the ACER169 we expected a more gumbel type of fit. But Figure 10.7
shows us some exponential decay in the tail. But as indicated by the confi-
dence bounds, this fit is much less certain.

In Table 10.3 we can see that the parameter and return level estimates are
not that different. The shape parameter for ACER1 is 0.29 and for ACER169

it is 0.244. Oddly enough the first ACER function has a shape parameter
almost identical to the shape parameter Byström found in his analysis.

We also note that the other parameter estimates look reasonable, i.e. the c
parameter is close to one, which we consider a good thing.
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ACER function k q a b c e 50-year return level

η1 = 7.32(0.95), δ = 2
1 0.0493 0.231 7.37 0.89 0.29 509 [279, 1147]

η1 = 7.32, δ = 1
169 0.00107 0.0812 7.37 0.87 0.244 384 [112, 183185]

Table 10.3: Parameter and return level estimates for hourly differences.

Table 10.3

10.3 Forecasting With Differences

To make prediction with the approach we have used here, we can select a
probability from a distribution we have fitted, and then add the correspond-
ing quantile to the moving median at time t.
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Figure 10.8: Cumulative distribution function of exceedances with the fit of
the ACER1 function of hourly differences. The tail starts at 7.37 (0.95).

In Figure 10.8 we have shown an example of a fitted distribution. To illustrate
how we can use this distribution we applied it to calculating the probability
of the electricity price exceeding 70 Euros, at the price where the Elspot time
series we have studied ends.
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Figure 10.9: An excerpt from the end of the Elspot prices series with the
moving median in green. α is the probability of exceeding the threshold dotted
in red.

At the very end of the time series the price is 31.46 Euros, and the moving me-
dian is 29.25 Euros. To find the probability of exceeding 70 Euros we would
then need to find the probability from our fitted distribution corresponding
to a quantile of 70 − 29.25 = 40.75. The result is shown in Figure 10.9.
In comparision the probability of exceeding 70 Euros, if we fitted a normal
distribution to the hourly differences, would be ≈ 0.

We could relatively easily improve these estimates by including some scaling
depending on what hour the price is for, and to also include some dependence
on recent volatility.
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Chapter 11

Discussion & Concluding Remarks

We started the work with this thesis without much prior knowledge about
electricity prices or how to model them. But after learning about Nord Pool,
how the electricity prices are set, and about the many ways that electricity
prices can be modeled, our understanding has matured greatly.

Our task was to study extreme prices and their statistical properties, but
much of our time was consumed by studying and thinking about different
ways to model and predict electricity prices. There has been written a lot
about this subject and electricity prices have been, and are being modeled
in many different ways. It seemed like there was no ’right’ way to approach
the modeling problem.

A realization came to us after several talks with Eirik Mo at Statkraft. Be-
cause he explained that the fundamental models that Statkraft uses can
actually predict even extreme prices fairly well. At first this was disheart-
ening because it seemed like it took away the entire motivation to model
extreme prices. But the simple, yet important detail to remember, was the
time frame of the predictions.

The time frame of a prediction also determines how much relevant informa-
tion is available for that prediction. So the more information we have about,
for instance, consumption, weather, reservoir levels, etc, the better predic-
tions we can make for the next hour, day and so on. But if we go much
further in time, let us s say a year, then it would not be very useful to know
these things anymore. So put in another way, there is more uncertainty the
less we know about influencing factors, and the further in time we are trying
to predict.

Trivial as it really is, this had an important implication for us. The stochas-
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tic properties of the noise may be different depending on what information
is being used and what time frame is considered. In many applications and
regression methods, noise is often assumed to be Gaussian. For electricity
prices we were assuming more fat-tailed behavior from the get-go, but did
not really think about what had this fat-tailed behavior. Because we can
not really talk about fat-tailed behavior in electricity prices without defin-
ing a stochastic variable of some sort. And as we have seen in this thesis,
the stochastic variable is usually some residual from a model that has both
transformed and trend-fitted the prices.

In the case with Statkraft, who has models that can predict extreme prices
fairly well, the models residuals does probably not have fat-tailed behavior.
So we found ourselves wondering why we were even applying extreme value
theory in the first place. The answer to that has really been the ongoing
process of working with this thesis.

Our opinion is that it’s a matter of how the data is approached, transformed,
and modeled. And also what the models and predictions are trying to achieve.
The SUR regression model is a good example of a model that wanted to take
full advantage of the correlation structure both between days and hours to
predict the trend as well as possible in the short term (10 days). Statkraft’s
models are even more advanced and make even better predictions. We found
that our goal was not to create a model that could make good predictions,
but rather find a way to say something about the distribution of extreme
prices. We did this by using an AR-GARCH time series model inspired by
Byström, and found similar results as him with a sample of newer data.

Additionally, we believe we found some shortcomings in the way Byström
transformed his data. Although his method manages to describe the residual
series’ very high quantiles fairly well, it was not clear to us how the distribu-
tions he fitted related to the prices themselves, as that was made no mention
of. We tried to approach the data in a different manner, to hopefully be
able to relate extreme value distributions to the electricity prices in a more
intuitive and applicable way, and to some degree we believe that this has
been achieved.

In our extreme value analysis the ACER approach has been a great asset
in getting a more detailed picture of what happens in the tail of the fitted
distributions, and also how the introduction of extra parameters can be used
to fit sub-asymptotic behavior more appropriately when there is not enough
data to make a good fit of an asymptotic distribution. To analyze time
dependences in extreme prices ACER has also proved very helpful.
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Some other problems that are of a more inherent type, is the sample size and
the general applicability of statistics to analyze extreme electricity prices. In
our data analysis we found many cases where there were simply not enough
data in the tail to make confident estimates, particularly when we looked at
daily data. As we understand this is a recurring problem in extreme value
statistics, and is just ’the nature of the beast’ so to speak.

Regarding extreme value statistics’ applicability to describe extreme elec-
tricity prices, we found several instances where it seemed hard to identify
any regular pattern in the tail behavior. We must remember that it is not
a given that with whatever we consider a stochastic variable, there will be
a distribution that describes it well. If we think about, we would almost
expect the opposite is true since the Elspot market is continually changing
and evolving. This also goes for the market players who must try to adapt
their bidding to the best of their abilities so that they can avoid over-paying
for electricity, or in the case of a supplier, not getting as high a price as they
could have for their power.
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