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ABSTRACT
We are drowning in information and starving for knowledge.

Rutherford D. Roger

With the first generation of microarray experiments there were discussions and important
arguments on how the samples should be treated. This included what kind of transforma-
tion and normalization procedures that the data should be subjected to before the actual
analysis. With the new generation of microarray experiments, genome wide association
studies, and more complicated experiments, new questions and standards arises. An im-
portant question is the appropriate use of controls, and what effect these controls have on
the assessed behaviour of the genes.

The main objective in this thesis was to analyse a data set and experimental procedure
from an experiment done at IKM (NTNU, 2009), where the effect of a gastrin treatment
was measured on a set of genes along with an unstimulated control sample over a time
interval. The experiment was replicated once, giving two independent experiments. A
natural extension of this is then; what is the gain in precision by adding additional replicas
to the experiment? And what additional information is given in an unstimulated control
sample?

Our approach was to use the Linear Mixed Effects (LME) framework to fit a regression
curve to each gene, for both the treated time series itself, and the treated adjusted for by
the unstimulated control sample. Each replication was assumed to have a random offset
from the common mean. The mean was modelled using basis expansion with the Legendre
polynomials, thus allowing it to vary as a smooth function over the time interval.

A computer simulation showed that an increase in the number of independent time series
sampled would decrease the error in the estimated expression profile. Even when this
causes the number of time points (measurements) within the time series to decrease.

The analysis of the data showed that not using an unstimulated control gave many false
positive results, however, always using such a control will also cause an increase in both
false negative and false positive results, due to increase in stochastisity. However, having
an unstimulated control sample will give the researcher an increased control when assess-
ing the effect of the treatment.
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SAMMENDRAG
Etter endring i studieforskiften §34 (Målform ved skriftlig vurdering) ved NTNU, skal
alle oppgaver skrevet på et ikke-skandinavisk språk, som leveres ved fakultetet for Infor-
matikk, Matematikk og Elektronikk (IME fakultetet) ved NTNU, leveres med sammendrag
på et skandinavisk språk. Instituttet for Matematiske fag (IMF) ingår under dette fakultet.
Bestemmelsen gjøres gjeldende fra og med 01.01.2012 etter vetak fra Dekanus.

Denne oppgaven tar for seg experimentelt oppset ved bruk av mikromatriser for beregning
av tidskontinuerlige genprofiler. Vi så spesielt på to spørsmål; (i) hvordan antallet av
biologiske replikater påvirker pressisjonen av den estimerte genprofilen, og (ii) hvordan
valg av referansepunk for endring i genutrykkningen påvirker signifikansnivået til den
estimerte genprofilen.

Analysene er gjort på et dataset fra Institutt for Kreftforskning og Moleylær Medisin
(IKM), hvor forskerne målte genutrykket til to celleprøver ved 12 ulike tidspunkt spredt
over 14 timer. Den ene celleprøven var behandlet med pattedyrhormonet gastrin, mens
den andre celleprøven var en ustimulert kontrol. Begge prøvene ble målt ved samme tid-
spunkt, slik at alle eksterne faktorer som tempratur, luftrykk og luftfuktighet skulle påvrike
celleprøvene like mye. Forsøket ble så replikert en gang, noe som gav to uavhengige forsøk
(to biologiske replikater).

Vår tilnærming var å bruke en LME (Linear Mixed Effects; Lineære Kombinerte Effekter)
model til å tilpasse hvert gen, med en tilfeldig effekt for hver biologiske replikat. I mod-
ellen tar vi i bruk basis ekspansjon for å modellere den samlede “gjennomsnittelige” effek-
ten over tid, basis ekspansjonen var basert på Legendre polynomene slik at den esitmerte
geneprofilen er et glatt polynom an en gitt orden. De tilfeldige effektene er i oppgaven
modelert som stokastisk variabel, som beskriver et konstant skift fra den samlede effekten.

Gjennom en data simulering fant vi at antallet med uavhengige forsøk (biologiske rep-
likater) hadde en possitiv innvirkning på presisjonen til den beregnede geneprofilen. Dette
selv om antallet tidspunkter (avhengige forsøk) måtte reduseres, om det totale antalletet
forsøk skulle holdes konstant. Vi fant også ut at ved å neglisere den ustimulerte kon-
trollprøven ville vi få mange falske positive resultater. Men en ustimulert kontrol prøve
kan også ødelegge for estimeringen, ved at signalet fra den gastrin stimulerte celleprøven
drukner i støy fra den ustimulerte kontrollen. Utkritisk bruk av ustimulert kontroll kan
derfor ødellege like mye som å være til fordel, men med en ustimulert kontrollprøve tiljen-
gelig gir dette forskeren en mye større grad av kontroll og fleksibilitet for å avgjøre hvilken
effekt gastrin har på genene i den aktuell cellelinjen.
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1
INTRODUCTION

Gene expression is the result of activity of the genotype in an organism, and gene expres-
sion analysis is the study of this activity. With new advances in biotechnology, measuring
DNA and (m)RNA activity is becoming increasingly cheaper and opens the door for more
complex experiments. These type of experiments strives to give an insight into how the
genes act and their relationship to the surrounding environment.

One new area of research is time continuous expression profiling, on genomic data sets.
Here the gene expression is assumed to be a smooth function in time, and one wishes to
reconstruct this function for each gene separately, based on observations from microarrays.
The estimated underlying curve can then be used to draw conclusions about the genetic
behaviour under different conditions.

1.1 Biological Problem and Experimental Design

Understanding gene regulation and cellular decision-making is fundamental to understand-
ing diseases. Genome-wide gene expression time series experiments, are an important
approach to studying a cellular response to a given stimulus. This since they enable cap-
turing of the dynamics of the response. The gastric hormone gastrin is a versatile inducer
of transcriptional responses and a central regulator of function and growth of the gastric
mucosa. Gastrin may also play a role in carcinogenesis of gastrointestinal and stem cell-
derived tumours. In order to study molecular mechanisms involved in the gastrin response,
the researcher at IKM(NTNU), used the pancreatic derived adenocarcinoma AR42J cell
line, which expresses gastrin receptors endogenously and is therefore frequently used as a
model system for gastrin responses.

1.1.1 Gene Expression Time Profiling

Adenocarcinoma AR42J cells were grown in 6-well plates (3 × 105 cells/well in 2 ml
DMEM containing 15% FBS) for 72 hours. Then the growth medium was replenished
with 2 ml serum-free DMEM, and the cells serum starved for 20-24 hours before adding
gastrin (10 nM). Treated and untreated cells were grown in parallel and harvested (pool of
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3 technical replicates) at several time points, given in Table 8.1. In order to be able to con-
trol for changes in gene expression levels in untreated cells during the 14 hour observation
period, the researchers also sampled untreated control cells at all time points. Thus, the
Illumina data is a time course reference design, with a non-stimulated reference measured
at each sampled response. This design gives information concerning appropriateness of
controls in microarray time series experiments: Using on the starting point t0 as a correc-
tion or unstimulated controls at all the different time points. This allows the researcher to
infer the level of change the treatment has in the treated cell culture, relative to the normal
behaviour of the cell (the unstimulated cell culture).

Most literature on microarray experiment analyses published up till today, concern end
points in different cell types, tissues or states. These analyses are well suited to detect the
activity status of genes at certain time points under given conditions, but do not provide
much information about the regulatory mechanisms in the transitions between different
states or processes. Current methodology used for comparison of distinct states, focuses
on hypothesis testing methods to detect differentially expressed genes. Application of such
methods to time series data with more than a few time points, provides large collections
of differentially expressed genes, and further interpretation is often cumbersome. There
has also been surprisingly little discussion about these control mechanisms, and almost no
published articles about this subject. This analytical shortcoming provide a major motiva-
tion for doing this project on microarray time expression profiling.

1.1.2 The Dataset

The data set used in this thesis comes from an experiment at IKM (NTNU), conducted
by Torunn Bruland and collaborators in 2009. The data were then preprocessed by Arnar
Flatberg (The Norwegian Microarray Consortium).

The data form a long time series1 (longitudinal data) for each probe (gene) in the microar-
ray, with close to 9000 probes. Measurements were taken over a time frame of 14 hours
with two biological replicas for each stimulated treatment and unstimulated control. This
gives a total of four time series per gene.

1.2 Thesis Outline

In this thesis we will use the LME (Linear Mixed Effects) framework to answer two im-
portant questions: (i) What effect does the numbers of biological replicates have on the
precision of the estimated expression profile? (ii) What is the effect of using an external

1In microarray context, all time series consisting of more then 5 time points is considered as a ‘long’ time
series.
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control sample as compared to using only the starting point as a control adjustment?

In Chapter 2 we introduce the LME framework and give an introduction to the theory
and application of LME models. In Chapter 3 we use basis expansion to explain any
trend in time and introduce the Legendre polynomials as our chosen basis functions. In
Chapter 4 we review the existing literature on gene expression and discuss the methods
and approaches used. In Chapter 5 we discuss some criteria for evaluating an estimator
and introduce the mean squared error (MSE) criterion. We outline an approximation using
Monte Carlo integration when the formulation can not be obtained in closed form, or is
to difficult to calculate analytically. In Chapter 6 we present and discuss the suggested
model built to analyse the data set. In Chapter 7 we use a Monte Carlo simulation to
analyse the effect of adding and removing biological replicas, and to see if there is an
optimal way of combining the number of time points and the number of biological replicas,
this using the MSE criterion to compare different settings, this chapter strongly links to
Chapter 5. In Chapter 8 we investigate the influence of the frame of reference (using
t0 or an unstimulated control), in combination with additional control mechanisms, and
model complexity. This using the models presented in Chapter 6. The thesis ends with a
discussion and concluding remarks in Chapter 9.

1.2.1 Prerequisites

This thesis discusses problems in biostatistics, and the reader is assumed to have knowl-
edge of some techniques and terms used in modern biotechnology. Knowledge in statistics
and specifically regression analysis is assumed throughout out the text. Basic mathematics
concepts are assumed known (from matrix algebra and basic analysis).

1.3 Bibliographic Note

For an investigation into the effect of gastrin on mammalian cells, see Watson et al. (2006)
and Burkitt et al. (2009). For an introduction to time series experiments in microarray, see
Androulakis et al. (2007) and Nueda et al. (2009). However, Storey et al. (2005) is the
only article we found that mentions something similar to a frame of reference, but does
not go into detail, or discusses what effect this has.

The genome-wide gene expression analysis was performed by Illumina ExpressionBead-
Chips http://www.illumina.com/documents/products/datasheets/datasheet
gene exp analysis.pdf. RNA amplifications and hybridization were performed at the
NTNU Genomics Core Facilely (GCF).The microarray data were prepared according to
minimum information about a microarray experiment (MIAME) recommendations (A.
et al., 2001) and deposited in the Array Express (Brazma et al., 2003). Detailed informa-
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tion about the microarray design (platform) and raw data files from the experiments are
accessible by use of accession number: GSE32869.
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2
LINEAR MIXED EFFECTS MODELS

In this chapter we give an introduction to the framework of the Linear Mixed Effects
(LME) model. First we give a theoretical presentation of LME models and covariance
structures. The estimation of parameters in the model is based on the use of Maximum
Likelihood (ML) and Restricted Maximum Likelihood (REML) estimation, which is pre-
sented afterwards. We then show how to make inference about the model parameters, using
ANOVA and confidence interval. The chapter ends with a discussion on the diagnostics of
an estimated model.

The LME framework is an extension of the ordinary linear models. Where all data are
independent and identically distributed (iid) in linear models, LME models allow for cor-
relations in the observations, such that, different sources can generate the data, which will
be known as clusters, and have internal correlation. As an example, multiple persons can
each give many data points. All the data from one person will then be correlated, but the
data from one person will be uncorrelated with data from another person. The collection
of data from multiple persons will constitute a collection of clusters, that can itself be a
new cluster, such that all the persons will together constitute a new cluster. One can think
of the observations from one person as the first level, and each person as the second level
in a hierarchical model. An LME model can have arbitrary many levels, but we will only
consider two level models in this master’s thesis.

2.1 Introduction to Linear Mixed Effects Models

An LME model is a composite of a fixed effect µ that is common for all data, and a
random effect η which varies between the clusters. The observations are then assumed to
be a linear combination of those effects, giving

y = µ + η + ε. (2.1)

Here µ is a function common to all data, η is some function that is different for each
clusters, and ε is the error, with normal assumptions. The function η is called a random
effect, and is modelled as a random variable. The functions µ and η have to be built using
a finite linear combination of some basis functions.
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The advantage of including the random effect is that, within each cluster the observations
can be correlated. So the correlation in y is modelled using η, and the error ε is then, in
most cases, assumed to be uncorrelated for all observations. But the clusters have to be
independent of each other, e.g. two independent persons, or observations from different
geographical locations.

Written in matrix notation and assuming that µ and η can be constructed linear in β and u,
the model in Equation (2.1) can be written as

yk = Xk β + Zk uk + εk, (2.2)

where k = 1, . . . K is used as a grouping factor for the clusters. The fixed effect design
matrix Xk is a nk× (p+1) matrix, where nk is the total number of observations in cluster
k, and p + 1 is the number of covariates used in the model. The fixed effects vector β is
then a (p + 1)× 1 vector,

Xk β =


1 xk

11 . . . xk
p1

1 xk
12 . . . xk

p2
...

...
. . .

...
1 xk

1nk
. . . xk

pnk




β0

β1

...
βp

 .

The fixed effects vector β is the same for all clusters, but the design matrix may be different
for the different clusters. The design matrix for the random effects is Zk matrix, that has
dimension nk × (q + 1)

Zk uk =


1 zk

11 . . . zk
q1

1 zk
12 . . . zk

q2
...

...
. . .

...
1 zk

1nk
. . . zk

qnk




uk
0

uk
1
...

uk
q

 .

Here uk is the vector of random effects for cluster k.

The vector of the observations is denoted by yk, and is a column vector of length nk, and
the error vector εk is a vectors of length nk. We assume that the random effects and the
errors have the following distributions,

uk
d= Nq+1(0,D) k = 1, . . . ,K, (2.3a)

εk
d= Nnk

(0,Rk) k = 1, . . . ,K. (2.3b)

Here D is the variance-covariance matrix for the random effects, and Rk is the variance-
covariance matrix in the error term, for a cluster k. If all dependency between the ob-
servations have been explain by the random effect, the Rk matrix becomes a diagonal
(σ2

RIn) variance matrix. The structure of the covariance matrices will be further discussed
in Section 2.2.
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2.1.1 The Implied Marginal Model

The error term can be redefined by adding the error and the random effect together, this
gives the equation

ε?
k = Zk uk + εk. (2.4)

Since linear combinations of independent multivariate normally distributed variables are
multivariate normally distributed, the new defined error (ε?), will also be multivariate
normally distributed. The expected value of ε? is then

E[ε?
k] = E[Zk uk] + E[εk]

= Zk E[uk] + E[εk]
= Zk 0 + 0 ((2.3a) and (2.3b))
= 0,

and the covariance matrix of εk is

Cov(ε?
k) = Cov(Zk uk) + Cov(εk)

= ZkCov(uk)ZT
k + Cov(εk)

= Zk DZT
k + Rk

= Vk. (2.5)

Then the redefined error term follows a multivariate normal distribution, with mean 0 and
variance-covariance matrix given in Equation (2.5), such that

ε?
k

d= Nn(0,Vk). (2.6)

Then the regression model can now be written as

yk = Xβ + ε?
k. (2.7)

This is called the implied marginal model, and has distribution

yk
d= Nnk

(Xk β,Vk). (2.8)

These calculations substantially reduces the estimation problem, as the only two quantities
to be estimated are the fixed effects and the covariance matrix Vk, especially if Vk has
few parameters, and known structure.

2.1.2 The Full Model

To construct the full model, the design matrices for the fixed effect clusters are stacked
upon each other, while the design matrix for the random effects are placed on the diagonal

7



of a new matrix, giving X and Z as

X = [X1 X2 . . . XK ]T Z = block(Zk). (2.9)

The fixed effect parameter β is unchanged, but the different random effects uk’s are not
the same and are stacked in a column vectors of length N =

∑
nk, as are all the yk’s.

The full model can then be written as

Y = Xβ + Zu + ε. (2.10)

Here Y and ε are now N ×1 vectors, X is a N × (p+1) matrix, and Z is a N × (q +1)K
block diagonal matrix, the random effects vector is augmented along with Z, giving it
dimension K(q + 1)× 1. Since the number of fixed effects are common to all clusters by
construction, the column length has to be the same for all Xk. The same arguments goes
for the Zk.

2.2 Covariance Structures

The complexity of LME models is determined by the number of parameters (both fixed
and random), and the covariance structure in the model. Here we show how to extend the
LME model with correlation structure, starting with the necessary definitions.

Definition 2.1. The covariance between two random variables X1 and X2 is defined as

Cov(X1, X2) = E [(X1 − E[X1])(X2 − E[X2])] .

Provided that E[|X1X2|] < ∞, E
[
|X1|2

]
< ∞ and E

[
|X2|2

]
< ∞

A normalized version of the covariance is the correlation, which is bounded by the interval
[−1, 1].

Definition 2.2. The correlation between two random variables X1 and X2 is defined as

Corr(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
.

Provided that the covariance exists, and that Var(X1) > 0 and Var(X2) > 0.

For a vector of random variables, all the different covariances can be presented in a
variance-covariance matrix. The variance-covariance matrix is then a matrix with the vari-
ances on the diagonal and the covariances on the off-diagonals. Since the covariance is
symmetric, this matrix will also be symmetric. It can also be shown, that a variance-
covariance matrix is always positive semi-definite.

8



The variance-covariance matrix for the random effects is denoted D, and for the error it is
denoted Rk,

D = Cov(uk) Rk = Cov(εk) R = block(Rk). (2.11)

The variance-covariance matrix of the implied marginal model is given from Equation (2.5),
is called Vk, and given as

Vk = Zk DZT
k + Rk. (2.12)

If the errors εk are uncorrelated, then the covariance matrix R is diagonal (σ2
RIN ). If

however, the errors are correlated within each cluster, then R becomes a block diagonal
matrix. The covariance matrix (Vk) is generally dense by construction, since Zk DZT

k is
dense, but usually with few parameters.

2.2.1 Within Cluster Correlation

The intraclass correlation (ICC) gives a measure of the correlation between two observa-
tions from the same cluster. It can be interpreted as the amount of the variation that can be
attributed to the variation between the clusters, compared to the total variation.

Definition 2.3. The intraclass correlation for the LME model with only one random effect
(intercept) is defined as the variance between the clusters, divided on the total variance

ρ =
σ2

D

σ2
D + σ2

R

> 0

where σ2
D = D = Var(u) and σ2

R = Var(ε).

From this definition it is clear that the correlation is always positive, and thus not repre-
senting the whole spectrum of possible correlations.

With multiple random effects, this definition has to be extended and then gives a correla-
tion matrix. If Rk is the same for all clusters, then the correlation matrix is the same for
all clusters, since D is only dependent on the different random effects uk

0 , · · · , uk
q , and not

on the different clusters. The subscript k in the correlation matrix is therefore induced by
Rk and not through the random effects.

Definition 2.4. We define the intraclass correlation for a cluster k, by

ρk =
(
Λ−

1/2
k

)
Vk

(
Λ−

1/2
k

)T

,

where Λk is defined as a nk × nk diagonal matrix, with the diagonal elements from Vk,
so that Λ

1/2
k =

√
diag(Vk), by spectral value decomposition.

The ρk is the correlation between the observations within a cluster k. The ρk matrix has
dimension (nk × nk), if there are no missing observations.
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2.2.2 Construction of Variance-Covariance Matrices

Two variance-covariance matrices needs to be specified, for the random effects (from
Equation (2.3a)), and the covariance matrix of the errors (Equation (2.3b)). The covariance
matrix D, is how the random effects are correlated. The matrix R gives the covariance
structure in the errors, and indicates if the errors are correlated within a cluster or if they
are independent.

The variance-covariance error matrix Rk is often assumed to be diagonal, on the form
σ2

R In. In a time series setting, such as longitudinal data analysis, the observations within
the clusters can be assumed correlated with each other, often modelled as an AR(p) struc-
ture. The precision matrix (R−1

k ) then becomes spares, as a 2p + 1 bond diagonal matrix.
Assuming that the errors are dependent on one time step back, as an AR(1), will give a
sparse (tridiagonal) precision matrix. However, the inverse of a sparse matrix is not itself
sparse, and may become dense and difficult to work with computationally. This itself is
usually not a problem, since Vk is dense by construction. Even with only one random
effect, the matrix Zk σ2

D ZT
k is dense, with σ2

D + σ2
R on the diagonals, and σ2

D on the
off-diagonals.

The complete covariance matrix V is constructed by diagonally stacking Vk, which then
will give a new positive definite covariance matrix, corresponding to Equation (2.10).

2.3 Parameter Estimation

In all aspects of statistics the data reduction plays an important part, and in this thesis
it revolves around the estimation of the parameters in Equation (2.1). There are a wide
range of methods available to estimate parameters, the most notable among them is the
maximum likelihood (ML) method.

2.3.1 Maximum Likelihood Estimate

Using the implied marginal model from Equation (2.8), assuming that all the observations
follow a multivariate normal distribution, the joint probability distribution then becomes

f(Y|β, V) =
K∏

k=1

f(yk|β, Vk)

=
∏
∀k

1

(2π)
nk
2 det(Vk)1/2

exp
{
−1

2
(yk −Xkβ)T V−1

k (yk −Xkβ)
}

,

10



hence, given the data, the log-likelihood becomes

lML(β, V) =
−n log(2π)

2
− 1

2

∑
∀k

log(det(Vk))

− 1
2

∑
∀k

(yk −Xkβ)T V−1
k (yk −Xkβ). (2.13)

If the variance-covariance matrix Vk is assumed known, then the log-likelihood becomes
a function of β only. This can be maximized on closed form, giving

β̂
ML

=

(∑
∀k

XT
k V−1

k Xk

)−1∑
∀k

XT
k V−1

k yk. (2.14)

The log-likelihood for the covariance matrix Vk cannot be maximized by a closed form
expression, and a numerical approximation algorithm has to be used. To maximize the
likelihood with respect to Vk, the expectation maximization (EM) procedure can be used.
The EM algorithm is an iterative process that seeks to maximize the expected value of the
log-likelihood for an estimated parameter.

2.3.2 Estimation of Restricted Maximum Likelihood

Restricted Maximum Likelihood (REML) estimation is an alternative to ML estimation,
in that it have the advantage of giving unbiased estimates of the covariance parameters,
and thus is often preferred when estimating the covariance.

lREML(Vk) = −1
2
(n− (p + 1)) log(2π)− 1

2

∑
log(det(Vk))

−1
2

∑
(rT

k V−1
k rk)− 1

2

∑
log(det(XT

k V−1
k )), (2.15)

where p is the number of parameter estimated in the fixed effect, and rk is the observed
error, defined in Equation (2.16) as

rk = yk −Xk β̂ = yk −Xk

(∑
∀k

XT
k V−1

k Xk

)−1∑
∀k

XT
k V−1

k yk. (2.16)

The REML estimation takes into account the loss of degrees of freedom from estimating
β, and thus gives an unbiased estimator. When Vk is estimated with V̂REML

k , the β’s
can be estimated using Equation (2.14) to obtain the REML estimate of β. The estimates
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will differ since the variance-covariance matrix is estimated differently, and affects the
estimated β̂’s.

Equations 2.13 and 2.15 have strong similarities, but where the ML estimator uses n, the
REML uses (n − (p + 1)), and it subtracts a “penalty”, seen as the last sum in Equa-
tion (2.15). As long as the determinant of the design matrix Xk is not close to zero, the
penalty does not diverge. To maximize the REML equation, the same approach as for the
ML can be used by iterating with the EM algorithm. It has been proven that the REML
estimator is consistent, under fairly weak conditions.

2.3.3 Best Linear Estimator

A best estimator is often considered to be the estimator that has the least variance possible
variance, of all considered estimators. For an unbiased estimator, the minimal variance
is the Cramér-Rao lower bound, and an estimator which obtain this bound is called the
most efficient estimator. The unbiased linear estimator with least variance, is called a Best
Linear Unbiased Estimator (BLUE).

Definition 2.5. A linear unbiased estimator θ̂ is BLUE, if and only if, for any other unbi-
ased linear estimator θ̃,

Var(θ̂) 6 Var(θ̃).

A well known theorem, called the Gauss-Markov theorem, says that in ordinary linear
models, this estimator can be obtained.

Theorem 2.6. Gauss-Markov Theorem; Under normal conditions, the linear estimator
θ̂ obtained by least squares, has the least variance among all possible linear unbiased
estimators.

This implies that the least squares estimate is a BLUE. Under normal conditions without
random effects, the MLE is the same as the LS estimate, which then implies that the ML
estimate is also a BLUE. With random effects included, it becomes more difficult, however,
it has been proven that under fairly general conditions, the Gauss-Markov theorem can be
extended to include the estimation of random effects.

The restriction to only unbiased estimators, may not be the wisest choice. By allowing
for some bias, one might reduce the variance considerably. This is discussed in detail
in Chapter 5, where bias and variance is combined to form an assessment criterion of an
estimator.
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2.4 Statistical Inference

Our aim is now to draw inference about the model parameters. Typically, one wishes to
test if at least some parameters differ from zero (or any other value). To test if a linear
combination of the parameters are different from zero a contrast matrix can be used.

2.4.1 Fixed Effects Parameters

To construct a hypothesis test for the fixed effect parameters, two approaches can be used.
One is the standard t-test for one parameter, and the other test is the F-test for contrasts
of the parameters. Both tests depend on the estimated variance-covariance matrix, and are
thus often referred to as conditional tests.

The hypothesis for only one parameter, can be stated as follows

H0 : βj = 0
H1 : βj 6= 0,

(2.17)

for some j. We base the inference on the t-statistic, calculated by

tdf =
β̂j

ŝe(β̂j)
,

which approximately follows the t-distribution, with the degrees of freedom depending on
the cluster that β is associated with.

To test if a set of linear combinations of the parameters are zero,

H0 : Cβ = 0
H1 : Cβ 6= 0,

(2.18)

for some contrast matrix C. The contrast matrix C must have column dimension equal to
the dimension of β, which is p + 1. The number of rows in the contrast matrix C are the
numbers of linear combinations of the parameter that is tested. The test statistic for this
hypothesis is constructed as in Equation (2.19). Under H0, the F-statistic

F =
β̂

T
CT

(
C
(

K∑
k=1

XT
k V̂k Xk

)
CT

)
C β̂

rank(C)
(2.19)

is approximately Fdf1,df2-distributed, with degrees of freedom equal to the rank of C in
the numerator, and depending on the grouping level in the denominator.
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If the contrast matrix C is a diagonal matrix (Ip+1), then this is the same as testing the
hypothesis

H0 : β0 = β1 = · · · = βp = 0
H1 : At least one β differs from zero.

(2.20)

Setting the first column to zero, one can then test if there is a change from a constant level.

2.4.2 Confidence Interval

To construct a confidence interval around the curve f , in a point x0, using the estimated
curve f̂ and assuming that the β̂’s are approximately t-distributed, we get

CI : f̂(x0)± tdf,α/2

√
diag

(
Cov

(
f̂(x0)

))
,

this since the estimated function f̂ is assumed to be a linear combination in β̂, as f̂ = X β̂.
Then the confidence interval around f(x0) = xT

0 β can be calculated as

CI : xT
0 β̂ ± tdf,α/2

√
diag

(
x0 Ĉov

(
β̂
)

xT
0

)
.

This will give confidence interval on for f , in each point x0. If the confidence interval
that does not contain zero for all points, will suggest that the function f is not zero in a
least one point. The fundamental theorem of algebra dictates that a polynomial of degree
p + 1 with non-zero coefficients, can have at most p + 1 roots. This means that testing if
the function f is zero in a set of points larger then p + 1, is the same as testing if all the
coefficients are equal zero.

In order to describe the precision in the estimate while not using a confidence interval, it
is possible to use the Mean Squared Error (MSE) point wise. The MSE is a composite of
the variance and bias, and will be further developed in Chapter 5.

2.5 Diagnostics for MLE Models

Once a model is constructed, it is then important to check if the underlying assumptions
hold. For a linear regression problem there exists an array of diagnostic techniques, how-
ever, due to the increased complexity in the LME model, the number of checks become
more restricted.

A number of key assumptions have been made in the modelling process; (i) independence
in the error, (ii) approximately normally distributed error, and (iii) no heteroscedasticity
in the error. All these issues have to be assessed and if the model fail to meet these
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criteria, an update may be required. Removing influential observations, transformation
of input, or basis expansion and regularization are examples of such updates. The model
diagnostics are based on multiple quantities, the most important of which are residual
checks. Additional validation assessment is to look for influential observations, and to
analyse the behaviour of the random effects. However, using the raw residuals has been
noted to brake some of the assumptions, and should therefore be handled accordingly.
They most common way to handle this, is to use some form of standardization.

Using the raw residuals rraw to diagnose the model could often have undesired conse-
quences. The raw residuals are defined as

rraw = yi − ŷi,

which is the difference between the estimated curve, and the actual observation.

The residuals will often be correlated, and have unequal variance. To reduce this problems,
some standardisation method is used, the most common way is to is to divide the raw
residuals by the estimated standard deviation, giving standardised residuals1.

Residual Diagnostics

How does the discrepancy between the predicted value and the observed value behave?
This will tell something about the fit of the model. Due to the increased complexity in
LME, this is mostly done by visual inspection, using plots. The first step is generally to
analyse the errors with a QQ-plot, which will tell if they are normally distributed or have
tail heaviness. If the residuals fall onto a straight line they are approximately normally
distributed. The easiest way to spot patterns in the estimated error is to plot them, either
against their indexes or against the fitted values. The purpose is to detect any possible
dependences between the fitted values and the error i.e. as the values in ŷ increased, the
error should not. If the errors are plotted against their indexes, any pattern related to
heteroscedasticity should then be revealed.

The random effects are also assumed to be normal and should also be plotted. A QQ-plot
will tell if the assumptions hold, or if the random effects do exhibit irregularities.

2.5.1 Influence Diagnostics

Likelihood methods (LM and REML) as well as least squares are sensitive to outliers
and extreme values. It is therefore important to identify extreme value observations that

1This is often also called studentized residuals since they approximately follows the student t-distribution.
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may influence the estimated model negatively. There are many ways of identifying in-
fluential observations, two common ways are to use Cook’s distance and the leverage.
Tail-heaviness in the residual distribution is also an indication of multiple outliers.

It has been suggested that a top-down strategy, may help identify outliers. That is, to
first assess the fit of the whole parameter set (denoted θfull). Next, reduce the data or the
parameter vector to identify if there is a subset of the observations that has much influence
on the modelled parameters. A way of comparing fit with a reduced parameter vector is
the deviance (sometimes refereed to as likelihood distance) given by

D = −2
(
l
(
θ full

)
− l
(
θ less

))
.

Here D is approximately χ2-distributed, with degrees of freedom equal to the total number
of dimension of the full parameter vector, minus the dimension of the reduced parameter
vector. The trace of the precision matrix (inverse covariance matrix) has also been sug-
gested as a way to identify the impact of a parameter, but this has no known associated
distribution, as the deviance has.

Since the model is fitted minimizing the errors, assessment of fit might be to optimistic
using the residuals. A common way around this, is to use cross-validation. This will also
identify any influential observations, or a set of influential observations. It has however
been reported that cross-validation may not give a good assessment of fit, especially leave-
one-out cross-validation.

2.6 Bibliographic Note

Most of the concepts described here draws from the the book by Pinheiro and Bates (2000),
as well as a master’s thesis by Østgård (2011). The proof of consistency of REML can be
found in Jiang (1997), and a proof that the Gauss-Markov theorem can be extended to ran-
dom effect, is found in Harville (1976). The diagnostic section is mainly inspired by West
et al. (2006), but for a more thoroughly review of diagnostics in LME see Schabenberger
(2004).

The origin of REML has been attributed to Thompson (1962). Using the software R (R
Development Core Team, 2011), there is an implementation of LME, developed by Pin-
heiro et al. (2011), that handles both linear and non-linear LME. Although many other
software packages have been made available, we choose to use only this in our thesis.
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3
TIME COURSE WITH LME

Often data trends are moving in non-linear smooth ways and a simple linear approximation
does not fit the data well. One can then construct more complex functions to describe the
change in the mean trend in time.

A naive approach is to use some transformation of the observed values, i.e. using loga-
rithm or trigonometric functions. A more sophisticated method is to construct the mean
value function as a finite linear combination of some basis functions, which is known as
basis expansion. It will be demonstrated that if the expansion is done in a reasonable
way, the estimation of the parameters can be done using the LME framework presented in
Chapter 2.

If there is some moving time dependent trend in the data and the model accounts for this,
then we will assume that the errors are independent and approximate normal distributed
with mean zero.

3.1 Basis Expansion

To extend the model in a non-linear fashion in a covariate (illustrated as a variable t),
but still keep the linearity in the coefficients, we use a finite linear combination of some
functions h and g. We express the changing trend in the covariate, as

y(t) =
∑

βihi(t) +
∑

ujgj(t), (3.1)

where the h(t) and g(t) can be arbitrary functions. Observe that the basis expansion
can be used for both the fixed and the random effects in an LME model, independent of
each other. In this thesis, we will only use expansion for the fixed effect, and have not
considered expansion in the random effect.

Setting hn(t) to an sin(nt) and bn cos(nt) will give the Fourier basis, while hn(t) = tn is
the standard polynomial basis. The cubic spline basis is obtained by dividing the interval
into a number of pieces (knots), then fitting a cubic polynomial to each interval and joining
the curve at all the knots. If the curve is twice differentiable in all the knots and if it has
linear functions at the end pieces, it is called a Natural Cubic Spline (NCS).
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With matrix notation, the expansion Equation (3.1) can be written as in Equation (2.2), but
now with the basis functions constituting the columns in the design matrix.

yk(t) = H(t) β + G(t)uk + εk. (3.2)

Here the matrix H(t) correspond to the design matrix in Equation (2.2), but with a basis
expansion in t, and G(t) as the expansion for the random effect. When the number of basis
functions increases, they will tend to interpolate the observed data points. This may result
in increasing the variance in the model, and making it a poor predictor for the underlying
phenomenon.

In basis expansion, one often wants the basis functions to be orthogonal and there are
many different functions that exhibit this property, among those the Fourier basis, Hermite
polynomial, and the Legendre polynomials. In this thesis, the Legendre polynomials are
used as they are orthogonal with respect to the L2[−1, 1] inner product.

3.2 The Legendre Polynomials

The Legendre polynomials are a sequence of polynomials, that are orthogonal with respect
to the L2 inner product.

Definition 3.1. The Hilbert space L2[−1, 1] is the set of all functions f mapping [−1, 1]
to a subset in R, that are integrable with

1∫
−1

f(t)2 d t < ∞,

and with inner product

〈f, g〉 def=

1∫
−1

f(t)g(t) d t.

The inner product 〈f, f〉1/2 , is called the L2 norm.

Definition 3.2. Two functions h and g are said to be orthogonal with respect to the L2

inner product if
〈h, g〉 = 0 h 6= g.

Definition 3.3. If a sequence of orthogonal functions f1, f2, . . ., has the following prop-
erty

||fi||2 = 〈fi, fi〉
1/2 = 1 ∀ i,
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then the sequence is said to be orthonormal.

Observe that a sequence of orthogonal functions, can easily be made orthonormal by di-
viding by a normalizing constant, since from Definition 3.1, the inner product and norm
have be finite.

The following statement is given without proof.

Theorem 3.4. Any polynomial defined recursively as

Pn(t) = (t− an)Pn−1(t)− bnPn−2(t),

with P0(t) = 1, P1(t) = t− a1, and

an = 〈tPn−1(t),Pn−1(t)〉/〈Pn−1(t),Pn−1(t)〉 (3.3)
bn = 〈tPn−1(t),Pn−2(t)〉/〈Pn−2(t),Pn−2(t)〉 (3.4)

is orthogonal with respect to the L2 inner product.

The common way to define the Legendre polynomials are through the Legendre equation,
which gives rise to the following differential equation in Definition 3.5.

Definition 3.5. The Legendre Polynomials ln are the sequence of polynomials, that solve
the differential equation

ln(t) =
1

2nn!
dn

d tn
(t2 − 1)n.

Since this equation uses the n-order derivative, it is not easy for a computer to evaluate
this formula fast. Another approach is to calculate the sequence recursively by the form

(n + 1) ln+1(t) = (2n + 1) t ln(t)− n ln−1(t), (3.5)

and using that l0(t) = 1, l1(t) = t. It can be shown that the Definition 3.5 holds for this
sequence. It can also be shown that the Legendre polynomials are the only sequence of
polynomials, that are orthogonal on the L2[−1, 1] norm.

It is then easy to verify that the Legendre polynomials are orthogonal either by direct
calculation or by using Theorem 3.4. From the definition of the Legendre polynomial, one
can see that the inner product (norm) is

〈li, lj〉 =

1∫
−1

li(t)lj(t) d t =
2

2i + 1
δij , (3.6)

where δij is the Kronecker delta.
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A major issue when working with higher order polynomials, is their erratic behaviour at
the boundary. NCS solves this problem by restricting the fitted curve to a linear function
at the end pieces, but for a general polynomial it is harder. One way of resolving this
problem, is to restrict the estimation problem on some interval [a, b]. If the interval chosen
is around [−1, 1], then the behaviour of the polynomial is not to erratic. However this is
only a good fix for curve fitting inside this interval, for predictions outside this interval,
any polynomial will still be highly volatile.

3.2.1 Construction of the Legendre Basis

Since polynomials are continuous by construction, they must be discretized to be applied
into the design matrix. For each observed value yi, there is an associated time point ti, and
the relation yi|ti = f(ti) is a Legendre polynomial of degree p + 1, in one point ti. Then
a set of points {f(ti)}, which is interpolated by a linear combination of p + 1 Legendre
polynomials, is the basis for the design matrix.

The basis H in Equation (3.7) is then the j’th order Legendre polynomial evaluated at the
time points {ti}, placed on row j. Then the element hij the basis matrix H is then lj(ti).
The coefficients will be fitted, using only the time points {ti}, but the coefficients will still
uniquely define a continuous polynomial, that can be used to predict y(t), for a continuous
t, in the interval [−1, 1].

This gives the equation for the observed values in a time point ti, as

y(ti) = β0 l0(ti) + β1 l1(ti) + β2 l2(ti) + β3 l3(ti) + β4 l4(ti). (3.7)

The rows in the design matrix H, are replaced with the lj(t) for all the observed time
points ti.

In Figure 3.1, the polynomials represented in Equation (3.7) are plotted, on the interval
[−1, 1]. The red dots represents the points at which the expansion is used (normalized
from Table 8.1). Since the design matrix is discrete in its construction, the basis cannot
be represented continuously. The basis is then the value of the function, in a given time
point. In Figure 3.1 this is shown only for the second order Legendre polynomial, for easy
interpretation. Any other order might as well be highlighted.

3.3 Best Estimator

When using a polynomial basis expansion, different kinds of polynomials will give the
same result in terms of information utilization. The reason to use orthogonal polynomials
is that all the coefficients will then be independent, that is, zero correlation between the
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Figure 3.1: The five first Legendre polynomials, with the orange points illustrating the
values used as the discrete basis for the second order expansion.

coefficients. If one coefficient is somehow biased, then that should not affect the estimation
of the other coefficients, since they are uncorrelated.

For any given smooth (analytical n-differentiable) function f , one can approximate this
arbitrarily well by letting the number of polynomial basis function go towards infinity
(Taylor Theorem). The two next theorems shows this under different conditions for f , and
are given without proof.

Theorem 3.6. Taylor’s Theorem If a function f has continuous derivatives up to order n+
1, in a closed interval I , then the function f can be approximated as a linear combinations
of polynomials, up to order n, giving

f(t) =
n∑

i=0

f (i)(c)
i!

(t− c)i + En+1
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for any t and c contained in the interval. Where the error term En+1 is on the form

En+1 =
f (n+1)(ξ)
(n + 1)!

(t− c)n+1 = O(hn+1),

for some ξ ∈ I .

If the function has infinitely many derivatives, then the error term can be made arbitrarily
small. However, if one only assumes that the function f is continuous, then there still
exists a polynomial that approximates it arbitrarily well.

Theorem 3.7. Weierstrass Approximation If f is continuous on a closed interval I , then,
for any ε > 0, there exists a polynomial p(t) ∈ Pn such that

|f(t)− pn(t)| < ε ∀t ∈ I,

where n is finite.

This ensures existence of a best estimator under a uniform restriction. The Weierstrass
approximation is in the sup norm, which may not be unique, and the theorem does not say
how to obtain the best polynomial, unlike Tailor’s Theorem, which gives an expression for
all the coefficients. But, those might not be the best approximation under the Lp norm.
Under squared error loss (the L2-norm), the minimizer will be unique and can be found.
This follows from the projection properties in L2.

3.3.1 Projection

If the function f is contained in the space spanned by the basis functions, then the best
estimator f best is equal to the function f . When the function one wishes to estimate, is
not contained in the space spanned by the basis functions, under the L2-norm, the best
approximation is

f best = argmin
f∈H

||f − g||2. (3.8)

Which is the same as the minimizer under squared error loss. Projecting this down to the
space spanned by the basis functions, the coefficients becomes

f best =
∑
∀i

〈hi, f〉hi, (3.9)

if and only if, hi constitutes an orthonormal basis. Otherwise, the basis has to be orthonor-
malized by the Gram-Smith algorithm.

If the estimator is unbiased, the estimated coefficients will be approximately the same as
the coefficients in Equation (3.9). This is because the LM and REML often lies close to
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the solution of least squares. In a test case where f is known or if one assumes something
about the structure of f , then this can be used to calculate the bias for the approximation.
This becomes important in model assessment shown in Chapter 5 with the introduction of
Mean Squared Error and in Chapter 7 where it is applied to assess the effects of the sample
size.

3.4 Bibliographic Note

Basis expansion is outlined in both Hastie et al. (2009) and Ramsay and Silverman (2005).
The background on the Legendre polynomial are found in Kincaid and Cheney (2002), as
well as a proof of Taylor’s theorem (Theorem 3.6) and of Theorem 3.4. The inner product
presented, and its applications are given in Young (1998). The Weierstrass approximation
theorem with proof, can be found in Kreyszig (1978). A probabilistic representation of the
same theorem can also be found in Karr (1992).
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4
METHODS FOR ANALYSIS OF TIME COURSE GENE EXPRESSION DATA

In this chapter we present different methods that have been previously applied to time-
continuous gene expression data. A selection of five articles and books is presented in an
effort to provide some insight into the different kinds of approaches used.

4.1 Methods for Time Series

A method proposed already in 2005 by Storey et al., aims to identify significantly ex-
pressed genes, where significantly expressed refers to a significant change in the expres-
sion level over time. This method can also be used if there are two time course samples to
be compared, i.e. case/control. The objective is to model some smooth function (basis ex-
pansion) of the data, one that is common to all data µ, and one where the case and control
are modelled separately as µ1 and µ2. Then, the hypothesis that the case and the control
are the same for a gene i, can be stated as

H0 : µi = µi
1 = µi

2

H1 : µi
1 6= µi

2.

To test the hypothesis, a F-statistic is used to compare the fit of the models, both those
using a common mean µi, and those where the mean differs, as µi

1 and µi
2.

Fi =
SS0

i − SS1
i

SS1
i

,

where SS0 is the sum of squares under the null hypothesis, and SS1 is the sum of squares
under the alternative hypothesis. The sum of squares is calculated using the predicted
values under the given hypothesis,

SS0
i =

∑(
yi − ŷ0

i

)2
SS1

i =
∑(

yi − ŷ1
i

)2
.

The authors showed that this statistic will be approximately F -distributed (see their sup-
porting appendix).

This method is highly flexible, allows for longitudinal clustering with different individuals
and can handle missing values. Parts of this model have strong similarities with the LME
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framework, in that the case/control group can have additional effect parameters. It is how-
ever, unclear whether the parameters contained in µ1 and µ2 are modelled as random or
fixed effects. The authors have tested different basis functions for the mean value function
µ including both spline, and polynomial basis. They argue that by setting the number of
basis functions fix may lead to an inflation of significantly expressed genes due to over-
fitting. Although the polynomial basis was effective, the author decided to use a natural
cubic spline (NCS) due to its flexibility, and that it makes fewer assumptions about the un-
derlying structure of the curve. The model is implemented such that one person contribute
to one time point, and they used multiple persons at different age to construct a smooth
function describing the change in a particular gene over a long time interval.

The downside to this method is that the software presented (EDGE) is not properly main-
tained any longer, and does not work with R versions higher than 2.9.2. In addition, to use
NCS (or splines in general) we think that the time course has to have a sufficient length to
provide for estimation that are stable.

A more recent approach is from Ma et al. (2009), where they apply a method they call
ANOVA LME. In this method, they look specifically at the time-treatment interaction and
the mean function µ has even less restrictions than from EDGE, only to be piecewise
smooth in time. The authors considered the model to be non-parametric, where the ex-
pression profile Yki for a gene i of subject k, under condition g(k) at time point tki, given
as

Yik = µ(tki, g) + zT
k uk + εki.

Where zT
k uk are random effects, and the condition g can typically be a case/control indi-

cator. The mean function µ can be decomposed to

µ(t, g) = µ̃ + µ1(t) + µ2(g) + µ1,2(t, g),

here µ̃ is the overall mean, µ1(t) is the time effect, µ2(g) is the group effect and µ1,2(t, g)
is the interaction with time and group.

The authors differentiate between genes where the interaction is non-zero (called NPDE
Non-parallel Differentially Expressed Genes) and where the group effect is non-zero (PDE
Parallel Differentially Expressed Genes). If a gene is PDE, then the interaction µ1,2(t, g)
is zero, and the difference in µ2(g1) and µ2(g2) are constant.

Ma et al. (2009) propose a method to test if a gene is NPDE using functional ANOVA,
which under normal conditions has an asymptotically distribution as a mixture χ2-distribution.
The authors did point out that this approximation may not work well under finite sampling,
and that bootstrap sampling could approximate the null distribution better. To test if a gene
is PDE is the same as to test if µ2(g) = 0, discarding any time dependency. A two-way
ANOVA test can detect a group effect if there are differences in expression levels for some
groups. This method does seem somewhat to complicated, and the tests are preformed in a
convoluted way, that may not fit well with questions asked in the introduction (Chapter 1).
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From a Bayesian viewpoint, two main methods have been proposed, a Hidden Markov
Chain model (Wei and Li, 2011) and an implemented computer algorithm known as “Bayesian
software for Analysing Time Series microarray experiments” (BATS), by Angelini et al.
(2008)). BATS uses hierarchical modelling of the gene expression observations, by in-
troducing latent non-Gaussian variable, and a variable number of basis functions for each
gene. For a Hidden Markov Chain model to work, the gene expression profile must have
the Markov property, which is not likely to hold for most microarray time course experi-
ments, accordingly to Ma et al. (2009). We found it desirable to first build a non-Bayesian
model, and then expand the model framework if necessary and if there where sufficient
time available.

4.2 Functional Data Analysis

Functional Data Analysis (FDA) is a concept where the data are thought of as coming from
an underlying, smooth function, with little errors in the observations. It was popularized
by Ramsay and Silverman in 2005, and have since become widely popular in medical
statistics according to Coffey and Hinde (2011).

FDA relies heavily on basis expansion, but put it in a rigorous mathematical setting.
Ramsay and Silverman (2005) displays a wide range of techniques built from continu-
ous function estimation, from regularization to discriminant analysis and functional PCA.
The mathematical basis of FDA allows for meaningful statistical inference, such an exam-
ple is the functional t-test, presented in Coffey and Hinde (2011). The t-statistic is based
on permutation of the different replicas of case/control, however if the number of replicas
are small, this test breaks down.

FDA assumes that the underlying function is smooth, and thus with associated derivatives.
These derivatives can give valuable information about the underlying phenomenon, and
may deserve consideration as well. Using a discrete differential operator, FDA allows one
not only to construct a model that fits the observed values, but also one that agrees with
the observed derivatives. These derivatives can itself give great insight about the function/
generator and help to understanding the origin and structure of the data.

The discrete differential operator D, takes in an array of observations y, and returns a
crude estimate of the derivative

D(y(tj)) =
yj+1 − yj

tj+1 − tj
D(y) = ẏ.

This can be further extended to higher order differentials by taking the differentials from
a differentiated vector of observations. This often is an essential in part of modelling in
physics and biology where there exist a meaningful mathematical model for the deriva-
tives. But for modelling time continuous gene expression however, rigorous mathematical
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or empirical models for the derivatives do not yet exist. This result in that the although
FDA presents many opportunities and strengths, its full potential may not be utilized. What
often seems to be the case, is that there are many replicas/clusters used to make accurate
construction of the expression profile. For few replicas, with an small number of obser-
vations in each, the method may appear to be less reliable. This since it has only been
presented with a large number of replicas/clusters, e.g. (Ramsay and Silverman, 2005) and
(Coffey and Hinde, 2011).

The FDA approach is to have some form of a smoothing matrix Sλ,{C} when takes in the
observed data y, and returns a smooth function that fits the observed data. Under some
conditions/restrictions {C}, and often with a tuning parameter λ. Such that the predicted
values becomes linear in y, as

ŷ = Sλ,{C}y.

A common smoothing penally is to use the integral of the second derivative of the esti-
mated function,

f̂ = arg min
f∈C

{
‖f(t)− y‖2 + λ

∫
Ω

(f ′′(t))2 d t

}
,

the solution to this minimization problem is the NCS. This follows from the regularization
penalty, since the cubic spline is the function with a least second derivative, that still has
high flexibility. See Green and Silverman (1994) for further details.

4.3 Correlation difference and metrics

Two proposed methods that do not explicitly use the time structure in their estimations are
the Hilbert-Schmidt Independence Criterion (HSIC) by Shah and Corbeil (2011), and the
Mean Absolute Rank Difference (MARD) by Cheng et al. (2006).

MARD was developed to rank the genes based on a correlation to its neighbourhood,
where the neighbourhood can be defined in different ways, i.e. similarity in expression
profile, large distance from the gene in terms of behaviour. The cut-off can then be set, and
a number of genes will then be differentially expressed based on the MARD index. This
index/statistic does not have any known distribution associated with it, and is a completely
non-parametric test, using only permutation and cut-off values to determine if a gene is
differential expressed under a case/control time course experiment.

A new and different way of looking at short time series microarray data, was given by Shah
and Corbeil in 2011. They introduced the concept of differentiating genes using the HSIC
with Reproducing Kernels Hilbert Space (RKHS). This approach is from a more machine
learning perspective, and relies heavily on mathematical theory from advanced analysis.
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An interesting observation is that very few articles published on the subject of time con-
tinuous gene expression estimation, seem to explore and model the Markov property. This
might coincide with the often observed lack of any Markovian behaviour (observed in the
ACF or PACF), or that the proposed mean value function seems to model the observed val-
ues sufficiently well thereby making the residuals behave almost as iid normal variables.

4.4 Summary

We have here presented a few selected articles and texts that we found most relevant. It
should however be evident that most of the concepts presented here can not directly an-
swer the question posed in the introduction. Although they provide insight and inspiration
toward finding general methods for modelling gene expression profiles, they do not solve
many of the problems regarding use of controls in a time series microarray experiment.

Had the EDGE software worked, it could have been used to estimated the time series.
However, the ability for different persons to contribute with measurements at different
time points to construct one time series does seems to little rigorous for our approach.
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5
MODEL ASSESSMENT

This chapter outlines properties that are associated with an estimator of a some constant
or function. Most notable is the Mean Squared Error (MSE), which is a composite of the
variance and the bias of an estimator.

How the MSE is constructed and how it can be calculated are the main considerations in
this chapter. Since an analytical calculation is not possible in many cases, we show how it
may be approximated using Monte Carlo integration. We also suggest an expansion of the
MSE to handle continuous curve estimates instead of point estimates. This can be used
to evaluate an estimator under different conditions, and in this thesis it will be used to see
how the sample size and model complexity affects the estimate.

5.1 Mean Squared Error

Defining and evaluating an estimator/predictor can be difficult since one first must define
what is meant by a “good” estimator. A popular criterion for assessment of an estimator,
is the mean squared error (MSE) which has well known mathematical properties.

Definition 5.1. Assuming there is some constant parameter (or vector) θ, and a set of
observed values X1 = x1, . . . , Xn = xn. We now wish to predict the value of θ in some
point, using a random variable Z, assuming that there exists some relationship between θ
and X , such that θ ≈ Z|X = f(X). Then the MSE of this predictor is defined as

MSEθ(Z) def= E
[
(θ − Z|X = x)2

]
,

provided that the expected value exists.

The Z that minimizes the value of MSE if it exists, is called the Minimum Mean Squares
Estimate (MMSE) and is also known as a prediction in the L2-norm. Since the mini-
mizer Z is a function of the observed random variables, it is itself a random variable, with
associated expected value and variance.

Definition 5.1 is a general way of defining the MSE estimator, if the unknown quantity one
wish to estimate is a constant θ, by using some statistic θ̂. The MSE estimator becomes
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only a function of the observed values Y1 = y1, Y2 = y2, . . . , Yn = yn,

MSEθ(θ̂) = E
[
(θ − θ̂|Y = y)2

]
= E

[
(θ − T (Y))2

]
. (5.1)

Since θ is a constant, the only thing that influence the expected value is θ̂, through the
statistic T (Y). The Equation (5.1) can be a more easy way to grasp how the MSE is
constructed, and with this definition of the MSE, it can then easily be broken down to the
variance and the squared bias. This can become very handy when calculating the MSE of
an estimator.

5.1.1 Bias-Variance Decomposition

Theorem 5.2. The MSE of an estimator θ̂ for an unknown constant θ, can always be
decomposed to the variance and squared bias. As

MSEθ(θ̂) = E
[
(θ̂ − θ)2

]
= Var(θ̂) + Bias2(θ, θ̂),

and is always positive or equal to zero.

Proof.

MSEθ(θ̂) = E[(θ̂ − θ)2]

= E[θ̂2]− 2E[θθ̂] + E[θ2]

= E[θ̂2]− 2θE[θ̂] + θ2

= E[θ̂2]− E2[θ̂] + E2[θ̂]− 2θE[θ] + θ2

=
(
E[θ̂2]− E2[θ̂]

)
+
(
E2[θ̂]− 2θE[θ̂] + θ2

)
= Var(θ̂) +

(
E
[
θ̂ − θ

])2

= Var(θ̂) + Bias2(θ, θ̂)

Positivity of the MSE is obvious, since it is a sum of two non-negative parts. This Theorem
can also be extended to continuous function estimators, however, the bias of the estimator
may then not be uniquely defined.

The MSE can now be calculated if the variance and bias of an estimator are known or can
be estimated. If the only criterion to be considered is an unbiased estimator, the estimator
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may still have large variance and is thereby undesirable. However by allowing for some
bias in the estimator, the variance could decrease substantially. This is why the MSE is
often considered to give a better assessment of an estimator, since it contains both the
variance and the bias. From an MSE point of view, large variance is just as bad as large
(squared) bias, what counts is the sum.

5.2 Calculation of MSE

We will here turn to look at the MSE of an continuous estimator ŷ(x) of some underlying
function y(x).

Calculation of MSE can sometimes be cumbersome, depending on the distribution of the
estimator. If the probability distribution for the estimator is known, the MSE may be
calculated directly. However, the true distribution is often unknown and even if it is known,
the calculation can be to difficult to do analytically. In test cases, it is always possible to
estimate the MSE by using Monte Carlo integration.

The idea behind using Monte Carlo integration in calculation of MSE, is the law of large
numbers, such that, with enough simulations the average value of the square of the differ-
ence between ŷ(x) and y(x) will converge to the MSE. The MSE can either be approxi-
mated for each estimated value, thus giving a bound around the curve (similar to that of
a confidence interval), or it can be summed up to give a single statistic of the estimated
curve (the integrated MSE (iMSE)).

5.2.1 Pointwise MSE

For a set of observed values {yi}, and corresponding estimated values {ŷi}

yi|x = f(x) ŷi = T (x, i) i = 1, . . . , n.

Then the MSE for the estimator, is the expected values of the squared difference, which
also is a function of x. That is

MSE(ŷi) = E
[
(y(xi)− ŷ(xi))2

]
. (5.2)

By the strong law of large numbers, when the numbers of simulations k increases, an
estimate for the MSE is then the average of the observed values minus the predicted at a
point xi,

lim
k→∞

1
k

k∑
j=1

(
y
(j)
i − ŷ

(j)
i

)2 a.s.−→ E
[
(y(xi)− ŷ(xi))2

]
, (5.3)
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provided that E [|ŷi − yi|] < ∞, and that ŷi and yi are iid. This equation however, is only
valid when the number of samples goes to infinity. To overcome this problem, bootstrap or
Monte Carlo integration can be used to approximate the right hand side of Equation (5.3).
Using Monte Carlo integration, the underlying function has to be known. This is only true
in a test cases, where the generator function f is constructed, along with the random error.
Then the fitted model is compared with the true function, and one realisation of the left
hand side of Equation (5.3) is obtained.

5.2.2 Integrated MSE

For a point estimator, the MSE can be seen as the expected value from Equation (5.1).
However, for a continuous estimator, for example a function defined on an interval, a sum-
mary statistic may still be desired if one wishes to compare two or more curve estimates.
One way of doing this is to integrate the estimated function, giving the integrated MSE
(iMSE) as;

E
[∫

(f − f̂) dx

]2
=
∫ [∫

(f − f̂) dx

]2
d P. (5.4)

One can observe that since the function f̂ is a random variable, this integral is not well
defined. However, in Monte Carlo simulations, f will be known and the estimated statistic
f̂ is a single realization on a defined interval. It is then possible to obtain one realisation
of the inner integral in (5.4).

Using the law of large numbers with realisations from f̂i, and f known, the estimated
value iM̂SE is then

lim
k→∞

1
k

n∑
j=1

(∫ (
f − f̂ (j)

)
dx

)2
a.s.−→ E

[(∫
(f − f̂) dx

)2
]

, (5.5)

provided that E
[(∫

|f − f̂ |dx
)]

< ∞ and that f̂ (j) are iid, where f̂ (j) is the j’th simu-
lation.

Then, by Jensen’s inequality, the integral of a squared function is greater then, or equal to
the square of the integrated function, such that

1
n

∑(∫ (
f − f̂ (i)

)2

dx

)
>

1
n

∑(∫ (
f − f̂ (i)

)
dx

)2

. (5.6)

By this, the left hand side in Equation (5.6) will be an upper bound of the approximation
of the MSE for some estimator f̂ .

In a Monte Carlo study, the sums in Equation (5.6) are easy to approximate, knowing the
underlying generator f and the estimated function f̂ . Assuming both functions are well
behaved, numerical integrations will be both accurate and fast.
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This leads to the discussion of a natural extension of bias to continuous estimates. In its
most basic form, the variance and bias (MSE) can be calculated for a single point (often
as a function of the number of observations). When the estimate is a continuous function,
the MSE will then also be a continuous function. What is then the best summary of this
function? The prime candidates are the L1 and L2 norm plus the maximum norm. While
the maximum norm can be considered somewhat stronger then the Lp norm, the Lp norm
may be preferable due to their inner product properties. Another key difference is that the
Lp norm is strongly dependent on the interval of which the estimator defined on due to the
integral in the calculation. This is not the case for the maximum norm, but the maximum
norm will also not detect large deviation over a substantial interval.

The whole problem of analysing bias to continuous estimate, is then reduced to a choice
of norm. This choice is dependent on the desired properties, and possible outcomes for the
bias statistic.

5.3 Simulation and Estimation

Since the integration in Equation (5.5) has to be done numerically, it can be done with
on a dense grid (i.e. to let ∆xi → 0). This gives the continuous iM̂SE, where the name
continuous reflects that it is estimated almost continuous in x. Another approach with
similarities to the sum of squares, is to let ∆xi be the difference between the observations.
That is to let ∆xi = xi+1−xi which is denoted discrete iM̂SE, this since the approximated
integral does not achieve that same accuracy as the continuous iM̂SE.

lim
m,j→∞

1
jm

∑
j

m∑
k=1

n∑
i=1

(
ŷ

k(j)
i − y

k(j)
i

)2

∆xi ≈ lim
n→∞

1
n

n∑
j=1

(∫ (
f − f̂ (j)

)
dx

)2

.

(5.7)
Here the subscript i ∈ n refers to the actual observations, the label k is the cluster (LME),
and the superscript (j) is the number of Monte Carlo replications The two different ap-
proaches are closely linked, in that they approximates the same quantity but with different
margins of error.

The discrete iM̂SE can be viewed as a weighted sum off squares where the weight is the
distance between the time points, thus it represents a rough estimate of the area of the
difference between the estimated curve and the true underlying curve. Comparing this to
the same formula but not using the true underlying function, instead measuring the area
between the observed values and the estimated values, weighted with the distance between
the measurements is called the observed discrete iM̂SE. Both this two estimates should be
quite close to the sum of squares in most cases, but may deviate somewhat if the distances
(weights) (xi+1 − xi) are much larger then one. But, it may still be of interest to compare
these methods.
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The behaviour of the iM̂SE is examined in more detail in Chapter 7, where it is used to
asses the effect of adding or removing data from an estimator.

5.4 Bibliographic Note

Some of this chapter is inspired by Hastie et al. (2009), with Definition 5.1 (slightly al-
tered) from Karr (1992) along with a proof of the strong law of large numbers for the iid
case (the variance does not need to be finite). For a proof of LLN if the observations not
are identically distributed, only independent and finite variance see McDonald and Weiss
(1999).

We found non articles that discussed and extended the bias-variance decomposition to the
estimation of continuous curves, and how this relates to the bias-variance in the estimated
underlying parameters of the curve.
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6
THE MODEL FRAMEWORK

This chapter accumulates what is presented in the previous chapters, and we present the
models used, and the settings applied to them.

6.1 Presenting the Models

6.1.1 Basic Model

The simplest model we used was an LME model with a fixed effect function ηi(t) and one
random effect uki for each gene i.

fik(tj) = ηi(tj) + uki + εjki tj ∈ [t0, t12] k = 1, 2, i = 1, . . . , nk, (6.1)

where k is the biological replica, ηi(t) is the mean value function for gene i, and tj are
the time points given in Table 8.1, after normalization. Then each gene gets an estimated
mean, and for each biological replication (cluster) of that gene, there will be a cluster
specific offset. The function η(t) is a linear combination (basis expansion) of the first four
orthonormalized Legendre polynomials.

Basis expansion is also possible for random effects uk, but may not be suitable, this due to
a number of reasons. If there is little evidence that each expression profile has additional
random effects, then the terms should not be included in the model.

6.1.2 Extension with Backwards Dependences

Expanding the model with additional covariance structure, as suggested in Section 2.2, we
here chose to use an AR(1) model for the errors. This should remove time dependency of
lag one in the observations that is not explained by the mean value function.
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Formulated mathematically for one gene, the model becomes

fk(tj) = η(tj) + uk + εkj

εk,j = φ εk,j−1 + ε?
kj (6.2)

ε?
kj

d= N (0, σε?),

where η(t) is the same function as in Equation (6.1). Observe that since there is an AR-
dependency in the errors, then there is also an AR-structure in the observed values.

To justify this increased complexity, there has to be a substantial impact of fit to the data.
In order to test if there is such a dependency in the data, one can use an ANOVA test or
a Likelihood Ratio test to compare two models, with and without an AR-dependencies
(formulated in Equation (8.3)).

6.2 Classification and Clustering

To investigate further, one can classify each gene into different classes (not to be confused
with the clusters used in LME). A class can for example be, the group of all genes that are
significantly expressed. Elements from machine learning could also be used to find natural
clusters in the data. In this thesis, we used an expansion of the K-means algorithm known
as Partitioning Around Medoids (PAM).

6.2.1 Significantly Differentially Expressed Gene

A gene is classified to be significantly differentially expressed, based on the p-value from
the ANOVA test presented in Section 2.4. If one of the coefficients in the LME fixed effect
is different from zero we have an estimated gene expression profile that is different from
zero. The estimated curve is not equal to zero in at least one point.

Another classification could be the genes where the frame of reference disagrees, that is
when using an unstimulated control gives a different answer than using only the staring
point to determine changes in the expression, see Chapter 8 Section 8.3 and Table ??.

6.2.2 Cluster Analysis with Medoids

Partitioning Around Medoids (PAM) is an extension of the K-means algorithm and is
used to find an optimal number of clusters, where the clustering is more loosely defined
than in K-means. The genes are assigned to a cluster according to some similarity or
distance measure. Like most clustering method, this method is highly dependent on the
choice of similarity. Common choices for the distance measure is the euclidean distance
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and the maximum distance. The euclidean distance measures the sum of the squared
difference between two genes at all time points, and the genes that minimizes this distance
is considered closest (most similar).

Similarity can also be based on the correlation between the genes, through the correlation
distance metric. This measure is also called Pearson distance measure, and is based on the
Pearson product moment correlation coefficient. The distance is often defined as

d(x, y) = 1− rx,y (6.3)

where rx,y is the Pearson correlation between gene x and y, over all time points. One can
observe that the distance measure in Equation (6.3) is finite, i.e. it has a range of [0, 2],
with increasing distance if the vectors are highly negatively correlated.

6.3 Frame of Reference

The frame of reference is how a change in the gene expression is observed or measured, as
such, it is the reference point to determine a change in the gene activity for a case/control
experiment. There are three common reference frames:

1. To measure the activity relative to the change from the starting point (t0).

2. To measure the activity relative to an unstimulated control sample at each time point.

3. To measure the activity relative to the change in internal housekeeping genes.

Only the two first will be considered in this thesis, this because they are quite similar in
the estimation approach. Since both references give a single time series of the same form,
the model in Equation (6.1) is used in both cases. All these different approaches will affect
the whether a gene is classified as significantly expressed or not. This makes the choice of
reference important when deciding which gene is affected by the treatment (gastrin) and
which is not affected.

6.4 Bibliographic Note

We found no scientific publication that have in detail discussed the frame of reference and
its implications. In most articles where there is some control mechanism similar to that of
an unstimulated control sample, the approaches have not been sufficiently clarified and/or
justified.
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7
RESULT FROM MONTE CARLO SIMULATIONS

To assess performance of the models, and how the number of clusters affected the precision
and error, we conducted a large Monte Carlo simulation. The algorithmic procedure of this
approach can be found in Appendix C, and some additional R code is given in Appendix D.

The Monte Carlo setting was constructed by first choosing a generator function, then to
create observations by adding random errors. We then tried to recreate the generator func-
tion, using an implementation of LME in R. Each realization was then give a score, accord-
ing to the estimated iM̂SE value (see Equation (5.5) and (5.6)), the iM̂SE scores presented
is always integrated on a dense grid, if not otherwise stated. The number of time points
in each LME cluster were the same number as in the actual microarry experiment (12, see
Table 8.1), unless otherwise stated.

Due to the large number of simulations done, the code had to be parallelized using multiple
processor cores. This can easily be done in R using an implementation of the Message
Passing Interface (MPI).

7.1 The Parameter Impact

One key issue in the Monte Carlo simulation, was to select realistic parameters for a gene
expression setting. The parameters that need to be set, are the covariance parameters (σ2

R

and σ2
D), and the generator function f . The parameters where chosen using the data set

presented in the introduction (Chapter 1).

Based on the observed variances, using a kernel density estimation from Figure 7.1, we
picked three values for the residual variance σ2

R, and present the two simulation with
highest value of σR in Figure 7.2. In the same figure we tested the effect of varying the
ICC, this instead of selecting the variance of the random effects (σ2

D). For the generator
curve f there are two choices, one is to use a function that is contained in the space spanned
by the basis functions (f ∈ H), or it can be any continuous function that is not a 4th order
polynomial. However, some functions are more realistic than others, and in our test case,
we picked the transcendental function exp(2t) and a 4th order polynomial. If the function
is an element in the basis space, then the maximum likelihood is (asymptotically) unbiased,
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and the estimated iM̂SE should then only reflect the variance, since the estimated curve
should have no systematic bias. Any difference between the estimated curve and the true
underlying generator function, could be contributed to random error, and instability due to
lack of data (finite sampling).
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Figure 7.1: Estimated density of the variance σ2
R from the fitted LME, using kernel density

estimation. The variance is both for the gastrin minus t0 series (green), and gastrin minus
the unstimulated control (red).The bandwidth is automatically selected by R.

From Figure 7.2 it became clear that lower a ICC gives a higher precision, and also that the
impact of σ2

R is proportional to the iMSE. An increase in 66% in σ2
R gives approximately

66% increase in iMSE. The reduction in iMSE when the ICC goes down, can be explained
by the fact that all the data point have lower correlation, and thereby behave almost in-
dependent. I.e. every new data point added, gives more information then if they were
correlated. Figure 7.2 also showed that for a low number of clusters, the iMSE estimates
were closer than for a higher number of clusters.
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Figure 7.2: Simulation for different number of clusters with fixed residual variance and
changing ICC, each with 12 time points. The number of simulations is 10 000, and the
test function is a polynomial of degree 4. Note the differences on the scaling in the y-axis,
which both represents the average value of the estimated error.

7.1.1 On the Number of Clusters Used

In the introduction, we asked if it is enough to only use two biological replicas. To analyse
this, we started the Monte Carlo simulation with a high number of replicas (20), the data
set were sequentially reduced with one replica, and a new estimate of the mean value
function where obtained, based on the reduced data set. This would tell us what impact
the size of the data set had on the iM̂SE estimate. One can observed from the Figure 7.2 a
clear downwards trend, until the iM̂SE stabilizes.

It became clear that for small data samples, a large decrease in the iM̂SE could be obtained
by adding another replica. However, if one assume that the error is small (in the order of
magnitude 10−1), the precision will still be high with only a few replicas. There appeared
to be a fast drop in the iM̂SE, until it slowly converged to its minimum. This is clearly
shown in Figure 7.2, where the iM̂SE stabilizes from around 10 clusters, this means that
there is no additional gain in precision after around 10 replicas, given that each replica
contains 12 time points. As the number of clusters increases, the difference between the
iM̂SE estimate also increases, for few clusters the difference is not substantial, but after
stabilizing the difference seems almost constant.
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7.1.2 Empirical Distribution of iM̂SE

Since the distribution of the iM̂SE is unknown, the results from the Monte Carlo study can
be difficult to interpret. The iM̂SE is constructed such that it can be used to compare the
performance of different continuous models, but with no known probabilistic behaviour.
We therefore plotted the distribution over all Monte Carlo samples for the five first replicas,
which is given in Figure 7.3.

Normalizing the observed iM̂SE by subtracting the mean and dividing by the standard de-
viation, it seems as their distribution tend somewhat towards a normal distribution. How-
ever, it is skewed to the right, with a tail that is far to heavy to be a “true” normal distri-
bution. This can be observed in Figure 7.3, where both the normalized and unnormalized
(raw) density estimation is plotted.

From Figure 7.3a it became clear that the spread in the iM̂SE scores is decreasing as
the number of replicas goes up, this is somewhat intuitive, as that the accuracy of the
estimation should go up when the number of data points increases. When the iM̂SE is
normalized the distributions seems to come from the same scale-location family, as they
appear to all have similar shapes in Figure 7.3b.
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(a) Density estimate of error over all Monte Carlo
simulations for the cumulative five first replicas.
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(b) Normalized density estimate over all Monte
Carlo simulations for cumulative five first replicas.

Figure 7.3: Kernel density estimate of continuous iM̂SE over all Monte Carlo simula-
tions, with ICC = 0.1 and σ2

R = 0.4, the bandwidth is automatically selected by R. The
test function is a 4th order polynomial. On the x-axis is the estimated iM̂SE and the y-axis
represents the density.
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The tail heaviness if Figure 7.3b is not so easy to observe for the higher number of replicas
in Figure 7.3a, and does not have any intuitive explanation. What is also unexpected, is the
similarities in Figure 7.3b, as the density for only one replica is far more tail heavy than
the rest in Figure 7.3a.

Since the iM̂SE measure is only useful in test cases, we constructed a simulation where
we compared the continuous iM̂SE, the discrete iM̂SE and the observed discrete iM̂SE,
plotted in Figure 7.4. This to see how the discrete iM̂SE would relate to the others if
the underlying function is unknown. As one can observe from this figure the result was
somewhat surprising, this since estimated error increased with the amount of data points
before stabilizing. The figure showed that for a few number of clusters, the estimated
observed discrete iM̂SE could be to optimistic compared to the same estimation using the
true underlying curve. The result also indicate that even if the observed discrete iM̂SE
is large, the estimated curve (parameters) may still fit very well with the true underlying
function. The observed discrete iM̂SE (plotted in read in Figure 7.4) seemed larger then
the estimated error in Figure 7.1, which may make it somewhat dubious as an estimator of
fit, in cases where the true underlying function is not known.

In Figure 7.4, the continuous iM̂SE (green) is calculated using a numerical approximation
of Equation (5.5) on a dense grid for each cluster, which is the same as all the other iM̂SE
presented so far. For the discrete iM̂SE (orange) the same formula was used, but with only
the time points as the step size in the grid. The difference between the discrete and the
observed discrete iM̂SE (red), is that in the observed iM̂SE, only the observed values and
the predicted values is used, where the predicted values and the known underlying values
is used in the discrete iM̂SE.

7.2 On the Number of Time Points

From the figures in Figure 7.2, there seems to something to gain by increasing the number
of biological replicas. Figure 7.5 supports this, as the models with highest number of time
points in each replica have the lowest iM̂SE, which is a natural consequence of additional
data. But, if the number of experiments is to be kept constant, the number of time points in
each replica have to be decreased in order to increase the number of replicas. A question is
then; what does then happen if the number of time points in each cluster is reduced? With
a fixed ICC and σ2

R, on can simulate the effect of changing the number of time points. The
trouble is that when the number of time points goes down, the number of basis functions
is still constant. This will reduce the number of degrees of freedom in the simulation, and
cause higher instability in the estimated function.

Reducing the number of time points beyond a certain point, the iM̂SE seems to be higher
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Figure 7.4: Comparison of the continuous iM̂SE and the iM̂SE estimate based only on

the observations. The continuous iM̂SE is based on a calculated on a dense grid, while
the discrete iM̂SE is calculated only in the time points. σ2

R = 0.4 and ICC is 0.1, the
number of simulations is 30 000, and the generator function is f(t) = e2t.

than for the same number of total experiments but with higher number of clusters, seen in
Figure 7.5. This shows that there is clearly a trade-off between the number of time points
and the number of clusters. To see if there were an optimal number of clusters, with a
fixed total number of time points, we simulated different arrangement of time points and
clusters, but with the total sum fixed. In Figure 7.6 we observed that it is clearly better
to increase the number of clusters, and thus decrease the number of time points in each
cluster. A problem arises when the number of time points in each cluster is not high enough
to cover the decreased number of degrees of freedom, due to loss of time points. This since
the mean value function itself uses a number of parameters, as well as each cluster needs
its own offset, then there might not be enough time points left in each cluster to account
for this.
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Figure 7.5: Effect of changing the number of time points, 12 time points is used as a
reference to compare the other alternatives. The number of simulations is 30 000, ICC =
0.1, and variance σ2

R = 0.4, the underlying function f is e2t and the number of basis
functions is 5 (4th order Legendre polynomial). The error on the y-axis is the continuous
iM̂SE.

7.3 Discussion

All the results here originates from computer simulations, and are thus built upon a simple
known underlying model. This will affect all aspects of the conclusions drawn, but if the
test case is close to reality, valuable information can still be obtained. The exponential
functions was chosen due to its complexity as a Taylor polynomial and its smoothness,
and by setting it to exp(2t), will give higher value on the higher coefficients (4th and 5th
order). Still, as seen in Figures 7.7, even few polynomials will approximate this function
well. The figure uses only four basis functions (3rd order polynomial), and with five, there
is almost no detectable difference. It turns out that if the true underlying function is smooth
with no fast drops or spikes, a low order polynomial will work reasonably well. However,
if the generator function has a drop faster than a 4th order polynomial can follow, the
bias can ends being substantially. But, this may not be very realistic in a gene expression
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Figure 7.6: Different arrangement of time points and clusters, given a fixed amount of
experiments. The numbers indicates how many time points there are in each cluster. The
number of simulations is 80 000, ICC = 0.1, variance σ2

R = 0.4, and f(t) = e2t. The
error on the y-axis is the continuous iM̂SE.

setting, and should be detected in an array of diagnostic checks (e.g. if the residual variance
considered to large).

If the function was not contained in the basis, with high coefficients in higher order poly-
nomial (typically, around a 9th order polynomial), the bias was disastrous. Still, for a
transcendental function, as exp(x) and sin(x), which can be defined as an infinite polyno-
mial series, the approximation using only a small number of polynomials (e.g. 4), works
reasonably well if the coefficients higher of higher order, do not become dominant. This
means that any change that is not growing to fast or has a sudden steep drop, can be approx-
imated well by a polynomial basis on the interval [−1, 1]. This can be seen in Figure 7.7,
where a curve is approximated deterministically to the transcendent function exp(2t), with
only three basis functions.

For a fixed number of time points, it then seems optimal to increase the number of cluster
and place fewer observations within each cluster. The iM̂SE estimate for the last cluster in
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Figure 7.7: Deterministic approximation of exp(2t) using the L2 norm (squared error
loss), with the four first Legendre polynomial (including order zero). This shows the best
possible theoretical approximation with infinite uncorrelated data points. (The basis is
orthonormalized).

Figure 7.6 may be to optimistic, since to few observations in each cluster will negatively
affect the stability of the estimate, due to the loss of degrees of freedom.

The low ICC in the simulations may not reflect of true ICC in microarray experiments, the
values of 0.5− 0.01 have however, been chosen on findings in the actual data presented in
Chapter 8, as a conservative estimate. For a ICC less then 0.1 it has been suggested that an
ordinary linear model will give approximately the same results as the LME, since the data
appear to be uncorrelated. But with the development in computer technology and new fast
algorithms, a low ICC is now longer a concern and the LME framework is used whenever
the data structure dictates it.

From Figure 7.4 it became clear that the iM̂SE estimation using the observed values only,
gives a high error estimate, but could maybe reflect more of the variance, since the value
lies closer to the σR than the two other calculated iM̂SE. That there is a difference is
not surprising, but the magnitude may be considered somewhat large, and the fact that it
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increases and not decreases. All the three error estimates seems to stabilize at the same
number of clusters (around 10), but while the true error is decreasing, the observed error
goes up before stabilizing. The difference in in the two discrete iM̂SEs should not be large,
and intuitively the observed iM̂SE should be almost the same as the true discrete iM̂SE,
as the only difference is that the observed has been adjusted for by the errors (εi). When
evaluated on a dense grid, the estimated continuous iM̂SE is less then σ2

R, this has to do
with the close fit of the estimated function and the true function, and what is integrated
is the squared difference between the generating curve f + uk and the estimated curve
f̂ + ûk. Still, it can give an indication of how well the method works on the observed
(simulated) data, but works best for comparing different model in a simulation setting.

Summing up from this chapter, what we have found is that a higher number of clusters
is desired, even if it means lower number of time points in each cluster. But, the clusters
should not be so small that they compromise the integrity of estimated function. This is
also according to medical established routine, as one wants as many individual samples as
possible. From the error estimate, an approach with LME and low order basis expansion
seems to work surprisingly well even with a transcendental function with somewhat high
Taylor complexity.

7.4 Bibliographic Note

Two R packages were used in the simulation, the Rmpi for parallelization, and nlme pack-
age for the LME framework. The Rmpi is implemented in R by Yu (2002), based on the
Message Passing Interface. The simulation was done using the lme() function to recon-
struct the curve, implemented by Pinheiro et al. (2011). A number of additional packages
was used, and a complete list is found in Appendix E.
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8
GASTRIN EFFECT ANALYSIS

This chapter presents some of the findings based on the data set from the experiment
introduced in Chapter 1, with the aim to answer the question raised in that chapter. The
issue of the number of biological replicas was discussed in the previous chapter, leaving
here the analysis on the frame of reference.

Note: when talking about significance and a significant gene, we mean a gene that has a
detectable significant change in the expression profile over the considered time interval,
with a cut-off of 0.05 on the adjusted p-values from the Benjamini & Hochberg method.

8.1 The Data Set

The time points at which the measurements where taken, are presented in Table 8.1. We
chose to normalize the time points to the interval [−1, 1], with the internal distance pre-
served. This was done using the equation;

tnew =
2t

max(t)
− 1.

The normalization makes the time points more suitable for modelling with the Legendre
polynomials, and since the scaling preserves the internal distances, no information is lost.
This also scale the problem down, which reduces the probability that the polynomials
behave erratic at the boundaries.

Table 8.1: Time table for measurements, in the microarray study.
Time points for data measurements in minutes and hours

min 0 15 30 60 90 120 240 360 480 600 720 840
hour 0 .25 .5 1 1.5 2 4 6 8 10 12 14

Cells treated with gastrin were harvested at 11 different time points between 15 minutes
and 14 hour, given in Table 8.1. The samples from untreated control cells were harvested
at time zero and throughout the time course with the treated sample (12 time points)1.

1Which are the exact same time points as for the gastrin stimulated sample.
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Two independent experiments (biological replicates) were performed. Afterwards, the
data were preprocessed using a log2 transformation and a quantile normalization. The ex-
perimental set up was such that the gastin stimulated and the unstimulated control samples
were coupled, i.e. measured at the same time, and thereby should be subject to the same
external forces outside of the experimenter’s control. The expression was measured for
close to 8960 genes.

The observations can then be presented as two primary time series

Ut t = 0, . . . , 11 (8.1a)
Gt Gt0 = Ut0 . (8.1b)

Here Gt is the gastin stimulated sample, and Ut is the unstimulated control sample. There
are two replicas for each gene, however, from a notation point we let the two biological
replicas be contained in Gt and Ut. The secondary time series can be formulated as

Xt = Gt −Gt0 t = 0, . . . , 11 (8.2a)
Yt = Gt − Ut Gt0 = Ut0 . (8.2b)

On each microarray chip, there where additional negative control spots. The negative
control spots are synthetic RNA from fish (unknown species) which is known to not exist
in the cell line under study (AR42J). The binding at this spots should then in theory be
only background noise.

8.2 Data Analysis

For each gene, an LME model was then constructed separately for each of the time series
Ut, Xt, and Yt. As a basis we used the five first (orthonormalized) Legendre polynomials
(a 4th order polynomial), and each replica was given a random effect. Next, the basis
was reduced to the four first Legendre polynomials, this to see what effect a less flexible
basis has on the significance of the estimated expression profiles. To see if there was a
significant change time, it is sufficient that at least one fixed effect parameters are larger
than zero. This is true expect for intercept which only determines the baseline of the
expression. The test can be preformed with the ANOVA method given in Equation (2.19)
giving a p-value for the test against the null model, which does not contain any parameters
except for intercept.

8.2.1 Lack of Backwards Dependency

Since there is a clear ordering of the data, there is the possibility that all errors are cor-
related in time even after the trend have been removed. Such a sequence of observations
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that are correlated in time may be modelled with an AR(1) model, as presented in Equa-
tion (6.2).

An AR dependency can be detected by visual inspection of the ACF, for each gene. How-
ever, since the number of genes is so large, this is not feasible. Our approach was to fit both
an LME with and without an AR covariance structure. We then compared the two models,
using an ANOVA test, to keep or reject the null hypotheses stated in Equation (8.3).

H0 : LME without AR(1)
H1 : LME with AR(1). (8.3)

The result from this test should tell which model to prefer for the tested gene, with a low
p-value as evidence against the null hypothesis. From Figure 8.1 it is clear that adding
additional AR structure to the error, does not improve the fit of the model.
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Figure 8.1: Benjamini & Hochberg adjusted p-values for ANOVA test of AR(1) structure
in the unstimulated control sample. For the gastrin stimulated samples Xt and Yt, the
distribution was far more extreme towards one. No negative controls where used as filter
and the total number of genes are 8950.

The analysis for backwards dependencies was done for all genes, before filtering with
negative controls, this should however not affect the result (see Section 8.2.3). When
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testing for backwards dependencies with an ANOVA test, no genes had a p-value under
0.05 after correction with the Benjamini & Hochberg method (FDR). This was true for
both the unstimulated control sample Ut, the Xt series, and the Yt series.

8.2.2 Observed Intra Class Correlation

The ICC is defined in Chapter 2 (Definitions 2.3 and 2.4) for each gene, and there are
different strategies to reduce this to a single statistic, given a collection of genes. One
way, is to take the hyperbolic tangent of all the ICC, before summing and transforming
back with the hyperbolic arctangent function. This is called the consensus correlation, as
it describe the overall intraclass correlation for all the genes. This is given in Table 8.3,
where the first column is the calculation using tanh and arctanh, and the second column
is using the duplicateCorrelation() function in R within the limma package. The
downside using this procedure is that it can give negative correlation, since the arctangent
hyperbolic maps R onto [−1, 1], however, that should mostly be the case of numerical
instability, when the mean ICC is close to zero. This method has a closer relationship to
the geometric mean than to the arithmetic mean.

When investigating the random effects, they turned out to be quite small, such that σ2
D �

σ2
R. This gives a low ICC, indicates that the observations behaved almost as independent

random variables. The ICC’s had a range from 10−14 to 3× 10−1 in magnitude, but were
skewed to the left with a low mean. From Figure 7.2 there was a faster drop in the error
(iMSE) for lower ICC, as the number of replicas increased. This suggest that an increase
in the number of replicas might be more favourable with lower ICC.

Table 8.2: Summary statistics for the intraclass correlation for the different series.
Series Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
Ut 0.000 0.038 0.289 0.308 0.529 0.913 2
Xt 0.000 0.000 0.013 0.121 0.187 0.861
Yt 0.000 0.000 0.000 0.011 0.439 0.586 1

The observed ICC is given in Table 8.2. The 3rd quantile in the Yt sample may not be
correct as R originally calculated it to be 0. The values are calculated by ordering the
estimated ICC for all the genes and then to pick the quantiles, except for the 3rd quantile
in Yt which is calculated by kernel density estimation.

The low ICC does not have any clear biological explanation, but it does mean that there is
low correlation within each replica, and that the variance in the error dominates the data.
With a high ICC it is easier to discriminate between the replicas since observations from
the same clusters tend to lie close the same value. With a low ICC, the observations in the
replicas overlap such that it is difficult to tell the difference between the clusters.
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Table 8.3: Consensus correlation for the different time series.
Series tanh(· · · ) Dupcorr
Ut 0.37016 0.36947
Xt 0.07511 0.05051
Yt 0.00073 -0.05508

8.2.3 Using Negative Control Spots to Filter the Data

If a gene in the Unstimulated control sample have a low expression over the entire time in-
terval, it may have be unsuitable to use it as a correction in the Xt series (see Section 8.3.1).
It could therefore be an advantage to remove those samples before analysing for any trend.
This removal could be done by filtering the genes with negative control spots.

A negative control spot does not have any binding site in common with the organism stud-
ied in the experiment. This gives that in a negative control there should be no expression
at all, and if there are, it should be regarded as background noise only. The negative
control spots (825 of them) where located on each microarray which means that at each
time point, a new negative control was taken. However, we chose to pool all the negative
controls together, before deciding on a common cut-off for all the unstimulated control
samples. With this approach, only whole time series were removed, and not individual
time points, this to ensure that there where enough time points left in the time series to
model all the parameters.

The negative controls are used to construct a threshold (cut-off), such that all expressions
below that point are regarded as background noise. A common cut-off is the α quantile, for
some value of α, which is shown in Figure 8.2, as an illustration of the .90 quantile cut-off.
Another strategy is to use the maximum value of the negative controls as a threshold. This
is a much stronger requirement than that of the α quantile, and can increase the probability
for a type II error, by removing a higher number of time series. In this thesis we chose
to use a .99 quantile, this since the threshold needed to be quite high in order to remove
around 4% of the unstimulated control time series.

8.3 Frame of Reference

We fitted an LME to the series Ut, Xt, and Yt separately. The resulting FDR adjusted
p-values for any trend in time from the Xt and Yt series can be found in Figure 8.3.

In Figure 8.3 it is clear that the frame of reference does an have impact on the number of
significantly expressed genes. As the figure shows, there seems to be an inflation of the
p-values testing for any time effect, when only adjusting against t0. This since the Yt se-
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Figure 8.2: Distribution of expression values of all negative controls over all time points.
The shaded area covers approximately 90% of the area, giving a cut-off at expression level
6.36 for the α = .90 quantile. The .99 quantile had a cut-off at expression level 6.71. The
number N = 37950 is the total number of negative control spots, 46 time points times 825
spots.

ries has a much higher tail heaviness, giving fewer genes that are significantly expressed.
This may be attributed to the effect of removing trends in the gastrin stimulated sample,
which corresponds to a trend in the unstimulated control sample. If there is a significant
increasing trend in the gastrin stimulated sample and also an increase in the unstimulated
control, then the time series Xt has a significant increasing trend, but the difference be-
tween the gastrin stimulated and the unstimulated control sample could remain constant,
with no detectable time effects.

The low ICC in the unstimulated sample, with an even lower ICC in the gastrin stimulated
sample, showed that there is little variation between each replica, and they behave as if they
were independent. The difference is not large enough to say that it comes from choosing
a different frame of reference, but can be interesting in its own right. When the random
effects are small enough, it can be argued that an ordinary linear model can be sufficient,
since the data behave practically independent (i.e. the observations can still be correlated
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Figure 8.3: Distribution of Benjamini & Hochberg adjusted p-values when testing for any
time effect.

and dependent, but for an observer they behave independently).

8.3.1 Effect on Taking Differences’s

An argument against using Yt instead of Xt, is that it might lead to increased variance,
this however, is only true if the Ut and Gt series are uncorrelated or negatively correlated.
This is clearly stated in Equation (8.4), where the covariance is subtracted.

Var(Yt) = Var(Xt) + Var(Ut)− 2 Cov(Xt, Ut) t > 0, (8.4)

If the expression profiles between Xt and Ut are highly correlated, the variance of Yt could
actually be lower than the variance in Xt.

When calculating the variances for all the genes, it turned out that Xt had less variance
in most cases, with σ2

Xt
< σ2

Yt
in 64% of all genes. However, from Figure 7.1 it may be

assumed that the difference is very small.
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The small difference could indicate that for some genes there is a large covariance, and
for some the expression profile behaves as if Xt and Ut are independent, such that the
effect cancels out. A (positive) correlation between the gastrin stimulated sample and the
unstimulated control sample, means that if the gastin sample increase over time, then the
unstimulated control also increase.

However, a large correlation between Xt and Ut is something that can not be counted
on each time this kind of experiment is conducted. However, the variance could be also
somewhat controlled by using a negative control. This since the negative controls will
remove samples that behaves as background noise, which will cause higher variance in the
time series if they are subtracted from the gastin sample, due to low correlation between
the unstimulated and the gastrin stimulated time series. However, if there is a negative
correlation, this may not be detected using the negative controls and will cause an increase
in the variance it Yt series.

8.3.2 Classification of Expression in Time Series

When analysing the two time series Xt and Yt, we wish to classify them according to
a presence or absence of a time effect. From a theoretical viewpoint, if the underlying
true expression profile is known, there are five possible groups based on true underlying
expression profiles, listed in Table 8.4.

Table 8.4: Table showing different underlying groups, where ‘+’ is truly significantly
expressed and ‘–’ is not truly significantly expressed.

Groups of Gene Expression
Label a b c d e
Ut series + + + – –
Xt series + + – + –
Yt series + – + + –

In group a all the expression profiles are significant, this is a result of either Ut and Xt

moving in the opposite directions or one of the time series is growing (decreasing) much
faster than the other. Using both Xt and Yt will draw the same conclusion; that gastrin has
some effect on this particular gene. In group d there is a significant trend in the Xt series
that is detected using both Xt and Yt, which indicate that gastin has an effect on this gene.
In group e no effect from gastrin is detected in either Xt and Yt.

We will no focus on the groups where Xt and Yt give different results. In group b, the
gastin stimulated sample has a significant change, but so does the unstimulated control.
This could indicate that the observed change in the sample is the result of external factors,
and Yt should be trusted more. In group c, there is a time effect in the unstimulated control
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sample, which is detected in the Yt series. The Xt series have no detectable trend in time,
which mean that the gastrin had a cancelling effect on whatever affected the unstimulated
control sample. From this setting, it is not clear which series to use for deciding if there is
an effect. But from a biological viewpoint, this conflicting behaviour still requires further
investigation.

Due to error and randomness, all the 8 (23) possible configuration of ‘+’ and ‘–’ can
be observed in practise, Table 8.5 shows all the different groups. To avoid confusion with
Table 8.4, we have labelled the groups by 1–8, instead of using letters. This since Table 8.4
shows only biological underlying configurations.

Table 8.5: Table showing the different configuration, where ‘+’ is observed significantly
expressed and ‘–’ is not observed significantly expressed.

Observed groups of Gene Expression
Label 1 2 3 4 5 6 7 8
Ut + + + + – – – –
Xt + + – – + + – –
Yt + – + – + – + –

The additional columns in Table 8.5 as compared to Table 8.4 are four, six and seven, none
of them have any clear biological interpretation. The most likely reason that the genes
have a time effect that is almost significant in Ut or Xt, but the difference is significant, or
opposite.

The different explanation for the different columns may vary, but we will present what we
think is the most likely reason for the different categories.

Group One: Here both the Xt and Yt series agree, and this indicate that Xt and Ut either
go in opposite direction, or one of the series grow much faster then the other. Gastrin
is likely to have an effect on this gene.

Group Two: The Ut and Gt series follows each other, such that the difference cancel out.
Gastrin probably has no significant effect on that particular gene.

Group Three: When the change in Ut is somehow cancelled out by the gastrin, this would
still be detected as significant change in Yt series, but not in Xt series. Gastrin has
the effect of cancelling the influence that the unstimulated control are subject to.

Group Four: This group has close similarities with group three, that the Gt series proba-
bly follows the Ut series, but not enough to be significant. Unclear if gastrin has an
effect or not on this gene.

Group Five: Gastrin has a clear significant effect on this gene, that is detected in both Xt

and Yt.
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Group Six: The most likely explanation is that gastrin has an effect that is detected in the
Xt series, but is cancelled out in Yt due to noise in the unstimulated control series.
This is the case where using an unstimulated control sample clearly increases the
variance in the time series.

Group Seven: The Gt and Ut series have an insignificant change in the opposite direc-
tions. This result in an significant change being detected in the Yt series. It is
Unclear if gastrin has an effect on this gene, or if the detected effect is a result of
noise.

Group Eight: Gastrin does not have any significant effect on this gene.

Table 8.6: Table showing the proportion of genes that fall into each class, according to
Table 8.5. Analysed using 4th order Legendre polynomials. The rows are different filter
strategies with negative controls.

Classification of Genes
Label 1 2 3 4 5 6 7 8 # Genes
99% quantile filter 21 12 1 3 26 15 3 19 8903
Maximum value filter 21 10 2 6 36 15 3 9 5042
No filtering 18 10 2 8 30 17 3 14 8944

It became clear during the analysis that the choice of cut-off in the negative control had
some effect on the classification. This is reflected by the differences in the rows in Ta-
ble 8.6. Of the groups not present in Table 8.4, only group six have a substantial propor-
tion. This could be due to a significant trend in the stimulated sample that cancelled by
random noise. The difference in the proportion in group six could be used as argument for
a negative control. This since a negative control would be expected to reduce the propor-
tion of genes that end up in this group, by removing samples that behaves as background
noise.

Lower Number of Basis Functions

Using a more restrained set of basis functions by removing the highest polynomial or-
der, the classification changes substantially. This suggest that the classification is strongly
dependent on the choice of model. The higher number in group eight is a natural con-
sequence of the decreased flexibility in the model. When the fourth order polynomial is
removed, the ability for the model to respond to rapid increase in the observed data is lost.
This can reduce the number of false positive, as well as to increase the number of false
negatives, due to lack of flexibility. This can be observed in group 8, as the entries are
doubled from Table 8.6 to Table 8.7.
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Table 8.7: Table showing the proportion of genes that fall into each class, accordingly to
Table 8.5. Analysed using 3rd order Legendre polynomials.

Classification of genes
Label 1 2 3 4 5 6 7 8 # Genes
99% quantile filter 10 14 3 9 12 11 3 37 8903
Maximum value filter 9 9 3 15 17 15 4 27 5042
No filtering 9 9 2 17 14 16 3 30 8944

The large differences in Table 8.6 and 8.7 raise some questions, and give rise to concern
about the stability of the model. However, there seemed to be some stability in the classi-
fication to the groups where Xt and Yt give different result, as the entries in those groups
does not change much.

8.3.3 Clustering

To identify possible clusters of expression profiles, we used the clustering methods out-
lined in Section 6.2.2. This method could help to identify if there is some clustering within
each group. Of special interest is the groups in Table 8.5 where the Xt and Yt series gives
different results, that is, group 2,3,6, and 7. For all the genes in these groups, the optimal
number of clusters was 2.

In all the other groups (1,4,5,8), based on all accessible information, we believe that the
correct decision is taken regarding the significance of a gene. In the groups where the two
reference frames give different results, it is of importance to see if there is some internal
structure that can be explain the difference, and be used in order to decide whether to trust
the Xt or the Yt series, this since on of them will give the wrong decision. To increase the
reliability of the different frames of reference, clustering could be used to see if there is
some ordering within all genes assigned to the respective groups.

In Figure 8.4a we clearly observed only two different behaviours, both where the Ut and
Xt followed each other closely, confirming our suspicion that Xt misclassify the genes
as gastrin having an effect. The genes classified in group 3 can be roughly divided into
two groups, which is clearly seen in Figure 8.4b. Here the gastrin stimulated genes had
no significant change in time, but the unstimulated control had either an increasing trend
(first cluster) or an decreasing trend (second cluster). This may be contributed to gastrin
having the opposite effect, or that gastrin somehow stabilized these genes. In this group
it is unclear if gastrin had an effect on the genes, however, the stability in the Xt series
are remarkable compared to the Ut series, which cluster into two distinct clusters. This
stability can be used as an argument for gastrin having no effect on those genes. In Fig-
ure 8.4c, all the genes clustered roughly into two clusters, one with something similar to
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(a) Group 2 (b) Group 3

(c) Group 6 (d) Group 7

Figure 8.4: Heatmap of genes in group 2,3,6, and 7 from Table 8.5 using no filtering with
negative control. On the x-axis are the predicted time point for each time series Ut, Xt,
and Yt, and on the y-axis are the genes in the respective groups. Four basis functions plus
intercept is used.

an early response curve, and one with an increasing trend. Both clusters seems to have
a significant trend in Xt that is lost in the perturbation noise, and using Yt is likely to
cause misclassification. The genes in group 7, which are plotted in Figure 8.4d separates
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into two clusters, in both the trend in Ut and Xt goes in the opposite directions, but it is
unclear if this is due to noise or the effect of gastrin treatment. This group does have some
similarities with group 3 in that the gastrin treated samples seems more stable than the
unstimulated control samples, which also here could be used as an argument that gastrin
does not have any effect.

All the figures in Figure 8.4 helps somewhat to identify if an unstimulated control should
be used to infer the level of change from gastrin on a particular gene.

8.4 Discussion

By the lack of any AR(1) structure, it can be assumed that there is no detectable higher
order AR structure in the time series. This may be a bit surprising, since the gene expres-
sions are measured over time. In previous cases with similar data sets, however, functional
data analysis and basis expansion have been shown to be sufficient. And, with only 12
data time points, to investigate for any AR trend is highly optimistic.

The extremely low observed ICC, could make the LME model ineffective compared to
a standard linear model. However, with fast computers and stable numerical algorithms,
this is no longer any issue. With a data structure that may exhibit any extended covariance
structure or clustering, an LME model is generally used. The model’s stability and number
of basis functions are possible shortcomings in the calculations, as it seems that the model
is highly dependent on the choice and size of basis expansion. What may cause this, is that
there are differences in the change over time for the different genes. With some genes that
are proportional to a second order polynomial, while others have behaviour proportional a
fourth order polynomial. What have been previously noted (in Chapter 4), is that setting
the basis expansion of constant size, may lead to an inflation of significant genes.

The strong requirements on the cut-off value for the filtering with the negative controls
of the unstimulated samples, means that there is a general trend of a high expression in
the unstimulated control. With a cut-off of .90 quantile only one gene is removed, and
increasing to two genes at the .95 cut-off. With the .99 quantile only 41 genes are removed,
and using the maximum value then 3902 genes are removed (43%), which again, could be
seemed to much.

The negative control spots were measured at each time point, but we chose to pool all
time points before deciding on a cut-off. The negative control spots could also be used to
filter out genes at each time point. This may have more difficulties connected to it, since
removing only part of the time series, can cause the model to break down. Genes have to
be removed in all time points, not in individual time points. It is not clear how much effect
the two different strategies have on the classification from Table 8.5.
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8.4.1 A p-value Approach

Throughout this chapter, p-values have been used to indicate fit of the model. This is con-
venient, due to their mathematical properties such as well ordering, that they are bounded
by [0, 1], and that they represents a probability. This can be especially useful when the
number of genes is so large that each gene cannot be investigated itself, but one can say
something about the collection of all the genes using p-values. If the distribution of the
p-values stays the same for two or more different models, it may be reasonable to assume
that the model utilizes approximately the same amount of information, and the decision
based on the different models will be the same.

When investigating multiple p-values, the problem of multiple testing arises. In this thesis,
we chose to use the Benjamini & Hochberg method to control the False Discovery Rate
(FDR), although other adjustment strategies could have been used, but this was not the
focus in this thesis.

This approach gives clear indication in Figure 8.3 that the use of an unstimulated control
is to prefer. But, when analysing the classification in Table 8.6 and 8.7, it is not equally
clear. Only observing Figure 8.3, it could be assumed that the proportions in group 2 in
Table 8.6 and 8.7 should be higher.

Overall, the change in the distribution of p-values (removing inflated p-values), the re-
moval of any backwards dependencies and the reduction in ICC makes a strong case for
the use of an unstimulated control sample. Negative controls also seems to have some
benefits, this by removing unstimulated samples that are indistinguishable from noise.
The downsides are the misclassified ones, as the genes that comes in group 6 and 7. When
the number of genes classified in these groups outnumber the ones classified correctly
only when using an unstimulated control, then it is more questionable to use an unstim-
ulated control. However, to have an unstimulated control sample available will give the
researcher much more control when determining the effect of any treatment over a time
interval.

8.5 Bibliographic Note

The R code used in to process and unpack the genetic information from the microarray
chip, was the lumi (Du et al., 2008) package. In the actual modelling, both limma (Smyth,
2004, 2005; Smyth et al., 2005) and nlme (Pinheiro et al., 2011) was used. For clustering
the genes from the different groups, we used the pam() function, implemented in the
cluster packages by Maechler et al. (2002). The consensus correlation method was
proposed by Smyth et al. (2005), and is also implemented in the limma package in R.
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9
DISCUSSION & CONCLUDING REMARKS

As the work of this thesis unfolded a number of decisions were taken, regarding the model
framework and approaches. In retrospect, some of these decisions could have been done
differently, and would possible resulted in different conclusions. This chapter discusses
some of the issues with the approaches that were taken.

9.1 Discussion

In this master’s thesis we have investigated aspects of experimental design for time con-
tinuous microarray gene expression profiles, using the Linear Mixed Effects framework.
We have in particular looked at the number of biological replicas used, and the effects of
changing the frame of reference. With the biological replications, we have analysed what
impact the number of replicates had on the precision of the estimated expression profile.

Key issues in the modelling are the level of smoothing and the scaling of the estimated
curve. The scaling down to the interval [−1, 1] put some constraints on the estimated
curve, but it also ensured that the polynomial does behave nicely on the boundary. Since
the internal distances are preserved, no information should be lost in the scaling. What
also was pointed out in Chapter 8 is that the number of basis function does matter, and
gives a large degree of difference in the classification when the basis is changed. This
dependency on the Taylor complexity and smoothing is somewhat problematic, and should
be developed further. As a workaround to this problem, it has been suggested to use a
variable number of basis functions. This however creates a new problem of developing a
suitable rule for deciding the number of basis functions for each gene, but some form of
ANOVA testing could solve this problem. As it has been pointed out in Chapter 4, a fixed
number of basis functions for all genes is likely to induce inflated p-values by allowing too
much flexibility for many genes.

The low number of biological replicas is also a concern. In Figure 7.2 we observed that the
precision could be largely improved by adding multiple replicas, even at the expense of a
shorter time series (Figure 7.6). Having more replicas could also possible be used in some
way to estimate some form of variance components, and giving a more reliable error esti-
mate. This should result in higher precision in the coefficients and thus higher precision in
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the estimated expression profile. The high number of genes that had no significant change
could work as a variance stabilizer as they are likely to have little variance, resulting in
an underestimate of the overall variance. This could maybe also explanation some of the
surprisingly low intra class correlation, along with the genes where the observation that
the replication tends to agree, i.e. they lie close to each other.

Clustering of the genes have only been outlined in this thesis and are not thoroughly re-
viewed, but does seem to help with understanding the classification of the genes.

An issue that has not here been properly addressed is the model diagnostics for the LME
model. The nature of the diagnostics methods, as they often rely heavily on visual inspec-
tion, are not feasible to do for each gene. This results in that heteroscedasticity cannot be
checked for each gene, which is among the key issue in the modelling. The large num-
ber of genes also gives that we cannot evaluate each gene separately, but have to analyse
quantities for each gene simultaneously. Still, comparing the observed variance in Fig-
ure 7.1 with the estimated observed discrete iM̂SE (which is close to the sum of squares)
in Figure 7.4, the model seems to fit well for most genes.

Another issue is the amount of genes where the use of an unstimulated control sample gives
the wrong decisions (mainly group 6 and 7 from Table 8.5). If the number of genes where
the correct decision is taken using the unstimulated control only slightly increases, while
the ones were the wrong decision is taken using the unstimulated control is large, then
this approach should be reviewed in a cost/benefit setting. However, with an unstimulated
control sample in place, it is not required to use it in drawing inference about the effect of
the treatment. This in total gives the researcher much more control over the decisions taken
for each gene. But in general, the series where the unstimulated controls are subtracted
should not in general be trusted more then those series which are adjusted for by the
unstimulated controls.

9.2 Further Work & Possible Extension

To build upon this thesis, there are a number of ways to extend and develop models and
framework for the analysis of time continuous microarray expression profiles.

Possible extensions that of the estimation is to use a smoothing spline, that would eliminate
the choice of the number of basis functions, but introduce an new problem in form of the
roughness penalty applied to each gene. Testing significance is also more difficult for
smoothing splines then for regular linear basis expansions.

Another clear extension is the use of paired samples, that is, to integrate both time series
in the same model. This could give classification with higher precision, and better under-
standing of the relationship between the unstimulated sample and the gastrin response.
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With so few biological replicas, it may be suitable to use some for of Bayesian approach.
This would include setting priors on the fixed and random effects, among others. The
Bayesian framework opens up a whole new set of possibilities, with many new tools and
settings. Some Bayesian techniques have already been well integrated with LME, among
them the INLA platform.

It might also be worth looking into different norms and performance tests. This thesis
defined and used the iMSE (see Chapter 5), but other way of defining bias, and precision
could be considered. The theory behind iMSE is not fully developed, and its behaviour
could be investigated more.

More complicated simulations experiments could also preformed, where one take into
account different behaviours of the genes. This includes dependencies between the genes,
difference in variance and a different filtering strategies.

It has also been suggested from a biological viewpoint, to use basis functions that have
some biological meaning. This will often remove nice properties from the basis, such
as orthogonality, but can give coefficients that are much easier to interoperate. This ba-
sis functions are constructed a priori, based on biological meaningful processes and be-
haviours.

9.3 Concluding Remarks

We have seen that over all, the LME framework can be well suited to estimate time con-
tinuous gene expression profiles and to draw conclusions about the behaviour of genes
subjected to some treatment. There seems to be an increase in precision of the estimated
expression profile if the number of replications are increased, even at the cost of decreas-
ing the number of time points in each replication. However, each replication should have
a sufficient amount of time points in order to capture the behaviour of the genes under a
given treatment.

Using an unstimulated control sample will give more control in inferring the effect of some
treatment over time interval in some cell culture, but should not be used without caution.
We recommend to asses both the time series only adjusted for the starting point and the
time series adjusted for the unstimulated control before drawing a conclusion about the
treatment.

This concludes with analysing the unstimulated sample and if there is some detectable
trend in a particular gene, then this should be adjusted for. However, if the unstimulated
control sample for a gene behaves as noise, then adjusting can do more harm then good.
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Notation

Note on Notation

All vectors are written in bold, and assumed to be column vector in not stated otherwise.
Error terms are usually written as an ε and follows the Normal distribution N (0, σ2),
unless other distribution is specified.

A observation is denoted as a y, whereas the underlying function generating the obser-
vation is written as f(t) or y(x). The f(t) might not always have a variable assigned to
it, and only denoted as f , however in those cases there should be made clear that it is a
continuous function, and not a single value i.e. an observation.

Tables of Symbols

Table A.1: Distributions and its Notation
Distribution Notation Parametes
Standard Normal Z None
Normal Distribution N (µ, σ2) µ ∈ R, σ2 > 0
Multi variate normal Np(µ,Σ) µ ∈ Rp,Σ ∈ Rp×p

Chi-square distribution χ2
df df ∈ N

Fisher Distribution Fdf1,df2 df1, df2 ∈ N

Table A.2: Quantiles
Quantile Notation Distribution Parameters
tdf,α The student t-distribution α, df
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Table A.3: Math Symbols
Symbol Usage Page
d= Equality in distribution 6
def= Equal by definition 31
1n n dimensional one vector
a.s.−→ Almost surely convergence 33

Table A.4: Latin Symbols
Symbol Usage Page
P(A) Probability measure 34
E[X] Expected value of X 7
I(A) Indicator function for an event/set A
In n× n identity matrix 6
det(M) Determinant of a matrix M 10
block(Mi) Diagonal block construction of matrices 8
diag(M) Vector with diagonal elements of a matrix M 9
rank(M) The rank of a matrix M 13
se(θ̂) Standard Error of a estimator θ̂ 13
Var(X) Variance of a random variable 12
Cov(X, Y ) Covariance of two random variable 7
Corr(X, Y ) Correlation of two random variables 8

Table A.5: Script Symbols
Symbol Usage Page
D Discreet differential operator 27
H The space spanned by the basis functions 22
Lp L-p spaces 18
Pn The set of all polynomials up to order n 19
O Big O notation 22

Table A.6: Greek Symbols
Symbol Usage Page
ρ Intra Class Correlation (ICC) 9
δnm Kronecker delta 19
∆i Partition i (Step size) 19
Λ Eigenvalue decomposition 9
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List of Abbreviations

Table B.1: A list of all abbreviations occurring in this thesis.
Symbole Usage Page
ACF Auto Correlation Function 29
ANOVA Analysis of Variance 5
AR Autoregressive Process 38
EM Expected Maximization Algorithm 11
FDA Functional Data Analysis 27
FDR False Discovery Rate 53
ICC Intra Class Correlation 9
iid Independent and identically distributed 5
IKM Department of Cancer Research and Molecular

Medicine at NTNU
i

iMSE Integrated Mean Squared Error 34
IMF Department of Mathematics at NTNU i
INLA Integrated Nested Laplace Approximation 66
LME Linear Mixed Effects models 5
MARD Mean Absolute Rank Difference 28
MPI Message Passing Interface 41
mRNA Messenger Ribonucleic acid, transcript of DNA 1
MSE Mean Squared Error 31
NCS Natural Cubic Splines 17
NTNU Norewegian University of Science and Technology i
PACF Partial Auto Correlation Function 29
PAM Partitioning Around Medoids 38
REML Restricted Maximum Likelihood 11
RKHS Reproducing Kernels Hilbert Space 28
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Algorithms for Monte Carlo

Algorithm 1 Simulating Data, not in parallel

Require: library; nlme,
Set constants #MC, tp[ ](time points), σR, order(of basis),#clusters, grid, ρ, and gener-
ator function f
Reserve space for the result vector res[ ]

σD =
√

ρσ2
R

1−ρ

basis[tp[ ], order] = legendre(tp, order)
for j = 1 to NMC do

Generate error ε[ ] d= Ntp×#clusters(0, σI)

Generate cluster offset u[ ] d= N#clusters(0, σI)
Generate observations y[tp[ ],#clusters] = f(tp[ ]) + ε + u[ ]
for k = #clusters to 1 do

Estimate LME; f̂
(j)
k = lme(y[, 1 : k], basis, tagcluster)

Ensure: ∃f̂ (j)
k {(convergence in lme)}

D =
(
f̂

(j)
k (t)− f(t)

)2

res[j, k] =
∫

grid
∆2 d t using numerical integration

end for
end for
return success
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Algorithm 2 Parallel Simulation and evaluation of Data

Require: library; nlme, Rmpi
Set number of CPU cores #CPU
Set constants #MC, tp[ ](time points), σR, order(of basis),#clusters, grid, ρ, and gener-
ator function f
Reserve space for the result vector res[ ], set (number of) tasks[ ] = 1, 2, . . . ,#MC

σD =
√

ρσ2
R

1−ρ

basis[tp[ ], order] = legendre(tp, order)
Initiate #CPU cores, and push all object to all CPUs, set k = 1
while dim((tasks) > 1 do

Send following task to a free CPU;
Generate error ε[ ] d= Ntp×#clusters(0, σI)

Generate cluster offset u[ ] d= N#clusters(0, σI)
Generate observations y[tp[ ],#clusters] = f(tp[ ]) + ε + u[ ]
for k = #clusters to 1 do

Estimate LME; f̂
(j)
k = lme(y[, 1 : k], basis, tagcluster)

Ensure: ∃f̂ (j)
k {(convergence in lme)}

D =
(
f̂

(j)
k (t)− f(t)

)2

res[j, k] =
∫

grid
D2 d t using numerical integration

end for
k = k + 1
tasks[ ] = k, k + 1, . . . ,#MC
return CPU awaiting new task

end while
return success

77



Algorithm 3 iM̂SE estimation

Require: library; Bolstad
Input; β̂[ ], f [ ], grid[ ]
f̂ [ ] = 0
for i = 0 to dim(beta) do

f̂ [ ] = f̂ [ ] + β̂[i]× legendre(grid, i)
end for
if grid[h]− grid[h + 1] is constant ∀h and dim(grid) is even then

D[ ] =
(
f̂ [ ]− f [ ]

)2

∀grid[ ]
I = sintegral(grid[ ], D, )
return I

else

tmp.l =
dim(grid)−1∑

i=1

(
f̂ [i]− f [i]

)2

× (grid[i + 1]− grid[i])

temp.r =
dim(grid)∑

i=2

(
f̂ [i]− f [i]

)2

× (grid[i]− grid[i− 1])

I =
tmp.l + temp.r

2
return I

end if

Algorithm 4 Basis Construction with Legendre Polynomials

Input; grid[ ], order = n, ortho = false
tmp = 0
legendre[grid, n] = 0
for k = 0 to n− 1 do

tmp = tmp + (−1)k
(
n
k

)2(1 + grid[ ]
2

)n−k (1− grid[ ]
2

)k

legendre[, k + 1] = tmp
end for
if ortho is true then

for k = 1 to n do

norm =

√
2k + 1

2
legendre[, k] = legendre[, k]× norm

end for
end if
return legendre[ ]
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R Code

This appendix contains some of the R code and functions used, to make a replication of
the computer experiment easer.

Estimation of Gene Expression with LME

thisy <- as.double(geneData[i,])
try(thislme <- lme(thisy~lbasis,random=~1|biol,method="REML",na.action=na.omit),

silent=TRUE)
if(exists("thislme"))
{

anovaP[i] <- anova(thislme)$"p-value"[2]
ICC[i] <- ICC(thislme)
sigma[i] <- thislme$sigma
UnStim_T0.randomEffect[i,] <- thislme$coefficients$random$biol
try(tmp <- update(thislme,correlation=corCAR1(value=.2,form=~1,

fixed=FALSE)), silent=TRUE)
if(exists("tmp"))

AnovaP.AR[i] <- anova(tmp,thislme)$"p-value"[2];rm(tmp)
rm(thislme)

}

Parallelization in R Using Rmpi

task <- 1:SIMULATIONS
mpi.spawn.Rslaves(nslaves=NR_SLAVES)
estimate.parallel <- mpi.applyLB(tasks, fitLME.replica, Data.obj=Data.obj,

MonteCarlo.obj=MonteCarlo.obj, Result.obj=Result.obj)
down <- mpi.close.Rslaves()
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List of R Packages Used

The list presented here contains all essential R packages used, along with the reference
and a short description. The method column, refers to additional methods that have later
been implemented, and requires additional references.

Table E.1: A complete list of R-packages used, be aware that dependencies is not covered.
Some of the packages depend on other packages not listed here.

Name Method Description Author
nlme lme Linear and non-linear mixed effects Pinheiro et al. (2011)
Rmpi mpi.applyLB Parallel computing (MPI) Yu (2002)
Bolstad sintegral Numerical integration Curran (2011)
lumi lumiR Import microarray data Du et al. (2008)
limma Linear models for microarray data Smyth (2005)
limma dupcorr Smyth et al. (2005)
limma lmFit, eBayes Smyth (2004)
gmodels estimable Extends LME Warnes (2011a)
gplots heatmap.2 Extensions of Plotting in R Warnes (2011b)
cluster pam Generalized K-means Maechler et al. (2002)
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Linear Combinations of Legendre Polynomials

In this thesis, we have assumed that if one of the coefficients is different from zero, then
the polynomial is different from zero, in at least one point. This assumption assumes that
there is no linear combinations of the Legendre polynomial that gives a zero polynomial,
if the norm of the linear combination is different from zero.

Theorem F.1. Let Hj be the set of Legendre polynomial op to order j. Then, there exists
no finite linear combination βTHj = f(x), for any β, with ‖β‖ > 0, such that f(x) ≡
0 ∀x.

Proof. Outline of the proof: We prove this by induction, by showing that it works for
one basis function, then for two, and so on.

If there is only one basis function h0 = a0x
0, then this evidently hold, since |β| > 0 and

|a0| > 0 by construction. If there are two basis function hq = a0x
q and h2a1x

0 + b1x
1,

then since ‖β‖ > 0, only one of the beta’s can be zero, but not both. If one is zero, we are
back to the case of only one basis function. If both betas are non-zero, we can rearrange
the terms, such that

βTH = x0 (β0a0 + β1a1)︸ ︷︷ ︸
φ

+β1b1x
1.

Now, the φ constant can be zero, but since both the beta’s are assumed to be non-zero,
β1b1x

1 is not a zero polynomial. This argument can then be extended for increasing order
of basis functions.

Q.E.D.

This ensures that if at least one coefficient is different from zero, the polynomial will also
be different from zero in at least one point, for any linear combination with norm bigger
then zero.

81



Uniqueness

The Legendre polynomial are the only infinite series of polynomials that have increasing
order and are orthogonal on the L2[−1, 1] inner product. A proof is somewhat technical
and difficult, and will not be given her, it can however be found in A Uniqueness Theo-
rem for the Legendre and Hermite Polynomials by K. P. Williams in Transactions of the
American Mathematical Society Vol. 26, No. 4, Oct., 1924.

An alternative approach can be to show that the Gram-Smith orthogonalization gives the
Legendre polynomials. Since the Gram-Smith procedure is unique, the Legendre polyno-
mials will then be unique.

The Legendre Polynomials

Here follows the five first Legendre polynomials. The polynomials are not normalized but
this could be obtained by dividing each polynomial on the normalizing constants given in
Equation 3.6.

Order l(x)

1 1

2 x

3 1
2 (3x2 − 1)

4 1
2 (5x3 − 3x)

5 1
8 (35x4 − 30x2 + 3)
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