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Abstract
A basic overview of mathematical finance and pricing theory is given. The Black-

Scholes model and the LIBOR Market Model are explained, and their assumptions
are discussed and tested on historical data. The normality of log-returns of stocks
and forward rates is tested for different time periods, and is found to be varying
greatly over time. The models are calibrated using the Exponentially Weighted
Moving Average (EWMA) method and implemented to perform a backtest against
historical data of two risk measures, Value at Risk and Expected Shortfall. The
backtesting is done on five portfolios of varying risk, in the European and Norwegian
markets. Three unleveraged portfolios consisting of bonds and stocks in different
proportions, and two leveraged portfolios consisting of stocks and interest rate caps
respectively are considered.

The performance of the risk measures is found to be not satisfactory for all
portfolios, but performance is better for riskier portfolios and assets. Variation of
performance over different time periods is found. The periods of worst performance
are those of turbulent market conditions, notably in late 2008. These periods are
found to loosely correspond to the time periods in which log-returns of equity and
forward rates are least normal.

A sensitivity analysis of performances to the weighting parameter in the EWMA
is done. The sensitivity is found to be substantial for all portfolios except for the
portfolios holding stocks in the Norwegian market.

En grunnleggende oversikt over matematisk finans og prissettingsteori frem-
føres. Black-Scholes-modellen og LIBOR Market Model presenteres og modellenes
antagelser testes på historiske data. Normaliteten av log-avkastning av aksjer og
forward-renter testes for ulike tidsperioder, og stor tidsvariasjon blir funnet. Mod-
ellene kalibreres ved hjelp av Exponentially Weighted Moving Average (EWMA) og
implementeres i den hensikt å utføre en backtest mot historiske data av to risikomål,
Value at Risk og Expected Shortfall. Backtestingen gjøres på fem porteføljer med
ulik risiko, i det europeiske og norske markedet. Tre ubelånte porteføljer bestående
av obligasjoner og aksjer i ulike proporsjoner og to belånte porteføljer bestående av
henholdsvis aksjer og interest rate caps blir vurdert.

Risikomålenes ytelse er dårlig for samtlige porteføljer, men ytelsen er bedre
for høyrisikoporteføljer og -verdipapirer. Ytelsesvariasjon over ulike tidsperioder
påvises. Periodene med dårligst ytelse er perioder preget av turbulente markeder,
som i slutten av 2008. Disse periodene kan løst sies å tilsvare de tidsperiodene hvor
log-avkastningen av aksjer og forward-renter fjerner seg mest fra normalfordelingen.

Det gjøres en sensitivitetsanalyse av ytelsesresultatene mhp. vektingsparame-
teren i EWMA-metoden. Sensitiviteten er betydelig for alle porteføljer unntatt for
porteføljene som holder aksjer i det norske markedet.
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1 Introduction

1.1 Background

The science of creating mathematical models of financial assets is relatively new. Shreve
[8] names Harry Markowitz the founder of the mathematical theory of finance with his
1952 Ph.D. thesis Portfolio Selection. However, it was Robert Merton that in 1969
brought stochastic calculus into the study of finance, and with Fischer Black and Myron
Schole’s work on the fair price of a stock option, mathematical finance was born. Today,
mathematical finance is a large field of scientific study that help us understand and
improve the financial system and inspires the creation of new mathematics, operating in
the cross-section between applied mathematics and financial economics.
The ongoing financial crisis was triggered by the bursting of the American housing bubble
in 2007, resulting in real-estate based securities dropping in value and in turn causing
financial distress for banks and illiquid credit markets. In 2008, as banks and financial
institution went bankrupt, was subject to government takeover or received bailouts, the
crisis spread to international financial markets. Plummeting investor confidence and
declining credit availability resulted in stock markets crashing and economic contraction
in many countries.
Bailouts in the financial and other sectors and the reduction in economic activity re-
sulted in a worsening of government finances, especially in the "peripheral Euro zone
countries" Greece, Ireland, Spain and Portugal. The fear of government bankruptcies,
and a following collapse of the Euro, is still hindering economic growth and investor
confidence. We do not yet know the full consequences of the now five years old financial
crisis. The story of the financial crisis makes apparent the need for development in the
field of risk management.
The field of mathematical finance can be loosely divided into two separate fields: the
theory of the pricing of financial derivatives and the theory of risk and portfolio man-
agement. In this thesis, both fields play a role but we focus mainly on the latter. We
go through each step in the process of financial risk modelling, with the main goal of
measuring the performance of the popular risk measures Value at Risk and Expected
Shortfall on different types of portfolios.
Consider we hold a portfolio, and we want information about the market risk associated
with holding it. How much money might we lose in a week, for instance, due to changes
in asset prices? To get this information we need to model the time evolution of the
portfolio’s asset.
First of all, we need models for the value of the basic or underlying assets, typically stocks
and interest rates. These models should incorporate the most important characteristics
of real world financial assets. Notably the probability distribution of asset price changes
(we want our asset price models to have the same probabilistic behaviour as real world
asset prices) and the exclusion of arbitrage opportunities (we do not want our models to
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allow for trading strategies that give risk free profits, since this is a marginal phenomenon
in real markets).
The assumptions of our models should be tested against real world historical data. If we
find that the assumptions of our model does not correspond with reality, they need to
be improved. Of course, like in all mathematical modelling, there is a trade-off between
having models that are easy or even possible to work with and having models that
correspond with reality. A good model should be simple and easily understood, but not
so simple that it departs too much from the phenomenon we are indeed modelling.
We also need to estimate the parameters of our models, i.e. calibrate our model. For the
model to have any predictive power, it needs to reflect market conditions, so we calibrate
our model based on the past and current market movements.
For risk management purposes we want to have an idea of the probability distribution
of the value of the collection of financial assets held, the portfolio. To achieve this, we
run multiple simulations forward in time and get the simulated probability distribution
of future portfolio value. This simulation involves two steps.
First, we simulate the underlying assets forward to some future time using their real, as
assumed by our models, probabilistic behaviour. We are in this step working with the
real probability measure P, so it is sometimes referred to as "P-world" simulation.
Secondly, we need to value our portfolio at this future time, within each simulation. This
can be a hard problem in itself, since our portfolio may include derivative financial assets,
like stock options or interest rate agreements whose value depend on the underlying
assets, but often in non-trivial ways. This step may include simulations, if we do not have
other, faster numerical methods or closed form solutions for the derivatives’ dependence
on the underlying assets. When valuing our portfolios, it is most often useful to work
with models under some probability measure Q, like the risk-neutral martingale measure
so this step is sometimes referred to as "Q-world" simulation.
Based on the simulated probability distribution for future portfolio value, we calculate
the risk measures which give information about the market risk associated with the
portfolio.
In this thesis we go through the steps outlined above and try to give an overview of
the pitfalls and possibilities in each step, but our main purpose is to investigate to
what degree these risk measures can be trusted. We do this by a backtesting procedure.
We simulate future values of our portfolio from some date in the past for which we have
price data, as if the following period’s prices are unknown, to get a simulated probability
distribution. We do this for each day in our historical data and compare it with what
actually happened, thus testing the performance of our risk measures.
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1.2 Thesis outline

This thesis consist of three parts. In the first part, section 2,3, and 4, we introduce
some needed financial and mathematical concepts. In the second part, sections 5 and
6, we introduce the Black-Scholes model and the LIBOR Market Model, and test their
assumptions against historical data. In the final part, section 7 and 8, we explain the
specifics of our implementation of the backtesting procedure and present the results.
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2 Financial concepts

2.1 Financial assets

A financial asset is a contract that gives the holder ownership over future (expected or
certain) cash flows. The (expected) present value of these cash flows determines the
value of the asset. Typical assets are stocks and bonds and derivative assets, like stock
options or interest rate derivatives.
In this thesis we model all underlying asset values and rates as Ito processes, i.e. stochas-
tic processes governed by the equations

dS(t) = µ(t, S)dt+ σ(t, S)dW (t), t > 0 (2.1)
S(0) = s0 (2.2)

where S(t) is the asset value at time t, the adapted stochastic processes µ and σ are
functions of S and t and W is a Brownian Motion. Note that σ and W may be vectors,
i.e we may have more than one source of randomness, and µ and σ are allowed to be
depending on t and S. The dt term is called the drift term and the dW term is called
the diffusion term.

2.2 Equity (Stocks)

A stock is a financial contract representing the holder’s ownership of a share of a com-
pany. The stockholder thus have ownership of future cash flows generated by the com-
pany.
Some stocks are traded on a stock exchange, providing tremendous liquidity. That is,
exchange traded stocks can be bought and sold in a fraction of a second. A stock index
is a value weighted average of a group of stocks. In this thesis we consider the OSEBX
and Eurostoxx 50 indices.

2.3 Fixed Income (Bonds)

A bond is a financial contract where one party pays a sum of money today in exchange for
fixed cash flows from the counterparty in the future. Bonds are issued by governments,
corporations, or other types of organizations as a means to raise money. The cash flows
of a bond may be spread out equally over the bonds life-time, may include a lump
payment at maturity or use some other form of payment plan.
The simplest type of bond is the zero-coupon bond (often called a zero) which pays the
holder a lump sum at maturity T with no pre-maturity payments (coupons). I shall use
the notation Z(t, T ) for the time t value of a zero-coupon bond that pays 1 at time T .
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2.4 Yield

The yield Y (t, T ) of the zero-coupon bond is defined by the following relation

Z(t, T ) = e−Y (t,T )(T−t)

It is simply the constant (continuously compounded) rate at which your money is growing
if you pay Z(t,T) at time t and get 1 at time T . Rearranging, we get the yield

Y (t, T ) = − log(Z(t, T ))
(T − t)

Note that if you own a zero-coupon bond V that pays, for instance, 100 NOK at time T ,
i.e. V (t, T ) = V (T, T )Z(t, T ) = 100NOK×Z(t, T ) we get the yield of V by substituting
Z(t, T ) = V (t,T )

V (T ;T )

2.5 Continuous forward rate

The continuous forward rate f(t, T ) is not a financial entity. It is a theoretical concept.
It is the instantaneous continuously compounded rate agreed on at time t for borrowing
at time T . It is defined by the following relation

Z(t, T ) = e−
∫ T

t
f(t,u)du

Note that, at time t, the forward rate f(t, T ) is known for all T , so the forward rate
curve {f(t, u) : u ≥ t} is a deterministic function. We model the forward rate curve as
evolving in t, i.e. we have one forward rate curve for each value of t. The spot rate r(t)
for borrowing at time t relates to the forward rate in that r(t) = f(t, t)

2.6 Simple rates

Consider the contract where one party (the lender) agrees to pay a notional amount N
today (time t) to another party (the borrower) who will pay back

N(1 + δF (t, T ))

at time T , where δ = T − t when time is measured in units of a year. The (annual) rate
F (t, T ) is the simple (spot) rate for borrowing from time t to time T .

2.7 The forward rate agreement

The forward rate agreement is a contract where the parties agree at time t (today) on
a rate L(t, T1, T2) for borrowing in some future time period, T1 to T2. That is, with a
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notional amount of N , they agree at time t that the lender pays N at time T1 and the
borrower pays back

N(1 + δL(t, T1, T2))

at time T2, where δ = T2 − T1.
The (annual) rate L(t, T1, T2) is called the simple forward rate We see that the simple
rate F (t, T ) = L(t, t, T ) and that the continuous forward rate is the limit of the simple
forward rate,

lim
Ti+1→T+

i

L(t, Ti, Ti+1) = f(t, Ti).

2.8 The LIBOR rate

The LIBOR (London Interbank Offered Rate) is an important type of (spot and forward)
simple rate. The LIBOR rate is an average of the rates paid by major London banks when
borrowing money from each other. It is quoted in the major currencies with different
debt maturities. The LIBOR is a much used benchmark rate in financial contracts.

2.9 Derivatives

A derivative is a financial contract whose value depends on the value of underlying assets
or rates, typically stock values or simple (forward or spot) rates. On of the simplest, and
most widely traded, derivatives is the European call option, which gives to the holder a
payoff of

max(S(T )−K, 0)

at some time T for some stock S and some fixed strike K. In other words, it gives a
payoff of S(T ) − K at time T if the stock price S is larger than the strike K at that
time, and gives zero payoff otherwise.

2.10 The cap/floor

Consider a set of equally spaced maturity dates Ti = δi, i = 0, 1, ...,M + 1. A caplet
is a derivative contract defined by some floating interest rate L(t, Tn, Tn+1), with the
maturity date Tn, a notional amount N , and a fixed strike rate K. The buyer of the cap
receives payment from the seller if the floating rate is above the strike rate at maturity.
The payoff function is

g(L(Tn, Tn, Tn+1)) = Nδ(L(Tn, Tn, Tn+1)−K)+ (2.3)

where δ = Tn+1 − Tn is the fraction of a year corresponding to the floating rate period.
This payment is made at time Tn+1. If for instance the caplet is written on a 3-month
LIBOR we would have δ = 0.25. In other words, a caplet is a European call option on
some forward rate.
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A cap is a collection of caplets with different consecutive maturities. Consider an investor
borrowing $100 for 3 months at a time at the LIBOR rate. If this investor also buys
a cap on 3-month LIBOR with strike rate K, notional of $100 and maturities 3,6,9,...
months from contract start, the sum effect of the portfolio is that she never pays a higher
rate than K. That is, she has placed a cap on her interest rate and thus reduced her
interest rate risk.
In the same way, a floorlet is a European put option on some floating rate, and a floor is
a collection of floorlets which can be used to reduce the interest rate risk for an investor
lending money.

2.11 The interest rate swap

In general a swap is simply a contract that exchanges one cash flow for another. The
typical interest rate swap is a contract where one party, called the payer, agrees to pay
a fixed rate interest (the "fixed leg") on some notional and the other party, called the
receiver, pays some floating rate (e.g. LIBOR) interest (the "floating leg") on the same
notional. The swap rate is the specific fixed rate that makes the value of the swap equal
to zero (for both parties).
To be more precise, we follow the considerations of Glasserman [3] and consider a set
of equally spaced dates Ti = iδ, i = 0, ...,M + 1. Consider a swap with payment dates
Tn+1, ..., TM+1 on some notional N with fixed rate R. At each payment date Ti the
payer pays δNR and the receiver pays δNL(Ti, Ti, Ti+1). The value of the swap at time
Tn from, the payer’s point of view, is the difference between the value of the floating leg
(which he receives) and the fixed leg (which he pays).
To simplify calculations, we include a fictitious payment at TM+1 of N that each party
pays to the other. In that way, the value of the fixed and floating leg is the same as the
value of a bond with fixed and floating rate coupons respectively, and a face value of N .
The cash-flows of the floating bond can be replicated with an investment at Tn of N .
Lending N between Ti and Ti + 1 creates a cash-flow of δNL(Ti, Ti, Ti+1) while keeping
the original N (which create the last face value cash-flow at TM+1). Therefore, the value
of the floating bond must be N . The value of the fixed bond is simply the present value
of the cash-flows, i.e. the cash-flows discounted by the zero coupon bonds,

δNR
M+1∑
n+1

Z(Tn, Ti) +NZ(Tn, TM+1). (2.4)

So the value of the swap from the payers point of view is

V = N − δNR
M+1∑
n+1

Z(Tn, Ti) +NZ(Tn, TM+1) (2.5)

The swap rate for this swap with payment dates Tn+1, ..., TM+1, which we denote Sn(Tn),
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is the fixed rate R that makes V = 0, so we have the swap rate

Sn(Tn) = 1− Z(Tn, TM+1)
δ
∑M+1
i=n+1 Z(Tn, Ti)

(2.6)

2.12 The swaption

A swaption with maturity T is a derivative that gives the holder the right but not
the obligation to enter into a swap at (European) or before (American) the swaption
maturity T . Consider the swaption with maturity Tn on entering into the swap we
discussed in the last section (payment dates Tn+1, ..., TM+1), as the payer (pays fixed
rate). If R is the fixed rate in the swap, we have that, at the option maturity Tn, the
value of the swap is

V (Tn) = N − δNR
M+1∑
i=n+1

Z(Tn, Ti) +NZ(Tn, TM+1) (2.7)

The holder of the swaption will only exercise if V (Tn) > 0 so the payoff function is

P = max(V (Tn), 0) (2.8)

which is equal to 0 if R > Sn(Tn) and equal to V (Tn) if R < Sn(Tn). Thus we have

P = max(Sn(Tn)−R, 0)δ
M+1∑
i=n+1

Z(Tn, Ti). (2.9)

We see that the swaption has the payoff of a call option on the swap rate.

2.13 Arbitrage

Given a market, i.e. some set of investment opportunities with values I1(t), I2(t), . . . , Im(t),
being adapted processes defined on the probability space (Ω,F ,P), an arbitrage oppor-
tunity is any investment choice a = (a1, ..., am) such that the value of the investment
X(t) = a1I1(t) + . . .+ amIm(t) satisfies
• X(0) = 0
• P{X(T ) ≤ 0} = 1
• P{X(T ) > 0} => 0

for some time T > 0.
In other words, an arbitrage opportunity is a portfolio needing no initial capital, with no
risk of loosing money, and a possibility of earning money. Simply put, arbitrage is risk-
less profit, money for nothing. Arbitrage opportunities are rare in real financial markets
because they disappear when people start trading them, since trading adjust the prices.
We therefore want models of financial markets to exclude arbitrage opportunities.
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2.14 The efficient market hypothesis

The efficient market hypothesis (EMH) says that all available information is already
incorporated into the price of a financial asset, hence we cannot use this information
to predict future returns. Put in other words, an investor cannot consistently, i.e. over
time, earn excess return on his investment. That is, he cannot beat the market portfolio.
In making this more precise we need to specify what kind of information we believe is
incorporated in the prices. One generally speaks of three different versions of the EMH,
which differ in the type of information that is hypothesized to be incorporated into the
asset price.
Weak form efficiency says that all information about past prices is incorporated into the
current price. That is, in the long run we cannot earn excess returns by any trading
strategy based on historical price information.
Semi-strong form efficiency says that all public information (not only past price history)
is near instantly incorporated into the price of an asset, so no excess returns can be earned
in the long run by a trading strategy based on public information.
Strong form efficiency says that all information, public and private, is incorporated into
the price of an asset, so no-one can earn excess returns in the long run.
The random characteristic of asset prices’ evolution in time is explained by this instant
incorporation of new information into the asset price. The price at some moment of a
stock is the "correct price" since it is the value at which market participants are wiling to
buy it, given the current information about the company, its business sector, the world
economy etc. In other words, the stock price is a reflection of all available information.
When new information arrives, as new events in the world unfold, the price adjusts
accordingly. And this happens "instantaneously" i.e. very fast, according to the EMH.
There is a rich literature on testing the different forms of the EMH. One can test for
autocorrelation in return time series, one can test different trading rules (e.g. always
buying stock after a negative financial announcement from the company) to see if they
perform significantly better than the market portfolio, and a multitude of other tests.
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3 Modelling and pricing theory fundamentals

We are seeking mathematical models for the value of the different types of financial
contracts. If we can build arbitrage-free models that hopefully coincides with reality, we
can price these contracts and then quantify risk and manage portfolios. Since prices of
financial assets and interest rates change randomly in time (for reasons discussed in the
market efficiency section) our models need to incorporate this randomness. Asset prices
and interest rates will therefore be modelled as stochastic processes, more specifically
Ito processes. With this modelling choice, we can use past and present prices of assets
and interest rates to estimate model parameters. This is discussed in section 5. We then
have a working model for the underlying processes. However, we would like to be able
to price financial contracts for which we do not have historical quotes and for which
we have no obvious way of determining the value process dynamics. For the purpose
of pricing such contracts we shall need one of the cornerstones of mathematical finance,
namely pricing theory.

3.1 Pricing theory

Consider a market M consisiting of N underlying assets or rates in a time period
[0, T ]. The uncertainty of the future values of the assets will be modelled through a
d-dimensional Brownian motion W (t) = (W1(t), ...,Wd(t)) defined on the probability
space (Ω,F ,P). We let {Ft : 0 ≤ t ≤ T} be a filtration on the space such that Ft is the
σ-algebra σ(W (s) : 0 ≤ s ≤ t) generated by the d-dimensional Brownian motion W (t),
and we let (S1, ..., SN ) : [0, T ]× Ω → RN be the assets’ value processes. As mentioned,
in this thesis underlying asset values will be modelled as Ito processes, so we have the
set of SDEs

dSi(t) = µi(t, S)dt+ σi(t, S)dW (t), 0 < t ≤ T, i = 1, ..., N (3.1)
Si(0) = si,0, i = 1, ..., N (3.2)

where µi is a scalar and σi a d-dimensional vector.
We want to find a general pricing formula for a derivative whose value depends on one
or more of these underlying assets or rates. The idea is to find this price by finding a
combination of the underlying assets (for which we have a model) that have the same
value as the derivative at all times. We can then find the price of the derivative by by
exploiting this connection.
Definition 1 A portfolio is a process a = (a1, a2, ..., aN ) : Ω × [0, T ] → RN denoting
how many of each asset held by an investor. That is, the investor holds ai of asset Si.
The portfolio value process V (t) is thus defined by

V (t) =
N∑
i=1

aiSi(t), 0 ≤ t ≤ T. (3.3)
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The portfolio is called self-financing if

dV (t) =
N∑
i=1

aidSi(t) ∀0 ≤ t ≤ T, (3.4)

in other words if the infinitesimal portfolio value change is due to changes in asset prices,
not due to adding or removing capital from the portfolio.

Definition 2 An equivalent martingale measure is a probability measure Q, equiv-
alent to P, such that all assets prices Si are martingales under Q.

Definition 3 A numeraire N(t) is a value process of a portfolio in the marketM such
that N(t) ≥ 0 for all t ≥ 0.

A numeraire can typically be one of the asset prices Si. For a chosen numeraire N(t),
the new discounted assets Si

N constitute a new marketMN . An important type of asset
used in a lot of pricing is the risk neutral asset B(t) which has initial value 1 and grows
with a constant risk free rate of return r. That is,

B(t) = ert, 0 < t ≤ T (3.5)
B(0) = 1 (3.6)

If we use the risk neutral asset B as numeraire we obtain the marketMB. The equivalent
martingale measure in this market is called the risk neutral measure.

Theorem 1 (1st fundamental theorem of asset pricing) If a market M has an
equivalent martingale measure, the market has no arbitrage opportunities.

See [8] for a proof.

Definition 4 A contingent claim is a random variable X : Ω → R representing a
cash-flow at some time T .
A claim is said to be replicable if there exist a self-financing portfolio a such that its
time T value

V (T ) =
N∑
i=1

ai(T )Si(T ) = X (3.7)

almost surely.
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The cash-flows/payoffs of a derivative can be represented by a contingent claim (or a
combination of several). A replicable contingent claim can therefore be thought of as a
derivative whose time T value is almost surely equal to the time T value of some portfolio
of underlying assets.
We now denote by X(t) the time t value of the replicable contingent claim, so that
X(T ) = X. If there was some time t where V (t) 6= X(t) we would have an obvious
arbitrage opportunity by buying the cheaper and selling the more expensive to get a
risk-less profit, since the cash-flows from the replicating portfolio and the claim are
almost surely equal at time T . Thus, we have that V (t) = X(t) for all 0 ≤ t ≤ T
If there exist an equivalent martingale measure in the market MN , P̃ that makes dis-
counted asset prices Si(t)

N(t) = D(t)Si(t) martingales, we know that

V (t) = 1
D̃(t)

Ẽ[V (T )D(T )|F(t)] (3.8)

= 1
D̃(t)

Ẽ[X(T )D(T )|F(t)] (3.9)

(3.10)

from the definition of martingales and using that V (T ) = X(T ). Here Ẽ denotes expec-
tation with respect to the measure P̃. Since X(t) = V (t) for all 0 ≤ t ≤ T , because of
the exclusion of arbitrage opportunities, we have that

X(t) = 1
D̃(t)

Ẽ[X(T )D(T )|F(t)]. (3.11)

We have achieved a pricing formula for the contingent claim. The task of finding the
time t price X(t) of some contract is reduced to calculating the expectation, which can
be done in a number of ways, discussed in the following sections. It should be noted that
X(t) is only uniquely defined if there exists a unique equivalent martingale measure.
Theorem 2 If the market MN has a unique equivalent martingale measure P̃, then
every contingent claim X is replicable.
See [8] for a proof. A market where every claim is replicable is called a complete market.

3.2 Monte Carlo simulation

We have seen that the value of an asset is the expected discounted value of future cash
flows under the proper probability measure. Now, how can we use this to actually price
traded assets? How do we calculate this expectation? One possibility is to try deriving
an analytical expression from the definition of expectation, be it an exact solution or
some good enough approximation. This approach, however, is unsuccessful for all but
the simplest types of derivatives, so we need to find numerical solutions. There are two
general ways of finding numerical solutions. One is to solve a PDE, provided by the

15



Feynman-Kac theorem (see appendix) or otherwise. The other way is to approximate
the expectation through Monte Carlo (MC) simulation.
MC simulation is a numerical method for approximating the value of expectation inte-
grals. Say you want to find the expected value of some function g of a random variable
X with some density function f . MC-simulation uses the fact that if you draw n inde-
pendent random samples X1, X2, . . . , Xn of the random variable then

¯g(X) = g(X1) + g(X2) + . . .+ g(Xn)
n

≈ E[g(X)] =
∫ ∞
−∞

g(x)f(x)dx (3.12)

Further, we know that the standard deviation of ¯g(X) is approximately σ√
n
where σ is

the standard deviation of one instance of g(X). We can therefore estimate the error in
our estimation of E[g(X)] by estimating the standard deviation of ¯g(X), s√

n
, where

s2 = 1
n− 1

n∑
i=1

(g(Xi)− ¯g(X))2 (3.13)

is the standard unbiased estimator for variance. We then have an approximate (1− α)
confidence interval for E(g(X)),

¯g(X)± zα/2
s√
n

(3.14)

I shall call
zα/2

s√
n

(3.15)

the (1− α) standard error and hence(
zα/2

s√
n

)
/ ¯g(X) (3.16)

the (1− α) relative standard error.
These powerful observations follows from the Central Limit Theorem.
For an example, consider we want to price a European call option written on the stocks
S under the risk neutral measure. Under this measure any traded derivative (like an
option) is a martingale when discounted by the factor e−rt. That is, the discounted
value process of the option is e−rtV (t, S(t)) and we therefore know that

V (0, S(0)) = E∗[e−rTV (T, S(T ))] = e−rTE∗[V (T, S(T ))], (3.17)

where the ∗means that the expectation is taken with respect to the risk-neutral measure.
Assuming the stock price S is a function of only one random number, W (T ), as is done
in the famous Black-Scholes model to be introduced later, the payoff of the option at
maturity is a function g of one random number. Therefore this expectation is defined to
be

V (0) = e−rT
∫ ∞
−∞

g(x)f(x)dx (3.18)
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which, as explained above is approximately equal to the mean payoffs of the option
(discounted by e−rT ) from n simulations of the stock prices evolution.
The weakness of MC simulation is that it converges slowly. However, the computational
complexity increase more slowly with dimension than "regular" integral solvers. There-
fore, we should ideally use some regular numerical method for low-dimensional problems.
An example of a low-dimensional problem is to find the price of a European option as
above. The payoff depends on only one random number S(T ), the price of the underly-
ing at maturity so this is a one-dimensional problem and some other method than MC
should ideally be used. Other types of options, however, may depend on the price of the
underlying at many times prior to maturity, S(T1), S(T2), ..., S(Td) so these problems
are many-dimensional. In these cases, MC simulation is often our best choice.

3.3 The Delta-Gamma approximation

Another way of pricing derivatives is to use the delta-gamma approximation for the
derivative’s dependence on the underlying. Assume that the derivative value V (t, S)
depends on the underlying asset value S. Given the value of the underlying and derivative
at time t, the change in derivative value from t to t+ δt is approximately

V (t+ δt, S(t+ δt))− V (t, S(t)) ≈ ∂V

∂t
(t)δt+ ∂V

∂S
(t)δS + 1

2
∂2V

∂S2 (t)(δS)2 (3.19)

where δS = S(t+ δt)−S(t). We see that the derivative price change is a function of the
derivatives delta ∂V

∂S and gamma ∂2V
∂S2 , hence the name "delta-gamma approximation".

This approximaton comes from Ito’s lemma. In the limit δt→ dt the left and right hand
side converge, i.e.

dV = ∂V

∂t
(t)dt+ ∂V

∂S
(t)dS + 1

2
∂2V

∂S2 (t)(dS)2 (3.20)

where (dS)2 = d[S, S](t) is the infinitesimal change in quadratic variation. In the case
of the Black-Scholes model for a stock, for instance, we have dS2 = σ2S2dt. For the
delta-gamma approximation to be useful, it must of course be computationally simpler
to find the delta and gamma values than to do a MC simulation.

3.4 The Black caplet formula

Assume a set of tenor dates 0 = T0 < T1 < ... < TM+1, and let the forward rates
L(t, Ti, Ti+1) be denoted by L(t, Ti) The Black caplet formula gives the time t price of a
caplet that pays

g(L) = δ(L(Tn, Tn)−K)+ (3.21)

at time Tn+1 = Tn + δ. The caplet value is

V (t, Tn) = Z(t, Tn+1) [L(t, Tn)N(d+)−KN(d−)] (3.22)
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where
d± = 1√∫ Tn

t σ2(Tn − s)ds

[
log L(t, Tn)

K
± 1

2

∫ Tn

t
σ2(Tn − s)ds

]
. (3.23)

and N(•) is the cumulative distribution function for the standard normal distribution
N(0, 1). The formula is dependent on the process L(t, T ) following a log-normal walk
with deterministic volatility σ. For our purposes we will assume that σ is stationary
(depends on time only through the difference T − t). We shall further assume that σ
is piecewise constant left continuous between the time to maturities Tn − Tn−1, Tn −
Tn−2, ..., Tn − 0. We then have that∫ Tn

t
σ2(Tn − s)ds (3.24)

= σ2(Tn − Tk−1)(Tk − t) + σ2(Tn − Tk)(Tk+1 − Tk) + ...+ σ2(Tn − Tn−1)(Tn − Tn−1)
(3.25)

= σ2(Tn − Tk−1)(Tk − t) + δ
(
σ2(Tn − Tk) + ...+ σ2(Tn − Tn−1)

)
(3.26)

where Tk is the next immediate tenor date to t, and where we in the last equality have
assumed that the dates T0, T1, ..., TM+1 are equally spaced with δ = Ti − Ti−1.
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4 Financial risk measures

4.1 What is financial risk?

Financial risk is simply the risk of financial losses, of losing money. We distinguish
between different types of risk by the reasons why the loss occurred. We have
• Market risk- the risk of financial loss due to jumps in market prices of held assets.
• Credit risk - the risk of financial loss due to debtors not meeting their obligations
and defaulting.
• Operational risk - the risk of financial loss due to the operations of a company.
Include legal risk, production failure risk, risk of fraud, etc.
• Liquidity risk - the risk of financial loss due to illiquid markets, i.e. that an asset
cannot be traded fast enough to prevent a loss or achieving the required return.

In this thesis the object of study is the market risk of portfolios of financial assets.

4.2 Risk measures

It is of great importance for financial institutions to be able to quantify the market
risk associated with their portfolios. We therefore need some good risk measures that
provide this information. What constitutes a good risk measure? [1] presents some
desirable properties of a risk measure and call risk measures that have these properties
"coherent".
Let X ∈ G where G is a set of stochastic processes, like return processes of a portfolio.
Then a coherent risk measure ρ : G → R must be
• Translation invariant: For all X ∈ G and all α ∈ R, ρ(X + αr) = ρ(X) − α.

Adding wealth invested without risk to the portfolio reduces risk.
• Subadditive: For all X1 and X2 ∈ G, ρ(X1 + X2) ≤ ρ(X1) + ρ(X2) (The risk of
two portfolios combined cannot be greater than the sum of the individual risks of
the portfolios).
• Positive homogenous: For all X ∈ G and all λ ≥ 0, ρ(λX) = λρ(X) (Scaling
our portfolio simply scales the risk)
• Monotone: For all X and Y ∈ G such that X ≥ Y in all states of the world,
ρ(X) ≤ ρ(Y ) (If one portfolio always has better returns than another its risk is
smaller).

4.3 Value at Risk

Given a profit-and-loss probability distribution for a portfolio over some period of time
- which might be estimated in a variety of ways - the Value at Risk (VaR) risk measure
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is defined in the following way:
Given a probability level x percent, and a time period τ , the VaR is the amount of
money (or the proportion of portfolio value) such that the probability of a loss greater
than the VaR is x percent.
For instance, if you have estimated that the probability of a loss in time τ equal to or
greater than 10NOK is 5 percent. Then the 5 percent VaR over time τ is 10NOK.
Definition 5 Let V (t) be the portfolio value. Let t and t+ τ be todays date and a later
date respectively, let α ∈ (0, 1) be some confidence level and let L(t, τ) = V (t)−V (t+τ) be
the (random) loss over the time period. Then the VaR of the portfolio at the confidence
level α is the smallest number l such that the probability that the loss L(t, τ) exceeds l is
not larger than α.

VaRα(L(t, τ)) = − inf{l ∈ R : P (L(t, τ) > l) ≤ α} (4.1)

Why is VaR a widely used risk measure? Why not just use the portfolio volatility as
our risk measure? Since the VaR number is based on models whose parameters are
calculated from current market conditions, it simply tells us that "markets just turned
volatile so now you have more risk". But this is information about the past and present
and we must be careful not to believe that VaR gives us information about the future.
VaR simply tells us what we already know (our portfolio’s volatility) in a new way.
There are several reasons for using VaR to provide this information rather than some
other measure, like portfolio variance.
One reason is simply that VaR is easy to understand. You do not need to be privy to the
nuts and bolts of the mathematical models or the trading strategies to understand what
the VaR number means. In addition, VaR can be aggregated. A financial institution
can simply add the 1% VaR of different operations and trading desks to get the 1% VaR
of the whole institution. For these reasons, VaR is a useful managerial tool for achieving
an overview of an institution’s financial risk.
It is important to note that the VaR does not give any information about the maximum
plausible loss. Rather than viewing VaR as indicative of our worst possible losses, it
should be viewed as the worst possible loss within the range of predictability. In other
words, losses exceeding the VaR are impossible to predict and can be extremely large.
An undesirable property of the VaR is that it violates the sub-additivity property, and
is therefore not a coherent risk measure. The related risk measure Expected Shortfall
however, which we introduce next, is a coherent risk measure and may therefore be a
better choice in some situations.

4.4 Expected Shortfall

Expected Shortfall (ES) is in the same family of risk measures as VaR, but whereas VaR
is the α% percentile of the loss distribution, ES is the average over the worst α% of
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losses.
Definition 6 Let V (t) be the portfolio value. Let t and t+ τ be todays date and a later
date respectively, let α ∈ (0, 1) be some confidence level and let L(t, τ) = V (t)−V (t+ τ)
be the (random) loss over the time period. Then the ES of the portfolio at the
confidence level α is the mean loss over the worst α% losses.

ESα(L(t, τ)) = 1
α

∫ α

0
VaRα′(L(t, τ))dα′ (4.2)

VaR gives no information about what might happen in that last quantile, the worst
1% or 5% of cases. ES, on the other hand, seem to provide this. An important point,
however, is that the output number from the model, e.g. the ES, is only as good as the
model is close to reality. And the model is only as good as the data we use to calibrate
it. Since extreme losses are rare, we have correspondingly few data points, and therefore
large uncertainty in our modelling of the probability distribution.
As an extreme example, which applies to the considerations around VaR as well, consider
a stock that over the last 10 years have had daily returns in the interval [−3%, 3%] except
for one special day where the return was −20%. Since we have around 2500 data points in
the normal return interval (−3% to 3%) we know a great deal about the probabilities of
returns within this range, assuming that historical return distribution is a good indicator
for future return distributions. But we have no information about probabilities of larger
gains or losses other than that they are indeed possible.
When calculating the ES, you use, implicitly or explicitly, some kind of empirical prob-
ability distribution for the worst 1% of cases. If we only have a few data points in that
range, we are doing a reckless interpolation or extrapolation on our data. This is to be
kept in mind when using ES. It does not necessarily provide more information about
market risk than VaR.

4.5 Risk measure calculation

The VaR and ES of a portfolio are calculated from some loss probability distribution over
some time period. In our calculations, we concern ourselves with the five day (weekly)
loss of our portfolios. This five day loss distribution can be found/approximated in
different ways. One simple way is to directly use the historical data, by calculating
the loss our portfolio would suffer over each five day period in the historical data. An-
other approach is to use MC simulation of our portfolio value to achieve a five day loss
distribution.
In this thesis we use the simulation approach. We simulate, using the models introduced
in the next section, the evolution of portfolio value over five trading days. We do 1000
simulations, which gives us a simulated distribution of portfolio loss. Once we have
the simulated distribution of portfolio loss, we pick the 5% quantile directly from the
simulated distribution. We thus calculate ES as the arithmetic mean over the worst α%
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of losses, and report VaR as the least bad of these. The details of this procedure are
presented in section 7.3.
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5 Models

5.1 The Black-Scholes model

The most popular model for stock price evolutions is the Black-Scholes (BS) framework.
The model consist of a stock and a risk free asset (the same as discussed in section 3.1)
whose prices at time t are denoted by S(t) and B(t) respectively. These two investment
opportunities’ values are governed by the equations

dS(t) = µS(t)dt+ σS(t)dWt, S(0) = S0 (5.1)
dB(t) = rB(t)dt, B(0) = 1 (5.2)

where r, µ, and σ are constant and W is a Brownian motion. In addition, the Black-
Scholes framework makes the following assumptions
• There are no arbitrage opportunities. Therefore, any risk-less investment portfolio
will have the same rate of return r.
• You can buy and sell (including short selling) any amount, including fractions, of
the investment opportunities.
• There are no transaction costs
• The stock does not pay dividend

With the BS model at our disposal, we can price and hedge (create a replicating portfolio
using stock and money market account) derivatives based on the stock price. Consider
the European call option earlier mentioned, with maturity T , strike K and thus the
payoff function

V (T, S) = max(S(T )−K, 0).

Letting the options value at time t be V (t, S) we have from the preceding the pricing
formula that

V (t, S) = N(t)Ẽ[V (T, S)/N(T )|F(t)] = N(t)Ẽ[max(S(T )−K, 0)/N(T )|F(t)], (5.3)

for some numeraire-measure pair (N(t), P̃), so one way of finding V (t, S) is to estimate
the expectation like previously discussed. Since the risk free asset B(t) is part of the
Black-Scholes market, we can use this as a numeraire, so N(t) = B(t) = ert. We then
need to find the expectation under the risk neutral measure, i.e. we need to find the
dynamic of the stock price under this measure. This can be shown to be

dS(t) = rS(t)dt+ σS(t)dWt, S(0) = S0. (5.4)

However, Wilmott ([12]) presents a different way of finding the price without directly cal-
culating the expectation, where we find a PDE without using the Feynman-Kac theorem.
By Ito’s lemma we have that
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dV =
(
∂V

∂t
+ µS

∂V

∂S
+ 1

2σ
2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW

Now consider a portfolio that consists of one option and some amount a of the stock.
The value of this portfolio is Π(t) = V (t) + a(t)S(t) and we have that in a small time
step t

dΠ = dV + adS

Here we have assumed that a does not change (da = 0) over a small time step, that is
change in portfolio value comes only from changes in the portfolio asset values and not
from rearranging postitions. We have

dΠ =
(
∂V

∂t
+ µS

∂V

∂S
+ 1

2σ
2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW + a (µSdt+ σSdW )

=
(
∂V

∂t
+ µS

∂V

∂S
+ 1

2σ
2S2∂

2V

∂S2 + aµS

)
dt+ σS

(
∂V

∂S
+ a

)
dW

With the choice a = −∂V
∂S , the random part of dΠ is eliminated. That is, we have a

risk-less portfolio, so we must have that

dΠ =
(
∂V

∂t
+ µS

∂V

∂S
+ 1

2σ
2S2∂

2V

∂S2 − µS
∂V

∂S

)
dt = rΠdt = r(V − ∂V

∂S
S)

We now have a PDE for the option value,

∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2 + rS
∂V

∂S
− rV = 0, (5.5)

called the Black-Scholes equation.
In the derivation we did not assume anything about the function V (t, S) except that it
depends on t and S. This equation is therefore valid for all derivatives whose value is
a function of t and S. It is through the initial and boundary conditions alone that the
characteristics of the option is brought into the calculation.
For a European call or put the Black-Scholes equation has analytical solutions. However,
for slightly more complicated derivatives we need to do numerical approximations.

5.2 The LIBOR Market Model

The LIBOR Market Model (LMM) models the term structure of interest rates through
simple forward rates. Consider a set of maturity dates 0 = T0 < T1 < ... < TM+1, and
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let δi = Tn+1−Ti be the differences between these dates. The simple forward rate Ln(t)
is the interest rate agreed upon at time t for borrowing money from Tn to Tn+1. That
is, the borrower agrees at time t to get 1 at time Tn and pay back 1 + δnLn(t) at time
Tn+1. A simple replication argument shows that

1 + δnLn(t) = Zn(t)
Zn+1(t) (5.6)

where Zn(t) is the time t price of a zero-coupon bond with maturity Tn. Thus

Ln(t) = Zn(t)− Zn+1(t)
δnZn+1(t) , 0 ≤ t ≤ Tn, n = 0, 1, ...,M (5.7)

For t = Tn, n = 0, ...M , (5.7) can be inverted so that we get

Zn(Ti) =
n−1∏
j=i

1
1 + δjLj(Ti)

, n = i+ 1, ...,M + 1 (5.8)

But for general t between tenor dates, the forward rates give us no information about
the discount rate, so we have

Zn(t) = Zη(t)(t)
n−1∏
j=η(t)

1
1 + δjLj(t)

, 0 ≤ t < Tn (5.9)

where η(t) is the index of the next tenor date after t. That is, η(t) = i s.t. Ti−1 ≤ t < Ti.
We are looking to model these simple forward rates, Ln. We let Ln, n = 1, ...M be
the forward rates with settling date Tn and maturity Tn+1. Let (Ω,F ,P) be a filtered
probability space and T > 0 be some final time. The M forward rates will be modelled
by the M -dimensional stochastic process (L1, ..., LM ) : [0, T ] × Ω → RM . We want a
log-normal model of the forward rates, so our starting point is to say that

dLn
Ln

= µn(t)dt+ σn(t)>dW (t), 0 ≤ t ≤ Tn, n = 1, ...,M (5.10)

whereW is a d-dimensional standard Brownian motion in P. µn and σn = (σn1, ..., σnd)>
might still be L-dependent.
The model cannot allow arbitrage, so we need to find conditions on µn so as to make
this happen. We know that if the value of traded assets in an economy, discounted by
some numeraire, are martingales under the corresponding (to the numeraire) probability
measure then the economy is arbitrage free. We see here a possible path for creating
arbitrage "freeness" in our model. Forward rates, however, are not traded assets but
we know do their relation to zero-coupon bonds, which are traded assets, through Eq.
(5.6). We can therefore proceed by checking what the conditions will be on the µn of our
forward rates when we impose the condition that zero prices must be martingales under
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some measure. The following development and resulting dynamics is due to Glasserman
(see [3] for a more complete account).

5.2.1 Spot measure

Consider the following trading strategy. Start with one unit in the money market ac-
count, and use them to buy 1

Z1(0) zero coupon bonds maturing at T1. Then, at time T1

get the money ( 1
Z1(0)) from the maturing zeros and use it to buy 1

Z1(0)Z2(T1) and then
continue doing this at each tenor date. The time t value of this portfolio is

Z∗(t) = Zη(t)(t)
η(t)−1∏
j=0

[1 + δjLj(Tj)] (5.11)

The spot measure P ∗ is the equivalent martingale measure that makes tradeable assets’
values, dicounted with Z∗(t), martingales. In other words, from eq’s (5.9) and (5.11) we
have that

Dn(t) = Zn(t)
Z∗(t) =

η(t)−1∏
j=0

1
1 + δjLj(Tj)

 n−1∏
j=η(t)

1
1 + δjLj(t)

, 0 ≤ t ≤ Tn (5.12)

must be a martingale under the spot measure, and thus have the dynamic

dDn+1
Dn+1

= νn+1(t)TdW (t) (5.13)

By way of Ito’s formula for d dimensions and some algebra we get through eq. (5.12)
that

νn+1(t) = −
n∑

j=η(t)

δjLj(t)
1 + δjLj(t)

σj(t). (5.14)

Further it can be shown that µn = σTn νn+1 and thus that

µn(t) =
n∑

j=η(t)

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

(5.15)

under the spot measure (see [3] for details). The LMM dynamic under the spot measure
is therefore

dLn(t)
Ln(t) =

n∑
j=η(t)

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

dt+ σn(t)TdW ∗(t) (5.16)

where W ∗(t) is a Brownian motion under the spot measure P ∗.
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5.2.2 Forward measure

Instead of using the spot measure, that makes asset values discounted by Z∗(t) martin-
gales, we can use the forward measure. This measure is the measure that makes traded
assets, in this case zero coupon bonds, be martingales when discounted by the price of
a zero coupon bond with some future maturity. That is, the forward measure PM+1

makes the discounted zeros

Dn(t) = Bn(t)
BM+1

=
M∏

j=n+1
(1 + δjLj(t)) (5.17)

martingales. A similar derivation as for the spot measure can be done under the forward
measure. That is, the drift µn(t) that makes Dn(t) a martingale can be shown to be

µn(t) = −
M∑

j=n+1

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

(5.18)

under the forward measure PM+1 (again, see [3] for details). The LMM dynamic under
the forward measure is therefore

dLn(t)
Ln(t) = −

M∑
j=n+1

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

dt+ σn(t)TdWM+1(t) (5.19)

where WM+1(t) is a Brownian motion under the forward measure PM+1.

5.2.3 Correlations and volatilities

For an alternative, but equivalent, formulation of the LMM dynamics, let B(t) =
(B1, ..., BM )(t) be a general M -dimensional Brownian motion, i.e for tj > ti

B(tj)−B(ti) ∼ N(0, ρ) (5.20)

where ρ = (ρij)i,j=1,...,n. Let

dLi
Li

= µi(t)dt+ σ̂i(t)dBi(t), 0 ≤ t ≤ Ti, i = 1, ...,M (5.21)

where σ̂i is a scalar. This can be shown to be an equivalent formulation of the LMM.
We do this by calculating dLi

Li
· dLj

Lj
, that is the instantaneous covariation between dLi

Li

and dLj

Lj
, for the two different formulations. From eq. (5.10) we get

dLi
Li
· dLj
Lj

= σ>i σj =
d∑

k=1
σikσjk (5.22)
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and from eq. (5.21) we get

dLi
Li
· dLj
Lj

= σ̂iσ̂jρij . (5.23)

Therefore, we have

σ̂iσ̂jρij = σ>i σj , (5.24)

a relationship between the parameters of the two types of formulations of the model which
is useful in the calibration and implementation of the model. With this formulation, the
dynamic under the spot measure can be written as

dLn(t)
Ln(t) =

n∑
j=η(t)

δjLj(t)ρjnσ̂j(t)
1 + δjLj(t)

σ̂n(t)dt+ σn(t)dB∗n(t) (5.25)

where B∗(t) is the general Brownian motion discussed above under the spot measure.
The dynamic under the forward measure can be written as

dLn(t)
Ln(t) = −

M∑
j=n

δjLj(t)ρjnσ̂j(t)
1 + δjLj(t)

σ̂n(t)dt+ σn(t)dBM+1
n (t) (5.26)

where BM+1(t) is the general Brownian motion discussed above under the forward mea-
sure.
So far we have discussed the theoretical side of the BS and LMM models. To use these
models in simulations we need to decide on a specific discretization (see section 7.5)
and we need to estimate the volatilities of and correlations between the rates. This
estimation is the topic of the next section.

5.3 Model calibration

We want to estimate the model parameters so that our models best explain reality. This
model calibration can be done in a variety of ways. We can use some form of historical
volatility estimation, we can get implied volatilities and covariances from the current
prices of derivatives by using the Black model in reverse, or we can combine these and
other ideas to do an optimization of the parameters with error in derivatives prices
(model price vs. real price) as objective function.

5.3.1 Historical volatility

One way of estimating the model parameters is by calculating historical volatilities and
correlations. These are most easily estimated by a Simple Moving Average (SMA).
Assume we have daily quotes of N simple forward rates and a stock index L1, ..., LM , S
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for the last D trading days. That is, we have the data set {Li,j}i=1,...,M,j=1,...,D and
{Sj}j=1,...,D. For each rate (index i) and day (index j) calculate the log-return ri,j =
log

(
∆Li,j

Li,j

)
(∆Li,j = Li,j − Li,j−1) and calculate log-returns of the stock index in the

same way. We then have the data set of returns {ri,j}i=1,..,M+1,j=1,...,D−1 (the index
i = M + 1 now denotes the stock index). Now to get an estimate of today’s volatilities
and correlations pick some day range R, 100 days say, and then calculate, by the standard
unbiased estimator, the (annualized) covariance matrix of the returns from the last R
days, i.e.

Σ̂ab = (252) 1
R− 1

R−1∑
k=0

(ra,D−k − r̄a)(rb,D−k − r̄b), a, b = 1, ...,M + 1 (5.27)

where r̄i is the average return of rate i over the last R days

r̄i = 1
R

R−1∑
k=0

ri,D−k, i = 1, ...,M + 1 (5.28)

From the covariance matrix, we have the volatilities

σ̂i =
√

Σ̂ii, i = 1, ...,M + 1 (5.29)

and the correlations

ρ̂ij = Σ̂ij√
Σ̂iiΣ̂jj

, i, j = 1, ...,M + 1 (5.30)

How can we improve this method? We are calculating the historic volatility, but since
real market volatilities are not constant we cannot know that the past R day’s average
volatility is a good estimator for today’s volatility. We have a conflict between wanting
R as small as possible, so as to not use returns too far into the past, and wanting R as
large as possible, so as to not make the variance of the estimator Σ̂ab too large. This
can be improved by using a more sophisticated historical average method that gives less
weight to returns on days further into the past. One such method is the Exponentially
Weighted Moving Average (EWMA). This moving average is weighted so that data points
in the near past are given more weight than those further back. That they specifically
are exponentially weighted gives the EWMA the nice property that it can be updated
by a recursive formula. That is, today’s EWMA is a function of yesterday’s EWMA.
Assume we are at the n-th day day of the historic returns. We now use all of the n returns,
but with decaying weights so we use the covariance matrix estimator (annualized)

Σ̂∗ab,n = (252) 1− λ
1− λn

n−1∑
k=0

λk(ra,n−k − r̄a,n)(rb,n−k − r̄b,n), a, b = 1, ..., N (5.31)
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where 0 < λ < 1 determines the rate of decay of weights, and r̄i,n = 1
n

∑n
k=1 ri,k. A

smaller λ means that the weights decay faster.
First of all, we see that this weighting is acceptable in that their sum 1−λ

1−λn

∑n−1
k=0 λ

k =
1−λ

1−λn
1−λn

1−λ = 1 (sum of geometric series). Secondly, we see that

EWMA(n) = 1− λ
1− λn

n−1∑
k=0

λkxn−k

= 1− λ
1− λnxn + λ

1− λ
1− λn

n−1∑
k=1

λk−1xn−k

= 1− λ
1− λnxn + λ

1− λn−1

1− λn
1− λ

1− λn−1

n−2∑
k=0

λkxn−1−k

= 1− λ
1− λnxn + λ

1− λn−1

1− λn EWMA(n− 1).

We can therefore update the covariance matrix estimator recursively through the formula

Σ̂∗ab,n = (252) 1− λ
1− λn (ra,n − r̄a,n)(rb,n − r̄b,n) + λ

1− λn−1

1− λn Σ̂∗ab,n−1, a, b = 1, ...,M + 1.
(5.32)

Like before, we have the volatilities

σ̂i,n =
√

Σ̂∗ii,n, i = 1, ...,M + 1 (5.33)

and the correlations

ρ̂ij,n =
Σ̂∗ij,n√

Σ̂∗ii,nΣ̂∗jj,n
, i, j = 1, ...,M + 1 (5.34)

.

5.3.2 Implied volatility

Another way of estimating volatilities and correlations is by using today’s prices of
derivatives. The idea is to use the Black-Scholes formula for stocks, and the Black
formula for caplets in reverse. That is, if we know today’s price of for instance a European
call option written on the stock S, we can find the implied volatility of S by solving the
Black-Scholes formula for the volatility. Likewise, if we know today’s price of a caplet
written on some rate L, we can find the implied volatility of L by solving the Black
formula for the volatility.
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If we want to find implied correlations between rates we need to know the price and have
a closed form solution for the price of some derivative that depends on more than one
rate.
One well known problem in implied volatility estimation is that the implied volatility
varies with the strike price of the derivative from which the volatility is derived. For
stock options, this phenomenon is known as "volatility smile". This is because implied
volatilities typically are higher for stock options that are "in the money" (for a call option:
current stock price higher than strike) or "out of the money" (current stock price lower
than strike) and typically lower for "at the money" options (current stock price equal to
strike), so that a graph of implied volatility vs. option strike price looks like a smile.
The estimation of volatilities and covariance matrices through this method is a field of
study in itself and we shall not go into further details here.

5.3.3 Optimization

Another possible calibration approach is to use some sort of optimization scheme. With
a given set of volatilities and correlations, we can calculate prices of derivatives. If we
know the actual market prices of these derivatives, we can do an optimization with the
volatilities and correlations as target variables and price errors, that is the difference
between market prices and model prices, as object function (to be minimized). To do
this, we need to create an error function by a sensible combination and weighting of the
price errors of the individual derivatives. This optimization approach can obviously be
done in countless different ways, depending on the type of optimization and the choice
of error function. We shall not discuss this approach further here.
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6 Data analysis and model assumption tests

The data set considered in this thesis consist of OSEBX (Oslo Børs Hovedindeks) and Eu-
rostoxx 50 closing price quotes for each trading day in the period 02.01.2007 - 29.02.2012,
along with swap rate quotes in the Norwegian (NOK) and European (EUR) interbank
market for the same period.
Since our term structure data is in the form of par swap rates, we have used a boot-
strapping method to build a zero curve (and hence a forward rate curve) with equally
spaced tenor dates. This is explained in section 7.1. Using the LMM notation we get
from this procedure a forward rate curve for each day of historical data consisting of the
19 rates L1, ..., L19 with δi = Ti+1 − Ti = 0.25, i.e. the tenor dates are equally space
with 3 months between. Many of the resulting forward rates are perfectly correlated
(discussed in section 7.3), so the statistics and tests on the fixed income data below are
done on the forward rates L1, L4, and L8.

Table 6.1: Means and standard deviations of daily log-returns of Eurostoxx 50 (E) and
L1,L4, and L8 for European market, annualized at 252 trading days in a year.

E L1 L4 L8
Mean -0.0969 -0.2059 -0.2546 -0.1434
St.D. 0.2775 0.2368 0.4388 0.2705

Table 6.2: Means and standard deviations of daily log-returns of OSEBX (O) and L1,L4,
and L8 for Norwegian market, annualized at 252 trading days in a year.

O L1 L4 L8
Mean -0.0072 -0.0946 -0.0946 -0.0743
St.D. 0.3177 0.3508 0.2880 0.1796

We begin by looking at some simple statistics of our data sets. In tables 6.1 and 6.2 the
standard deviations of log-returns over the whole period, which estimate volatility in
log-normal models, of stock index and rates are shown. In figures 6.1 and 6.2 the daily
volatilities, as found using the EWMA estimator are shown.1

The Norwegian stock market is overall more volatile than the European. Further, the
3 month rate L1 is substantially more volatile in the Norwegian market than in then
European, and the 1 and 2 year rates L4 and L8 are substantially more volatile in the
European market. So the Norwegian capital market have larger volatility for short term
debt, a property not shared by the European market in which the 1 year rate has nearly
twice the volatility of the 3 month and 2 year rates.
The time period from 24.07.2008 (day 400) to 07.05.2009 (day 600) is characterised by

1To make comparison between figures and results easier, in all figures we represent the days of our
historical data by their ordering. In other words, day 1 represents the date 02.01.2007 and day 1327
represents the date 29.02.2012.
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very high volatilities in both markets, with a spike around November-December 2008
(day 500). This period was characterised by plummeting stock markets and interest
rates, bankrupt financial institutions, and great uncertainty. We see that the European
and Norwegian market volatilities largely agree, but it seems the European stock market
was "hit harder", compared to the 2008 peak, by the two later volatility peaks around
28.04.2010 - 07.07.2010 (day 850-900) and 24.06.2011-23.01.2012 (day 1150-1300).
In table 6.3 we have the correlations of log-returns and stock index over the whole
period. Not surprisingly, the correlations between rates, and between rates and equity
is substantial. Further we see that in both markets the stock index correlates more with
long term rates than short term rates, and that the correlations are overall larger in the
European market than in the Norwegian.

Table 6.3: Correlations between daily log-returns of stock index and L1,L4, and L8 for
European market (left) and Norwegian market (right). (Eurostoxx 50 = E, OSEBX =
O)

E L1 L4 L8
E 1
L1 0.2224 1
L4 0.3818 0.7408 1
L8 0.4471 0.4336 0.6659 1

O L1 L4 L8
O 1
L1 0.1553 1
L4 0.2322 0.3864 1
L8 0.3035 0.3103 0.5133 1

6.1 Equity, Black-Scholes

The assumptions of the BS and LMM models must be tested against real world historical
data. For the BS model we had that
1. There are no dividends. This is obviously not true for stocks in general, but the stock
indices are dividend adjusted so this is indeed true for our historical stock prices.
2. There are no transaction costs. Again, this is obviously not true, so continuous
hedging schemes are not possible in real life trading.
3. We can buy and sell any fraction of any asset (perfect divisibility). There is no
obvious way of achieving the equivalent of buying one half of a stock, let alone π

246 of
one, or any other conceivable fraction. However, the people applying hedging strategies
are generally not in the business of buying one or two stocks or options, rather thousands
at a time, so there will be little error in assuming perfect divisibility.
4. The returns of stock are normally distributed. This is one of the big debates of
mathematical finance. On the one hand the assumption of normal returns is the natural
choice. On the other hand it is simply empirically wrong.
Firstly, why is normally distributed returns the natural choice? This is a direct conse-
quence of the Central Limit Theorem (CLT) (see appendix A.10). The CLT says that
the sum of n iid. random variables is a normally distributed variable. Since log-returns
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Figure 6.1: Daily volatilities for forward rates and equity in the European market, cal-
culated with the EWMA estimator.
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Figure 6.2: Daily volatilities for forward rates and equity in the Norwegian market,
calculated with the EWMA estimator.
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Figure 6.3: log-returns of the Eurostoxx 50 and OSEBX indices for the whole period,
along with the corresponding normal distributions.

are time-additive, a daily return is the sum of the return over smaller time-periods.
Letting the number of these smaller time periods go to ∞ we achieve the limit in the
CLT and the returns are thus normally distributed. And from the EMH we assume that
the asset price moves are completely random and independent of earlier price moves.
Therefore, the assumption of normally distributed returns is really a consequence of the
efficient market hypothesis (EMH). If strong form EMH was true, that all information is
instantly incorporated into the asset price, we would have normally distributed returns.
The problem, of course, is that real life stock returns often depart from normality. When
comparing a histogram of log-returns of daily stock price changes with a Gaussian density
function with the same mean and standard deviation (see figure 6.3) it seems the normal
distribution underestimates the probability of the smallest returns (tall spike around the
mean) and the largest returns (fat tails) and overestimates the probability of intermediate
returns.
A QQ-plot is a plot where the theoretical quantiles of the normal distribution are plotted
against the sample quantiles of our data set. QQ-plots of daily returns over the period
are shown in figure 6.4. If the observed returns were normal, they would lie along the
straight line.
It seems therefore, that stock returns have non-normal behaviour. However, these histor-
ical data include different types of markets. Perhaps non-normal returns is a character-
istic of turbulent markets. It is possible that we have some periods with close to normal
returns and other "less normal" periods. We would like to get some idea of which periods
are "most normal", i.e. which periods have returns that are closest to being normally
distributed. To achieve this, we need to quantify the idea of "closeness to normality".
This will be done with hypothesis testing for 100 daily returns at a time. That is, we
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Figure 6.4: QQ plots of log-returns of the Eurostoxx 50 (left) and OSEBX (right) indices
for the whole period.

calculate for each consecutive 100 day period some test statistics and plot the result. In
doing this we can see in which periods normality is a good and, more importantly, in
which periods normality is a bad assumption.

6.1.1 Jarque-Bera Lagrange Multiplier test

The Jarque-Bera Lagrange multiplier (LM) test for normality is a popular normality
test of economic time series. For a collection of n returns r1, ...rn, the test statistic is
defined as

LM = n

6

(
S2 + 1

4(K − 3)2
)

(6.1)

where S =
1
n

∑
(ri−r̄)3

( 1
n

∑
(ri−r̄)2)3/2 is the sample skewness and K =

1
n

∑
(ri−r̄)4

( 1
n

∑
(ri−r̄)2)2 is the sample

kurtosis. Under the null hypothesis that returns are normally distributed, which implies
that the true skewness and kurtosis are 0 and 3 respectively, LM is χ2 distributed with
2 degrees of freedom in the asymptotic limit n → ∞. However, for small sample sizes
like n = 100 the distribution of LM is not well approximated with the χ2 distribution.
In [13], a distribution table for LM is created by Monte Carlo simulation, using 107

replications. We calculated the LM statistic for each consecutive 100 day period in the
log-return time series for OSEBX and Eurostoxx 50. In figure 6.5 we have plotted these
LM values, along with the critical value at the 5% significance level, extracted from
the distribution table. We see that both the OSEBX and Eurostoxx log-returns are in
most 100 day periods deemed normal by this test, but for the 100 day periods including
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extreme returns we have vary tall spikes in the LM statistic. A single extreme return
have a large influence on the LM statistic.

Figure 6.5: The Jarque-Bera Lagrange Multiplier normality test statistic for consecutive
100 day periods along with critical value at 5% significance level. Eurostoxx 50 (left) and
OSEBX (right). On the x-axis, the ’Day’ number refers to the last day in the 100 day
period for which the test statistic is calculated.

6.1.2 Cramer-von Mises test

The Cramer-von Mises test is a more general test for the closeness of an empirical
distribution to some theoretical distribution. We define the CM test statistic as

CM = 1
12n +

n∑
i=1

[2i− 1
2n − F (ri)

]
(6.2)

where r1, ..., rn are the log-returns for some time period. We calculated the Cramer-von
Mises (CM) test statistic for each consecutive 100 day period. In figure 6.6 the CM test
statistic is plotted along with the critical value at the 5% significance level, taken from
[10]. Comparing this with the results for the LM statistic, the CM statistic is less strict
in that a single extreme return has less influence. For the Eurostoxx returns we see that
the two test generally agree on which time periods are normal. For the OSEBX returns
we see that the two tests agree on what periods are less normal than others but the CM
rejects the null hypothesis of normality in fewer of the 100 day periods.
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Figure 6.6: The Cramer-von Mises test statistic for the consecutive 100 day periods along
with critical value at 5% significance level. Eurostoxx 50 (left) and OSEBX (right). On
the x-axis, the ’Day’ number refers to the last day in the 100 day period for which the
test statistic is calculated.

6.2 Forward rates, LMM

Most of the assumptions of the Black-Scholes model are assumptions of the LMM as well.
We have perfect divisibility and no transaction costs or taxes. Further, we have normality
of returns, but in the LMM, the log-returns/changes are assumed to be multivariate
normal. The same conceptual discussion of normality, as for the Black-Scholes equity
case, is valid here. However, we now need to be able to test for multivariate normality.
Can we find some multivariate equivalent of the 100 day moving average of "closeness to
normality" introduced in the preceding section? One idea would be to check for normality
in the log-changes of the forward rates one by one, since the rates being separately
normal is a necessary condition for them to be multivariate normal. However, individual
normality is obviously not a sufficient condition so we would like some multivariate test.

6.2.1 Mardia’s test

We can generalize to more dimensions the quantities of skewness and kurtosis. Just
like the d-dimensional mean vector ~µ is the generalization of the mean µ and the d× d
covariance matrix Σ is the generalization of the variance σ2, we have d-dimensional
skewness and kurtosis. Mardia’s test is, like the Jarque-Bera test in the one-dimensional
case, a test of skewness and kurtosis but in this case the multidimensional generalizations.
We test the normality of the log returns of the forward rates L1, L4, and L8. Letting
Li,j denote the forward rate Li at the j-th day of our historical data, we therefore have
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the sample vectors r1, r2, ..., r1326 where

ri =


log L1,i

L1,i−1

log L4,i

L4,i−1

log L8,i

L8,i−1

 (6.3)

Using [6], for a sample of n p-dimensional sample vectors ri we first define

gij = (ri − r̄)TΣ−1(rj − r̄), (6.4)

where Σ = 1
n

∑n
i=1(ri−r̄)(ri−r̄)T is the covariance matrix. We then define the one-tailed

test statistic

b1,p = 1
n2

n∑
i=1

n∑
j=1

g3
ij (6.5)

and the two-tailed test statistic

b2,p = 1
n

n∑
i=1

g2
ii (6.6)

In [6], tables of critical values for b1,p and b2,p are given for different values of n,p, and
different levels of significance.
For our calculations, we have p = 3 and n = 100, since we calculate the test statistics for
each 100 day period. In figure 6.7, the test statistics for each 100 day period is plotted
along with the critical value(s) at the 5% significance level. We see that the skew and
kurtosis of forward rates are significantly non-normal, by Mardia’s test, for most time
periods. The forward rates are least normal in loosely the same periods as for the stocks
returns, notably in 2008 (day 500 to day 600).
It should be noted that the normal distribution is not uniquely defined through kurtosis
and skewness. That is, a data set that passes a normality test based on these statistics
is not necessarily normal.

40



Figure 6.7: Plotted values for each day of the Mardia test for 3-dimensional multivariate
normality of log-returns of forward rates L1, L4, and L8. Test for skewness (b1,3) and
kurtosis (b2,3). European and Norwegian markets. On the x-axis, the ’Day’ number
refers to the last day in the 100 day period for which the test statistic is calculated.
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7 Implementation

7.1 Bootstrapping, building the zero curve

Our data set consist of par swap rates with 5 different maturities. The quoted swap
rates are the fixed rate on a quarterly swap of the quoted maturity. For example, the
1 year swap rate is the fixed rate in a fixed for floating swap agreement with cash-flows
every three months, lasting for 1 year (payments at 3,6,9 and 12 months). We need
to build a forward rate curve using only this information. We have equation (5.7) for
getting forward rates from the zero curve. The problem is therefore reduced to building
an equally spaced zero curve from the par swap rate data. We know the relationship
between swap rates and zeros from equation (2.6). Changing notation so that S(Tn)
denotes the quoted swap rate with maturity Tn we have

S(Tn) = 1− Z(0, Tn)
0.25

∑n
i=1 Z(0, Ti)

(7.1)

where the maturities are Ti = 0.25i.
With this notation we have, for each trading day of the historical data, the rates

S(T1), S(T4), S(T8), S(T20), S(T40).

I shall call T1, T4, T8, T20, T40 the ’familiar maturities’ and the other Tis ’unfamiliar’. The
first equation (n = 1) is

S(T1) = 1− Z(0, T1)
0.25Z(0, T1) (7.2)

which gives us

Z(0, T1) = 1
1 + 0.25S(T1) , (7.3)

so we immediately have the first discount factor. However, the n = 4 equation is

S(T4) = 1− Z(0, T4)
0.25(Z(0, T1) + Z(0, T2) + Z(0, T3) + Z(0, T4)) (7.4)

so it is clear that we do not have enough information to build the complete zero curve
Z(0, Ti)i=1,...,40. We therefore need to apply some kind of bootstrapping scheme to the
data. We do this by assuming some interpolation rule to determine the zeros for unfa-
miliar maturities. In other words, we assume that we can express the zeros of unfamiliar
maturities as a function of zero values, z and x, of the closest preceding and succeeding
familiar maturities, respectively. So we have

S(T4) = 1− x
0.25(z + f2(z, x) + f3(z, x) + x) , (7.5)
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where in this case z = Z(0, T1) and the unknown x = Z(0, T4)
Now, since we have already found the zero Z(0, T1), z = Z(0, T1) is known. The right
hand side of (7.5) is therefore a function of x, once we have decided on what interpolation
functions f2 and f3 to use. That is, by finding the x value that makes the right hand
side equal the known value S(T4), we have found a value for Z(0, T4) and hence, through
the functions f2 and f3, a value for Z(0, T2) and Z(0, T3).
What kind of interpolation should we use? Since this point in the process involves quite
a bit of guesswork we follow the simplest path, namely linear interpolation. In other
words we use the interpolation functions

fi(x) = z + x− z
τ(+, i)− τ(−, i)(Ti − τ(−, i)) (7.6)

where τ(−, i) and τ(+, i) is the closest preceding and succeeding familiar maturity to
Ti, respectively (the maturities corresponding to the zeros z and x). The function τ is
defined so that if Ti is one of the familiar maturities, Ti = τ(+, i). This interpolation
choice gives us

S(T4) = 1− x
0.25(z + z + x−z

T4−T1
(T2 − T1) + z + x−z

T4−T1
(T3 − T1) + x)

, (7.7)

For the sake of general applicability, we should find x through some sort of numerical
scheme. (We have done this using the spreadsheet software LibreOffice Calc). With the
linear interpolation choice, of course, we can also solve the equation analytically. Some
simple algebra gives us

Z(0, T4) = x =
1− 0.25S(T4)Z(0, T1)(3− T2−T1

T4−T1
− T3−T1

T4−T1
)

1 + 0.25S(T4)(1 + T2+T3−2T1
T4−T1

)
(7.8)

We have now found values for the first four zeros and we continue in the same way to
find the rest of the zero curve, starting from equation (7.1), inserting known zeros and
interpolation functions and solving for the zero of longest maturity. Such a simple boot-
strapping procedure should, however, be used with caution. At the long end of the zero
curve the quoted swap rate maturities are far apart so the interpolations are spanning
long time periods. We also know that the short end of the term structure sometimes
have characteristics that are not well captured by piecewise linearity. Improving the
bootstrapping is a field of study in itself, but we shall not proceed further here.
For the purposes of our simulations, we applied the proposed scheme to the par swap
rates for maturities up to 5 years. The result is a zero curve for quarterly maturities
from 3 months up to 5 years.
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7.2 Portfolios

To main object of this thesis is to test the different financial risk measures by doing a
backtesting procedure on the historical data for some different types of portfolios. We
shall explore whether there are performance differences of the risk measures between
some low risk, unleveraged portfolios and high risk, leveraged portfolios. We shall con-
sider five portfolios in which a wealth of 100 are leveraged and invested in different ways.
The portfolios will be varying from unleveraged and near risk-free to highly leveraged
and very risky.
Conservative portfolio This portfolio has placed the whole wealth in 1 year zeros
Moderate portfolio This portfolio is a 50/50 divide between stocks and 3 year zeros.
Equity portfolio This portfolio has placed the whole wealth in equity.
Leveraged equity portfolio This portfolio borrows 400 (achieving a debt to value of
80%) by short selling 3 year zeros and spend the resulting 500 on equity.
Leveraged interest rate derivatives portfolio This portfolio borrows 400 (achieving
a debt to value of 80%) by short selling 3 year zeros and spend the resulting 500 on caps
(starting from T1, four quarterly caplets) with strike at the current rate

L0(0) = 1− Z1(0)
δ0Z1(0) (7.9)

This portfolio thus bets on a rise in interest rates.
Noting that we have four traded assets, namely
• 1 year zero
• 3 year zero
• Stock
• Cap

we can summarize the portfolio holdings in table form, as shown in table 7.1.

Table 7.1: The value of holdings of the four assets in each portfolio.
1 year zero 3 year zero Stock Cap

Conservative portfolio 100 0 0 0
Moderate portfolio 0 50 50 0
Equity portfolio 0 0 100 0

Lev. equity portfolio 0 -400 500 0
Lev. IR deriv. portfolio 0 -400 0 500

We have not included the special kind of risks associated with holding a leveraged portfo-
lio. In our set-up, a leveraged portfolio will be heavily correlated with the corresponding
unleveraged portfolio since the value of a loan, i.e. a bond, are subject to only small
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changes compared to equity or derivatives and the costs of financial distress are not
accounted for. So we expect little difference in VaR and ES performance between the
moderate portfolio, the equity portfolio and the leveraged equity portfolio. The debt
to value of 80% in the leveraged portfolios is therefore arbitrarily chosen and is risk
measure-wise simply corresponding to holding some proportion of bonds to equity/IR
derivatives.

7.3 Modelling scheme

Because of the interpolation, many of the resulting forward rates will be perfectly cor-
related. More specifically, the rates L1, L2, L3 are perfectly correlated, as are the rates
L4, L5, L6, L7, and the rates L8, ..., L20. The choice of modelling all of them is one of
convenience rather than necessity. We shall therefore in our modelling use three factors,
i.e. three Brownian motions, corresponding to these three groups of rates. As mentioned
in section 6, for the purposes of data analysis we therefore investigate the rates L1, L4,
and L8 only. The covariance matrix to be estimated is therefore the 4× 4 matrix of co-
variances of the log-returns of these three rates and the log-returns of the stock market
index.
The VaR and ES time period of choice is 5 days, and we calculate the 5% and 1% VaR
and ES. All portfolios are statically weighted (in number of assets held, not in asset
value terms) over these 5 days.
We will, at each day in our historical data, consider the risk of the portfolio as if it is
initialized on that day. In other words, we will at each day di, i = 1, ..., N initialize and
value our portfolio at its starting point, with value of 100, holding the above discussed
bonds, derivatives, and stock so that T0 = 0 is set to be on the day di.
We will at each date di value the portfolio Vr(di) and then forecast with 1000 simulations
the portfolio value Vf (di+5) one trading week (5 days) into the future to get a simulated
distribution of the portfolio loss Lf (di) = Vr(di)− Vf (di+5). From this we calculate the
1% and 5% VaR and ES. We then find the real portfolio value Vr(ti+5) at ti+5 based on
the historical data, i.e. what actually happened to the forward rates and equity at ti+5.
We then have the real loss Lr(ti) = Vr(ti)− Vr(ti+5) to be compared with the VaR and
ES numbers. We begin our simulations at the 101st day of the historical data, on May
24th 2007. The preceding 100 days are used only for calculating historical volatility at
May 24th.
For each day d of our historical data, beginning on the 101st day and ending on the
1322nd, and each portfolio we do the following
• Calculate the covariance matrix, based on the EWMA of all preceding historical

data
• Value the assets today (derivatives pricing/"Q-world") and calculate the number

held of each asset.
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Figure 7.1: Example of simulated 5 day loss distribution, European IR derivatives port-
folio on December 11th 2008.

• Do 1000 simulations of the underlyings (forward rates and stock index) 5 days into
the future under the real probability measure ("P-world").
For each simulation:
– Value the four assets, and hence the portfolio at the forecasted 5 days ahead

point (derivatives pricing/"Q-world").
– Calculate the forecasted 5 day loss.

• Using the historical data for the underlyings five days ahead (d + 5), value the
portfolio (derivatives pricing/"Q-world").
• Calculate the real 5 day loss.

The VaR and ES are calculated from the loss distribution resulting from the 1000 sim-
ulated 5 day losses. An example of one such loss distribution can be seen in figure
7.1.
For the EWMA estimate of the covariance matrix, we used λ = 0.94 as proposed in [7].

7.4 Volatility structure

We use the EWMA method of historical volatilities to calculate the covariance matrix
(see section 5.3.1). We assume a stationary volatility structure. σi(t) = σ(Ti−t) We also
assume constant volatilities between tenor dates. That is, σn(t) = σ(Tn− t) = σ(Ti), for
(Tn − t) in the interval [Ti, Ti+1) . For example, the rate L1(0.1) = L(0.1, 0.25, 0.5), i.e.
the rate at time t = 0.1 for borrowing from time T1 = 0.25 to T2 = 0.5 has the volatility
and correlations like the rate L1(0) = L(0, 0.25, 0.5), for which we have historical data.
As previously mentioned, since many of the rates are perfectly correlated in the historical
data, we use four factors, i.e. a four-dimensional multivariate Brownian motion. One for
the rates L1, L2, L3, one for the rates L4,...,L7, one for the rates L8, ..., L20, and one for
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the stock S. Therefore, W (ti+1) −W (ti) = (W1(ti+1)−W1(ti), ...,W4(ti+1)−W4(ti))
has the distribution

√
ti+1 − tiZ, where Z ∼ N(0, ρ) and ρ is the correlation matrix of

L1, L4, L8, S.

7.5 Model discretization

For the discretization of the BS model, with the set of simulation dates t1, t2, ... we use
an Euler scheme on logS and get

Ŝ(ti+1) = Ŝ(ti)exp
([
µ(Ŝ(ti), ti)−

1
2 σ̂

2
]

[ti+1 − ti] +
√
ti+1 − tiσ̂2Z4

)
(7.10)

where σ̂ is the volatility of the stock and Z4 is the fourth element of the random vector
Z = (Z1, ..., Z4) ∼ N(0, ρ)
For the LMM discretization , with the set of simulation dates t1, t2, ..., we use an Euler
scheme on logLn and get

L̂n(ti+1) = L̂n(ti)exp
([
µn(L̂n(ti), ti)−

1
2 σ̂

2
n

]
[ti+1 − ti] +

√
ti+1 − tiσ̂2

nZα

)
, n = 1, ...,M

(7.11)
where σ̂n is the volatilities of the second LMM formulation in section 5.2.3 and Zα is
the α-th element in the random vector Z = (Z1, ..., Z4) ∼ N(0, ρ), where α = 1, 2, 3
depending on the rate so that
• n = 1, 2, 3→ α = 1
• n = 4, 5, 6, 7→ α = 2
• n = 8, ..., 20→ α = 3.

These two formula are used to create forward rate paths (Ln(0), Ln(t1), ...), n =
1, ..., 20 and stock paths (S(0), S(t1), ...)

7.6 Forward "P-world" simulation

To calculate VaR and ES we need the real probability distribution of portfolio value at
the future time. Therefore, simulating forward in time we need to use the real statistical
probability measure, i.e. the real drift of the stock indices and forward rates. Note that
"real" in this refers to drift under the real probability measure, not drift corrected for
inflation.
Estimating the real drift of equity is in the Black-Scholes framework a question of es-
timating µ in eq. (5.1). Firstly, we obviously cannot use the mean return r̄ over any
short historical period of time, like a year. If the stock market has crashed in that time
period, we will have r̄ < 0, and a µ < 0 does not make sense. If we could use the
latest historical data to calculate µ in this way, that would be a direct contradiction of
the weak form efficient market hypothesis. The µ in the Black-Scholes model does not
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signify the specific trend of a stock or index. The rate of return µ is the expected return
coming part from the time value of money, i.e. expected risk free return r and the risk
premium λσ. We cannot, expect in a very few historical cases, have a negative r and we
can certainly not have a negative risk premium. The only sensible way of estimating µ
therefore, is to look at a large time-horizon, typically decades, to see the general trend
of the stock or market index.
Now, through the relation µ = r + λσ and the knowledge that r changes through time,
what we really should be looking at is the general trend of the risk premium λσ. If we
have data for the short rate for near risk free fixed income products, like government
bonds, in the same long time period we can use this as a proxy for r and thus calculate
the historical risk premium. In this thesis, however, we are limited by the data, which
is recent, so we shall use the naive method of letting µ be as expected by the long term
trend of stock markets, which is about 10% (for the American stock market) depending
somewhat on the source. This method is overly simplistic. We therefore restrict ourselves
to calculating short term VaR and ES numbers, daily and weekly. Over such short
periods, the drift term is insignificant compared to the diffusion term. It could even be
argued that the drift term could be neglected all together, so we shall not press the issue
of real drift of the stock indices any further.
We also need to estimate the real drift of forward rates, i.e. estimate each µn in equation
5.10. Interest rates have very different drift characteristics than stocks. Interest rates
are mean reverting, so do for obvious reasons not have expected exponential growth, like
stocks do. The potential drift of interest rates will be short term phenomena, and thus
extremely hard to estimate in any meaningful way. For our purposes of calculating short
term VaR and ES, the real drift is, like for equity, negligible, so we will simply assume
zero real drift.

7.7 Derivatives pricing/"Q-world simulation"

In one replication of the real world simulation, if a stock or forward rate increase by some
amount, how has the price of our derivatives changed? How do we find the new portfolio
value? Since prices of derivatives may depend on the underlying in non-trivial ways, this
may be a very hard problem. Intuitively, we simply need to revalue our portfolio, using
some available method like MC simulation. A double MC simulation, however, is very
time consuming. E.g. if we use 10000 replications for the real-world forward simulation
and 10000 replications for pricing a derivative (under some suitable measure) within
each replication, we need 100 million replications, which even for modern computers will
take far too long. There are ways to do these simulations more efficient. One can for
instance use some kind of variance reduction technique in the MC simulation to speed
things up. But for backtesting on long time series, it will still be infeasible to use MC
simulation. The delta-gamma approximation might be useful, but this depends on the
estimation of the derivative’s delta and gamma being simpler to calculate than simulating
the derivative’s change in value through MC simulation. For vanilla derivatives, like
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caps and swaptions, we can use the Black formula for valuation. In our simulations,
only vanilla derivatives are traded so, for the sake of simulation efficiency, this is the
approach used to value the cap in the interest rate derivatives portfolio.
The valuation of the zeros at the forecasted 5 days ahead point within one simulation
is done through equation 5.9 so that letting t̃ = 5

252 be the 5 days ahead point we have
the value of the 1 year zero

Z4(t̃) = Z1(t̃)
3∏
j=1

1
1 + δjLj(t̃)

(7.12)

and the 3 year zero

Z12(t̃) = Z1(t̃)
11∏
j=1

1
1 + δjLj(t̃)

(7.13)

We have simulated values for the Lj . The missing part of these equations is the Z1(t̃), i.e.
the discount factor from time T1 = 0.25 back to time t̃ = 5

252 . Our model does not provide
these discount factors, so we use the assumption that the 3-month discount factor, from
time T = 1 back to time t = 0 does not change and do the linear interpolation

Z1(t̃) = Z1(0) + Z1(T1)− Z1(0)
T1 − 0 t̃ = Z1(0) + 0.25(1− Z1(0))t̃ (7.14)
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Figure 8.1: Actual 5 day loss along with 5% and 1% 5 day VaR (top) and ES (bottom)
numbers for each day for the Leveraged Equity portfolio in the European market.

8 Results

The performance of the risk measure can be measured by the percentage of days our
portfolios’ actual loss is larger than the VaR and ES numbers. The actual loss should
exceed the 5% VaR on around 5% of the days and exceed the 1% VaR on around 1%
of the days. We do not know for exactly how many days the actual loss should exceed
the ES numbers, since we do not know a priori the loss distribution. It is reasonable
to expect, however, that the tail of the loss distribution is left skewed. In other words,
among the 1% worst losses the probability of smaller losses is greater than the probability
of larger losses. So we should have that the actual loss exceed the 5% ES on less than
2.5% of the days and exceed the 1% ES on less than 0.5% of the days. In figure 8.1,
an example plot of the actual loss and VaR and ES numbers is shown for the leveraged
equity portfolio in the European market.

8.1 European market

The performance results for the European market are summarized in table 8.1, where
the percentage of days in which the actual loss exceeds the VaR and ES numbers are
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Table 8.1: The percentage of days in the data set where the actual loss over 5 days
exceeds the 5 day VaR and ES numbers, European market

Portfolio Conservative Moderate Equity Lev. equity Lev. IR
Exceeding 1% VaR 3.52% 2.86% 2.37% 2.37% 2.54%
Exceeding 5% VaR 8.67% 7.61% 7.28% 7.20% 7.04%
Exceeding 1% ES 2.37% 1.72% 1.39% 1.39% 1.80%
Exceeding 5% ES 4.83% 3.93% 3.76% 3.19% 3.60%

shown. We see that the risk measures perform badly overall. Furter, we see that the
performance seem to be better for the riskier portfolios and better for the 5% VaR and
ES than the 1% numbers, but the differences are rather small, expect for the conservative
portfolio, for which performance is significantly worse.
In figure 8.2 we have plotted, for each portfolio, the performance of the 5% VaR and ES
for each 252 day (1 trading year) period, measured in the percentage of days where the
actual loss exceeds the VaR and ES numbers. The performance is seen to be varying
greatly in time. Most periods have poor performance, but for some periods we do have
acceptable risk measure performance. Comparing with Mardia’s test for the European
market in figure 6.7, we see that they loosely agree. We have non-normal peaks in the
periods ending around 10.10.2007 (day 200) and from 11/12/2008 to 07.05.2009 (day
500 to day 600) corresponding to the period of poor performance in the beginning of
the time period in figure 8.2. We also have non-normal peaks towards the end of the
period, in the periods ending around 24.11.2010 to 02.09.2011 (day 1000 to day 1200)
corresponding to the period of poor performance in the end of the time period in figure
8.2. This theme of poor performance in the beginning and end of the time period with a
better intermediate period, also agrees with the LM and CM test statistics for normality
of stock returns as seen in figures 6.5 and 6.6.

8.2 Norwegian market

The performance results for the Norwegian market are summarized in table 8.2, where
the percentage of days in which the actual loss exceeds the VaR and ES numbers are
shown. As in the European market, the risk measure performance is bad overall and
we seem to have better performance for riskier portfolios. We also see that we have
similar performance for the Moderate, Equity and Leveraged Equity portfolios, and the
performance on the conservative portfolio is significantly worse. In contrast to the Eu-
ropean market, however, we have significantly better performance for the IR Derivatives
portfolio.
In figure 8.3 we have plotted, for each portfolio, the performance of the 5% VaR and ES
for each 252 day (1 trading year) period, measured in the percentage of days where the
actual loss exceeds the VaR and ES numbers. The performance varies in time for the
Norwegian market as well, with overall performance being bad, but with periods of good
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Figure 8.2: Performance of 5% VaR and ES measured as percentage of days in which
actual loss exceeds VaR (top) and ES (bottom), for each 252 day period in the European
market. Also plotted is a 5% (for VaR) and 2.5% (for ES) reference line. The numbers
on the "Day" axis reprepsents the last day in the 252 day period.
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Table 8.2: The percentage of days in the data set where the actual loss over 5 days
exceeds the 5 day VaR and ES numbers, Norwegian market.

Portfolio Conservative Moderate Equity Lev. equity Lev. IR
Exceeding 1% VaR 4.42% 3.60% 3.52% 3.44% 1.72%
Exceeding 5% VaR 8.92% 7.61% 7.53% 7.53% 5.65%
Exceeding 1% ES 3.11% 2.37% 2.29% 2.21% 0.98%
Exceeding 5% ES 6.14% 4.58% 4.42% 4.34% 3.03%

performance. Comparing with Mardia’s test for the Norwegian market in figure 6.7, we
see that, like for the European market, the figures loosely agree, in the same way as
discussed for the European market. There are two periods of both non-normal returns
and poor risk measure performance at the beginning and the end of the time period,
with a more normal period in between, in which we also have better performance. For
the Norwegian market however, we cannot see a clear correspondence between periods
of poor performance and periods of non-normality of stock returns.

8.3 Sensitivity to λ

The hardest part of financial modelling is arguably the model calibration, i.e. the esti-
mation of volatilities. It is therefore natural to check to what degree changes in volatility
influences the result. In our approach, in which risk measure performance is measured as
the percentage of days the actual loss exceeds the VaR numbers, changing the volatilities
directly holds no merit, since increased volatilities will increase the VaR and ES numbers
and obviously improve performance. However, the λ = 0.94 value was arbitrarily chosen,
and this parameter will conceivably influence the results. We therefore did a sensitivity
analysis on the results with respect to this parameter, by running the simulations for
different values of λ. The resulting performances for the 5% VaR in both markets are
shown in figure 8.4.
Wee see that the sensitivity to λ is different in the European and Norwegian markets. For
the Conservative portfolio, the performance is monotonically increasing (i.e. a downward
slope in figure 8.4) with increasing λ in both markets, but the performance increase
is larger in the Norwegian market. For the Moderate, Equity, and Leveraged Equity
portfolios however we see that the performance is not sensitive to λ in the Norwegian
market but increases greatly with λ in the European market. As for the Leveraged IR
Derivatives portfolio, the λ sensitivity have similar characteristics in both markets, with
a performance peak for λ ∈ (0.92, 0.96). This shows that our original choice of λ = 0.94
was indeed sensible. In the Norwegian market, however, the dip in performance for λ
close to 1 is very slight compared to the European market.
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Figure 8.3: Performance of 5% VaR and ES measured as percentage of days in which
actual loss exceeds VaR (top) and ES (bottom), for each 252 day period in the Norwegian
market. Also plotted is a 5% (for VaR) and 2.5% (for ES) reference line. The numbers
on the "Day" axis reprepsents the last day in the 252 day period.
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Figure 8.4: The performance of 5% VaR in European (top) and Norwegian (bottom)
market for different values of the λ parameter in the EWMA estimation of the covariance
matrix.
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8.4 Discussion

There are a quite a few points to be made about the preceding results. First of all, the
main purpose is to get a good idea of the expected performance of the risk measures.
The performance should therefore be measured over as long time periods as possible,
by the law of large numbers. If we use too short time periods, there will always be
some periods with good performance and some with bad, depending on these periods
including days of abnormal returns or not. In this respect, our performance results over
the whole period are the most trustworthy.
For these performance numbers, we have seen that we have similar performance for
the Moderate, Equity, and Leveraged Equity portfolios in both markets. This is not
unexpected, since these three portfolios are qualitatively equal, i.e. they hold the same
types of assets, and differ only in the amount held, positive or negative, of the 3 year zero.
Further, in both markets we observe significantly worse performance on the Conservative
portfolio. This portfolio holds all wealth in 1 year zeros, an asset which none of the other
portfolios hold. Thus, it seems that the risk measures perform worse on the 1 year zero
than the other assets.
We further saw that the performances on the IR Derivatives portfolio was similar to the
performance on the Moderate, Equity, and Leveraged Equity portfolios in the European
market. In the Norwegian market, however, the performance was significantly better for
this portfolio. Such a divergence might be explained by that the Norwegian interest rate
market is under normal market conditions so volatile that the estimated volatilities are
large enough so that our risk measures perform better when we have abnormal returns.
In tables 6 and 6 we saw that the volatility of the 3 month rate L1 over the whole period
is much larger for the Norwegian market than the European. And the cap held in the
IR Derivatives portfolio depend on the rates L1, L2, L3, and L4, the first three of which
is perfectly correlated with L1.
Keeping in mind that larger λ means a greater weight on historical returns farther into
the past, this idea may be strengthened by the fact that, in contrast to the European
market, the VaR performs only slightly worse on the IR Derivatives portfolio for λ
approaching 1. In general therefore, the performance is better if the volatility is drawn
from the general market situation rather than what happened on the last few days.
Even though the whole period performance results are the most trustworthy, it is in-
structive to observe the large differences in performance for different periods. The time
period in question, from early 2007 to early 2012 was a period of great distress in the
financial markets. These were years of "abnormal" market conditions in which abnor-
mal returns were experienced more often than in other historical time periods. This
shows clearly the relevance of the discussions in section 4 about the problem with Value
at Risk and related risk measures. It is a risk measure that performs well as long as
markets behave like we want them to. However, in times of volatile markets, when it is
most important to control our financial risk, they are a less reliable tool for exact risk
measurement. Of course, as discussed above, the VaR is not only useful in this way.
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Even though we cannot trust VaR as an exact risk measure, it is still a good indicator
of market conditions. If VaR substantially increases from one day to the next, we know
that our risk has increased. Since VaR is easy to understand and easily aggregated over
a financial firms different operations it is therefore a useful risk control tool for managers
and analysts at every level in a financial institution.
Finally, it is important to remember that the main results of this thesis is the end point
of multiple steps of modelling and implementation choices. From the initial choices of
how to handle the historical data, through the model calibration choices, to the specific
discretization and computer implementation of the models. In each of these steps, we
could have done things differently. We therefore have many sources of error and it is
hard to directly see which choices influence our results the most.
Arguably one of the most important choices is the model calibration. We used historical
volatilities and correlations to calibrate our models. We see in figure 8.1 that our risk
measures has a delay in reacting to increased volatility. This will obviously influence the
performance. We have seen that a different λ in the EWMA estimates of the covariance
matrix could have increased performance for some portfolios, but overall was λ = 0.94 a
good choice. A calibration method based on implied volatilities or optimization would
conceivably have improved performance through making the risk measures react quicker
to increased market volatilities and give more correct prices of derivatives.
For another example, the poor performance for the Conservative portfolio, i.e. the one
year zero, may be due to several modelling choices. It may be due to the interpolation
done when calculating the shortest discount factor when revaluing zeros. It may also be
due to linear interpolation choice in the bootstrapping of the historical data in section
7.1. Or it may of course simply be a consequence of real market conditions, rather than
any specific modelling choice.
These are just a couple of examples of how modelling choices may influence results.
Exchanging the LMM with another interest rate model, or calculating VaR and ES in
different ways are other obvious examples. To get a better picture of the importance of
each modelling choice, more sensitivity analysis, like we did for the λ parameter, must
be done.
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9 Conclusion

The overall performances of the risk measures were found to be not satisfactory for all
tested portfolios. A tendency towards the measures performing better on the riskier
leveraged portfolios was seen, but this is more likely attributable to the differences of
performance of the individual assets rather than to the leverage itself.
Further, the risk measures performance was found to be varying greatly in time. We
found that the risk measures performed bad in loosely the same historical time periods
as we found the log-returns of the stock indices and forward rates to diverge the most
from the normal distribution. Specifically, in late 2008 and the following time, a period
of great market turbulence, we observed both great divergence from normality of the
log-returns and very poor risk measure performance.
The correlation between market turbulence, non-normality, and poor risk measure per-
formance is hardly surprising, but strengthens the point that Value at Risk and related
measures are less useful in non-normal and volatile periods, the very periods in which
good risk measures are most crucial.
We found that many of the portfolios were sensitive to the parameter choice λ in the
volatility estimation, especially in the European market, which shows the great influence
modelling choices may have on results. The trade-off between simplicity and accuracy
will, like in all mathematical modelling, always be an issue. This speaks against using
Value at Risk and Expected Shortfall as precise absolute measures of risk. On the
other hand, they can still be useful risk management tools, since they certainly provide
information on the changes in day to day market risk and communicate this in a way
that is useful and easy to grasp.

10 Further work

Many of our modelling choices can be improved upon. We have for instance used the
rather simple historical volatility approach to model calibration. Improving this, by using
an implied volatility approach or doing parameter optimization will probably improve
the predictive ability of our models. Using a more sophisticated bootstrapping of our
original data set and estimating more carefully the real drift of asset, are other natural
points of improvement.
Further, we did not allow for cross-currency trading. We simulated the Norwegian and
European markets separately. Since cross-currency trading is done by many, if not most,
financial institutions, it would be useful to allow this in our modelling framework. This
would of course complicate the models since we would need to model the exchange rate
between currencies.
For the purposes of computational speed, we did only 1000 simulations. This results in
relatively high standard errors in our Monte Carlo simulation. A good point of further
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work is to do the implementation in a computationally time-saving way, like using a
variance reduction technique in the MC simulation. This would free up resources so that
we could reduce the standard error and/or include exotic derivatives in our portfolios.
The way we implemented the portfolios made leverage, i.e. borrowing money against the
held assets, no more than an inverted scaling of holding zero coupon bonds. Investigating
more systematically the effects of portfolio leverage on risk measure performance could
be useful. This would require a well defined idea of what leverage should mean within the
context of these models. We could for instance incorporate the possibility of "portfolio
bankruptcy" or margin calls if the portfolio has liquidity (cannot make payments) or
solidity (has more debt than the total value of assets held) problems.
We have seen that risk measure performance is better for some types of assets than
others in our implementation.It would be interesting to investigate whether we could find
consistent ways of correcting our risk measures accordingly, to create a more trustworthy
risk measure. For instance, if we find that our risk measures over time overestimate the
market risk associated with holding the OSEBX index, we could correspondingly scale
the risk measure for this asset. Doing the same for other assets could then give us a
better risk measure, even when these assets are combined. Issues with this initial idea
immediately come to mind. The correlation of different asset prices might for instance
be a problem, when combining the corrected risk measures. It might still however, be
an interesting matter of further study.
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A Definitions and theorems

This section provides needed definitions, mostly from probability theory. Most of the
definitions in this section are taken from [8].
Definition 7 Let X and Y be two random variables defined on some probability space
(Ω,F ,P). We say that X = Y almost surely if

P(X = Y ) = P(ω : X(ω) = Y (ω)) = 1 (A.1)

Note that X = Y almost surely does not entail that X(ω) = Y (ω)∀ω ∈ Ω , unless Ω
is finite and countable.

A.1 Probability space

Definition 8 Let Ω be a nonempty set, and let F be a collection of subsets of Ω. F is
called a σ-algebra if:
• the empty set ∅ belongs to F ,
• whenever a set A belongs to F , its complement Ac also belongs to F , and
• whenever a sequence of sets A1, A2, ... belongs to F , their union ∪∞n=1An also be-
longs to F .

Definition 9 Let Ω be a nonempty set, and let F be a σ-algebra of subsets of Ω. A
probability measure is a function P : F → [0, 1] that, to every set A ∈ F assigns
a number in [0, 1], called the probability of A and written P(A). The function P must
satisfy:
• P(Ω) = 1 and P(∅) = 0, and
• (countable additivity) whenever A1, A2, ... is a sequence of disjoint sets in F , then

P
( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An) (A.2)

Definition 10 Let (Ω,F) be a measurable space, and let P and Q be probability measures
on the space. We say that P and Q are equivalent if P(A) = 0 ⇔ Q(A) = 0 for all
A ∈ F . That is, P and Q agree on which sets in F have zero probability.
Definition 11 A probability space is a triple (Ω,F ,P) where Ω is an arbitrary non-
empty set, F is a σ-algebra of subsets of Ω, and P is a probability measure on F .
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A.2 Borel sets and random variables

Definition 12 Let G be the smallest σ-algebra that contains all closed intervals of R
(and all other subsets A ⊂ R necessary for G to be a σ-algebra). G is then called the
Borel σ-algebra of subsets of R, B(R). The sets in B(R) are called Borel sets.

Definition 13 Let (Ω,F ,P) be a probability space. A random variable is a function
X : Ω→ R such that for every Borel set B ∈ B(R), the subset of Ω given by

{ω ∈ Ω : X(ω) ∈ B} (A.3)

is in the σ-algebra F .

A.3 Filtration and information

Definition 14 Let (Ω,F) be a measurable space. A filtration of F is a sequence of
σ-algebras {Ft}t≥0 such that:
• Ft ⊆ F , ∀t,
• t1 ≤ t2 ⇒ Ft1 ⊆ Ft2

Definition 15 A filtered probability space, (Ω,F , {Ft}t≥0,P) is a probability space
(Ω,F ,P) along with a filtration {Ft}t≥0 of F .

Definition 16 Let X : Ω → R be a random variable. The σ-algebra generated by
X, σ(X), is the collection of all subsets of Ω of the form {ω ∈ Ω : X(ω) ∈ B} where
B ∈ B(R).

Definition 17 Let X : Ω→ R be a random variable. Let G be a σ-algebra of subsets of
Ω. If every set in σ(X) is also in G, we say that X is G-measurable.

A.4 Stochastic processes

Definition 18 Let (Ω,F ,P) be a probability space. A stochastic process X(t) is a
collection of random variables Xt : Ω→ R, indexed by t ∈ [0, T ] for some final time T .
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Definition 19 Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. Let X(t) be a stochas-
tic process on this space. X(t) is an adapted stochastic process if , for all t, the random
variable X(t) is F(t)-measurable.

Definition 20 Let f(t) be a function defined for 0 ≤ t ≤ T . The quadratic variation
of f up to time T is

[f, f ](T ) = lim
‖Π‖→0

n−1∑
j=0

[f(tj+1)− f(tj)]2, (A.4)

where Π = {t0, t1, ..., tn} and 0 = t0 < t1 < ... < tn = T .
We denote by d[f, f ] or df2 the infinitesimal change in quadratic variation.

A.5 Expectations and Martingales

Definition 21 Let X be a random variable defined on the probability space (Ω,F ,P).
The expectation of X is defined to be

EX =
∫

Ω
X(ω)dP(ω) (A.5)

Definition 22 Let (Ω,F ,P) be a probability space, let G be a sub-σ-algebra of F , and
let X be a random variable that is non-negative or integrable. The conditional expec-
tation of X given G is the random variable E[X|G] that satisfies
• E[X|G] is G-measurable.
•
∫
A E[X|G](ω)dP(ω) =

∫
AX(ω)dP(ω) for all A ∈ G.

Note: if G is the σ-algebra generated by some random variable Y , we often write E[X|Y ].

Definition 23 Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. If the adapted stochas-
tic process M(t) satisfies

E[M(t)|F(s)] = M(s) for all 0 ≤ s ≤ t ≤ T, (A.6)

M(t) is a martingale.

Note: if F(t) is the filtration generated by a stochastic process X(t), we often write

E[M(t)|X(s)] (A.7)

instead of E[M(t)|F(s)].
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A.6 Brownian motion

A Brownian motion is a stochastic process , continuous in time, where an increment
between two times are normal distributed with mean 0 and variance equal to the time
difference.

Definition 24 Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, suppose there is a
continuous function W (t) of t ≥ 0 that satisfies W (0) = 0 and that depends on ω. Then
W (t), t ≥ 0 is a Brownian motion if for all 0 = t0 < t1 < . . . < tm the increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent and each of these increments are normally distributed with

E[W (ti+1)−W (ti)] = 0
Var[W (ti+1)−W (ti)] = ti+1 − ti

A.7 Ito process

Definition 25 Let W (t), t ≥ 0 be a Brownian motion, and let F(t), t ≥ 0 be be the
filtration generated by W (t). An Ito process is a stochastic process of the form

X(t) = X(0) +
∫ t

0
µdu+

∫ t

0
σdW (t),

where X(0) is nonrandom and µ and σ are adapted stochastic processes. We write

dXt = µdt+ σdWt

A.8 Ito’s lemma

If we have an Ito drift-diffusion process

dXt = µdt+ σdWt,

then a twice differentiable function f(t, x) of real variables has the property that

df(t,Xt) =
(
∂f

∂t
+ µ

∂f

∂x
+ σ2

2
∂2f

∂x2

)
dt+ σ

∂f

∂x
dWt (A.8)

This is the chain rule for differentiation of a function of an Ito process. Ito’s lemma is a
frequently needed tool when working with SDEs.
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A.9 Feynman-Kac Theorem

The Feynman-Kac theorem provides a connection between partial differential equations
and expectations.
Theorem 3 (Feynman-Kac) Consider the stochastic differential equation

dX(u) = βdu+ γdW (u). (A.9)

where W (u) is a Brownian motion. Let h(y) be a Borel-measurable function and let r
be a constant. Fix T > 0, and let t ∈ [0, T ] be given. Define the function

f(t, x) = E[e−r(T−t)h(X(T ))|x]. (A.10)

where x = X(t). Then f(t, x) satisfies the PDE

ft(t, x) + β(t, x)fx(t, x) + 1
2γ

2(t, x)fxx(t, x) = rf(t, x) (A.11)

and the terminal condition
f(T, x) = h(x) for all x. (A.12)

See [8] for a proof.

A.10 Central Limit Theorem

Let X1, X2, . . . , Xn be independent random variables with the same distribution, with
mean µ and variance σ2. Then the limit

lim
n→∞

X1 +X2 + . . .+Xn

n

is normal distributed with mean µ and variance σ2

n
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