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The effect of attention and working 
memory on the estimation of 
elapsed time
Ignacio Polti  1,2, Benoît Martin1 & Virginie van Wassenhove  1

Psychological models of time perception involve attention and memory: while attention typically 
regulates the flow of events, memory maintains timed events or intervals. The precise, and possibly 
distinct, roles of attention and memory in time perception remain debated. In this behavioral study, 
we tested 48 participants in a prospective duration estimation task while they fully attended to time or 
performed a working memory (WM) task. We report that paying attention to time lengthened perceived 
duration in the range of seconds to minutes, whereas diverting attention away from time shortened 
perceived duration. The overestimation due to attending to time did not scale with durations. To the 
contrary, increasing WM load systematically decreased subjective duration and this effect scaled 
with durations. Herein, we discuss the dissociation between attention and WM in timing and scalar 
variability from the perspective of Bayesian models of time estimations.

It is well established that paying attention to a task significantly impairs performance in a concurrent task (e.g. 
inattentional blindness1, a phenomenon generically called dual-task interference2). Dual-task interferences are 
also observed during time estimation, so that being engaged in a concurrent non-temporal task typically shortens 
the estimated time that has elapsed3,4. These observations fit well with the notion that tracking information and 
tracking time compete for the brain’s limited attentional resources5 and, hence, that attention plays a critical role 
in time estimation6–9.

Psychological models of time perception typically include a pacemaker and an accumulator as the central 
clock, and implicate both working memory and long-term memory8,10–12. According to the attentional gate 
model13, attention regulates the transfer of the total amount of pulses counted by the pacemaker to working 
memory (WM). When attention is diverted away from time, the transfer time from the pacemaker to the accu-
mulator is shortened, ultimately yielding a smaller pulse count in the accumulator (thus in WM) than the one 
in reference (or long-term memory): this is considered to ultimately yield a shortening of perceived duration. 
Accordingly, underestimations of duration have been related to the level of difficulty in concurrent non-temporal 
tasks14–16 and to the proportion of attention allocated to non-temporal features of a stimulus17,18. In addition to 
attentional effects, WM resources and tasks involving the central executive typically affect time estimation19. For 
instance, the set size held in WM has been shown to affect the reproduction of duration20,21 suggesting a possible 
implication of WM load on time estimation. Information-theoretic approaches posit that the accumulation of 
pulses in the accumulator linearly transfers the pulse count to WM and/or to the reference memory for compar-
ison10,12,22,23. Durations transferred to WM are thus a final count between the onset and the offset of an interval 
to be timed20. Subjective duration can be seen as the amount of time required to transfer the clock read-out 
into the reference memory with the pulse accumulation seen as an up-counter, and memory transfer seen as 
a down-counter24. Consistent with this, duration estimation has been reported to increase with the number of 
stimuli and to decrease with a an increase of performance in a concurrent non-temporal task, with both effects 
scaling with durations25.

Surprisingly however, very few human studies have directly tackled the issue of memory resources despite 
contrasting interpretations on the functional contribution of WM to timing. WM has been seen as a transfer 
time constant24 but also suggested to scale with timing26, leaving open the issue of whether WM simply maintain 
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timing information or functionally intervene in timing per se. In the latter, it has been argued that WM may 
actively contribute to the representation of duration26 via a top-down influence of time estimation relying on 
Bayesian estimation27. The Bayesian framework for interval timing offers a different level of description for time 
estimation in which the estimation of magnitudes is characterized by classic effects (e.g. central tendency, range 
effects, or scalar variability) which can be explored and experimentally manipulated. These properties will be 
reviewed and discussed in the discussion section, and will serve as a basis for the interpretation of the empirical 
effects reported here.

Empirical evidence so far has focused on the effect of WM on the reproduction of time estimation requiring 
the memory of a previously learned time interval to be reproduced: Fortin and Couture28 reported that time 
reproductions positively correlated with memory set size and a recent study reported that inter-individual WM 
capacity correlated with an individual’s time reproduction ability29. Interestingly, temporal order more than 
spatial content was shown to affect time reproduction in a study testing whether the underestimations of time 
was related to the difficulty of a concurrent non-temporal task or to the proportion of attention allocated to 
non-temporal features of the stimuli4. This result suggested that the temporal nature of the information held in 
memory mattered for interference effects, in agreement with a recent study showing that WM could lengthen 
subjective durations of content-matching sensory stimuli30. In an alternative viewpoint, time intervals could be 
maintained in WM as would any other chunked informational content, and the effect of WM would be related 
to the precision with which any information is held in the system. This was suggested by a recent study reporting 
WM interferences with the estimation of acoustic durations so that the larger the load in WM, the less precise the 
memory representation for durations31.

In light of recent discussions questioning the specific role of memory in timing models26,27,32, we thus inves-
tigated whether WM could parametrically affect duration estimation, and to which extent the effect of WM and 
attention could be dissociable. In light of the recent hypotheses regarding the implication of Bayesian computa-
tions in the estimation of duration, we were further interested in considering the effects of attention and WM 
load in the context of a Bayesian model for time perception. To address these, we asked participants to estimate 
supra-second time intervals of 30 s, 60 s or 90 s. Two main experimental conditions were used in which partici-
pants either estimated durations while fully paying attention to time (single-task condition) or while concurrently 
performing an n-back WM task (dual-task condition).

To parametrically assess the effect of WM load on duration estimation in the dual-task condition, we used an 
n-back WM task in which the n varied from 0 (attentional control in which participants responded to a target 
stimulus, i.e. a simple visual detection task), or 1, 2 or 3 (varying WM load). Here, the hypothesis was that if 
WM affects the likelihood estimates of duration, the greater the WM load, the shorter the estimated duration. 
A majority of studies addressing the issue of memory interference with temporal estimation have used temporal 
reproduction tasks. Here, participants estimated a supra-second duration using explicit numerals, as would natu-
rally be done in real-life, but using a response pad instead of verbalizing durations (Fig. 1). Numerical responses 
are comparable to the requirements of verbal estimation tasks in that they require the representation of time 
units33 i.e. a likely symbolic recoding of temporal estimates. Verbal estimation and time reproduction have been 
shown to yield comparable results in timing tasks34. Additionally, two groups of participants were tested: one 
group received Feedback on their WM performance, the other received No Feedback. Feedback on time estimation 
was never provided. The two groups were tested to insure that the presence of feedback - provided by means of a 
colour change following the response to the n-back WM task - did not confound the possible parametric changes 
of duration estimations with WM load. For instance, the higher the WM load, the more errors participants may 
make and the more colour changes they may experience. Hence, the No Feedback group acted as a control for 
the effect of WM load observed in the Feedback group. To build intuition on the paradigmatic approach, a video 
example of a dual task trial (30 s duration, 3-back WM) for the Feedback group is provided in Supplemental 
Materials.

Overall, we report that both attention and WM load affected duration estimation: paying attention to time 
lengthened subjective duration, and diverting attention away from duration shortened subjective duration; the 
attentional effect did not scale with duration. In a Bayesian framework, we propose that attention bias likelihood 
estimations. To the contrary, WM load parametrically shortened duration estimation and this effect scaled with 
duration. In a Bayesian framework, we suggest that WM load may contribute to the precision with which dura-
tion estimates are maintained.

Results
Performance in the n-back WM task with and without feedback. To insure that participants properly 
performed the WM task during the dual-task conditions, we assessed participants’ performance in the n-back task 
(Fig. 1c, left panel). As predicted, participants’ hit rate (HR) decreased parametrically as a function of increasing 
WM load irrespective of feedback (Fig. 1c, left panel; Supp. Table 1: “HRmodel_1”: X2 = 801.61, p < 0.001). Supp. 
Table 2 reports the main effects of WM load on HR separately for the No Feedback (Z0-back vs 1-back = 5.914, p < 0.001; 
Z1-back vs 2-back = 11.187, p < 0.001; Z2-back vs 3-back = 5.823, p < 0.001) and for the Feedback group (Z0-back vs 1-back =  
0.864, p = 0.8; Z1-back vs 2-back = 13.460, p < 0.001; Z2-back vs 3-back = 9.021, p < 0.001). A significant main effect of Group 
was found on HR (Supp. Table 1: “HRmodel_2”: X2 = 90.765, p < 0.001) showing that providing feedback to par-
ticipants surprisingly decreased their overall performance in the WM task (Supp. Table 2 for beta regression con-
trasts). A significant interaction between WM load and Group was also observed (Supp. Table 1: “HRmodel_3”: 
X2 = 18.06, p < 0.001) suggesting that the difference in HR between the two groups increased with WM load (Supp. 
Table 2, Interaction effect WM load * Group).

Increasing WM load significantly increased the false alarm rate (FA; Fig. 1c, middle panel; Supp. Table 1, 
“FAmodel_1”: X2 = 357, p < 0.001) in the Feedback (Supp. Table 2: Z0-back vs 1-back = −1.406, p = 0.5; Z1-back vs 2-back =  
−10.092, p < 0.001; Z2-back vs 3-back = −4.806, p < 0.001) and in the No Feedback group (Z0-back vs 1-back = 0.121, 
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p < 0.9; Z1-back vs 2-back = −8.655, p < 0.001; Z2-back vs 3-back = −4.013, p < 0.01). A main effect of Group was found 
for FA (Fig. 1c, middle panel; Supp. Table 1, “FAmodel_2”: X2 = 53.568, p < 0.001) so that FA were higher 
when feedback was provided than when it was not (Supp. Table 2: Main effect of Group: Z0-back = 2.302, p < 0.05; 
Z1-back = 3.930, p < 0.01; Z2-back = 4.588, p < 0.001; Z3-back = 5.083, p < 0.001). A significant interaction between 
WM load and Group was also found (Supp. Table 1, “FAmodel_3”: X2 = 9.6927, p < 0.05) so that increasing WM 
load increased the difference in FA between the two groups (Supp. Table 2, Interaction effect WM load * Group).

Finally, reaction times (RTs; Fig. 1c, right panel) significantly increased with increasing WM load (Supp. 
Table 3, “RTmodel_1”: X2 = 577.25, p < 0.001) in both groups: with feedback (Supp. Table 2: t0-back vs 1-back = −1.609, 
p = 0.9; t1-back vs 2-back = −6.101, p < 0.001; t2-back vs 3-back = −1.443, p = 0.4) and without feedback (Supp. Table 2: 
t0-back vs 1-back = −5.668, p < 0.001; t1-back vs 2-back = −13.740, p < 0.001; t2-back vs 3-back = −6.722, p < 0.001). Participants 
who did not receive feedback were faster at detecting the targets (Supp. Table 3, “RTmodel_2”: X2 = 45.319, 
p < 0.001; Supp. Table 2: Main effect of Group). A significant interaction between WM load and Group was also 
found (Supp. Table 3, “RTmodel_3”: X2 = 185.09, p < 0.001), in which the difference in RTs between the two 
groups scaled with WM load (Supp. Table 3, Interaction effect WM load * Group).

Overall, these results suggest that participants readily engaged in the n-back WM task so that the required 
experimental manipulation of WM load was fulfilled. The differences between the effect of feedback suggests that 
the engagement of participants may have been differentially impacted by the ongoing duration estimation they 
knew had to be realized. In other words, the detrimental effect of feedback on WM performance may be related to 
the dual engagement of participants in timing. However, this observation is outside the scope of the study and it 
may be interesting in subsequent work to investigate the possible bidirectionality of interference effects between 
timing and WM tasks. We now focus solely on the interferences of WM and attention on duration estimation.

Effect of attention on prospective duration estimation assessed with single vs. 0-back dual-task  
conditions. In the single-task condition, all durations were overestimated as compared to objective durations 

Figure 1. Experimental design and performance on the n-back working memory (WM) task. Panel (a) The 
experiment consisted in participants performing a prospective duration estimation of 30 s, 60 s, or 90 s. Each 
target interval was marked by the presentation of a red dot on the screen (thereby delineating a duration trial) 
and participants provided their duration estimates in minutes and seconds using a numeric pad. Additionally, 
participants underwent two main experimental conditions: in the single-task (blue shades), they fully paid 
attention to the elapsed time, whereas in the dual-task condition (red shades) they simultaneously performed 
a 0-, 1-, 2- or 3-back WM task (n-back). Two groups of participants were tested on all conditions: one group of 
participants (n = 24) received Feedback on their WM performance (green = correct; red = incorrect) whereas 
the other group (n = 24) received No Feedback. For further illustration, please see the video example of a dual 
task trial (30 s duration, 3-back WM) for the Feedback group provided in Supplemental Materials. Panel (b) 
Both groups of participants performed four duration trials for each possible combination of duration and 
experimental condition (single-task or n-back conditions in dual-task). Panel (c) The hit rates in the n-back 
task significantly decreased in both groups as a function of WM load (left graph). Performance was lower in the 
Feedback group (dotted lines) as compared to the No Feedback (filled lines) group, with a lower hit rate (left 
graph) and a higher false alarm rate (middle graph) in the Feedback group as compared to the No Feedback 
group. Right panel: RTs were also slower in the No Feedback as compared to the Feedback group. Error bars 
indicate s.e.m., ***p < 0.001 (Supp. Tables 1, 2 and 3).
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(Fig. 2a, blue) whereas durations went from near veridical/overestimated to underestimated in the 0-back 
dual-task condition (Fig. 2a, grey). As the 0-back condition consisted in pressing the button for each target letter 
appearing on the screen, this condition provided an attentional control allowing us to compare paying full atten-
tion to time (single-task) with paying attention to a visual detection task with minimal cognitive load as compared 

Figure 2. Duration estimation in single-task and dual-task conditions. Panel (a) The subjective duration 
during single-task (blue) was mostly overestimated as compared to veridical duration (the zero line). In the 
0-back dual-task condition (grey), duration estimates were shorter than during the single-task condition. 
The difference of duration estimation between single- and dual-task conditions was comparable (~5 seconds) 
whether the veridical duration was 30 s, 60 s or 90 s (Supp. Fig. 1 and Supp. Table 4). The inset plot provides the 
Coefficients of Variation for each duration in single (blue) and 0-back dual-task conditions (grey). Panel (b) The 
scatter plot reports the subjective duration estimates in single-task (blue) and dual-task (pink) as a function of 
the three target durations (30 s, 60 s and 90 s). One dot is an individual’s duration estimate (a darker dot thus 
signifies that many individuals share a similar duration estimate). The dashed line represents the veridical 
line for which subjective duration would be identical to objective duration. In single-task, the allocation of 
attention to timing yielded a significant overestimation of duration across all three durations. No significant 
effect of duration was found for this overestimation so that the magnitude of overestimation was constant across 
durations. In the dual-task condition, a significant underestimation of duration was found across all three 
durations. The underestimation of duration scaled with duration so that the longer durations were significantly 
underestimated as compared to the shorter durations, irrespective of working memory load. Panel (c) The 
variance of duration estimates predictably scaled with duration in agreement with scalar variability. This was 
observed in single (blue) and in dual (red) task conditions. The single-task vs. dual-task conditions did not 
significantly affect the variance for each duration estimates. Panel (d) The coefficient of variations (CV) did 
not significantly differ between durations irrespective of single-task and dual-task conditions. However, the 
CV significantly differed across single-task and dual-task conditions, with the CV in the dual-task being larger 
than in the single-task. These results, combined with results in panel (b), suggest that the WM task may have an 
impact on the likelihood estimates of duration. Error bars indicate s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001.
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to the n-back conditions subsequently tested. The time estimates were transformed to express the amount of devi-
ation from the target duration (as Δt = subjective duration - veridical duration). Using this approach, positive 
values could be interpreted as over-estimations and negative values conservatively as under-estimations (both 
being in comparison to veridical duration or unbiased ideal observer).

An lme was performed to test whether Duration (30 s, 60 s, 90 s) and Task (single-task, 0-back dual-task) pre-
dicted time estimation biases. A main effect of Task was found (Fig. 2a; Supp. Table 3, “STvsDT0-back_model_1”: 
X2 = 29.419, p < 0.001), suggesting that during the single-task condition, durations were significantly overesti-
mated as compared to the 0-back dual-task condition (Supp. Table 4, Main effect of Task). During the single-task 
condition, 30 s intervals were overestimated on average ~7 s (SE = 2.65 s), 60 s intervals were overestimated ~6.5 s 
(SE = 2.66 s) and 90 s intervals were overestimated ~7 s (SE = 2.69 s). Although we did not find a main effect of 
Duration (Supp. Table 3, “STvs.DT0-back_model_2”: X2 = 5.266, p = 0.07; Supp. Table 4), we found a significant 
crossover interaction (Szklo & Nieto, 2014) between Task and Duration (Table 3, “STvs.DT0-back_model_3”: 
X2 = 6.322, p < 0.05; Supp. Table 4). Data are reported in Supp. Figure 1a and statistical contrasts in Supp. Table 4. 
Underestimation increased as a function of duration in the 0-back dual-task condition (30 s vs. 60 s: t = 0.128, 
p = 0.99; 30 s vs. 90 s: t = 3.077, p < 0.01; 60 s vs. 90 s: t = 2.894, p < 0.05), but no significant differences in overes-
timation were found in the single-task condition (30 s vs. 60 s: t = 0.269, p = 0.96; 30 s vs. 90 s: t = 0.046, p = 0.99; 
60 s vs. 90 s: t = −0.219, p = 0.97). In other words, paying attention to duration lengthened subjective duration, 
but this lengthening did not scale with target duration. In fact, this effect either increased or decreased with longer 
durations according to the experimental groups (Supp. Fig. 1b). Given that the single-task condition was identical 
in both groups (in this condition, there was no feedback provided to the No Feedback or to the Feedback groups), 
the variance observed here may be accounted for by random inter-individual variability.

The pattern of results thus suggests that the internal representation of duration estimation would be some-
where between the blue and the grey data, with attention effectively acting as an up and down switch of this 
internal estimation; interestingly, the effect of paying attention to time did not robustly increase with the length 
of duration. To directly test this, we computed the coefficient of variations (CVs) separately for each duration in 
the single-task and in the 0-back dual-task condition (Fig. 2a, inset). No significant differences were found as a 
function of Duration (Supp. Table 3, “CV_STvs.DT0-back_model_1”: X2 = 4.4926, p = 0.11) or as a function of 
Task (Supp. Table 3, “CV_STvs.DT0-back_model_1b”: X2 = 0.6481, p = 0.42), thus suggesting that paying atten-
tion – or not paying attention (to time would not affect the scalar property or the precision of duration estimation.

Effect of single- and dual-tasks on time estimation. In the dual-task conditions (including all n-back 
conditions), duration was overall significantly underestimated (Fig. 2b, pink; Supp. Table 3, “Dev_SvsDtask_
model_2”: X2 = 120.53, p < 0.001; Supp. Table 5, Main effect of Duration). Unlike the attentional effect described 
above, the underestimation significantly scaled with the target durations so that 30 s intervals were estimated 
on average to be ~29 s (SE = 2.17 s), 60 s intervals were estimated as ~55 s (SE = 2.18 s) and 90 s intervals were 
estimated as ~77 s (SE = 2.19 s). Comparing the amount of underestimation across durations yielded systematic 
significant differences (30 s vs. 60 s: t = 4.239, p < 0.001; 30 s vs. 90 s: t = 12.192, p < 0.001; 60 s vs. 90 s: t = 7.936, 
p < 0.001). Consistent with the above observations, significant differences between the single- and the dual-task 
conditions were observed (Supp. Table 3, “Dev_SvsDtask_model_1”: X2 = 155.28, p < 0.001; Supp. Table 5, 
Main effect of Task) independently for each duration (t30s = 4.678, p < 0.001; t60s = 6.615, p < 0.001; t90s = 11.548, 
p > 0.001). As could be expected, a significant interaction between Task and Duration was observed so that differ-
ences between single- and dual-task conditions increased with longer durations (Supp. Table 4, “Dev_SvsDtask_
model_3”: X2 = 27.31, p < 0.001; Supp. Table 5, Interaction Task * Duration). This effect was driven by the scaling 
effect observed in the dual-task condition as a function of duration. The full data for the regression model are 
reported in Supp. Fig. 2.

Effect of single- and dual-task on the variance of time estimation. The scalar property of time 
estimation is the empirical observation that the variance of subjective durations scale with duration. In Fig. 2c, we 
report the variance observed during single-task (blues) and dual-task (pinks) as a function of duration intervals: 
as predicted, we observed a significant increase of the variance with increasing duration. To test whether the 
scaling induced by WM affected the scalar property of timing during dual-task, we fitted an lme model using the 
variance computed from all subjective duration estimates as dependent variable. As factors, we included Duration 
(3 levels: 30 s, 60 s, 90 s) and Task (2 levels: single-task and dual-task). As predicted, this analysis revealed a main 
effect of Duration (Supp. Table 3, “Var_SvsDtask_model_1”: X2 = 70.994, p < 0.001; Supp. Table 6, Main effect of 
Duration) so that, consistent with scalar variability, the variance of subjective duration estimates increased for 
both 60 s and 90 s durations when compared to 30 s durations. This was observed during single-task and during 
dual-task (ST: t60s−30s = 2.475, p < 0.05; t90s−30s = 5.125, p < 0.001; t90s−60s = 2.652, p < 0.05; DT: t60s−30s = 3.829, 
p < 0.01; t90s−30s = 5.741, p < 0.001; t90s−60s = 1.912, p = 0.1376).

We then computed the coefficient of variations (CVs) separately for each duration, in the single- and dual-task 
conditions (Fig. 2d). To test whether the CVs changed as a function of single- or dual-task condition and as a 
function of duration, we performed an lme model including a by-subject random slope for the effect of Task 
(Supp. Table 3, “CV_SvsDtask_model_1”: X2 = 29.348, p < 0.001). We found that the CVs in the single-task con-
dition were significantly smaller than in the dual-task conditions across all durations (Supp. Table 7, Main effect 
of Task: t30s(ST–DT) = −3.058, p < 0.01; t60s(ST–DT) = −3.826, p < 0.01; t90s(ST–DT) = −2.932, p < 0.01). This pattern 
suggests that WM may interfere with duration estimation in a manner consistent with the hypothesis that the 
precision of estimated duration held in WM memory may be modulated31. To test this hypothesis, we thus turned 
to the effect of WM load on prospective duration estimation.
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Prospective duration estimation is parametrically affected by WM load. Here, we focused our 
analysis on the effect of WM load (4 levels: 0-back, 1-back, 2-back and 3-back) and Duration (3 levels: 30 s, 60 s, 
90 s) on the estimation of duration in dual-task. For this, we fitted an lme model using the above-mentioned 
factors as fixed effects. The underestimation of duration was found to increase with higher WM loads (Supp. 
Table 3: “WM_model_1”: X2 = 124.29, p < 0.001; Supp. Table 8, Main effect of WM load). A main effect of dura-
tion was found in both the Feedback and in the No Feedback groups (Supp. Table 3, “WM_model_2”: X2 = 181.58, 
p < 0.001): on average, and irrespective of WM load, longer durations were underestimated more than shorter 
durations (Supp. Table 8, Main effect of Duration). We also found a significant interaction between WM load 
and Duration (Supp. Table 3, “WM_model_3”: X2 = 26.736, p < 0.001; Supp. Table 8, Interaction WM load * 
Duration). This interaction suggested that the differences in the underestimation of duration across target dura-
tions increased with higher WM load. Figure 3a provides a synthetic view of the main effects of attention and 
WM load combined in both experimental groups. Supp. Figure 3 provides the same data sorted as a function of 
the Feedback and the No Feedback group.

Effect of WM load on duration estimation and coefficients of variance. In Fig. 3b, we illustrate the 
variance of duration estimation in both experimental groups (n = 48) as a function of WM load in the dual-task 
conditions (pink). The distribution observed in the single-task (blue) are also provided for comparison. The shift 
in the peak distribution during the dual-task can readily be seen to vary with the n-back task across all three 
durations. We thus asked whether the CVs were affected by WM load. Figure 3c reports the CVs as a function 
of WM load. The CVs were fitted with an lme model using WM load as fixed effect. A main effect of WM load 
was found (Supp. Table 3, “CV_WMload_model_1”: X2 = 16.05, p < 0.01): in the dual-task condition, CVs sig-
nificantly scaled with increasing WM load (Sup. Table 9, Main effect of WM load: t0-back–3-back = −3.300, p < 0.01; 
t1-back–3-back = −3.203, p < 0.01). This showed that WM-load affected the CVs irrespective of the duration.

Discussion
Our behavioral study explored the effect of attention and working memory load on prospective duration estima-
tion. Our main findings are that, (i) paying attention to the estimation of duration lengthens subjective duration; 
(ii) splitting attention to a concurrent WM task shortens perceived duration; (iii) the magnitude of attentional 
over-estimation was comparable across durations in single-task; (iv) attention did not affect CVs; (v) performing 
a concurrent WM task shortened perceived duration proportionally to the WM load; (vi) the effect of WM scaled 

Figure 3. WM load incrementally affects duration estimation. All data illustrated here combined the Feedback 
and No Feedback groups who showed comparable effects. Their separate analysis is provided in Supp. Figure 1. 
Panel (a) Subjective duration estimates were transformed to express the amount of over/under-estimation in 
the single-task (blue) and in the dual-task (pink) as a function of WM load conditions. Hues are durations 
with lighter (darker) hues marking shorter (longer) durations. The dashed line represents the ideal observer so 
that positive values indicate a subjective overestimation of duration and negative values indicate a subjective 
underestimation of duration. Irrespective of feedback (cf. Supp. Figure 1), durations were overestimated in 
single-task and underestimated in dual-tasks. Remarkably, the underestimation of duration in dual-task 
condition systematically increased with WM load. Panel (b) the distribution of duration estimates is plotted 
as a function of duration (30 s, 60 s, 90 s), single-task (blue, left graph) and dual-task (red) and WM load. In 
both single and dual-tasks, the response variance significantly increased with duration in agreement with the 
scalar property. Interestingly the peak and width of the distributions varied as a function of WM load. Panel (c) 
Increased CV as a function of WM load. Error bars indicate s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001.
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with duration so that shorter durations were less affected by WM than longer durations; (vii) WM load affected 
timing precision equally across the three target durations so that an increase in WM load also increased the coef-
ficient of variations (CVs). We discuss the implications of these findings in the context of a Bayesian framework 
for time estimation with the main effects synthesized and compiled in Fig. 4.

Three major features of time perception are the central tendency, the range effect, and the scalar variability35. 
First, the central tendency or regression to the mean effect, is the observation that when a range of durations has 
to be reproduced, the shorter durations tend to be overestimated whereas longer durations tend to be underesti-
mated (also known as Vierordt’s law, cf.36)10. The central tendency effect is now considered a signature of Bayesian 
computations in the estimation of magnitudes such as duration35,37–41. Second, given a range of durations, the 
central tendency is more pronounced for longer than for shorter durations37, suggesting that the estimation of 
duration is shaped by context. For instance, recent findings have demonstrated the existence of carry-over effects 
in duration estimation, which were accounted for by the combination of perceptual and decisional biases induced 
by the preceding context42,43. Altogether, regression to the mean and range effects have been suggested to emerge 
from the need to minimize errors in a noisy decision process governed by Bayesian computations37–40,43,44.

The estimation of duration or interval timing in this context is realized by taking into account the likelihood 
estimates of the elapsed time (i.e., in our task, the time interval between the two red dots), and the prior for the given 
duration, that is the knowledge or memory of the to-be-estimated duration shaped by the context. In our study, 
manipulating attention to time appeared to have an effect comparable to error minimization due to context: overall, 
shorter durations tended to be overestimated and longer durations tended to be underestimated whether paying full 
attention to time in the single-task or being in a dual-task condition (Fig. 2a). Additionally, paying attention to time 
affected duration in a comparable manner across target durations with no change in precision (as assessed by CVs).

One possible explanation, consistent with a general role of attention as gain modulation45, would be that the 
likelihood estimates for a given duration may be shifted towards longer durations when paying attention to time, 
but towards shorter durations when attention is diverted away from it (Fig. 4). This pattern held, irrespective of 
target durations: in the single-task condition, paying attention to time contributed to an overestimation of dura-
tion with a comparable precision as paying attention away from time, which yielded underestimation. One pos-
sible role of attention in a Bayesian framework of time estimation may thus be to bias up or down the likelihood 
estimations of elapsed time, which would generally be consistent with the traditional role of attention in internal 
clock models as modulating the on/off switch6–9.

One alternative could be that attention affects the decisional criterion so that evidence accumulation may 
reach a duration criterion at an earlier or at a later latency according to the participant’s attentional orientation 
(diverted away from, or focused on time, respectively). Considering that attention did not scale with estimated 
duration in the single-task, and did not affect the CVs in the single-task or in the 0-back dual-task, why the deci-
sion criterion would not scale with duration remain puzzling. Altogether, neither the central tendency nor the 
range effect seemed to be differentially impacted by attention in this task. Follow up studies would thus be very 
helpful in determining the conditions under which the effect of attention could scale with the range of durations 
being used and whether attention can be conceived as a bias or gain function of duration likelihood estimations.

Figure 4. Summary of attention and WM load interferences from the perspective of Bayesian time estimation. 
First, attention (blue) may systematically shift the likelihood distribution of the original target duration 
prior (grey): paying attention to time may shift the distribution towards larger estimates resulting in an 
overestimation of the duration (upper blue, posterior) whereas diverting attention away from time may shift 
the distribution towards shorter estimates (bottom blue, posterior). Importantly, our results suggests that the 
precision of under- and over-estimations of duration due to attention is comparable across the full duration 
range. To the contrary, WM may skew the likelihood distribution as a function of duration so that WM load 
would affect both the mean and the width of likelihood distributions in addition to scaling with duration. 
This would result in increasingly wider posterior distributions shifted towards shorter durations (Fig. 3c for 
empirical data).
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The third property of magnitude estimation, and interval timing in particular, is the scalar variability con-
sisting in the observation that variance scales with duration, i.e., the noise of the representations scales with its 
duration46. Scalar variability “[…] means in essence that a source of random variability, not in itself scalar, induces 
scalar expression of that variability at different target times because the mechanism underlying performance entails 
a rescaling of the random variable by the target time”46. Said differently, scalar variability is the property of noisy 
representations onto which the brain computes47. In the scalar timing theory12, scalar noise characterizes time 
representations, and more generally magnitude representations39. Consistent with this general property of timing, 
we report scalar variability in both single- and dual-tasks when using a numerical estimation of duration in the 
supra-second range.

Additionally, the WM load parametrically shortened perceived durations so that the higher the n-back, the 
more underestimated subjective durations were. This effect scaled with durations so that the WM load affected 
shorter durations less than it affected longer durations, suggesting that the WM load may not have only skewed 
the likelihood estimates of elapsed time but also affected their variance. In this study, this effect is quite dis-
tinct from the attentional effect. In a Bayesian framework, this would amount to the likelihood of the duration 
estimates scaling with memory load (Fig. 4). According to timing models, and within a Bayesian framework, 
the multiplicative factor accounting for scalar variability could intervene at the likelihood estimation stage, or 
at the transferred posterior, which would be mechanistically equivalent to memory scaling. Previous modeling 
approaches of time estimation have, by default, assigned scalar variability at the stage of the likelihood estima-
tion37–40,43,44 although, as previously discussed, the Bayesian framework makes no assumption regarding the sca-
lar property of timing35. In other words, the origin of scalar variability in Bayesian models of time estimation 
does not constitute a functionally relevant variable in time computation and rather been assigned as an ad-hoc 
property of interval timing. Scalar variability has generally been considered as the noise of remembered rep-
resentations which either originates from memory itself, or from its read out, but not from the measurement 
of the magnitude per se47. In scalar timing theory48, the scalar property would originate from a scaling factor 
which is multiplied to the experienced time interval and whose origin is also tied to memory35. Our results thus 
support the notion that manipulating WM load while timing scales with the estimation of duration. Specifically, 
the effect of WM on duration estimation quantified here appears consistent with the notion of precision in the 
representation of duration: for instance, scalar property may emerge from the iterative assignment of the scalar 
factor in the course of the experienced duration, due to the maintenance of duration estimates in WM. This could 
also occur at a later decisional stage through direct comparison between the stored duration and the WM output. 
The observed scaling of duration estimation with WM load is in line with the notion that the representation of 
duration scales with noise, but also with alternative interpretations suggesting that the representation of duration 
in memory may be subject to deterioration in precision with increased WM load31. In a recent study, the source 
of scalar variability was proposed to put a limit on the precision with which quantities may be represented in the 
brain49, and this proposal appears consistent with the observation that increased information held in WM would 
interfere with the precision of quantity representation.

The combination of computational approaches and neuroimaging would help make the case on the distinct 
effects of attention and WM load on time estimation. Although many brain regions engaged during timing over-
lap with attention and memory networks50,51, recent fMRI evidence has also shown some selective engagement 
of cortical regions during temporal estimation tasks [e.g.52]. Functionally, recent hypotheses have also emerged 
suggesting that oscillatory multiplexing may contribute to the precision of maintained duration estimation53. The 
prediction that behavior alone could not disentangle the possible physiological implementations of the scalar 
property was previously raised with the hypothesis that the scalar property may result from a computational sam-
pling procedure between memorized event timing as opposed to duration retrieval46. Whether the attentional gain 
regulation, and the time-information scaling trade-off reported here implicate neural oscillations thus remain to 
be tested.

Methods
Participants. 24 subjects (12 males; mean age = 25.1 ± 1.9 years old) were included in the Feedback group; 
24 new subjects (11 males; mean age = 26 ± 6 years old) were included in the No Feedback group. All were 
right-handed with corrected-to-normal vision, no history of psychological disorders and all were naive as to 
the purpose of the study. All participants were compensated for their participation. All experimental methods 
were carried out in accordance with the relevant guidelines and regulations, and the experimental protocol was 
approved by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA, DSV/I2BM, NeuroSpin, 
Gif-sur-Yvette, France). All participants provided written informed consents in accordance with the Ethics 
Committee on Human Research at the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA, 
DSV/I2BM, NeuroSpin, Gif-sur-Yvette, France) and the declaration of Helsinki (2008).

Experimental Design and Procedure. The experimental task was designed in Python using the Pygame 
library (http://www.pygame.org/). Participants performed a prospective duration verbal estimation task of 30 s, 
60 s or 90 s in a single-task condition (Fig. 1a, ST) or in a dual-task condition (Fig. 1a, n-back). In the single-task 
condition, participants solely performed a duration estimation favoring the full deployment of attention towards 
timing. In the dual-task condition, participants concurrently performed a duration estimation and an n-back 
working memory (WM) task. This experimental manipulation invited participants to split attention between 
timing and WM. In the dual-task, a typical trial consisted of a visual n-back WM task during the entire length of 
the duration trial.

In the n-back WM task, visual stimuli were white 50-point Arial font capital letters centered on a grey background. 
A stream of letters was built by connecting several random-generated-letter chunks of 10 stimuli each and a target letter 

http://www.pygame.org/
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was placed in a pseudo-random position on each of these chunks to ensure a uniform deployment of attention on the 
n-back task. Each letter was presented for 600 ms, and inter-stimulus intervals were 500 ms long. Four levels of n-back 
were used: in the 0-back condition, participants were asked to detect the letter ‘C’ in a stream of letters presented suc-
cessively on the screen by pressing the space-bar (attention control condition). In the 1, 2 and 3-back conditions, par-
ticipants were asked to press the space-bar when the current stimulus and the stimulus in the nth position before it were 
identical (the higher the nth position, the higher the memory task demands). Each group of participants performed 
different versions of the n-back task: participants in the Feedback group were provided with response feedback and 
whenever the participant’s response was a hit, the letter displayed on the screen would turn green, otherwise, it would 
turn red (error); in the No Feedback group, no feedback was provided to participants whatsoever.

Participants were comfortably seated 80 cm away from a Viewsonic CRT monitor (19′′, 60 Hz) in a darkened sound-
proof cabin. After a first training block on the n-back task, participants were asked to estimate the length of time during 
which they were engaged in the task, and which was bounded by two red dots at the beginning and at the end of each 
duration trial. Each dot was displayed on screen for 1 s. Participants were asked to use the number keypad to provide 
their time estimates by entering 4 digits to validate their response: 2 digits corresponding to the number of minutes, and 
2 digits for the number of seconds (for instance, after a 90 s block, an ideal participant would enter 01:30). In the course 
of the session, three possible trial durations were tested and could be 30 s, 60 s or 90 s long. No feedback was provided 
regarding subjective time estimates in the Feedback or in the No Feedback group. A video example of a dual task trial 
(30 s duration, 3-back WM) for the Feedback group is provided in Supplemental Materials.

All possible combinations of n-back WM block and duration were tested four times per participants for a total 
of 48 trials per experimental condition (Fig. 1b). Trials were presented in a pseudo-random order using a Latin 
square design. At the end of each experiment, participants performed a control block in which the only task was 
the symbolic estimation of duration (30 s, 60 s or 90 s) of 12 trials (four trials per duration presented in random 
order) bounded by two red dots identical in every aspect to the ones used before. On each of these trials, only a 
fixation cross was displayed over a grey background.

Statistical Analyses. All statistical analyses were carried out in the R programming language (R Core Team, 
2017) and RStudio environment (RStudioTeam 2015), using the lme454, betareg55 and lsmeans56 software pack-
ages. The logic of the statistical analyses reported in this study is described below for the different quantifications.

For duration estimates and for the reaction times (RTs) in the WM task, we used linear mixed effect (lme) 
models, which can be thought of as a generalization of linear regression models. In lme models, data are not 
aggregated so that statistics are made on all empirical observations. Additionally, and unlike repeated measures 
ANOVAs in which comparisons are made between averaged data (single-trial observations being lost), each 
observation was here taken into account and the inter-individual variability was considered as a random effect. 
This approach increases statistical power without over-fitting the data.

Separate regression models were fitted to the entire data set i.e. one for each participant. For all dependent varia-
bles (duration estimates in the duration task, and reaction times in WM), the initial lme model started with the mean 
component, the random effect and the dependent variable; we then incrementally added the predictor variables (e.g. 
duration length, WM load, task) to the initial model to see whether the model improved. The goodness-of-fits were 
assessed using the Akaike Information Criterion (AIC) and χ2 to compare different models. The significance of 
fixed factors can be assessed in two ways by the simplification of the regression model using the Akaike Information 
Criterion (AIC) or the likelihood ratio using Chi square (χ2). The AIC is a measure that optimizes model fit by 
taking into account the amount of explained variance as well as the degrees of freedom. This procedure ensures 
that the model achieves the best fit to the data with the minimum number of predictor variables. When two models 
are compared, the AIC provides information about whether the predictors added in the second model account for 
a significant amount of variance in the dependent variable. The best model corresponds to the minimal AIC. For 
instance, in the reported tables (e.g. Supp. Table 1), the list of models is provided along with their respective AIC. 
The model that best fit the data is the one with the minimal AIC. Consistent with this, the best models can also be 
found using Chi square. The best model using the likelihood measure is defined by a significant χ2 test (Pr (.Chisq)) 
comparing one model in the list to the next (e.g.: model 1 vs. 2, then model 2 vs. 3 and so on). The last comparison 
providing a significant effect points to the best model. The “ChisqChi” value corresponds to twice the difference of 
the log likelihood of the two models. Both AIC and Chisqu values are reported in Supp. Tables.

For the hit and false alarm rates in the WM task, we used a beta regression model in which the analysis of dependent 
variables was expressed as a ratio assuming values in a standard unit interval (0, 1)57,58. We used beta regression models 
because they can easily accommodate the asymmetry of heteroskedastic data such as hit and false alarm rates (acquired 
here in the WM task), whose variability increases around the mean but decreases towards the lower and upper limits of 
the standard unit57,58. Each model was built including two sub-models: a regression model for the mean, and a regres-
sion model for the variability. The later allowed information from the predictors to better estimate the non-normal 
distribution common in proportional data. The procedure for the beta regression models was similar to the one used 
in the lme so that after the initial model using the mean component, we added the precision component and applied 
the standard step-wise procedure. After completion of this procedure, we tested whether the inclusion of the precision 
component was justified by comparing the AIC of the initial model with the more complex model including both the 
mean and the precision components. This was tested with the likelihood ratio test.

Statistical significance between regression coefficients in the lme and beta regression models were directly 
drawn from the selected final model, and tested with t-tests and Wald tests yielding Z, respectively. The p-values 
in the lme models obtained from post-hoc analyses were adjusted using Tukey’s HSD. To avoid biases due to 
unbalanced data, tests of significance were made on the population marginal means59 estimated from linear mod-
els using the lsmeans R package56. The mean values and standard errors (SEs) reported in the Results section cor-
respond to those extracted from the linear models. The values shown in the figures represent the arithmetic mean 
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and standard errors (SEs) calculated from the empirical data, unless otherwise specified. For clarity, significance 
levels are sparingly used in Figures to highlight the main effects, but the full statistical effects are provided in the 
Results section and in Supplementary Tables. The specifics for the assessment of performance in the n-back WM 
and the duration estimation tasks are provided below.

n-back WM task. We assessed the performance on the n-back task using three dependent variables: Hit Rate 
(HR), False Alarm rate (FA) and Reaction Time (RT). The HR was the proportion of target letters participants 
accurately detected, and the FA was the proportion of non-target letters participants incorrectly responded to. 
A requirement of beta regression models is that response variables do not include the exact values 0 and/or 157: 
proportions of 0 and 1 were thus converted to 1/(2N) and 1-1(2N), respectively, where N was the number of let-
ters on which the proportion was based (Macmillan and Creelman 2004). RTs were computed from the onset of 
the displayed letter to the button press. RTs below 100 ms were discarded, representing ~3% of the total number 
of data points (i.e. 60 out of 2033). For each trial, the average RT was computed only for the accurately detected 
n-back targets. To address the effect of feedback and WM load on the n-back task performance, we fitted one beta 
regression model for HR separately from another one for FA; both HR and FA were dependent variables. A lme 
model was used for RT. Group (2 levels: Feedback, No Feedback (Fdbck and NoFdbck in Tables, respectively)) and 
WM load (4 levels: 0, 1, 2 and 3) were included as fixed effects. In the RT model, an intercept for Subjects (n = 48) 
was included as random mixed-effect.

Prospective duration estimation task. The 1st and 3rd quartiles were computed for the full range of time esti-
mates, but also for the full range of response times (i.e., the time it took participants to give a time estimate using 
the number pad). The upper rejection boundary was computed as: 3rd Quartile + 1.5 * (IQR) with IQR as the 
inter-quartile range. The lower rejection boundary was computed as: 1st Quartile − 1.5 * (IQR). If a prospective 
judgment or a response time was above or below the respective upper or lower rejection boundaries, they were 
discarded from further analyses: ~8% of the total number of data points were excluded in both the Single-Task 
(i.e., 45 out of 552) and the Dual Task (i.e., 192 out of 2225).

The effect of attention on duration estimation was assessed using lme models. Task (2 levels: single-task (ST), 
dual-task (DT)) and Duration (3 levels: 30 s, 60 s, 90 s) were included as fixed-effects. Participants were considered as a 
random effect to control for their intra-class correlations. In order to analyze the general effect of attention on timing, 
data from the Feedback and No Feedback groups were pooled together given no paradigmatic difference for these con-
ditions. The effect of WM load used one lme model for the Feedback and one lme model for the No Feedback groups. 
Tw by-subject random slopes were included, one for the effect of WM load and another one for the effect of Duration.

Data accessibility. The datasets generated during the current study are available in the Working Memory & 
Duration repository in Open Science Framework osf.io/cg7ex.
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